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Abstract. We study the asymptotic behaviour of a p-harmonic measure ωp, p ∈ (1,∞], in a
domain Ω ⊆ R2, subject to certain regularity constraints. Our main result is that ωp

(
B(w, δ) ∩

∂Ω, w0

) ≈ δ q as δ → 0+, where q = q(v, p) is given explicitly as a function of v and p. Here, v is
related to properties of Ω near w. If p = ∞, this extends to some domains in Rn. By a result due
to Hirata, our result implies that the p-Green function for p ∈ (1, 2) is not quasi-symmetric in plane
C1,1-domains.

1. Introduction

Let Ω ⊂ Rn be a regular bounded domain and let f be a real-valued continuous
function defined on ∂Ω. It is well known that there exists a unique smooth function
u, harmonic in Ω, such that u = f continuously on ∂Ω. The maximum principle and
the Riesz representation theorem yield the following representation formula for u,

u(z) =

ˆ

∂Ω

f(w) dωz(w), whenever z ∈ Ω.

Here, ωz(w) = ω(dw, z, Ω) is referred to as the harmonic measure at z associated
to the Laplace operator. As the harmonic measure allows us to solve the Dirichlet
problem, its properties are of fundamental interest in classical potential theory.

Consider the harmonic measure at some fixed point z, a natural question is: How
does the harmonic measure of a δ-neighborhood around a given boundary point decay
when δ tends to zero? Or, expressed in probabilistic terms, what is the probability
that a Brownian motion started at z will first hit the boundary in a δ-neighborhood
around the boundary point? For smooth domains, a classical result is that the
probability is comparable to δn−1, when δ is small.

In this paper we study decay of a p-harmonic measure, defined below, which
is a generalization of harmonic measure, related to the p-Laplace equation. For
p ∈ (1,∞), the p-Laplace equation yields

∆pu := ∇ · (|∇u|p−2∇u) = 0.

If p = ∞, then the equation is no longer of divergence form and can be written as

∆∞u :=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

= 0,(1.1)

doi:10.5186/aasfm.2013.3808
2010 Mathematics Subject Classification: Primary 35J25, 35J70.
Key words: Harmonic measure, harmonic function, p-Laplace operator, generalized interior

ball.



352 Niklas L. P. Lundström and Jonatan Vasilis

which is the so called∞-Laplacian. For the definition of solutions to the p-Laplacian,
that is, weak solutions, viscosity solutions and p-harmonicity, we refer the reader to
Section 3.

Definition 1.1. Let Ω ⊆ Rn be a domain, E ⊆ ∂Ω, p ∈ (1,∞), and w0 ∈ Ω.
The p-harmonic measure of E at w0 with respect to Ω, denoted ωp(E, w0, Ω), is
defined as infu u(w0), where the infimum is taken over all p-superharmonic functions
u ≥ 0 in Ω such that lim infz→w u(z) ≥ 1, for all w ∈ E.

The ∞-harmonic measure is defined in a similar manner, but with p-superhar-
monicity replaced by absolutely minimizing (AM), see [PSSW09, pp. 173–174]. To
avoid confusion, we mention that there are at least three different definitions of p-
harmonic measure in the literature. Besides the p-harmonic measure above, we refer
to the definitions given in [BL05] and [HK97]. In the rest of the paper, we write
p-harmonic measure to mean ωp(E, w0, Ω) as defined in Definition 1.1, and if the
underlying domain is clear from context, we allow ourselves to write ωp(E, w0) in
place of ωp(E, w0, Ω). It turns out that ωp(E, · ) is p-harmonic in Ω and that 0 ≤
ωp(E, w0) ≤ 1, for all w0 ∈ Ω. For these and other properties of p-harmonic measure,
as well as for the fundamentals of the p-Laplace operator, we refer to [HKM93].

When p 6= 2, the p-harmonic measure fails to be a measure, and it no longer
provides a solution formula for the Dirichlet problem, owing to the nonlinearity of
the p-Laplace operator. Nevertheless, it can still be used to estimate solutions to
the p-Laplace equation. For instance suppose that u is p-subharmonic in Ω, with
lim supz→w u(z) bounded by C when w ∈ E ⊆ ∂Ω, and by c ≤ C on the rest of the
boundary. Then u ≤ (C − c)ωp(E, · ) + c in Ω, see [HKM93, Theorem 11.9].

