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Abstract. The moduli spaceMg of compact Riemann surfaces of genus g has orbifold structure
and the set of singular points of the orbifold is the branch locus Bg. In this article we show that Bg

is connected for genera three, four, thirteen, seventeen, nineteen and fiftynine, and disconnected for
any other genus. In order to prove this we use Fuchsian groups, automorphisms of order 5 and 7 of
Riemann surfaces, and calculations with GAP for some small genera.

1. Introduction

The moduli space Mg of compact Riemann surfaces of genus g is the (discontin-
uous) quotient of the Teichmüller space by the action of mapping class group. Hence
it has the structure of a complex orbifold, whose set of singular points is the branch
locus Bg. The set Bg consists of the surfaces with non-trivial automorphisms, this
fact makes the study of Bg interesting. In this article we study the connectedness
of Bg.

Our main tool will be the uniformization of Riemann surfaces by Fuchsian groups.
Given a Riemann surface X of genus g > 1, we consider the universal covering
H → X, where H is the upper half plane and the cover transformations of this map
is isomorphic to π1(X). Hence there is a representation r : π1(X) → Isom+(H) =
PSL(2,R) such that X = H/r(π1(X)) and r(π1(X)) is a discrete subgroup of
PSL(2,R) (i.e. a Fuchsian group).

If there is γ ∈ PSL(2,R), such that r1(π1(X)) = γ(r2(π1(X)))γ−1, clearly the
Fuchsian groups r1(π1(X)) and r2(π1(X)) uniformize the same marked Riemann sur-
face and conversely, conformally equivalent marked surfaces have conjugate Fuchsian
uniformization groups. The space

{r : π1(X)→PSL(2,R) :H/r(π1(X)) is a genus g surface}/conjugation in PSL(2,R)

is the Teichmüller space Tg. The Teichmüller space Tg has complex structure of
dimension 3g − 3 and it is simply connected.
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The group Aut+(π1(X))/Inn(π1(X)) = Modg is the modular group or mapping
class group, acting by composition on Tg. Now we define the moduli space byMg =
Tg/Modg and Mg is the space of complex structures on surfaces of genus g.

The projection Tg →Mg = Tg/Modg is a regular branched covering with branch
locus Bg, in other words, Mg is an orbifold with singular locus Bg. The branch locus
Bg consists of the Riemann surfaces with symmetry, i.e. Riemann surfaces with non-
trivial automorphism group (except when g = 2, where B2 consists of the surfaces
with automorphisms different from the hyperelliptic involution and the identity).
Our goal is the study of the topology of Bg. The study of Bg started at the 60’s and
70’s see, for instance: [R] and [H].

As a prototype, let us describe B1. Each elliptic Riemann surface is uniformized
by a lattice {nz1,mz2 : n,m ∈ Z, with Im(z1/z2) > 0}, that can be normalized and
parametrized by a complex number, the modulus of the basis {z1, z2}: z1/z2 = τ ∈
{z ∈ C : Im z > 0}. Two lattices uniformize equivalent elliptic Riemann surfaces if
there are related by the action of PSL(2,Z). Hence the moduli space in this case is
the orbifold

M1 = {z ∈ C : Im z > 0}/PSL(2,Z)

that is the Riemann sphere with a cusp and two cone points: [i], with isotropy group
of order 2, and [e2πi/3] with isotropy group of order 3. Then B1 = {[i], [e2πi/3]} is
disconnected.

The connectedness of moduli spaces of hyperelliptic, p-gonal and real Riemann
surfaces has been widely studied, for instance by [BSS], [CI1], [K], [G], [Se], [BCIP],
[BCI], [BEMS].

It is known that B2 is not connected, since Bolza and later Kulkarni (see [Bo],
[K] and [BuCI]) showed that the curve w2 = z5 − 1 is isolated in B2, i.e. this single
surface is a connected component of B2, furthermore B2 has exactly two connected
components (see [BI]). The branch loci B3, B4 and B7 are connected (see [BCIP] and
[CI2]) and B5,B6, B8 are connected with the exception of isolated points (see [BI]). In
this paper we established that the connectedness of the branch loci is a phenomenon
for low genera. More precisely we prove that Bg is disconnected for g ≥ 60 and, in
the last section, we prove, using GAP ([GAP]), that the only genera g where Bg is
connected are exactly g = 3, 4, 13, 17, 19, 59.

2. Symmetric Riemann surfaces

Let X be a Riemann surface, with genus g > 2, and assume that Aut(X) 6= {1}.
Hence X/ Aut(X) is an orbifold and there is a Fuchsian group Γ ≤ PSL(2,R), such
that

H → X = H/π1(X) → X/ Aut(X) = H/Γ

The algebraic structure of Γ is given by the signature s(Γ) = (h; m1, . . . , mr), where
h is the genus of H/Γ and m1, . . . , mr are the orders of the cone points of the orb-
ifold H/Γ. The signature determines the algebraic structure of Γ and a canonical
presentation:

(*)
〈

ai, bi, i = 1, . . . , h, xi, i = 1, . . . , r :
h∏

i=1

[ai, bi]
r∏

i=1

xi = 1, xmi
i = 1

〉

where the ai, bi are hyperbolic transformations and the xi are elliptic transformations.
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Each type of Fuchsian groups with fixed signature determines a Teichmüller
space. Let G be an abstract group with presentation (*) and then isomorphic to all
the Fuchsian groups of signature s = (h; m1, . . . ,mr). Hence the Teichmüller space
of Fuchsian groups of signature s is {r : G → PSL(2,R) : s(r(G)) = s}/conjugation
in PSL(2,R) = Ts (see [MS]).

