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Abstract. We provide another proof of the Liouville theorem that conformal mappings in the
dimensions at least three are Möbius transformations under the assumption that the mapping is
1-quasiconformal. Our method employs the Ahlfors Cauchy–Riemann operator.

1. Introduction

The celebrated Liouville theorem from 1850 [17], states that the only conformal
mappings in a domain Ω ⊂ Rn, where n ≥ 3, are restrictions of Möbius transforma-
tions to Ω. The situation here is much more rigid than in dimension two, where we
have plenty of conformal mappings. Liouville’s proof required the mapping to be a
diffeomorphism of class at least C3, and many subsequent proofs also required that
regularity. It is worth to mention here the proof by Capelli [5, 24], and the most
commonly known proof by Nevanlinna [20, 7]. Actually Nevanlinna’s proof requires
the mapping to be of class C4.

On the other hand C1 regularity is sufficient to define conformal mappings and
one may inquire whether Liouville’s theorem remains true under that condition. The
reduction of assumptions from C3 to lower regularity turned out to be very difficult.
Hartman [11, 12], proved the Liouville’s theorem for C2 mappings in 1947 and for
C1 mappings in 1958.

With applications to the theory of quasiconformal mappings and nonlinear elas-
ticity one needs to consider conformal mappings under still weaker assumptions.
Subsequently Gehring [8] in 1962 proved the theorem for 1-quasiconformal map-
pings and Reshetnyak [21] in 1967 for 1-quasiregular mappings. Both approaches
were based on deep regularity results for the solutions to the nonlinear n-harmonic
equation div(|Du(x)|n−2Du(x)) = 0. Note that 1-quasiconformal or more gener-
ally 1-quasiregular mappings are in the Sobolev space W 1,n

loc (Ω). An elementary, but
rather involved proof of Reshetnyak’s result [21] was given by Bojarski and Iwaniec
[4] in 1982, see also [14]. Further developments have arisen from the work Iwaniec
and Martin [15], where they further reduced the assumption of f ∈ W 1,n

loc to f ∈ W
1, n

2
loc

weakly 1-quasiregular mappings in even dimensions. On the other hand in any di-
mension n ≥ 3 there are known examples [15] of weakly 1-quasiregular mappings in
f ∈ W 1,p

loc for p < n
2
that are not Möbius transformations. The question whether

f ∈ W
1, n

2
loc weakly 1-quasiregular mappings are Möbius transformations in odd di-

mensions remains a long standing open problem. Furthermore, Iwaniec [13] also
proved that in all dimensions we can relax the assumption to W 1,n−ε for some ε > 0.
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Recently, Liu [18] proved the Liouville theorem for W 1,2p
loc 1-quasiregular mappings

under one additional assumption |Df |p ∈ W 1,2
loc for p ≥ (n − 2)/4. This paper also

suggests that the Iwaniec–Martin conjecture can be reduced to new a conjecture
about a Caccioppoli type estimate that reflects the importance of n/2.

One more proof worth mentioning is the one given by Sarvas [23], under the
C2 regularity assumption: For a mapping f ∈ C1, Ahlfors [1], introduced a linear
Cauchy–Riemann operator

Sf =
1

2
(Df + DT f)−

(
1

n
div f

)
· I.

The mapping f is called a trivial deformation if Sf = 0. Ahlfors proved that a
trivial deformation is a polynomial of degree 2 and Sarvas showed that if f ∈ C2

is a conformal diffeomorphism, then for any b ∈ Rn, [Df(x)]−1b ∈ C1 is a trivial
deformation and Liouville’s theorem follows from this result.

The purpose of this paper is to provide a different proof of the Liouville theorem
for 1-quasiconformal mappings using the Ahlfors operator. I believe that this proof
is more geometric and hence more natural than the previous proofs. One of the
motivations to use the Ahlfors operator was a statement by Iwaniec and Martin [15,
p. 37]: However as first degree (linear) approximations of the nonlinear system of
equations for conformal mappings, the Ahlfors operators are rather difficult to use.

2. Notations and the main theorems

If f : Ω → Rn, Ω ⊂ Rn, where Ω is a domain in Rn, is a diffeomorphism of class
C1, it is easy to see that it is conformal if and only if DfT (x)Df(x) = |Jf(x)| 2n · I for
all x ∈ Ω. Here Jf(x) is the Jacobian of the mapping f and I is the identity matrix.

