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Abstract. We provide sharp weak estimates for the distribution function of M¢ when on ¢ we
impose L', L and LP>* restrictions. Here M is the dyadic maximal operator associated to a tree
7T on a non-atomic probability measure space. As a consequence we produce that the inequality
[|IM7|poo < |l|0lllp.co is sharp allowing every possible value for the L' and the L? norm for a
fixed ¢ such that 1 < ¢ < p, where ||| - |||p,00 is the integral norm on and || - || o the usual quasi
norm on LP*°.

1. Introduction

The dyadic maximal operator on R" is defined by

(1.1) Mao(x) = sup {i/ |p(u)|du: z € Q, @ CR" is a dyadic cube}
Ql Jg

for every ¢ € Li _(R™) where the dyadic cubes are those formed by the grids 27VZ"
for N =1,2,... and |A| is the Lesbesgue measure of any measurable subset A of R".
It is easy to prove by using the definition of M, that it satisfies the following weak
type (1,1) inequality

(12) e R Mo 2 W< 5 [ fold

for every ¢ € L'*(R™) and every A > 0. Tis inequality is sharp as can be easily seen
by considering characteristic functions over dyadic cubes. Using the fact that

IMag| = / PV Mo > A} dA
0

and in the sequel inequality (1.2) along with Fubini’s theorem we easily get the
following L” inequality known as Doob’s inequality

p
(1.3) IMadl|p < Ellcbllp

for every p > 1 and every ¢ € LP(R"™), which is proved to be best possible (see |2, 3]
for the general martingales and [10] for the dyadic ones).

A way of studying the dyadic maximal operator is the introduction of the so
called Bellman functions (see [8]). Actually, we define for every p > 1

(1.4) Bp<f,F>=sup{ﬁ/Q<Md¢>P: ﬁ/@cﬁp:lﬂ rgﬂ/be:f}
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where @ is a fixed dyadic cube, ¢ is nonnegative in LP(Q) and f, F' are such that
0 < f» < F. B,(f,F) has been computed in [5]. In fact it has been shown that

B,(f, F) = Fw,(f?/F)? where w,: [0,1] — [1, z%] is the inverse function of

H,(2) = —(p—1)2F + pz".

This has been proved in a much more general setting of tree like maximal operators
on non-atomic probability spaces. The result turns out to be independent of the
choice of the measure space.The study of these operators has been continued in [7]
where the Bellman functions of them in the case p < 1 have been computed. As in
[5] and [7] we will follow the moregeneral approach. So for a tree 7 on a non atomic
probability measure space (X, i), we define the associated dyadic maximal operator,
namely

Mré(a) =sup{ﬁ/j|¢\du: a:efef}

for every ¢ € LY(X, ).
As it can be seen in [9], Mz: LP*>° — LP> is a continuous operator and satisfies
the following inequality

(1.5) Mz ¢llp,co < [[I6]]]p.co-

where || - ||y, is the usual quasi-norm on LP* defined by
18]l = sup { ({6 = AD)7: X > 0},

and ||| - |||p,co is the integral norm on LP*° given by

||@]]]p,00 = sup {M(E)_H;/ |¢| dpv: E measurable subset of X such that p(E) >0}.
E

] [|lp.co @and || - ||p.c0 are equivalent because of the following
p 0
191,00 < [[18]l]p,00 < ]Tl||¢|’p,007 Ve L,

which can be seen in [4]. In this paper we prove that inequality (1.5) is sharp and
independent of the L' and L? norm of ¢, for a fixed ¢ such that 1 < ¢ < p. In fact
we prove a stronger result, by evaluating the following function of A > 0

S(f, A, F,\)

=sup{u<{MT¢2A}>:qzszo,/xcbduzf,/xqquu:fl, |||¢|||p,oo=F},

where (f, A, F') is on the domain of the extremal problem. That is we prove the
following

Theorem 1.1. For f, A such that f9 < A < ['fp-a/p=1Frla=D/p=1 and 0 < f <
F' the following hold

(1.6)

FP
(4,4 F) = min {1, 6. 5 |

where

1) Gral) =sup {ul(Mro 2 0) 020, [ oau=1, [ ordu=a}.