The Teichmüller space Ts is a contractible complex manifold of dimension 3g −
3 + r. An action of a group G on a surface X is a monomorphism

α : G → {(orientation preserving) homeomorphisms X → X}.
Given two actions α and α′ of two groups G and G′ on two surfaces X and X ′,

we say the actions are topologically equivalent if there is an (orientation preserving)
homeomorphism h : X → X ′ such that h−1α′(G′)h = α(G).

If genus (X) = g and π1(X) ⊂ G there is a natural monomorphism i : Ts ⊂
T(g;−) = Tg, given by the restriction, more precisely to r : G → PSL(2,R), π1(X) ⊂
G, r(G) with signature s corresponds r′ = r|π1(X) : π1(X) → PSL(2,R), where
r′(π1(X)) has signature (g;−) (i.e. is a surface Fuchsian group) (see [H] and [MS]).

If we have π1(X) C G, then there is an action of the finite group G = G/π1(X)
on X, given by the representation α of G as the group of cover transformations of
X → H/Γ where s(Γ) = s(G); the above action is determined by the monodromy
a : G →G. We shall denote ia the inclusion ia : Ts → Tg given by the action α

determined by a. The image of ia(Ts) by the covering Tg → Mg is MG,a, where
MG,a is the set of Riemann surfaces with automorphisms group containing a subgroup
acting in a topologically equivalent way to the action α of G on X. The set MG,a

consists of the surfaces X ∈ MG,a where Aut(X) acts in a topologically equivalent
way to the action α of G; thus MG,a ⊂ MG,a. Notice that MG,a is the topological
closure of MG,a in Mg.

Furthermore Mg =
⋃MG,a and Bg =

⋃
G 6={1}MG,a, such covers are called the

equisymmetric stratifications ([B]), there are also the coverings Mg =
⋃MG,a and

Bg =
⋃

G 6={1}M
G,a. A set MG,a in the above covering will be called an isolated

equisymmetric stratum if it satisfies MG,a ∩ MH,b
= ∅, for any other non-trivial

group H with an action b on surfaces of genus g. Note that for an isolated stratum
MG,a

= MG,a and is a connected component of Bg (see [B] and [H]).
Since each non-trivial group G contains subgroups of prime order, we have the

following remark:

Remark 2.1. (see [C])

(1) Bg =
⋃

p prime

MCp,a

where MCp,a is the set of Riemann surfaces of genus g with an automorphism group
containing Cp, the cyclic group of order p, acting on surfaces of genus g in a fixed
way given by a.

To show that Bg is disconnected we shall find isolated strata. In order to find
these strata we give actions (monodromies) of cyclic groups of order five and seven
that are not restrictions of actions of larger groups.
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Remark 2.2. The components in [C] are not connected components, note that
in [C] the author studies the inclusions between the strata MG,a and not the inter-
sections between the MG,a.

3. The disconnectedness of Bg for g ≥ 60

We will see that the connectedness of Bg only happens for low genera. A very
important ingredient in the proof of our main theorem is the Castelnuovo–Severi
inequality (see 3.5 of [A], p. 21):

Let Xg, Xh and Xk be compact Riemann surfaces of genus g, h and k, respectively,
such that Xg is a covering of Xh of prime degree p, and a covering of Xk of prime
degree q, then g ≤ ph + qk + (p− 1)(q− 1). As a consequence, if g > 2ph + (p− 1)2,
there is at most one covering Xg → Xh of degree p.

Theorem 3.1. Bg is disconnected for g > 64. Furthermore Bg contains an
isolated equisymmetric stratum of complex dimension:

1. g
3
− 1 if g ≡ 0 mod 3, for g > 36,

2. g−1
3

if g ≡ 1 mod 3, for g > 50,
3. g+1

3
if g ≡ 2 mod 3, for g > 64.

Proof. In order to prove the theorem we shall find an action of C7 on surfaces
of genus g. Such an action is given by automorphisms of order 7 of a surface X in
such a way that it is impossible that Aut(X) 	 C7, i.e. we find an isolated stratum
for Bg that consists of Riemann surfaces with group of automorphisms C7 (with a
fixed action). We construct monodromies θ : ∆(h; 7, r. . ., 7) → C5, where r = g−7h+6

3
,

h = 0, 1, 2, θ(xi) = αti , i = 1, . . . , r. Let nj = |{ti = j; i = 1, . . . , r}|, then we will
define the epimorphism θ by sending nj of the canonical elliptic generators of ∆ to
αj.

Notice that the class of an action is independent of the order in which the different
powers of α appear as images of elliptic generators and of the images of the hyperbolic
generators of ∆ (see [N] and [H]).

Case 1. g ≡ 0 mod 3, g > 36. Let ∆ be a Fuchsian group with signature
(0; 7, r. . ., 7), with r = g

3
+ 2.