The p-harmonic measure also has a probabilistic interpretation, this time in terms
of the zero-sum two-player game tug-of-war [PS08, PSSW09]. Roughly speaking,
given a domain in Rn, n ≥ 2, and a starting point, two players take turns in choosing
an ε-step, which is then perturbed by a p-dependent noise vector. The game ends
when one of the players is able to reach the boundary of the domain. Player one
receives a payoff of $1 from player two if the game ends at a part E of the boundary,
otherwise neither player receives any payoff. As ε → 0+, the value of this game tends
to the p-harmonic measure of E.

Now consider a domain in R2. Our main result (Theorem 2.1) is that the p-
harmonic measure of a δ-neighborhood of a boundary point, satisfying certain regu-
larity conditions, decays as a certain power of δ, when δ → 0+. For the upper bound,
the condition on the domain is simply that it is contained in a sector with a certain
aperture and with apex at the boundary point. The lower bound requires instead
that the domain satisfies a generalized interior ball condition. Before giving the def-
inition of the generalized interior ball, we introduce the sector Sv, having aperture
π/v and apex at the origin. Let φ ∈ (−π, π] be the polar angle of (x, y), then

(1.2) Sv =
{

(x, y) ∈ R2 \ {(0, 0)}; |φ| < π

2v

}
where v ≥ 1

2
.

We now give the definition of the generalized interior ball condition. Here, as in
the sequel, (r, φ) are polar coordinates for (x, y).

Definition 1.2. Let Ω ⊆ R2 be a domain and let, for γ, r1 > 0 and v ≥ 1/2,

E(γ, r1, v) =

{
(x, y) ∈ R2; cos(vφ) >

(
r

r1

)γ

, |φ| < π

2v

}
.
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A boundary point w ∈ ∂Ω is said to satisfy the generalized interior ball condition
of type (γ, r1, v), if there exists a rigid transformation T of the plane such that
T

(
E(γ, r1, v)

) ⊆ Ω and w = T (0, 0). We then say that w ∈ ∂Ω is of type (γ, r1, v)
for Ω.

The set E(γ, r1, v) is by definition contained in the sector Sv defined in (1.2). On
the boundary ∂E(γ, r1, v) we have that r = r1 cos1/γ(vφ), see Figure 1. If v = γ = 1,
this is just a circle with radius r1/2 and center

(
r1/2, 0

)
and hence, in this case

Definition 1.2 yields the usual interior ball condition. We also see that if w ∈ ∂Ω is
of type (γ, r1, v), then it is also of type (γ′, r′1, v

′), for all γ ≥ γ′ > 0, r1 ≥ r′1 > 0,
and 1/2 ≤ v ≤ v′. Finally, it is not too difficult to verify that E(γ, r1, v) is convex if
and only if v ≥ 1, but that the parts of E(γ, r1, v) that are in the upper and lower
half plane, respectively, are both convex for all v ≥ 1/2. In particular, E(γ, r1, v) is
star-shaped around (x, 0), for all x ∈ [0, r1].

(0, 0)

v = 1

v = 1

2

v = 3

(0, 0)

p = 2

p = 3

2

p = 4

(a) p = 2 (b) v = 1

Figure 1. The boundaries of the bounded sets E(q, r1, v), where q = q(v, p) is as in (2.1), for
various values of p and v. The lower bound in Theorem 2.1 requires that E(q, r1, v) can be mapped
by rotating and translating to a subset of Ω, with (0, 0) mapped to a given boundary point of Ω.

The rest of the paper is structured as follows. In Section 2 we present our main
result (Theorem 2.1) and a number of Corollaries. In Section 3 we present some
well known results and definitions for p-harmonic functions and geometry. Finally,
in Section 4 we prove Theorem 2.1 using singular solutions to the p-Laplace equation
discovered by Aronsson and Persson.

2. Results

Let B(w, δ) = {z ∈ R2; |z − w| < δ} be the open disc with radius δ > 0 and
center w ∈ R2 and let, for v ∈ [1/2,∞) and p ∈ (1,∞],

(2.1) q = q(v, p) =
(2v + 1)(2− p) + pv2 + (v + 1)

√
(2v + 1)(2− p)2 + p2v2

2(p− 1)(2v + 1)
,

interpreted as a limit when p = ∞, so that q(v,∞) = v2/(2v + 1).