Optimal weak type estimates for dyadic-like maximal operators 231

In fact, G a()) has been precisely computed in [6] by using sharp inequalities on
a certain class of functions which is enough to describe the related problem. In this
paper we avoid the technique used in [6] and refine this result by proving the theorem
mentioned using a different approach. As a corrolary we obtain the following

Corollary 1.1. The following is true
(1.8) sup{annpm: 020, [odu=f. [ otau=a, 16l = F} _F,
X X

that is, (1.5) is sharp allowing every value of the integral and the L9-norm of ¢.

This paper is organized as follows: In Section 2 we provide some lemmas and facts
concerning non-atomic probability measure spaces and trees on them. In Section 3 we
find the domain of the extremal problem for the case F' = 1. This is done by finding
sharp inequalities relating the L' and L? norm of a measurable function ¢ under the
weak condition |||¢|||, 0 = 1. Krein-Milman theorem is a tool for us in order to find
these sharp inequalities. At last in section 4 we precisely evaluate S(f, 4,1, ). We
need also to mention that all the estimates are independent of the measure space
(X, p) and the tree 7.

2. Preliminaries

Let (X, ) be a non-atomic probability measure space. We state the following
lemma which can be found in [1].

Lemma 2.1. Let ¢: (X, ) — RT and ¢* the decreasing rearrangement of ¢,
defined on [0, 1]. Then

t
/ ¢*(u) du = sup {/ ¢ dp: E measurable subset of X with pu(E) = t}
0 E

for every t € [0,1], with the supremum attained.

We prove now the following

Lemma 2.2. Let ¢: X — R™ be measurable and I C X be measurable with
wu(I) > 0. Suppose that ﬁ /Igzﬁd,u = s. Then for every t such that 0 < t < pu([I)

there exists a measurable set Ey C I with u(E;) =t and

du = s.
(B Jo O

Proof. Consider the measure space (I, /1) and let ¢»: I — R™T be the restric-
tion of ¢ on I that is ¢» = ¢/I. Then, if *: [0,u(I)] — RT is the decreasing
rearrangement of ¢, we have that

1 [t 1 w() 1 )
(2.1) ¥/o ¥ (u) du > m/o v (u)du = s > ;/ ¥ (u) du.

(-t

Since 9* is decreasing, we get the inequalities in (2.1), while the equality is obvious

since 0
w

* du = du.

/0 Y™ (u) du /Iczﬁu

From (2.1) it is easily seen that there exists 7 > 0 such that ¢ +r < u(I) with

(2.2) %/ () du = 5.
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It is also easily seen that there exists E; measurable subset of I such that

t+r
(2.3) p(E) =t ad [ odu= [ v

since (X, ) is non-atomic. From (2.2) and (2.3) we get the conclusion of the lemma.
U

We now call two measurable subsets of X almost disjoint if u(A N B) = 0. We
give now the following

Definition 2.1. A set 7 of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X € 7 and for every I € 7 we have that p(I) > 0.
(ii) For every I € T there corresponds a finite or countable subset C(I) C T
containing at least two elements such that
(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =UC(I).
(iii) 7 = U Z(m) where Ty = {X} and Ty = U C(I).

m>0 IG'Z—(m)
(iv) lim sup u(l)=0.

m——+00 IeT(m)
From [5| we get the following

Lemma 2.3. For every I € T and every « such that 0 < o < 1 there exists a
subfamily F(I) C T consisting of pairwise almost disjoint subsets of I such that

u(gm J) = 3 ) = (- a)u(D).

JeFI)

Let now (X, ) be a non-atomic probability measure space and 7 a tree as in
Definition 1.1. We define the associated maximal operator to the tree 7 as follows:
For every ¢ € L'(X, ) and x € X, then

Mré(x) = sup{ﬁ/lkb\du: rele T}.

3. The domain of the extremal problem

Our aim is to find the exact allowable values of (f, A, F') for which there exists
¢: (X, ) — RT measurable such that

(3.1) /Xgﬁdu—f, /X¢qdu—A and |||@||[pco = F'

We find it in the case where F' = 1. For the beginning assume that (f, A) are such
that there exist ¢ as in (3.1). We set g = ¢*: [0,1] — R". Then