The monodromies will be given by the generating vector (n1α, n2α
2, n3α

3, n4α
4,

n5α
5, n6α

6). The values of nj for the different monodromies are given according to
the congruence of g modulus 7.

g mod 7 r mod 7 n1 n2 n3 n4 n5 n6

g ≡ 0 mod 7 r ≡ 2 mod 7 (r − 9) 3 0 1 5 0
g ≡ 1 mod 7 r ≡ 0 mod 7 (r − 9) 5 3 1 0 0
g ≡ 2 mod 7 r ≡ 5 mod 7 (r − 9) 3 0 5 0 1
g ≡ 3 mod 7 r ≡ 3 mod 7 (r − 9) 0 3 5 1 0
g ≡ 4 mod 7 r ≡ 1 mod 7 (r − 9) 1 5 3 0 0
g ≡ 5 mod 7 r ≡ 6 mod 7 (r − 9) 5 3 0 1 0
g ≡ 6 mod 5 r ≡ 4 mod 7 (r − 9) 1 0 0 3 5
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The Riemann–Hurwitz formula shows that g is the genus of the Riemann surface
X = H/ ker θ, since

7 =
2 genus(X)− 2

−2 + ( g
3

+ 2)6
7

.

By construction X has an order 7 automorphism ξ with r fixed points. Now we shall
show that, under this condition, X has no automorphisms besides C7 = 〈ξ〉.

Since X → X/ 〈ξ〉 is a meromorphic function, by the Castelnuovo–Severi in-
equality and g > 36, X → X/ 〈ξ〉 is the unique degree seven meromorphic function,
therefore 〈ξ〉 is a normal subgroup of Aut(X).

If Aut(X) 	 C7, since 〈ξ〉 C Aut(X), there is a non-trivial prime order cyclic
action b on the orbifold X/ 〈ξ〉, inducing an automorphism b∗ : ∆ → ∆ such that
θ ◦ b∗ = η ◦ θ where η is an automorphism of C7. The orbifold X/ 〈ξ〉 is conformally
equivalent to the Riemann sphere; then the automorphism b has two fixed points and
all the generic orbits have order(b) elements. By the condition θ ◦ b∗ = η ◦ θ and the
definition of θ above we get that b has more than two fixed points, contradicting the
fact that b is not the identity.

Since dimT(0;7, r...,7) = 3 × 0 − 3 + r and r = g
3

+ 2, the surfaces admitting a
cyclic action as above form an isolated stratum iθ(T(0;7, r...,7)) in the equisymmetric
stratification of dimension g

3
− 1.

Case 2. g ≡ 1 mod 3. Let ∆ be a Fuchsian group with signature (1; 7, r. . ., 7), with
r = g−1

3
.

The monodromies will be given by the generating vector (1, 1, n1α, n2α
2, n3α

3,
n4α

4, n5α
5, n6α

6), where the 1’s in the generating vector mean that θ(a1) = θ(b1) = 1.
The values of nj for the different monodromies are given according to the congruence
of g modulus 7.

g mod 7 r mod 7 n1 n2 n3 n4 n5 n6

g ≡ 0 mod 7 r ≡ 2 mod 7 (r − 10) 3 1 1 0 5
g ≡ 1 mod 7 r ≡ 0 mod 7 (r − 10) 3 5 1 0 1
g ≡ 2 mod 7 r ≡ 5 mod 7 (r − 10) 3 1 0 5 1
g ≡ 3 mod 7 r ≡ 3 mod 7 (r − 10) 3 1 5 0 1
g ≡ 4 mod 7 r ≡ 1 mod 7 (r − 10) 3 5 1 1 0
g ≡ 5 mod 7 r ≡ 6 mod 7 (r − 10) 3 5 0 1 1
g ≡ 6 mod 5 r ≡ 4 mod 7 (r − 10) 3 1 5 1 0

If X = H/ ker θ, the Riemann–Hurwitz formula says

7 =
2 genus(X)− 2

(g−1
3

)6
7

,

so g = genus(X). By construction X has an order 7 automorphism ξ with r fixed
points. By a similar argument to the one used in the above case, by the Castelnuovo-
Severi inequality, the definition of θ and the fact that an automorphism of the torus
different from the identity has at most four fixed points, we have that X has no
automorphisms besides C7 = 〈ξ〉.

Now r = g−1
3

and dimT(1;7, r...,7) = 3 × 1 − 3 + r, then the surfaces admitting a
cyclic action as above form an isolated stratum of complex dimension g−1

3
.
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Case 3. g ≡ 2 mod 3. Let ∆ be a Fuchsian group with signature (2; 7, r. . ., 7), with
r = g−8

3
.

The monodromies will be given by the generating vector (1, 1, 1, 1, n1α, n2α
2, n3α

3,
n4α

4, n5α
5, n6α

6) where the 1’s in the generating vector mean that θ(a1) = · · · =
θ(b2) = 1. The values of nj for the different monodromies are given according to the
congruence of g modulus 7.

g mod 7 r mod 7 n1 n2 n3 n4 n5 n6

g ≡ 0 mod 7 r ≡ 2 mod 7 (r − 11) 3 1 1 5 1
g ≡ 1 mod 7 r ≡ 0 mod 7 (r − 11) 1 3 1 5 1
g ≡ 2 mod 7 r ≡ 5 mod 7 (r − 11) 5 3 1 1 1
g ≡ 3 mod 7 r ≡ 3 mod 7 (r − 11) 3 5 1 1 1
g ≡ 4 mod 7 r ≡ 1 mod 7 (r − 11) 1 1 3 1 5
g ≡ 5 mod 7 r ≡ 6 mod 7 (r − 11) 1 1 1 3 5
g ≡ 6 mod 5 r ≡ 4 mod 7 (r − 11) 1 3 5 1 1

The Riemann–Hurwitz formula shows that g is the genus of the Riemann surface
X = H/ ker θ, since

7 =
2 genus(X)− 2

2 + (g−8
3

)6
7

.