354 Niklas L. P. Lundström and Jonatan Vasilis

Our main result is the following characterization of p-harmonic measure of plane
domains. Roughly speaking, the theorem implies that if ∂Ω fits in between a sector
and a generalized ball, both with aperture π/v and apex at w ∈ ∂Ω, then

ωp

(
∆(w, δ), w0, Ω

) ≈ δ q,

when δ > 0 is small. Here and in the rest of the paper, ∆(w, δ) = B(w, δ) ∩ ∂Ω
and A ≈ B means that there exist constants c and C such that cA ≤ B ≤ CA.
In general, C and c denote constants C ≥ 1 and c ≤ 1, not necessarily the same
at each occurrence. Moreover, dist(x,E) denotes the Euclidean distance between
the point x and the set E, and a domain is an open connected set. If the domain is
unbounded, then the point at infinity is by definition in the boundary. For definitions
of the Harnack chain and the exterior corkscrew conditions, we refer the reader to
Section 3.

Theorem 2.1. Let Ω ⊆ R2 be a domain, w0 ∈ Ω, p ∈ (1,∞], v ∈ [1/2,∞),
r1 ∈ (0, 1), and let q = q(v, p) be as in (2.1). There exist constants C1 and C2 such
that the following is true.

(i) If w ∈ ∂Ω \ {∞} is such that there exists a sector, with aperture π/v and
apex at w, which contains Ω, then

ωp

(
∆(w, δ), w0, Ω

) ≤ C1

(
δ

|w0 − w|
)q

for all δ > 0.
(ii) Assume that Ω satisfies the Harnack chain condition and that either p > 2

or that Ω satisfies the exterior corkscrew condition (3.1) on ∆(w, δ). There
exists a constant δ0 > 0, such that if w ∈ ∂Ω \ {∞} is of type (q, r1, v), then

δ q ≤ C2 ωp

(
∆(w, δ), w0, Ω

)

for all 0 < δ < δ0.
The constant C1 depends only on p and v; C2 depends only on p, v, r1, dist(w0, ∂Ω),
|w−w0|, and if p ∈ (1, 2] also on the exterior corkscrew condition, that is, on r0 and
M ; δ0 depends only on p, v, r1, and if p ∈ (1, 2] also on r0. Moreover, C1 decreases
in p, δ0 increases in p and, if p > 2, then C2 is decreasing in p.

From equation (4.1) in the proof of Lemma 4.1, it follows that the exponent
q = q(v, p) is decreasing in p and increasing in v. Moreover, from (2.1) we obtain

lim
p→1

q = ∞, lim
p→∞

q =
v2

2v + 1
and lim

v→∞
q = ∞.

For the classical case p = 2, we have that q(v, 2) = v, as expected.
Since the geometric assumptions in Theorem 2.1 are quite lengthy, we state the

following direct consequence of Theorem 2.1 as a corollary.

Corollary 2.2. Assume that Ω ⊆ R2 is convex and satisfies the usual interior
ball condition with radius r1. Let w0 ∈ Ω and p ∈ [2,∞]. There exist constants C
and δ̄0 > 0 such that

C−1δ q(1,p) ≤ ωp

(
∆(w, δ), w0, Ω

) ≤ Cδ q(1,p)
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whenever 0 < δ < δ̄0. The constant C depends only on p, r1, dist(w0, ∂Ω) and
|w−w0|; δ̄0 depends only on p and r1. Moreover, if p ≥ p̂ > 2, then the constants C
and δ̄0 can be chosen independent of p but depending on p̂.

Next, suppose that Sv,w ⊂ R2 is a sector having aperture π/v and apex at w.
Since both the p-Laplace equation and Sv,w are invariant under scalings, we have, for
z ∈ Sv,w and s > 0,

ωp

(
B(w, s) ∩ ∂Sv,w, z

)
= ωp

(
B

(
w,

s

|w − z|
)
∩ ∂Sv,w,

z

|w − z|
)

,

and hence Theorem 2.1 and Harnack’s inequality implies the following.

Corollary 2.3. Let p ∈ (1,∞], v ∈ [1/2,∞) and s ∈ (0,∞) be given. There
exists a constant C, depending only on p and v, such that

C−1

(
s

|w − z|
)q

≤ ωp

(
B(w, s) ∩ ∂Sv,w, z,Sv,w

) ≤ C

(
s

|w − z|
)q

whenever z ∈ S2v,w \B(w, s).

In the case p = ∞ we have the following extension of Theorem 2.1 to Rn. When
Ω is a unit ball, this result was first proved in [PSSW09, Theorem 1.5].