1 1
o=t [o=a md (gl =1
0 0

\Hgm]{foﬂ = sup {]E]_Hzl’ / g: E C [0,1] Lebesque measurable such that |E| > O} :
E

where
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This is true because of the definition of the decreasing rearrangement of ¢ and
Lemma 2.1. In fact since g is decreasing |||g|||y. is equal to

t
sup{t_1+zl7/ g: 0<t< 1}.
0

Of course, we should have that 0 < f <1 and f? < A. We give now the following
Definition 3.1. If n € N, and h: [0,1) — R*, h will be called i—step if it is

constant on each interval
1
L E N
on 7 on

Now for n € N and 0 < f <1 fixed, we set

1
An(f):{h: [0,1]—>R+:hisa2—n-step function,/ h=f, |||h|||01 §1}

Then
A, = A, (f) C LP*>([0,1])
where we use the ||| - |HLO£ norm for functions defined on [0,1]. 4, is also convex,
that is,
hi+h
hy by € A, 1; 2c A,

Additionally, we have the following

Lemma 3.1. A, is compact subset of L”*°(]0,1]) =Y where the topology on'Y
is that endowed by ||| - ||| 0.1,

Proof. (Y,||| - |||p.c) is a Banach space. So, especially a metric space. As a
consequence we just need to prove that A, is sequentially compact.Let now (h;); C

A,. Tt is now easy to see by a finite diagonal argument that there exists (h;;);
subsequence and h: [0,1] — R*. such that h;, — h uniformly on [0,1]. Then

obviously [i h = f, [||h]|[ha < 1,50 h € A,. Additionally

1k, — AJJj02 —sup{|E| 5 [ i, - |E|>o}

< sup {|(h;, — h)(t)|, t €[0,1]} — 0
as j — oo. That is hy; Yhe A,. Consequently, A, is a compact subset of
LPo([0, 1]). OJ
We give now the following known

Definition 3.2. For a closed convex subset K of a topological vector space Y,
and for a y € K we say that y is an extreme point of K, if whenever y = “"‘ Wlth
z,z € K it is implied that y = x = z. We write y € ext(K).

Definition 3.3. For a subset A of a topological vector space Y we set

conv(A) = {inxi: X\ >0, 7, € A neN*, ZAizl},
=1

i=1

We call conv(A) the convex hull of A.



234 Eleftherios N. Nikolidakis

We state now the following well known
Theorem 3.1. (Krein-Milman) Let K be a convex, compact subset of a locally

—_— Y
convex topological vector space Y. Then K = conv(ext(K)) , that is, K is the closed
convex hull of its extreme points.

According now to Lemma 3.1 we have that

A, = conv[ext(An)]me([O’m.

We find now the set ext(A4,,).
Lemma 3.2. Let g € ext(4,). Then for every i € {1,2,...,2"} such that
AN
(i) " < f, we have that

271
14l i
sup{|E] 1J’p/g: \E|:2—n}:1.
E

1—1
Proof. We prove it first when ¢ = 1 and (%) " < f. It is now easy to

see that g € ext(4,) if and only if ¢* € ext(4,). So we just need to prove that
n l_l
f1/2 g = <L> . We write

0 2n
g = E ;& with I; = —i
g jZTL 7f3n

and a; > ay for every i € {1,2,...,2" —1}. Suppose now that a; < 2"/?, and that
g > ay (the case a; = ay is handled in an analogous way). For a suitable £ > 0 we
set

z. (1) = (2) ol = a +€ o) =ay—¢
— &1 ; — G2
= Z @; &y g2 = Z ;" &, where %2) %2)
i=1 i=1

a7 =] — &, Qy =Qp+¢E
and akl) = Oz,(f) = ay, for every k > 2. Since a; < 2"/P, we can find small enough

e > 0 such that g; satisfy |||gz|||pC>C> < 1, for i = 1,2. Indeed, for i = 1, we need to
prove that for small enough ¢ > 0

t
(32) / g <t
0

for every ¢ € [0,1), since g; is decreasing. (3.2) is now obviously true for ¢ > = since

t t
(3.3) / g1 :/ g" for every such t.
0

(3.2) is also true for t = 0
every t € <0 1

,2n for a suitable € > 0. But then it remains true for

,2—n) since the function t — fo g1 represents a straight line on [0, 2%}

2
ony on

|||g1|||[0 W < 1. For i = 2 we use the same arguments and the hypothesis a; > ay
in order to ensure that for small enough ¢ > 0, g, is decreasing. Obviously now,

and t'77 is concave there, analogously for the interval [ } That is we proved
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fol gi = f,so that g; € A,, fori =1,2. But ¢* = @, with g; # g and g; € A,
i =1,2,, a contradiction since g* € ext(4,). So,