By construction the surface X has an order 7 automorphism ξ with r = g−8
3

fixed
points. Using a similar argument to the one in the previous cases, the maximal num-
ber of fixed points of an automorphism of surfaces of genus 2 and the Castelnuovo–
Severi inequality we have that X has no automorphisms besides C7 = 〈ξ〉. The
surfaces admitting a cyclic action as above form an isolated stratum of dimension
3× 2− 3 + r = g+1

3
. ¤

Remark 3.2. There are several ways of defining the epimorphisms in the above
theorem, and the isolated strata are not unique. For instance for g ≡ 0 mod 3 and
g ≡ 2 mod 7, we can consider the following monodromy θ with generating vector
(n1α, n2α

2, n3α
3, n4α

4, n5α
5, n6α

6) where

g mod 7 r mod 7 n1 n2 n3 n4 n5 n6

g ≡ 2 mod 7 r ≡ 5 mod 7 (r − 3) 1 0 1 0 1

This epimorphism θ induces an action of a different topological type from the action
considered in Case 1 of the proof of Theorem 3.1 (see [N] [H]). Hence θ determines
an isolated stratum in Bg different from the one constructed in the proof of the
Theorem 3.1.

In [BCI], using automorphisms of order 5, we proved that the branch locus Bg of
moduli spaces of Riemann surfaces of even genera at least 18 and genera congruent
with 1 mod 4 at least 29 are disconnected, with the exception of the genus 37. We
establish the results in [BCI] here for the sake of completedness.

Theorem 3.3. [BCI] Bg contains an isolated equisymmetric stratum of complex
dimension:

1. g
2
− 1 if g ≡ 0 mod 2, for g > 16,

2. g−1
2

if g ≡ 1 mod 4, for g > 25, g 6= 37.
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Proof. We will construct monodromies θ : ∆(h; 5, r. . ., 5) → C5, where r = g−5h+4
2

,
h = 0, 1, θ(xi) = αti , i = 1, . . . , r. Let nj = |{ti = j; i = 1, . . . , r}|, then we will
define the epimorphism θ by sending ni of the canonical elliptic generators of ∆ to
αi. If h = 1 then θ(a1) = θ(b1) = 1 since the class of the action does not depend on
the images of the hyperbolic generators of ∆. See [N] and [H].

Case 1. g ≡ 0 mod 2. Let ∆ be a Fuchsian group with signature (0; 5, r. . ., 5), with
r = g+4

2
.

The monodromies will be given by the generating vector (n1α, n2α
2, n3α

3, n4α
4).

The values of nj for the different monodromies are given according to the congruence
of g modulus 5 in the following table:

g mod 5 r mod 5 n1 n2 n3 n4

g ≡ 0 mod 5 r ≡ 2 mod 5 (r − 13) 5 1 7
g ≡ 1 mod 5 r ≡ 0 mod 5 (r − 7) 5 1 1
g ≡ 2 mod 5 r ≡ 3 mod 5 (r − 9) 1 3 5
g ≡ 3 mod 5 r ≡ 1 mod 5 (r − 7) 1 5 1
g ≡ 4 mod 5 r ≡ 4 mod 5 (r − 9) 5 1 3

With one exception, in the case, g = 20, r = 12, we consider the epimorphism
θ : ∆(0; 5, 12. . ., 5) → C5 defined by θ(x1) = α, θ(x2) = · · · = θ(x8) = α2, θ(x9) = α3,
θ(x10) = · · · = θ(x12) = α4.

Case 2. g ≡ 1 mod 4, g 6= 37. Let ∆ be a Fuchsian group with signature
(0; 5, r. . ., 5), with r = g−1

2
.

The monodromies will be given by the generating vector (1, 1, n1α, n2α
2, n3α

3,
n4α

4), where the 1’s in the generating vector mean that θ(a1) = θ(b1) = 1. The
values of nj for the different monodromies are given according to the congruence of
g modulus 5 in the following table:

g mod 5 r mod 5 n1 n2 n3 n4

g ≡ 0 mod 5 r ≡ 2 mod 5 (r − 13) 5 1 7
g ≡ 1 mod 5 r ≡ 0 mod 5 (r − 7) 5 1 1
g ≡ 2 mod 5 r ≡ 3 mod 5 (r − 19) 11 3 5
g ≡ 3 mod 5 r ≡ 1 mod 5 (r − 7) 1 5 1
g ≡ 4 mod 5 r ≡ 4 mod 5 (r − 11) 1 5 5

We see that the given epimorphisms satisfy the conditions that forced the automor-
phism of the quotient torus to be the identity except for g = 37, r = 18.

By construction the surfaces X have an order 5 automorphism ξ with r = g−8
3

fixed points. Using the same argument as in Theorem 3.1, the maximal number of
fixed points of an automorphisms of surfaces of genus h, h = 0, 1 and the Castelnuovo–
Severi inequality we have that, under this condition, X has no automorphisms besides
C5 = 〈ξ〉. The surfaces admitting a cyclic action as above form an isolated stratum
of dimension 3× h− 3 + r = g+h−2

2
. Thus the dimension of the isolated strata is g−2

2

for even genera (h = 0), and g−1
2

for genera congruent with 1 mod 4 (h = 1). ¤
As a consequence of Theorems 3.1 and 3.3 we have:

Corollary 3.4. Bg is disconnected for g ≥ 60.
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4. Genera with Bg connected

We finally prove that the genera where Bg is connected are exactly 3, 4, 13, 17, 19
and 59. We begin proving that for these genera, in fact, Bg is connected.