Corollary 2.4. Assume that Ω ⊆ Rn is rotationally invariant around an axis `.
Let Ω` be the intersection between Ω and a two-dimensional plane containing `, let
w0 ∈ Ω, v ∈ [1/2,∞) and r1 ∈ (0, 1). There exist constants Ĉ1 and Ĉ2 such that the
following is true.

(i) If w ∈ ∂Ω ∩ ` is such that there exists a sector with aperture π/v and apex
at w that contains Ω`, then

ω∞
(
∆(w, δ), w0, Ω

) ≤ Ĉ1

(
δ

|w0 − w|
) v2

2v+1

for all δ > 0.
(ii) Assume that Ω satisfies the Harnack chain condition. There exists a constant

δ̂0 > 0, such that if w ∈ ∂Ω ∩ ` is of type (v2/(2v + 1), r1, v), then

δ
v2

2v+1 ≤ Ĉ2 ω∞
(
∆(w, δ), w0, Ω

)

for all 0 < δ < δ̂0.
The constant Ĉ1 depends only on v; Ĉ2 depends only on v, r1, dist(w0, ∂Ω) and
|w − w0|; while δ̂0 depends only on v and r1.

To prove Corollary 2.4, assume that u ∈ C2(Ω), otherwise, we switch to a C2-
function through the definition of viscosity solutions. Since the∞-Laplacian is invari-
ant under rotations and translations, we also assume that the axis ` coincides with
the x1-axis and that Ω` is contained in the x1x2-plane. By symmetry, we conclude
that ux3 = ux4 = · · · = uxn = 0 on Ω` and hence

∆∞u =
n∑

i,j=1

uxi
uxj

uxixj
= u2

x1
ux1x1 + 2ux1ux2ux1x2 + u2

x2
ux2x2 = 0.

Thus, u is ∞-harmonic in Ω` ⊆ R2, which allows us to deduce Corollary 2.4 from
Theorem 2.1.
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Returning to two dimensions, let Gp be the p-Green function for Ω ⊂ R2, that
is, a weak solution to {

∆pGp( · , z) = −δz in Ω,

Gp( · , z) = 0 on ∂Ω,

such that Gp(w, z) · |w− z|(2−p)/(p−1) is bounded, and let Kp be the p-Martin kernel,
defined in the usual way; see [Hir08] for details.

Corollary 2.5. Let p ∈ (1,∞], let Ω be a bounded C1,1-domain in R2 and let
w0 ∈ Ω be fixed. Then there exist a point ŵ ∈ ∂Ω and a constant C such that

ωp

(
∆(ŵ, δ

)
, w0, Ω

) ≤ Cδ q(1,p)

for δ > 0 small enough. The constant C depends only on p.

In fact, convexity must hold in some point ŵ ∈ ∂Ω, and hence Theorem 2.1 yields
the result. In connection with Hirata, we give the following remark.

Remark 2.6. For a C1,1-domain in Rn and for p ∈ (1, n], Hirata [Hir08, The-
orem 2.7] proved that the following statements are equivalent to each other. Let r1

be the radius in the ball condition (interior and exterior) guaranteed by [AKSZ07,
Lemma 2.2], and let x0 ∈ Ω.

(a) ωp(∆(w, r), x0) ≈ r(n−1)/(p−1) whenever w ∈ ∂Ω and 0 < r < r1,
(b) Gp(x, y) ≈ Gp(y, x) for any pair x, y ∈ Ω,
(c) Gp(x0, x) ≈ dist(x, ∂Ω) whenever dist(x, ∂Ω) < r1,
(d) for each w ∈ ∂Ω, there is a positive p-harmonic function u on Ω vanishing

continuously on ∂Ω\{w} such that u(x0) = 1 and u(x) ≈ dist(x, ∂Ω)(1−n)/(p−1)

on the inward normal at w,
(e) for each w ∈ ∂Ω, Kp(x,w) ≈ dist(x, ∂Ω)/|x− w|(n+p−2)/(p−1) for x ∈ Ω.

Hirata then proved (d) for p = n; and hence all of (a)–(e) are valid for p = n. It
is classical that all of (a)–(e) are valid for the linear case p = 2. The validity for
the other case is not known. Corollary 2.5 implies that none of (a)–(e) holds for
1 < p < 2 and n = 2, since 1/(p− 1) < q(1, p).