1/2 1 1-1
a; =27 and / g = (—n> p,
0 2

that is what we wanted to prove. In the same way we prove that for i € {1,2,...,
2" — 1} such that

1 . 1 . 1
. 1 1—= 2/2” . 1—= (1+1)/2n . 1 1—=
o pgfy if / g*: i p, then / g*: Lt p'
on 0 on 0 on

The lemma is now proved by induction. 0

1
p

o\ 1=
Let now g € ext(4,) and k = max{z' < 2™ (%)
that f < 1, we have that

E\w E+1\'7

() =r<(5%7)
k/2m™ L 1—%

[ =)

But by using the reasoning of the previous lemma it is easy to see that

(k+1)/27
/ g = f,
0

k+1/2" -4
/ g*:f_(ﬁ) = =2n'f—2n/p-k;1_%

on i ’
k/2n

< f}, so if we suppose

By Lemma 3.2,

which gives

Additionally, o; = 0 for ¢ > k£ + 1. From the above we obtain the following
271
Corollary 3.1. Let g € ext(4,). Then g* = > «;&;,, where
i=1

a; = 2"/1’(@'1‘% ~(i— 1)1‘%) for i=1.2,... k

and 1
ak+1:2Nf_2n/p,k1—5, oa; =0, 1>k+1,

N 121
k:max{iSQ”: (;—n) §f}

We estimate now the Li%-norm of every g € ext(4,,). We state it as

Lemma 3.3. Let g € ext(4,) and A = fol g?. Then A < [fr=a/v=1 1 & (f),

where
—1\¢ q onf _ 2n/pk1*% q
I = (p_) P and g,(f) = Tkt (27 ).

where

P P—q 2" 2"
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271

Proof. For g we write g* = > «,;&;,, where «; are given in Corollary 3.1. Then
i=1
1 k 1
3.4 A= )= g Lol =.
(3.4) /0 (g") [(;az>+ak+1:| on

Now for i € {1,2,...,k}

o= oo ) o[ (5) )
= {2" / /; w]q,

where ¢: (0,1] — R is defined by ¢ (¢t) = 7%175‘1/”. By (3.5) and in view of Holder’s
inequality we have that for i € {1,2,... k}

(3.5)

ij2n
(3.6) ol <2 / "
i—1/2n
Summing up relations (3.6) we have that
k k/2m E\E
3.7 ad <o T_9on. .= ]
(3.7 Sarsy [T (5)
Additionally from the definition of k£ we have that
kN 4 .
(35) (3) <= @iy

From (3.4), (3.7) and (3.8) we obtain

A< {2" T fpfq/pfl 4 O‘ZM] 1 = Ffpfq/pfl + &.(f)

2

and Lemma 3.3 is proved. 0

Corollary 3.2. For every g € A,
1
AL T uP=l L g (f), where A= / q%.
0

Proof. This is true, of course, for g € ext(4,,), and so also for g € conv(ext 4,,),
LP-22([0,1])

since t — t7is convex for ¢ > 1 on R™. It remains true for g € conv(ext(A4,))

using a simple continuity argument. In fact, we just need the continuity of the

identity operator if it is viewed as I: LP*°([0,1]) — L4([0,1]). See [4]. Using now

Krein-Milman Theorem the Corollary is proved. O
We have now the following

Corollary 3.3. Let ¢: (X, u) — R such that

/¢d“_f’ /‘ﬁqdﬂ—fh 16]]1poo < 1.
X X

Then
fI< A< pfp*q/pfl'
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Proof. Let g = ¢*: [0,1] — R". There exist a sequence (g,) of 5-simple
functions, such that g, < g,+1 < g and g, converges almost everywhere to g. But

then by defining
1 1
0 0
we have that

(3.9) Gn € An(fn) sothat A, < TfP-P=1 4 & (f,).

By the monotone convergence theorem f,, — f, A, — A. Moreover,

1—-1
o f, — ke PO/
() = E Il 2

ka\' ko +1\' 77

- < n <

() =< (557
As a consequence

cas-or o () (55 ()]
() - () o e e

where in the second inequality we used the known

(t+ ) <t*+s* for t,s>0, 0<a<l.

where k,, satisfy

RISy

Now (3.9) gives the corollary. O
In fact the converse of Corollary 3.3 is also true.