Recall that the Sobolev space W 1,p consists of functions in Lp whose distribu-
tional derivatives are also in Lp. Similarly we define W 1,p

loc . The notion of conformal
mappings can be generalized to the Sobolev settings as follows.

We say that a mapping f : Ω → Rn, Ω ⊂ Rn is 1-quasiregular if
• f ∈ W 1,n

loc (Ω,Rn),
• DfT (x)Df(x) = |Jf(x)| 2n · I a.e., and
• Jf ≥ 0 a.e or Jf ≤ 0 a.e.

If in addition, f is a homeomorphism, we say that f is 1-quasiconformal.
The purpose of the paper is to provide a new proof of the following version of the

Liouville’s theorem. The result under such assumptions has been proved originally
by Gehring [8].

Theorem 2.1. Let f : Ω → Rn be a 1-quasiconformal mapping in a domain
Ω ⊂ Rn, n ≥ 3. Then f is a Möbius transformation in Rn restricted to Ω.

Remark 2.2. Note that the above result implies Reshetnyak’s result for 1-
quasiregular mappings [21], because 1-quasiregular mappings are local homeomor-
phisms outside a closed branch set of measure zero [3].

To begin, we will need the following basic properties of 1-quasiconformal map-
pings:

(1) 1-quasiconformal mappings are differentiable a.e.
(2) The Jacobian of a 1-quasiconformal mapping is nonzero a.e.
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(3) The inverse of a 1-quasiconformal mappings is 1-quasiconformal, and the com-
position of 1-quasiconformal mappings is 1-quasiconformal.

(4) 1-quasiconformal mappings have the Lusin property, i.e. they map sets of
Lebesgue measure zero onto sets of Lebesgue measure zero.

For a proof of properties (1) and (2), see [14, Corollary 6.1.1] and [22, p. 216].
Property (3) is immediate from the geometric definition of quasiconformal mappings
[8]. Property (4) follows from the fact that any W 1,n homeomorphism has the Lusin
property [19].

Let V = f(Ω) and let

g := f−1 : V → Ω,

be the inverse mapping. From the above properties, g is 1-quasiconformal and dif-
ferentiable a.e. Hence I = D(g(f(x))) = (Dg)(f(x))Df(x) a.e. Thus

(Dg)(f(x)) = [Df(x)]−1 a.e.

Note that here we use the fact that both f and g have the Lusin property and Jf 6= 0
a.e.

Fix ei = (0, . . . , 1, . . . , 0) and for a compactly contained domain A b Ω define

ft(x) := g(f(x) + tei)

for x ∈ A and |t| < dist(f(A), ∂V ). It is again a well defined 1-quasiconformal
mapping.

Note that for a.e. x ∈ Ω we have

lim
t→0

ft(x)− f0(x)

t
= lim

t→0

g(f(x) + tei)− x

t
= Dg(f(x))ei = [Df(x)]−1ei.

The proof of Theorem 2.1 is based on the following result which is of independent
interest.

Theorem 2.3. Let f : Ω → Rn, where Ω is a domain in Rn, be 1-quasiconformal
and g = f−1. For a compact domain A b Ω define ft(x) := g(f(x) + tei) for x ∈ A
and |t| < dist(f(A), ∂V ). Let

X(x) := lim
t→0

ft(x)− f0(x)

t
= [Df(x)]−1ei.

Then

X ∈ W 1,1
loc (Ω,Rn)

and

(2.1) DX + DXT =

(
2

n
div X

)
· I.

Note that in dimension 2, these are exactly the Cauchy–Riemann equations.
According to Ahlfors’ deformation theorem (Theorem 3.3) every distributional

vector field that satisfies (2.1) is a polynomial of degree 2. This will allow us to
complete the proof of Theorem 2.1 by adapting the argument of Sarvas [23] that he
originally used in the C2 case.
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3. Auxiliary results

In this section we will recall known results that we will need later. For the sake
of completeness we provide short proofs.

If A is a square matrix and A# is the matrix of cofactors, then AT A# = (det A)·I.
Hence (Df)T (Df)# = (Jf) · I. Thus the Cauchy–Riemann system (Df)T Df =
|Jf |2/n · I implies that

(3.1) (Df)# = ±n
2−n

2 |Df |n−2Df,

where the ± sign depends on the sign of the Jacobian and |A| stands for the Hilbert–
Schmidt norm of the matrix.