Theorem 4.1. The branch locus Bg is connected for genera 3, 4, 7, 13, 17, 19
and 59.

Proof. From Remark 2.1, it follows that we only need to look at actions of
cyclic groups Cp, with p a prime number, to determine that the branch locus is
connected. We first show that each action of a cyclic group of prime order, given by
the epimorphism θ : ∆(h; p, r. . ., p) → Cp, extends to an action of either C2p or Dp.
First, we know that strata corresponding to actions of order 2 or 3 belong to the
same connected component [BI]. Thus we will only consider actions of prime order
greater than 3. With the Riemann–Hurwitz formula it is easy to find the pairs of
signatures and corresponding group orders.

The genera 3, 4 and 7 were studied in [CI2], [CI3], [BCIP] and [BI].
B13: The automorphisms of prime order of Riemann surfaces of genus 13 have one

of the following orders: 2, 3, 5, 7 or 13.

p = 5: The only signature corresponding an actions of order 5 is (1; 5, 6. . ., 5).
Let θ : ∆(1; 5, 6. . ., 5) → C5 be defined by the generating vector (1, 1; αt1 , . . . ,
αt6). We may assume that t1 = t2. Now let θ̄ : ∆̄(0; 5, 10, 10, 10, 10) → C10 be
defined by (ᾱ2ti , ᾱt3+5δ3 , . . . , ᾱt6+5δ6), where δi 6≡ ti mod 2. We note that
∑

ti ≡ |{ti|ti is odd}|mod 2 and |{ti|ti is odd}|+ |{ti|ti is even}| = 6.

So it follows that ∑
ti + 5|{ti|ti is even}| ≡

5|{ti|ti is odd|+ 5|{ti|ti is even}| ≡ 30 ≡ 0 mod 10.

Thus θ̄ is well-defined and θ̄|∆ = θ, see [Si1].

p = 7: The only signature is (1; 7, 7, 7, 7). Let θ : ∆(1; 7, 7, 7, 7) → C7 be de-
fined by the generating vector (1, 1; αt1 , . . . , αt4) and let θ̄ : ∆̄(0; 14, 14, 14, 14)
→ C14 be defined by (ᾱt1+7δ1 , . . . , ᾱt4+7δ4), where δi 6≡ ti mod 2. Clearly, θ̄ is
well-defined and θ̄|∆ = θ.

p = 13: The only signature is (1; 13, 13) and it is easy to see that any action
θ is given by (1, 1; α, α−1) and extends to an action of order 26 given by
θ̄ : ∆(0; 2, 2, 26, 26) → C26, defined by (α13, α13, α, α−1). See [Si2].

Since all the actions of order 5, 7 and 13 can be extended to actions of C10, C14

and C26 respectively, we have that MC5

13 ,MC7

13 and MC13

13 have non-empty
intersection with MC2

13 and it follows that B13 is connected.

B17: For Riemann surfaces of genus 17, the automorphisms of prime order have
one of the following orders; 2, 3, 5, 7 or 17.

p = 5: The signatures are (1; 5, 8. . ., 5) and (3; 5, 5, 5). Let θ : ∆(1; 5, 8. . ., 5) →
C5 be defined by the generating vector (1, 1; αt1 , . . . , αt8). We may assume
that t1 = t2 and t3 = t4. Now let θ̄ : ∆̄(0; 5, 5, 10, 10, 10, 10) → C10 be defined
by (ᾱ2t1 , ᾱ2t3 , ᾱt5+5δ5 , . . . , ᾱt8+5δ8), where δi 6≡ ti mod 2. Clearly 2t1 + 2t3 +
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∑
ti + 5δi ≡ 0 mod 10 and θ̄|∆ = θ. Now assume θ : ∆(3; 5, 5, 5) → C5 is

defined by (1, . . . , 1; αt1 , αt2 , αt3), then let θ̄ : ∆̄(0; 2, 5. . ., 2, 10, 10, 10) → C10

be defined by (ᾱ5, dots, ᾱ5, ᾱt3+5δ3 , ᾱt4+5δ4 , ᾱt5+5δ5) as before. It is clear that
θ̄|∆ = θ.

p = 7: The only signature is (2; 7, 7, 7). Every epimorphism from a group
∆(2; 7, 7, 7) onto C7 extends to θ̄ : ∆(0; 2, 2, 2, 14, 14, 14) → C14 similarly to
the above cases.

p = 17: The only signature is (1; 17, 17) and any action extends to an action
of order 34 with corresponding signature (0; 2, 2, 34, 34).

It follows that B17 is connected.