Theorem 3.2. For 0 < f <1, A > 0 the following are equivalent:
i) f1< A< el
ii) 3¢: (X,u) — R such that

(/¢W=f,/¢wu=A,MWbm§1
X X

We prove first the following
Lemma 3.4. Let a € (0,1) and (f, A) such that

(3.10) fsals,
(3.11) f1< i A,
(3.12) A< rfpa/vrt

Then there exists g: [0,a] — R* such that

/'g—f /’g—-,zmdnmmwﬂ
0
where

|Hg\||[0 = sup {\E|_1+117 /Eg: E measurable subset of [0, a| such that |E| > 0} .
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Proof. We search for a g of the form

R 0<t <,
R 7Y aq <t<a,

for suitable constant c;puy. We must have that

(3.13) [a=1=a " vma—a)- 1.
0

Additionally, ¢ must satisfy

(3.14) / gq:A<:>Fci_E + pud(a— 1) = A.
0
(3.13) gives
1—1
(3.15) R
a— C
so (3.14) becomes
1

-2 (f—e ")
3.16 I'cy * = A.
( ) G + (Ol . Cl)qil

That is we search for a ¢; € (0, «) such that
T(c;) =A where T:[0,a) - R"
is defined by

(f =175y

_ -t -t

Tt)y=Tt"»+ (@it

Observe that T'(0) = a{;jl < A because of (3.11) and that T'(f?/P~1) = [fr-a/p=1 >

A. Now because of the continuity of T', there exists ¢; € (0, f?/?71] such that T(c;)

A. Then ¢; € (0,a) because of (3.10), and if we define py by (3.15), we guarantee
(3.13) and (3.14). We need to prove now that |||g|||§o?§] = 1. Obviously, because of
[0,0]
p,00

the form of g, |||g]||p > 1. So we have to prove that

t
(3.17) /ggtlp, Vte(0,a]
0

This is of course true for ¢ € [0, ¢;]. For t € (¢, al,

¢ L1
/ g=c; "+ pe(t—c)=:G().
0
1
Since G(c1) = ci " Gla)=f< a'"7 and ¢ — t'77 is concave on (c1, 0, (3.17) is
true. Thus Lemma 3.4 is proved. 0

We have now the

Proof of Theorem 3.2. We have to prove the direction i) = ii). Indeed, if
f1< AL ITfra/P~tand f < 1, we apply Lemma 3.4. If f9 = A with 0 < f <1, we
set g by g(t) = f, for every t € [0,1], while if f =1 < A < I' a simple modification
of Lemma 3.4 gives the result. U
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We conclude Section 3 with the following theorem which can be proved easily
using all the above.

Theorem 3.3. For f, A such that 0 < f <1, A > 0 the following are equivalent:
i) f1<AL pfp—q/p—I;

i) 36: (X.n) — R such that [ odu=f, [ 67du=A [loll =1
X X

Remark 3.1. Theorem 3.3 is completed if we mention that for f = 1 the fol-
lowing are equivalent:

) f=1<A<T,
i) 36: () - R such that [ odu=1, [ 6'du=a, [0 =1
X X

4. The extremal problem

Let M7 = M the dyadic maximal operator associated to the tree 7, on the
probability non-atomic measure space (X, ). Our aim is to find

Ty 4 p(A) = sup {m{w > ) 620, /X bdu=f, /X 01 dp = A, |||l = F}

for all the allowable values of f, A, F'. We find it in the case where F' = 1. We write
Ty a(A) for Ty 41(X). In order to find T 4(A) we find first the following

TH0) =sup { (M0 2 Wi 020, [ a1, [ #du=A il <1}
b's X
The domain of this extremal problem is the following

D={(f,A):0<f<1, fr<A<pty

Obviously, T}}f)‘()\) =1,for A < f. Let now A > f and (f, A) € D. Let ¢ be as in the
definition of T}Bx(/\) . Consider the decreasing rearrangement of ¢, g = ¢*: [0, 1] —

R*. Then . .
/g:f, /gq:fn lgllled < 1.
0 0

Consider also E' = {M¢» > A} C X. Then F is the almost disjoint union of elements
of T, let (I;);. In fact, we just need to consider the elements I of 7, maximal under
the condition

1
(4.1) m/lcbduzx.