It is well known (see e.g. [14, Lemma 4.8.1]) that for any u ∈ W 1,p
loc (Ω,Rn),

Ω ⊂ Rn, p ≥ n− 1, the matrix of cofactors (Du)# is divergence free

div(Du)# = 0.

Hence (3.1) yields that any 1-quasiregular mapping is n-harmonic

div(|Df |n−2Df) = 0.

This is well known. Following the Nireberg method of difference quotients Bojarski
and Iwaniec [2] proved the following result. For the sake of completeness we provide
a proof.

Theorem 3.1. If u ∈ W 1,p
loc (Ω,Rm), Ω ⊂ Rn is p-harmonic, p ≥ 2, i.e.

div(|Du|p−2Du) = 0,

then
|Du|(p−2)/2Du ∈ W 1,2

loc (Ω,Rn×m).

Proof. Let F (x) = |Du(x)|(p−2)/2Du(x). Clearly F ∈ L2
loc(Ω,Rm×n). According

to a difference quotient characterization of W 1,2
loc it suffices to prove that for any

ϕ ∈ C∞
0 (Ω)

(ˆ

Ω

ϕ2(x) |F (x + h)− F (x)|2 dx

)1/2

≤ C|h| for small h ∈ Rn.

Let G(x) = |Du(x)|p−2Du(x). Taking

ψ(x) = ϕ2(x) (u(x + h)− u(x))

as a test function we haveˆ

Ω

〈G(x + h)−G(x), Dψ(x)〉 dx = 0

and hence ˆ

Ω

ϕ2(x) 〈G(x + h)−G(x), Du(x + h)−Du(x)〉 dx

= −2

ˆ

Ω

ϕ(x)(u(x + h)− u(x)) 〈G(x + h)−G(x), Dϕ(x)〉 dx.

The elementary inequalities for vectors ξ, ζ ∈ Rk (valid for p ≥ 2)
〈|ξ|p−2ξ − |ζ|p−2ζ, ξ − ζ

〉 ≥ C1(p)
∣∣|ξ|(p−2)/2ξ − |ζ|(p−2)/2ζ

∣∣2 ,
∣∣|ξ|p−2ξ − |ζ|p−2ζ

∣∣ ≤ C2(p) (|ξ|p + |ζ|p)(p−2)/(2p)
∣∣|ξ|(p−2)/2ξ − |ζ|(p−2)/2ζ

∣∣
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applying to matrices regarded as vectors give
ˆ

Ω

ϕ2(x)|F (x + h)− F (x)|2 dx

≤ C

ˆ

Ω

|ϕ(x)||u(x + h)− u(x)| |Dϕ(x)|

· (|Du(x + h)|p + |Du(x)|p)(p−2)/(2p) |F (x + h)− F (x)| dx.

≤ C

(ˆ

Ω

|ϕ(x)|2|F (x + h)− F (x)|2 dx

)1/2

·
(ˆ

Ω

|u(x + h)− u(x)|2|Dϕ(x)|2 (|Du(x + h)|p + |Du(x)|p)(p−2)/p dx

)1/2

.

Thusˆ

Ω

ϕ2(x)|F (x + h)− F (x)|2 dx

≤ C

ˆ

Ω

|u(x + h)− u(x)|2|Dϕ(x)|2 (|Du(x + h)|p + |Du(x)|p)(p−2)/p dx

≤ C

(ˆ

Ω

|u(x + h)− u(x)|p|Dϕ(x)|p dx

)2/p(ˆ

supp ϕ

|Du(x + h)|p + |Du(x)|p dx

)(p−2)/p

and it suffices to observe that the first integral on the right hand side is bounded
by C|h|2, while the second integral is bounded by a constant independent of (small)
h. ¤

Corollary 3.2. If u ∈ W 1,p
loc (Ω,Rm) is p-harmonic, p ≥ 2, then for any p/2 ≤

s ≤ p,
|Du|s−1Du ∈ W

1,p/s
loc .

Proof. For s = p/2 this is the previous result, so we can assume that p/2 < s ≤ p.
The matrix function

Φα(A) = |A|αA, α > 0

is of class C1 and
|Du|s−1Du = Φ 2s−p

p

(|Du|(p−2)/2Du
)
.