B19: For Riemann surfaces of genus 19, the automorphisms of prime order have
one of the following orders; 2, 3, 5, 7, 13 or 19.

p = 5: The signatures are (1; 5, 9. . ., 5) and (3; 5, 5, 5, 5). Let θ : ∆(1; 5, 9. . ., 5)
→ C5 be defined by the generating vector (1, 1; αt1 , . . . , αt9). We may assume
that t1 = t2, t3 = t4 and t5 = t6. Then let θ̄ : ∆̄(0; 2, 5, 5, 5, 10, 10, 10) → C10

be defined by (ᾱ5, ᾱ2t1 , ᾱ2t3 , ᾱ2t5 , ᾱt7+5δ7 , . . . , ᾱt9+5δ9), where δi 6≡ ti mod 2.
Clearly

∑
si ≡ 0 mod 10 and θ̄|∆ = θ. Now assume θ : ∆(3; 5, 5, 5, 5) → C5 is

defined by (1, . . . , 1; αt1 , . . . , αt4), then let θ̄ : ∆̄(0; 2, 4. . ., 2, 10, 4. . ., 10) → C10

be defined by (ᾱ5, . . . , ᾱ5, ᾱt1+5δ1 , . . . , ᾱt4+5δ4) as before. It is clear that
θ̄|∆ = θ.

p = 7: The only signature is (1; 7, 6. . ., 7). First, assume that an epimorphism
θ : ∆(1; 7, 6. . ., 7) → C7 is defined by the generating vector (α1, α2, α3, α4, α5,
α6). Then consider the epimorphism θ̄ : ∆(0; 2, 4. . ., 2, 7, 7, 7) → D7 defined
by (σ, σ, σ, σα, α, α2, α3). We see that θ̄|∆ = θ. Note that in this case we
must use a dihedral group to extend the action. Now let θ be defined by
(1, 1; αt1 , . . . , αt6), assuming that t1 = t2. Let θ̄ : ∆(0; 7, 14 4. . ., 14) → C14 be
defined by θ̄(yi) = ᾱsi , where s1 = 2t1 and si = ti+1 + 7δi+1, i = 2, . . . , 5,
where δi 6≡ ti mod 2. It is clear that θ̄|∆ = θ.

p = 13: The only signature is (1; 13, 13, 13). Every epimorphism θ : ∆(1; 13,
13, 13) → C13 extends to θ̄ : ∆(0; 2, 26, 26, 26) → C26 similarly to above.

p = 19: The only signature is (1; 19, 19) and any action extends to an action
of order 38 with signature (0; 2, 2, 38, 38).

It follows that B19 is connected.

B59: For Riemann surfaces of genus 59, the automorphisms of prime order have
one of the following orders; 2, 3, 5, 7, 11, 17, 29 or 59.

p = 5: The signatures corresponding to actions of order 5 are (1+2j; 529−5j, . . . ,5),
j = 0, . . . , 5. Let θ : ∆(1 + 2j; 529−5j, . . . ,5) → C5 be defined by the generating
vector (1, . . . , 1; αt1 , . . . , αt29−5j). We may assume that t2k−1 = t2k, for k =
1, . . . , b26−5j

2
c. Now let θ̄ : ∆̄(0; 2 1+j, . . . ,2, 513−4j, . . . ,5, 10 3+3j, . . . ,10) → C10 be defined

by the generating vector (ᾱ5, . . . , ᾱ5, ᾱs1 , . . . , ᾱs13−4j , ᾱr1 , . . . , ᾱr3+3j), where
si = 2t2i, for i = 1 . . . 13− 4j and ri = ti+26−8j + 5δi, where δi 6≡ ti mod 2. We
note that
∑

ti ≡ |{ti|ti is odd}|mod 2 and |{ti|ti is odd}|+ |{ti|ti is even}| = 29− 5j.
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So it follows that

5(1 + j) +
∑

si +
∑

ri = 5(1 + j) +
∑

ti + 5|{ti|ti is even}| ≡
5(1 + j) + 5|{ti|ti is odd}|+ 5|{ti|ti is even}| ≡

5(1 + j + 29− 5j) = 5(30− 4j) ≡ 0 mod 10.

Thus θ̄ indeed defines an action of C10 and θ extends to θ̄.

p = 7: The signatures corresponding to actions of order 7 are (2+3j; 717−7j, . . . ,7),
j = 0, . . . , 2. Let θ : ∆(2+3j; 717−7j, . . . ,7) → C7 be defined by the generating vec-
tor (1, . . . , 1; αt1 , . . . , αt17−7j). First assume that j = 0, we may then assume
that t2k−1 = t2k, for k = 1, . . . , 6. Let θ̄ : ∆̄(0; 2, 7 6, . . . ,7, 14 5, . . . ,14) → C14 be
defined by the generating vector (ᾱ7, ᾱs1 , . . . , ᾱs13−4j , ᾱr1 , . . . , ᾱr3+3j), where
si = t2i, i = 2 . . . 6, and ri = ti+12 + 7δi, where δi 6≡ ti mod 2. We note that:
∑

ti ≡ |{ti|ti is odd}|mod 2 and |{ti|ti is odd}|+ |{ti|ti is even}| = 17.

So it follows that

7 +
∑

si +
∑

ri = 7 +
∑

ti + 7|{ti|ti is even}| ≡
7 + 7|{ti|ti is odd}|+ 7|{ti|ti is even}| ≡

7(1 + 17) ≡ 0 mod 14.