We then have ' = |J; [; and [, ¢ du > Apu(E) because of (4.1). Then according to
Lemma 2.1 we have that [ g > a\ where a = p(E). That is

(4.2) TJE;{(A) < Apa(N),
where

Apa(N) = sup{a € (0,1]: 3g: [0,1] - R*:

1 1 a
[o=r [o=amaies < ["o=ar}
0 0 0

(4.3)
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We prove now the converse inequality in (4.2) by proving the following

Lemma 4.1. Let g be as in (4.3) for a fixed o € (0,1]. Then there exists
¢: (X, ) — R such that

[odu=t. [ odu=A ollhe <1 and w({Mo 22D 2 o
X X

Proof. Lemma 2.3 guarantees the existence of a sequence (/;); of pairwise almost
disjoint elements of 7 such that

(4.4) p(Un) =ty =

Consider now the finite measure space ([0, al, |-|), where |-| is the Lebesque measure.
Then since foa g > aX and (4.4) holds, applying Lemma 2.2 repeatedly, we obtain
the existence of a sequence (A;) of Lebesque measurable subsets of [0, @] such that
the following hold:

1
(A;); is a pairwise disjoint family, UAj =[0,a], |A;| = u(l;), m/ g > A
il J

Then we define g;: [0, |A4;]] — RT by g; = (9/A4;)*. Define also for every j a mea-
surable function ¢;: I; — R* so that ¢; = gj. The existence of such a function is
guaranteed by the fact that ([;, /I;) is non-atomic. Since (I;) is almost pairwise
disjoint family we produce a ¢): U I; — R* measurable such that ¢V /I; = ¢;.
We set now Y = X \ Ul; and h: [0,1 —a] — RT by h = (¢g/[a, 1])*. Then since
w(Y) =1 — a there exists ¢ : Y — R such that (¢?)* = h. Set now

o= oM, on UIj,
14®, onY.

It is easy to see from the above construction that ¢* = g a.e. with respect to Lesbesgue
measure, which gives [, ¢du = f, [ ¢?dp = A and [[|@][[p,0 < 1. Additionally,

1 / 1 :
odu = —/ g >\ for every j,
u(l;) Ji, A5l Ja,

{Mé= A} DU, so p({Mé=A}) = a

and the lemma is proved. O

that is,

It is now not difficult to see that we can replace the inequality foa g > a\in the
definition of A 4(\) by equality, thus defining Sy 4()\), in such a way that

(4.5) TN = Apa(N) = Spa(h).

This is true since if ¢ is as in (4.3) and A > f, there exists # > « such that foﬂ g =B
For (f,A) € D we set

Gy —sup{m{m > apioz0, [odu-t. [ ¢qdu—A}.

It is obvious that T}Bl()\) < Gy a(N). As a matter of fact Gy () has been computed
in [6] and was found to be
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17 ASf’
1/q—1
(4.6) Gra =% T<ra<(4)
1/g—1
A
E(3) =

where k is the unique root of the equation
(f —a)
(1 —a)it

We have now the following
Proposition 4.1. If (f, A) € D, then

) 1
TH1(\) < min {1, Gra(N), V} .

Proof. We just need to see that u({M¢p > A}) < /\ip for every ¢ such that
l||@l][p.ce < 1. But if E = {M¢ > A}, we have by the definition of the norm ||| |||,.00

that [, ¢ < pu(E)""#. But by (1.3) [, ¢ > Au(E), so that

1/q—1
+aXN =A onae{(),{}, when )\>(7> )

Mi(B) < u(B)'F = p(B) < 1.

So Proposition 4.1 is true. O
We prove now that in Proposition 4.1 we have equality.
Proposition 4.2. Let (f, A) € D and \ such that
1
(47) § :min{l,G’fjA()\),ﬁ}.
Then T}Bl()\) = {

Proof. We use Lemma 3.4 and equations (4.5). Because of (4.5) we need to find
g: [0,1] — R* such that

! 1 f/x f
o=t [ a=a llollle<tand [Tg=fa=1
0 0 0 A

that is, g should be defined on [0, f/\]. We apply Lemma 3.4, with a = % In

f A 1/q-1 . .
1 50, A < <7> which gives

(3.11), while § < & gives (3.10). In fact, Lemma 3.4 works even with equality on

(3.10) as it is easily can be seen by continouity reasons. So, in view of (4.5) we have
TJSBX(A) > f/A and the proposition is proved. O
At the next step we have
Proposition 4.3. Let (f, A) € D and \ such that

(4.8) k:min{l,Gf,A(A)%}.