Since |Du|(p−2)/2Du ∈ W 1,2
loc , the result follows from the chain rule. ¤

Let now f be 1-quasiconformal and g = f−1 be the inverse mapping. Then g is
also 1-quasiconformal and hence n-harmonic. Thus the above corollary implies that

(3.2) ±n
n−2

2 (Dg)# = |Dg|n−2Dg ∈ W
1, n

n−1

loc

and

(3.3) Jg = ±|Jg| = ±n−
n
2 |Dg|n ∈ W 1,1

loc .

The next result is a variant of the Ahlfors deformation theorem [1], where the
original version assumes the vector field is C1. However, by approximating distri-
butions by Schwarz functions one easily sees that these two versions are actually
equivalent.
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Theorem 3.3. If X is a distributional vector field in a domain Ω ⊂ Rn, n ≥ 3,
which satisfies

(3.4) DX + DXT =

(
2

n
div X

)
· I,

then X is a polynomial of degree 2 and is of the form

X(x) = a + Bx + 2〈c, x〉x− |x|2c
where a, c ∈ Rn and B = [bij] : Rn → Rn is a linear mapping satisfying bij = −bji

for i 6= j and bii = bjj for all i, j.

Proof. In order to prove that X is a polynomial of degree 2 it suffices to show
that all distributional partial derivatives of order 3 are equal zero.

Let X = (X1, . . . , Xn), Xi,j = ∂
∂xj

Xi, Xi,jk = ∂
∂xk

Xi,j in the distributional sense,
and so on. From (3.4) one immediately gets that Xi,j = −Xj,i for i 6= j, and
Xi,i = Xj,j for all i, j.

Since n ≥ 3 we take i, j, k distinct and then,

Xi,jk = Xi,kj = −Xk,ij = −Xk,ji = Xj,ki = Xj,ik = −Xi,jk.

Hence Xi,jk = 0 for i, j, k distinct.
We will show that Xi,jk` = 0 for all i, j, k, `. If we have at least 3 distinct indices

among {i, j, k, `}, we can always permute them to have the first three indices distinct
and Xi,jk` = 0 is obvious. If there are only two distinct indices, say, {i, j, k, `} =
{i, j}, i 6= j, then we have two cases Xi,ijj and Xi,jjj (plus permutation of indices).
We have

(3.5) Xi,ijj = Xi,jij = −Xj,iij = −Xj,jii.

Since n ≥ 3, there is k different from i, j and hence

Xi,ijj = −Xj,jii = −Xk,kii = Xi,ikk = Xj,jkk = −Xk,kjj = −Xi,ijj = 0,

where we repeatedly use (3.5). In the case Xi,jjj, we again find k different from i, j

Xi,jjj = −Xj,ijj = −Xj,jij = −Xk,kij = −Xk,ijk = 0.

The last case is when all indices are equal, but in that case

Xi,iii = Xj,jii = 0

by the case proved above.
Thus X is a polynomial of degree 2 and hence

Xi = ai +
∑

j

bijxj +
∑

j,k

cijkxjxk.

We may assume cijk = cikj. Thus

Xi,j = bij + 2
∑

k

cijkxk, Xi,jk = cijk.

Since Xi,j = −Xj,i for i 6= j and Xi,i = Xj,j for all i, j, bij = −bji for i 6= j and
bii = bjj for all i, j.
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If i, j, k are distinct, then cijk = Xi,jk = 0, so

Xi = ai +
∑

j

bijxj +
∑

k

ciikxixk +
∑

k 6=i

cikixkxi +
∑

k 6=i

cikkx
2
k

= ai +
∑

j

bijxj + 2
∑

k

ciikxixk − ciiix
2
i +

∑

k 6=i

cikkx
2
k.

Since Xi,i = Xj,j for all i, j,

ciik = cjjk := ck for all i, j, k,

and since Xi,k = −Xk,i for i 6= k,

cikk = −ckik = −ckki = −ci for i 6= k.

Thus

Xi = ai +
∑

j

bijxj + 2

(∑

k

ckxk

)
xi − ci

∑

k

x2
k

= ai +
∑

j

bijxj + 2〈c, x〉xi − |x|2ci.

The proof is complete. ¤

4. Proof of Theorem 2.3

Recall that f : Ω → Rn, where Ω is a domain in Rn, is 1-quasiconformal. Let
V = f(Ω) and g := f−1 : V → Ω. For a compact domain A b Ω define ft(x) :=
g(f(x) + tei) for x ∈ A and |t| < dist(f(A), ∂V ). Let

Xt(x) :=
ft(x)− x

t
∈ W 1,n

loc (Ω).