In the linear case p = 2, it is well known that an upper bound on the harmonic
measure of discs immediately gives a lower bound on the Hausdorff dimension of the
harmonic measure. More precisely, if ω2

(
∆(w, δ), w0

) ≤ Cδv, for all w ∈ ∂Ω and
all sufficiently small δ > 0, then the Hausdorff dimension satisfies dimH(E) ≥ v, for
all E ⊆ ∂Ω with ω2(E,w0) > 0. In passing, we recall that Beurling’s projection
theorem gives the lower bound dimH(E) ≥ 1/2 for all simply connected domains
[GM05, Corollary III.9.3]. This bound was improved by Carleson [Car73] to 1/2 + c,
with c > 0 a universal constant, and Makarov [Mak85] proved, in particular, that
dimH(E) = 1 for Jordan domains.

When p 6= 2, however, the p-harmonic measure is in general not subadditive, not
even if we allow a multiplicative factor. For instance, it is known that the boundary
of the half-plane can be partitioned into finitely many sets of p-harmonic measure
zero [LMW05]. Although Theorem 2.1 shows that the pointwise dimension, defined
in the obvious way, is q = q(v, p), there are no immediate ties between this and
the dimension of the p-harmonic measure. For the question of the dimension of a
different notion of p-harmonic measure, coinciding with ωp only when p = 2, we refer
to [BL05].
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Concerning doubling properties of the p-harmonic measure we note the following.
Theorem 2.1 implies the existence of a constant C such that

ωp

(
∆(w, 2δ), w0

) ≤ C ωp

(
∆(w, δ), w0

)
,

if δ is small enough. Unfortunately, C depends on both w on w0. If we in addition
assume that the boundary conditions imposed on w holds uniformly for all w ∈ ∂Ω,
then C can be chosen independent of w. We note that such assumption implies that
v = 1 and hence Ω is a convex domain which satisfies the generalized interior ball
condition. If also p = 2, then Ω satisfies the usual interior ball condition, and then
Ω is a C1,1-domain, see [AKSZ07, Lemma 2.2].

Acknowledgement. The authors want to thank G. Aronsson, J. Björn, T. Lundh
and K. Nyström for useful discussions and ideas. We also thank the anonymous
referee for a careful reading of the paper and for constructive comments.

3. Preliminaries

In this section we state some definitions and known results for p-harmonic mea-
sure and p-harmonic functions. We start with defining solutions and p-harmonicity.
If p ∈ (1,∞), we say that u is a (weak) subsolution (supersolution) to the p-Laplacian
in a domain Ω provided u ∈ W 1,p

loc (Ω) andˆ

Ω

|∇u|p−2 〈∇u,∇θ〉 dx ≤ (≥) 0,

whenever θ ∈ C∞
0 (Ω) is non-negative. A function u is a (weak) solution of the

p-Laplacian if it is both a subsolution and a supersolution. Here, as in the sequel,
W 1,p(Ω) is the Sobolev space of those p-integrable functions whose first distributional
derivatives are also p-integrable, and C∞

0 (Ω) is the set of infinitely differentiable func-
tions with compact support in Ω. If p = ∞, the equation is no longer of divergence
form and therefore the above definition is replaced by the following. Here, as in the
sequel, ∆∞ is the ∞-Laplace operator defined in (1.1).

An upper semicontinuous function u : Ω → R is a (viscosity) subsolution of the
∞-Laplacian in Ω provided that for each function ψ ∈ C2(Ω) such that u− ψ has a
local maximum at a point x0 ∈ Ω, we have ∆∞ψ(x0) ≥ 0. A lower semicontinuous
function u : Ω → R is a (viscosity) supersolution of the ∞-Laplacian in Ω provided
that for each function ψ ∈ C2(Ω) such that u − ψ has a local minimum at a point
x0 ∈ Ω, we have ∆∞ψ(x0) ≤ 0. A function u : Ω → R is a (viscosity) solution of the
∞-Laplacian if it is both a subsolution and a supersolution.

If u is an upper semicontinuous subsolution to the p-Laplacian in Ω, p ∈ (1,∞]
then we say that u is p-subharmonic in Ω. If u is a lower semicontinuous supersolution
to the p-Laplacian in Ω, p ∈ (1,∞], then we say that u is p-superharmonic in Ω. If
u is a continuous solution to the p-Laplacian in Ω, p ∈ (1,∞], then u is p-harmonic
in Ω.