Then Tj')\(\) = k.

fact, since (4.7) is true, we have that Gra(\) =
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1/g—1
Proof. Obviously, (4.8) gives A > (?) ! . We prove that there exists g: [0, 1] —
R* such that

k 1 1
(49) /g:m, /ng, /ngA and [[lg]llpe0 < 1.
0 0 0

For this purpose we define
A on [0, k],
9= %, on (k,1].
Then, obviously, the first two conditions in (4.9) are satisfied, while

1q_(f_k/\)q a_
/Og —mﬁ-k)\ =A,

by the definition of k. Moreover, |||g|||p.0 < 1. This is true since kA < K f <1
and the fact that g is constant on each of the intervals [0,k] and (k,1]. So the
proposition is proved. O

At last we prove
Proposition 4.4. Let (f, A) € D and A such that

1 ) 1
(4.10) " :mln{l,Gf,A()\),ﬁ}.

Then T (M) = 5.

Proof. As before we search for a function g such that

1 1 1/ 1 1
(411) /(; g:f’ /0 gq:A, |HgH’p,oo§1 and /(; gzﬁ‘)\:)\p—l'

We define .
Iy = I +<f_%>

\P—4 g1’
(1-%)
and we consider two cases:
i) ¥, > A. We search for a function of the form

(1 — %)t‘l/p, 0<t<ec,

(4.12) 9= 9 pa, o <t<i
s, )\Lp <t < 17

for suitable constants ¢; < 55, po, p3. Then in view of (4.11) the following must
hold:

1-1 1 1
) o MQ(E - Cl) B
1-1 1
(4.14) Cq p+u2<ﬁ—61>+/ﬁ3<1— ):f7

1

P
415 e (2 i(1- 1) _ 4
(. ) C1 —|—,u2 V—cl +M3 _ﬁ = A.
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Notice that the condition |||g|||, < 1 is automatically satisfied because of the form
of g and the previous stated relations. Now (4.13) and (4.14) give

f= %
(4.16) H3 = 1_—)\L
\P
and
A
(4.17) po = M,
PO
while (4.15) gives T'(¢;) = A where T is defined on [0, /\—p) by
11 q q
oy, ) (e
Geme) (- ﬁ)
Then
1 q
BN Cta)
T(0) = +

AP g-1°
(1)

It is now easy to see that T'(0) < A by using that F': [0, f/A\] — R defined by

(f —tA)"
Ft) = — 2 4+ ¢t)\4
( ) (1 _ t)q_l +
is increasing, and the definition of Gy 4(A\) . Moreover lim T(c) =0\ > A, so by

c—»vJ

continuity of the function ¢, we end case i). Now for
ii) ¥, < A. We search for a function of the form

{(1 - l)tl—l/p, 0<t<e,
g:= P

M2, < t S ]-7
where 5; < c¢;. Similar arguments as in case i) give the result. 0

From Propositions 4.1-4.4 we have now
Theorem 4.1. For (f,A) € D,

. 1
T}}f)‘(/\) = mln{l Gra(N), )\p}

Remark 4.1. Notice that T 4(\) = T}’lf)‘()\) for every f, A such that f7 < A <

rfr=a/P=1 and 0 < f < 1. Indeed, suppose that o = T}}f)l()\). Then there exists
g: [0,1] — R™ such that

1 1 [e%
(4.18) [o=t [o=a [ g=ar and flglle <1
0 0 0

It is easy to see that for every € > 0, small enough we can produce from g a function
g. satisfying

a—e 1 1
/ %2&%%%(/%=ﬁ(/%:A+& and  |]1elllpoo = 1,
0 0 0
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where lim de = 0. This and continuity reasons shows T 4(A\) = a.
e—0

iii) The case A = f? can be worked out separately because there is essentially

unique function g satisfying fol g=f, fol g? = f? namely the constant function with
value f.

Scaling all the above we have that

Theorem 4.2. For f, A such that f¢ < A < ['fr=4/p=1ppla=1)/(=1) and 0 <
f < F the following hold

sup {uttmto 2 3620, [ =1 [ o= lloll = ¥

FP
= min {1, GﬁA()\), v}

(4.19)

and
sup{HMcbllp,oo:aszo, /chduzﬁ /ngqduzA, |||¢|||p,oo:F}:F.
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