We know Xt → X = [Df ]−1ei a.e. Furthermore, we claim that

Lemma 4.1. For every compact set A ⊂ Ω

Xt(x) =
ft(x)− x

t
→ X(x) in L1(A) as t → 0.

Proof. Since we have a.e. convergence, by a generalized version of Dominated
Convergence theorem ([6], Theorem 21, p. 23), the above result follows easily from
the following lemma. ¤

Lemma 4.2. The family of functions Xt(x) is equi-integrable in any compact
subset of Ω.

Proof. We first note that by (3.3) and the Sobolev embedding theorem Jg ∈
L

n
n−1

loc (V ). Let A be a compact set of Ω and E be any measurable subset of A. Since
g is 1-quasiconformal and thus has Lusin property, we can apply change of variable
formula [10] to obtain

ˆ

E

∣∣∣∣
ft(x)− x

t

∣∣∣∣ dx =

ˆ

f(E)

∣∣∣∣
g(y + tei)− g(y)

t

∣∣∣∣ |Jg(y)| dy

≤
∥∥∥∥
g(y + tei)− g(y)

t

∥∥∥∥
Ln(f(E))

‖Jg‖
L

n
n−1 (f(E))

≤ M‖Jg‖
L

n
n−1 (f(E))

,

(4.1)
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because g ∈ W 1,n
loc and hence the difference quotients of g are bounded in Ln on

compact subsets of V . Let ε > 0 be given, since Jg ∈ L
n

n−1 (f(A)), by absolute
continuity of the integral, there is c > 0 such that ‖Jg‖Ln/(n−1)(f(E)) < εM−1 whenever
|f(E)| < c. Since |f(E)| = ´

E
|Jf | dx, there is δ > 0 such that |f(E)| < c whenever

|E| < δ. Thus, for |E| < δ, the left hand side of (4.1) is less than ε. The proof is
complete. ¤

Now we will prove that the derivatives of Xt,

DXt =
Dft − I

t
∈ Ln

loc(Ω).

converge in the distributional sense to a function in L1
loc.

Lemma 4.3. There exists u ∈ L1
loc(Ω,Rn×n) such that

ˆ

Ω

DXt(x)ϕ(x) dx →
ˆ

Ω

u(x)ϕ(x) dx

as t → 0 for all ϕ ∈ C∞
0 (Ω).

Proof. Without loss of generality we may assume that Jg ≥ 0 a.e. By the change
of variables,

ˆ

Ω

Dft(x)− I

t
ϕ(x) dx =

ˆ

Ω

Dg(f(x) + tei)Df(x)− I

t
ϕ(x) dx

=

ˆ

V

Dg(y + tei)Df(g(y))− I

t
Jg(y)ϕ(g(y)) dy

=

ˆ

V

Dg(y + tei)[Dg(y)]−1 − I

t
Jg(y)ϕ(g(y)) dy

(4.2)

for Df(g(y)) = [Dg(y)]−1 a.e. From the formula for the inverse matrix we have that
[Dg(y)]−1Jg(y) = (Dg#(y))T if Jg(y) 6= 0. Hence (4.2) is equal to,

ˆ

V

Dg(y + tei)(Dg#(y))T − Jg(y) · I
t

ϕ(g(y)) dy

=

ˆ

V

Dg(y + tei)
[(Dg#(y))−Dg#(y + tei)]

T

t
ϕ(g(y)) dy

+

ˆ

V

Jg(y + tei)− Jg(y)

t
· I ϕ(g(y)) dy.

(4.3)

The last equality follows from Dg(y)(Dg#)T (y) = Jg(y) · I.
Since by (3.2), Dg# ∈ W

1, n
n−1

loc (V ), it is an elementary fact, [9, p. 265], that

Dg#(y)−Dg#(y + tei)

t
→ − ∂

∂yi

Dg#(y) in L
n

n−1

loc (V ).

On the other hand, Dg ∈ Ln
loc(V ), Dg(y + tei) is a translation of Dg(y) and ϕ(g(y))

is bounded with compact support, so Dg(y + tei)ϕ(g(y)) → Dg(y)ϕ(g(y)) in Ln(V )
as t → 0. We thus obtain convergence for the first integral on the right hand side
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of (4.3)
ˆ

V

Dg(y + tei)
[(Dg#(y))−Dg#(y + tei)]

T

t
ϕ(g(y)) dy

→ −
ˆ

V

Dg(y)

[
∂

∂yi

Dg#(y)

]T

ϕ(g(y)) dy.