For j = 1 or 2 consider θ̄ : ∆̄(0; 2, 13j−11, . . . ,2, 1417−7j), . . . ,14) → C14 defined by the
generating vector (ᾱ7, . . . , ᾱ7, ᾱs1 , . . . , ᾱs17−7j), where si = ti +7δi, such that
δi 6≡ ti mod 2. Now

7(13j − 11) +
∑

si = 7(13j − 11) +
∑

ti + 7|{ti|ti is even}| ≡
7(13j − 11) + 7|{ti|ti is odd}|+ 7|{ti|ti is even}| ≡

7(13j − 11 + 17− 7j) = 7(6 + 6j) ≡ 0 mod 14.

Thus θ̄ indeed defines an action of C14 in each case and θ extends to θ̄.

p = 11: The only actions of order 11 are θ : ∆(4; 11 5, . . . ,11) → C11, defined
by (1, . . . , 1; αt1 , . . . , αt5), ti ∈ {1, . . . , 10}. Now, consider θ̄ : ∆̄(0; 2 5, . . . ,2, 22,
5. . ., 22) → C22 be defined by (1, . . . , 1; α11, . . . , α11, αs1 , . . . , αs5), where

si = ti + 11δi, such that δi 6≡ ti mod 2. As in the cases above we see that θ̄
indeed defines an action which extends the action induced by θ.

p = 17: The only actions of order 17 are θ : ∆(3; 17, 17, 17) → C17, defined
by (1, . . . , 1; αt1 , αt2 , αt3). Let θ̄ : ∆̄(0; 2 5, . . . ,2, 34, 34, 34) → C34 be defined
by (1, . . . , 1; α17, . . . , α17, αs1 , . . . , αs5), where si = ti + 17δi, such that
δi 6≡ ti mod 2. Again, we see that θ̄ indeed defines an action which extends θ.

p = 29: The only action of order 29 is θ : ∆(3;−) → C29 clearly extending to
an action θ̄ : ∆̄(0; 2, 2, 2, 2, 2, 2, 2, 2) → D29.

p = 59: The only action of order 59 is θ : ∆(1; 59, 59) → C59 clearly extending
to an action θ̄ : ∆̄(0; 2, 2, 2, 59) → D59.

So finally, B59 is connected. ¤
Theorem 4.2. The branch locus Bg is disconnected for every genus g different

from 3, 4, 7, 13, 17, 19, and 59.
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In fact, the branch locus Bg is connected if and only if g ∈ {3, 4, 7, 13, 17, 19, 59}.
Proof. The following cases have been previously studied:
(i) For genus 3, a proof of the connectedness of the branch locus is given in

[BCIP].
(ii) For genera 5 to 9, a proof is in [BI], for even genera g ≥ 18 and genera g ≡ 1

mod 4, g ≥ 29 a proof is in [BCI].
(iii) For genera a multiple of three at least 39, genera g ≡ 1 mod 3, g ≥ 50 and

genera g ≡ 2 mod 3, g ≥ 65 is proved in Theorems 3.1 and 3.3.
(iv) Bg, g = 11, 14, 15, 21, 23, 35 contain isolated points since 2g + 1 is a prime

number. See Kulkarni [K].
(v) Bg, g = 10, 12, 16 contain isolated strata of dimension 1 since g + 1 is a prime

number. See [CI4].
Now, we prove that Bg is disconnected for the remaining genera: 25, 27, 31,

37 and 43. For these genera we will find isolated strata by defining monodromies
θ : ∆ → Cp of maximal actions of cyclic groups of prime order. We will construct
epimorphisms θ : ∆(h; p, r. . ., p) → Cp that do not extend. To show this we consider
potential extensions θ̄ : ∆̄ → G where Cp is a maximal subgroup of some group G
(since any other extension will have such a group as a subgroup). This is done
here with the computational algebra system GAP [GAP]. See the Appendix A for
examples of used GAP codes.
B25: Consider the epimorphism θ : ∆(0; 11, 7. . ., 11) → C11 = 〈α〉 with generating

vector (α, α2, α4, α5, α6, α7, α8). By Singerman’s results ([Si1]) we can calcu-
late all signatures of possible extensions of this action. Now the only possible
extensions θ̄ : ∆̄ → G that we need to check are the ones such that C11 is
a maximal subgroup of G. With the use of GAP we can easily find that
the groups are C22, C33, C55 and C77, with signatures (0; 2, 11, 11, 11, 22),
(0; 3, 11, 11, 33), (0; 11, 55, 55) and (0; 7, 7, 11) respectively. The image of each
generator in ∆̄ of order 11 will induce two, three, five or seven generators of
∆ with the same image (αi), this fact contradicts that θ̄ is an extension of θ.

B27: Consider the epimorphism θ : ∆(0; 19, 5. . ., 19) → C19 = 〈α〉 with generating
vector (α α3, α4, α5, α6). By results in [Si1] we can calculate all signatures
of possible extensions, θ̄ : ∆̄ → G, of this action, which are the following:

(0; 2, 19, 19, 38), of index 2,
(0; 19, 57, 57), of index 3,
(0; 4, 19, 76), of index 4,
(0; 5, 5, 19), of index 5,
(0; 2, 38, 57), of index 6,
(0; 2, 5, 38), of index 10, and
(0; 2, 3, 19), of index 24.

However, groups of the given orders with maximal subgroups corresponding
to C19, such that there exists generating vectors with the given signatures, are
C38, C57 and C95. Note that each generator of ∆̄ of order 19 will induce two,
three or five generators of ∆ with the same image (αi), this fact contradicts
that θ̄ is an extension of θ.