We note that for the p-Laplacian, 1 < p < ∞, weak solutions are also viscosity
solutions (defined as above but with ∆∞ replaced by ∆p); see [Ju98, Theorem 1.29].
Moreover, under suitable assumptions, an ∞-harmonic function is the uniform limit
of a sequence of p-harmonic functions as p → ∞; see [J93]. For more on weak
solutions, viscosity solutions, p-harmonicity and p-superharmonicity, see for instance
[HKM93] and [CIL92].
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Concerning geometric assumptions, we recall the following. A domain Ω is said
to satisfy the Harnack chain condition, if given any ε > 0 and w1, w2 ∈ Ω such that

dist(w1, ∂Ω) > ε, dist(w2, ∂Ω) > ε and |w1 − w2| < Cε

for some constant C, then there exists a Harnack chain from w1 to w2 whose length
may depend on C, but not on ε.

A domain Ω is said to satisfy the exterior corkscrew condition on E ⊂ ∂Ω with
constants r0 and M > 1, if the following holds. For any w ∈ E and any r ∈ (0, r0),
there exists a point ar(w) ∈ Rn \ Ω such that

(3.1)
r

M
< |ar(w)− w| < r and dist

(
ar(w), ∂Ω

)
>

r

M
.

As mentioned in the Introduction, the p-harmonic measure ωp(E, · ) is a p-
harmonic function Ω → [0, 1], and the following lemma tells us that the bound-
ary behaviour at p-regular boundary points (regular with respect to the p-Laplace
operator) is as expected.

Lemma 3.1. Let p ∈ (1,∞], let z0 be a p-regular boundary point of a domain
Ω ⊂ Rn, and let E ⊆ ∂Ω. If z0 has a neighborhood V such that V ∩ ∂Ω ⊆ E, then

lim
z→z0

ωp(E, z, Ω) = 1.

Similarly, if z0 has a neighborhood V such that V ∩ ∂Ω ∩ E = ∅, then
lim
z→z0

ωp(E, z, Ω) = 0.

Proof. In the case p ∈ (1,∞) this follows from [HKM93, Theorem 11.6]. If
p = ∞, then the result folows by definition, see [PSSW09, pp. 173–174]. ¤

Recall that a sufficient condition for p-regularity is that the domain satisfies the
exterior corkscrew condition, as defined in (3.1). See [HKM93, Theorem 6.31].

We will make use of the comparison principle and Harnack’s inequality for p-
harmonic functions, as well as the fact that these results hold with constants inde-
pendent of p, if p is large.

Lemma 3.2. Let p ∈ (1,∞] and suppose that u is p-superharmonic and that v
is p-subharmonic in a bounded domain Ω ⊂ Rn. If

lim sup
z→w

v(z) ≤ lim inf
z→w

u(z)

for all w ∈ ∂Ω, and if both sides of the above inequality are not simultaneously ∞
or −∞, then v ≤ u in Ω.

Proof. If p ∈ (1,∞), this follows from [HKM93, Theorem 7.6]. For the case
p = ∞, this was first proved in [J93, Theorem 3.11]. A shorter proof was later
presented in [AS10]. ¤

Lemma 3.3. Let p ∈ (1,∞], w ∈ R2, r ∈ (0,∞) and suppose that u is a non-
negative p-harmonic function in B(w, 2r). Then there exists a constant C ∈ [1,∞),
depending only on p, such that

sup
B(w,r)

u ≤ C inf
B(w,r)

u.

Moreover, if p > 2, then the constant C is decreasing in p.
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Proof. For the case p ∈ (1,∞), see [KMV96] or [LuN10, Lemma 2.3]. For the
case p = ∞ the result follows by taking the limit p → ∞ in the former case, see
[LM95]. ¤

Classically, every harmonic function u in a simply connected plane domain has a
harmonic conjugate, that is, a harmonic function v such that u′x = v′y and u′y = −v′x.
For general p-harmonic functions, p ∈ (1,∞), the corresponding concept is that of a
stream function.

Definition 3.4. Let p ∈ (1,∞) and denote by p′ = p/(p − 1) the conjugate
index. If u is p-harmonic, a p′-harmonic function v is said to be a stream function to
u, if u′x = |∇v|p′−2v′y and u′y = −|∇v|p′−2v′x.

Similar to the classical case, every p-harmonic function in a simply connected
plane domain has a p′-harmonic stream function, see [AL88, Theorem 4].