(4.4)

Since by (3.3), Jg(y) ∈ W 1,1
loc (V ),

Jg(y + tei)− Jg(y)

t
→ ∂

∂yi

Jg(y) in L1
loc(V ).

Hence we obtain convergence for the second integral on the right hand side of (4.3)

(4.5)
ˆ

V

Jg(y + tei)− Jg(y)

t
· I ϕ(g(y)) dy →

ˆ

V

∂

∂yi

Jg(y) · I ϕ(g(y)) dy.

Thusˆ

Ω

Dft(x)− I

t
ϕ(x) dx →−

ˆ

V

Dg(y)

[
∂

∂yi

Dg#(y)

]T

ϕ(g(y)) dy

+

ˆ

V

∂

∂yi

Jg(y) · I ϕ(g(y)) dy =

ˆ

Ω

u(x)ϕ(x) dx,

(4.6)

where

u(x) =

[
−Dg(f(x)

[
(

∂

∂yi

Dg#)(f(x))

]T

+

(
∂

∂yi

Jg

)
(f(x)) · I

]
Jf(x) ∈ L1

loc(Ω),

since

−Dg(y)

[
∂

∂yi

Dg#(y)

]T

+
∂

∂yi

Jg(y) · I ∈ L1
loc(V ).

The proof is complete. ¤

Corollary 4.4. DX = u ∈ L1
loc and hence X ∈ W 1,1

loc (Ω).

Proof. By Lemma 4.1 and 4.3,ˆ

Ω

X(x)
∂ϕ

∂xj

(x) dx = lim
t→0

ˆ

Ω

Xt(x)
∂ϕ

∂xj

(x) dx = − lim
t→0

ˆ

Ω

∂Xt

∂xj

(x)ϕ(x) dx

= − lim
t→0

ˆ

Ω

DXt(x)ejϕ(x) dx = −
ˆ

Ω

u(x)ejϕ(x) dx .

Thus DX = u ∈ L1
loc. The proof is complete. ¤

Since
DfT

t Dft = Jf
2/n
t · I a.e., and Jft > 0 a.e.,

we have

Jf
1/n
t − 1

t
· I =

DfT
t Dft

Jf
1/n
t

− I

t
=

(Dft − Jf
1/n
t · I)T Dft

tJf
1/n
t

+
Dft − I

t
.

Observe that

(4.7)
(Dft − Jf

1/n
t · I)T Dft

tJf
1/n
t

=
Jf

1/n
t − 1

t
· I− Dft − I

t
∈ Ln

loc.
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Lemma 4.5. There exists v(x) ∈ L1
loc(Ω) such that for all ϕ ∈ C∞

0 (Ω)
ˆ

Ω

(Dft − Jf
1/n
t · I)T Dft

tJf
1/n
t

ϕ(x) dx →
ˆ

Ω

uT (x)ϕ(x) dx−
ˆ

Ω

v(x) · I ϕ(x) dx

as t → 0, where u is the same as in Lemma 4.3.

Proof. Recall that

Dft(x) = Dg(f(x) + tei)Df(x), Jft(x) = Jg(f(x) + tei)Jf(x),

and Df(g(y)) = [Dg(y)]−1. Hence the change of variables formula yields
ˆ

Ω

(Dft − Jf
1/n
t · I)T Dft

tJf
1/n
t

ϕ(x) dx =

ˆ

V

ϕ(g(y))Jg(y)

· (Dg(y + tei)[Dg(y)]−1Jg(y)
1
n − Jg(y + tei)

1
n · I)T Dg(y + tei)[Dg(y)]−1

tJg(y + tei)
1
n

dy.

Since
[Dg]−1Jg = (Dg#)T , DgT Dg = Jg

2
n · I, [Dg]−1 = DgT /Jg

2
n ,

one easily checks the above is equal to,
ˆ

V

ϕ(g(y))

[
[(Dg#(y)−Dg#(y + tei)]Jg(y + tei)

1
n DgT (y)

tJg(y)
1
n

+
[Jg(y + tei)

1− 1
n − Jg(y)1− 1

n ]Dg(y + tei)DgT (y)

tJg(y)
1
n

]
dy.