B31: Consider the epimorphism θ : ∆(1; 13, 5. . ., 13) → C13 = 〈α〉 with generating
vector (α−1, α2, α3, α4, α5). By [Si1] we can calculate all signatures of possible
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extensions of this action. Now the only possible extensions θ̄ : ∆̄ → G that
we need to check are the ones such that C13 is a maximal subgroup of G.
With the use of GAP we can easily find that the groups are C26 and C39,
with signatures (0; 2, 13, 26, 26, 26), (0; 2, 2, 2, 13, 13, 26) and (0; 3, 13, 39, 39)
respectively. The image of each generator in ∆̄ of order 13 will induce two or
three generators of ∆ with the same image (αi), this fact contradicts that θ̄
is an extension of θ.

B37: Consider the epimorphism θ : ∆(1; 13, 6. . ., 13) → C13 = 〈α〉 with generating
vector (α−1, α2, α3, α4, α5). By [Si1] we can calculate all signatures of possible
extensions of this action. Now, the only possible extensions θ̄ : ∆̄ → G we
need to check are the ones such that C13 is a maximal subgroup of G. With
the use of GAP we can easily find that the groups and signatures are:

C26 with signatures (0; 13, 26, 26, 26, 26), (0; 2, 2, 13, 13, 26, 26), (0; 2, 2, 2, 2,
13, 13, 13) and (1; 13, 13, 13).
D13 with signatures (0; 2, 2, 2, 2, 13, 13, 13) and (1; 13, 13, 13).
C39 with signatures (0; 13, 39, 39, 39), (0; 3, 3, 3, 13, 13) and (1; 13, 13) and
C13 o C3, with signatures (0; 3, 3, 3, 13, 13) and (1; 13, 13).

In the cyclic cases the image of each generator in ∆̄ of order 13 will induce
two or three generators of ∆ with the same image (αi), which clearly is a
contradiction. In the dihedral case the image of each generator in ∆̄ of order
13 will induce an element and its inverse (αi and α−i) and for C13 o C3 the
image of each generator in ∆̄ of order 13 will induce a triple (αi, α3i, α9i),
contradicting being extensions.

B43: Consider the monodromy ∆(1; 13, 7. . ., 13) → C13 and the generating vector
(α, α2, α3, α4, 2α5, α6). Possible extensions θ̄ : ∆̄ → G with C13 as a maximal
subgroup of G are given by the groups C26 and C39 with corresponding sig-
natures (0; 2; 13, 13, 26, 26, 26), (0; 2, 2, 2, 13, 13, 13, 26) and (0; 3, 3, 13, 13, 39)
respectively. Note that each generator in ∆̄ of order 13 will induce two or
three elements with the same image (αi), contradicting the fact of being ex-
tensions. ¤

Question. In [BI] it is proved that all the strata MC2
g and MC3

g , induced by
actions of order 2 and 3, belongs to the same connected component of Bg. Bartolini
[Ba] showed that, up to genus 24, the only connected components of Bg not containing
MC2

g are formed by one equisymmetric stratum. We have found here connected
components of Bg consisting of just one equisymmetric stratum. The question one
rises is:

Is there a connected component of Bg, other than the one containing MC2
g and

MC3
g , that contains more than just one equisymmetric stratum?

Appendix A. GAP code

We give a collection of GAP code examples, and the output when running an
example, used for the case of B25. The other cases in Theorem 4.2 use similar codes.
First we find the possible signatures corresponding to an extension of an action of
order 11. Then we check the possible groups of the given orders, such that C11 is a
maximal subgroup.
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for k in [1..1000] do
if Size(findsignatures(25,11*k))>0 then
Display([k,findsignatures(25,11*k)]);

fi;
od;

>[ 1, [ [ 0, [ 11, 11, 11, 11, 11, 11, 11 ] ] ] ]
>[ 2, [ [ 0, [ 2, 11, 11, 11, 22 ] ] ] ]
>[ 3, [ [ 0, [ 3, 11, 11, 33 ] ] ] ]
>[ 5, [ [ 0, [ 11, 55, 55 ] ] ] ]
>[ 6, [ [ 0, [ 11, 11, 11 ] ], [ 0, [ 6, 11, 66 ] ] ] ]
>[ 7, [ [ 0, [ 7, 7, 11 ] ] ] ]
>[ 9, [ [ 0, [ 3, 11, 11 ] ] ] ]
>[ 10, [ [ 0, [ 2, 22, 55 ] ] ] ]
>[ 12, [ [ 0, [ 2, 11, 22 ] ] ] ]
>[ 14, [ [ 0, [ 2, 7, 22 ] ] ] ]
>[ 18, [ [ 0, [ 3, 3, 11 ] ], [ 0, [ 2, 6, 11 ] ] ] ]
>[ 36, [ [ 0, [ 2, 3, 22 ] ] ] ]

for k in [2,3,5,6,7,9,10,12,14,18,36] do
for G in AllSmallGroups(11*k) do
for H in MaximalSubgroups(G) do
if Order(H)=11 then
Display([IdSmallGroup(G),StructureDescription(G)]);

fi;
od;

od;
od;

>[ [ 22, 1 ], "D22" ]
>[ [ 22, 2 ], "C22" ]
>[ [ 33, 1 ], "C33" ]
>[ [ 55, 1 ], "C11 : C5" ]
>[ [ 55, 2 ], "C55" ]
>[ [ 77, 1 ], "C77" ]
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