(4.8)

We know from the proof of Lemma 4.3 that
Dg#(y)−Dg#(y + tei)

t
→ − ∂

∂yi

Dg#(y) in L
n

n−1

loc .

We will show now that
Jg(y + tei)

1
n DgT (y)

Jg(y)
1
n

→ DgT (y) in Ln
loc(V ).

Indeed, n
n
2 Jg(y) = |Dg|n, so |Dg(y)Jg(y)−

1
n | = n

1
2 . Hence for any compact set

K ⊂ V ,
ˆ

K

∣∣∣∣∣
Jg(y + tei)

1
n DgT (y)

Jg(y)
1
n

−DgT (y)

∣∣∣∣∣

n

dy

≤
ˆ

K

|Jg(y + tei)
1
n − Jg(y)

1
n |n|DgT (y)Jg(y)−

1
n |n dy

= n
n
2

ˆ

K

|Jg(y + tei)
1
n − Jg(y)

1
n |n dy → 0.

(4.9)

This implies convergence of the first half of (4.8),
ˆ

V

ϕ(g(y))
[(Dg#(y)−Dg#(y + tei)]Jg(y + tei)

1
n DgT (y)

tJg(y)
1
n

dy

→ −
ˆ

V

ϕ(g(y))

[
∂

∂yi

Dg#(y)

]
DgT (y) dy.

(4.10)
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By (3.2) and (3.3) Jg(y)1− 1
n = c|Dg#(y)| ∈ W

1, n
n−1

loc (V ), thus,

Jg(y + tei)
1− 1

n − Jg(y)1− 1
n

t
→ ∂

∂yi

[Jg(y)1− 1
n ] in L

n
n−1

loc (V ).

And by the same argument as in (4.9),

Dg(y + tei)DgT (y)Jg(y)−
1
n → Jg(y)

1
n · I in Ln

loc(V ).

Hence we have convergence for the second half of (4.8),
ˆ

V

ϕ(g(y))
Jg(y + tei)

1− 1
n − Jg(y)1− 1

n

t
Dg(y + tei)DgT (y)Jg(y)−

1
n dy

→
ˆ

V

ϕ(g(y))
∂

∂yi

[Jg(y)1− 1
n ]Jg(y)

1
n · I dy =

n− 1

n

ˆ

V

ϕ(g(y))
∂

∂yi

Jg(y) · I dy.

(4.11)

The last equality follows from Jg(y) = [Jg(y)1− 1
n ]

n
n−1 and the chain rule for Sobolev

functions. Now (4.8), (4.10) and (4.11) yield
ˆ

Ω

(Dft − Jft(x)1/n · I)T Dft

tJft(x)1/n
ϕ(x) dx

→ −
ˆ

V

ϕ(g(y))

[
∂

∂yi

Dg#(y)

]
DgT (y) dy +

n− 1

n

ˆ

V

ϕ(g(y))
∂

∂yi

Jg(y) · I dy

=

ˆ

Ω

uT (x)ϕ(x) dx−
ˆ

Ω

v(x) · I ϕ(x) dx,

(4.12)

where u(x) ∈ L1
loc(Ω) is the same matrix valued function as in Lemma 4.3 and v(x) =

1
n
( ∂

∂yi
Jg)(f(x))Jf(x) ∈ L1

loc(Ω) is a scalar function. The proof is complete. ¤
Recall that

Jf
1/n
t − 1

t
· I =

(Dft − Jf
1/n
t · I)T Dft

tJf
1/n
t

+
Dft − I

t
.

As Lemma 4.3 and 4.5 show

(Dft − Jf
1/n
t · I)T Dft

tJf
1/n
t

+
Dft − I

t
→ uT − v · I + u.

in distribution. This forces the left hand side to converge to some L1
loc(Ω,Rn×n)

function in distribution as well. However, since the off-diagonal terms of (Jf
1/n
t −1)/t·

I are zero, the limiting function must then be of the form w · I for some w ∈ L1
loc(Ω).

Recall by Corollary 4.4 that DX = u, hence,

DXT − v · I + DX = w · I.
Hence 2Xi,i = v + w, i = 1, 2, . . . , n, so div X = n/2(v + w). We then conclude

DX + DXT =

(
2

n
div X

)
· I.

The proof of Theorem 2.3 is complete. ¤
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5. Proof of Theorem 2.1

Once we obtain Theorem 2.3, the proof of the Liouville Theorem follows from
any well-known proofs under C3 or C4 assumption. Indeed, Theorem 3.3 tells us that
[Df ]−1(x)ei is C∞ smooth for every i = 1, . . . , n, hence by conformality,

1

Jf 2/n
= 〈[Df ]−1ei, [Df ]−1ei〉

is also smooth and is a polynomial of degree 4. Let Ω̃ be the open subset of Ω with
the roots of 1/(Jf 2/n) removed. It then follows Jf is smooth in the open set Ω̃. Now
by conformality again, DfT = [Df ]−1Jf 2/n is C∞ smooth in Ω̃. We can then apply,
say Nevanlinna’s argument [20] to obtain that f is a Möbius transformation in Ω̃.
By the fact that f is a homeomorphism in Ω we can actually conclude that f is a
Möbius transformation in Ω.

However, here we also provide another interesting proof due to Sarvas [23]: Given
f 1-quasiconformal, we can assume 0 ∈ Ω, f(0) = 0, and Df(0) = I. Indeed,
we can compose f with translations and dilation and note that the composition is
again a 1-quasiconformal mapping. Therefore, f(x) = x + |x|ε(x) with ε(x) → 0
as x → 0. Let h(x) = x

|x|2 be an inversion with respect to the unit sphere. Let
Ω̃ = Ω \ {0}. Ω̃ is open and f(x) 6= 0 on Ω̃. Then F : Ω̃ → Rn, F = h ◦ f is also
1-quasiconformal. Now DF (x) = |f(x)|−2(I−2Qf(x))Df(x), x 6= 0, where Qx : Rn →
Rn is given by Qxy = |x|−2〈y, x〉x and (I−2Qx)

−1 = (I−2Qx). Hence [DF (x)]−1ei =
|f(x)|2[Df(x)]−1(I−2Qf(x))ei = |f(x)|2[Df(x)]−1ei−2[Df(x)]−1〈f(x), ei〉f(x). Note
that [Df(x)]−1ei is a polynomial of degree 2. In particular, it is defined for x = 0
since Df(0) = I and f a homeomorphism with f(0) = 0, hence [DF (0)]−1ei = 0.
Now since by Theorem 3.3, [DF (x)]−1ei = a + Bx + 2〈c, x〉x− |x|2c. The condition
[DF (0)]−1ei = 0 gives a = 0. Let e ∈ Rn, |e| = 1. Inserting x = se for small s > 0,
we get

sBe = B(se) = −s2[2〈c, e〉e− c] + [DF (se)]−1ei

= −s2[2〈c, e〉e− c] + |f(se)|2[Df(se)]−1(I− 2Qf(se))ei.

Substituting f(x) = x + |x|ε(x) we get

sBe = −s2[2〈c, e〉e− c] + s2|e + ε(se)|2([Df(se)]−1(I− 2Qf(se))ei.

Dividing by s and let s → 0 gives Be = 0. Since e is an arbitrary unit vector, this
yields B = 0. Therefore [DF (x)]−1ei = 2〈c, x〉x − |x|2c. This implies c cannot be
zero. Otherwise, DF−1 = 0 everywhere, violating J(x, F ) 6= 0 a.e. for quasiconformal
mappings. Putting x = sc for small s > 0 we obtain,

s2|c|2c = DF−1(sc)ei = s2|c + |c|ε(sc)|2[Df(sc)]−1(I− 2Qf(sc))ei.

Divide by s2 and then let s → 0, then Qf(sc)ei → Qcei since f(x) = x + |x|ε(x), and
so the above implies c = (I− 2Qc)ei, and this implies ei = (I− 2Qc)c = −c. Finally,

[DF (x)]−1ei = −(2〈ei, x〉x− |x|2ei) = |x|2(I− 2Qx)ei.

Since i as for ei is arbitrary, we conclude that [DF (x)]−1 = |x|2(I−2Qx) = [Dh(x)]−1

for x ∈ Ω̃, or DF = Dh for all x ∈ Ω̃. Thus F = h + d for some constant vector d
and for all x ∈ Ω̃. Note that F = h ◦ f , thus f(x) = h−1(h(x) + d) = h(h(x) + d). In
the above argument we do not distinguish a.e. equivalent functions, but this is not a
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problem since f is a homeomorphism so they must equal everywhere. The proof is
complete. ¤
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