4. Proofs

To prove Theorem 2.1, we use similar ideas as in the proof of [PSSW09, Theo-
rem 1.5], which is the corresponding result for∞-harmonic measure in any dimension
n ≥ 2, when the domain is the unit ball. For p ≥ 2 we use a p-harmonic function
from [Aro86], and if p < ∞, then the function has a p/(p − 1)-harmonic stream
function which—making use of a representation from [Per89]—also has the desired
properties. The functions are defined in the sector Sv and can be written

Hv,p(x, y) = r−qhv,p(φ),

where hv,p and q = q(v, p) are certain functions given below, and (r, φ) are polar coor-
dinates for (x, y). We summarize some properties of these functions in the following
lemma.

Lemma 4.1. Let p ∈ (1,∞] and let v ∈ [
1
2
,∞)

. There exists a p-harmonic
function Hv,p : Sv → (0,∞) of the form Hv,p(x, y) = r−qhv,p(φ), where q = q(v, p) is
given by (2.1). The exponent q is decreasing in p and increasing in v. Moreover, the
function hv,p is continuous on

[− π
2v

, π
2v

]
, differentiable, and satisfies

(i) hv,p

(± π
2v

)
= 0,

(ii) hv,p(φ), |h′v,p(φ)| ≤ Mv,p < ∞, for all φ ∈ (− π
2v

, π
2v

)
, and

(iii) min|φ|≤ π
4v

hv,p(φ) ≥ mv > 0,
where Mv,p and mv are constants depending only on v, p and v, respectively. Moreover
Mv,p is decreasing in p with v fixed, and Mv,p ≤ v for p ≥ 2.

For the convenience of a reader who has access to [Aro86] but not [Per89], we
record the following result from [Per89], which allows the results in [Aro86] to be
extended to p ∈ (1, 2).

Lemma 4.2. Assume that p ∈ (2,∞) and that q > 0. Let p′ = p/(p− 1) be
the conjucate index to p, and define q′ by the relation (1 + q)p = (1 + q′)p′. If
(r, φ) 7→ r−qh(φ) is p-harmonic in a sector Sv, then

(r, φ) 7→ r−q′ · 1

q′

((
qh(φ)

)2
+

(
h′(φ)

)2
) p−2

2
h′(φ)

is a q′-harmonic stream function in Sv.



360 Niklas L. P. Lundström and Jonatan Vasilis

In [Per89, Theorem 1A], this is proved by observing that the condition [Aro86,
Equation (5)] for p-harmonicity of (r, φ) 7→ r−qh(φ), also for p ∈ (1, 2), can be written
[Per89, Equation (3.3)] as

d

dφ

(
h′ · ((qh)2 + (h′)2

) p−2
2

)
+ qq′h · ((qh)2 + (h′)2

) p−2
2 = 0.

To shorten our proof, we will also make use of a compact representation formula
given by [Per89] of the stream function, see Case 3 in the proof of Lemma 4.1. Of
crucial importance, however, is the fact that the correct radial exponent q′ is given
by the relation (1 + q)p = (1 + q′)p′.

Proof of Lemma 4.1. The facts (ii) and (iii) are actually quite easy to see
from continuity and positivity of hv,p(φ). However, the proof of Theorem 2.1 calls
for better control of the constants in the lemma, which requires the following more
delicate proof.

For p = 2, we immediately see that Hv,p(x, y) = r−v cos(vφ) is a function with
the desired properties, since q(v, 2) = v. Next, we prove the lemma for p ∈ (2,∞],
and then show that Hv,p, when p < ∞, determines a stream function which is the
required function for p/(p− 1) ∈ (1, 2).

Case 1: 2 < p < ∞. By [Aro86, Case 2 on p. 145], there exists a p-harmonic
function Hv,p, defined in Sv, of the form Hv,p(x, y) = r−qhv,p(φ). The function hv,p

can be written as

hv,p(φ) = cos θv,p(φ) ·
(

1 +
cos2 θv,p(φ)

aq

)− q+1
2

,

where a = (p− 1)/(p− 2) and θv,p is a certain continuous, strictly decreasing function
of φ.

When |φ| < π
2v
, we have that

φ = θv,p(φ)− v + 1

v
arctan

(
µv,p tan θv,p(φ)

)
, where µv,p =

√
aq

aq + 1
,

see [Aro86, p. 145]. The function θv,p is chosen so that it maps the interval
[− π

2v
, π

2v

]
to

[−π
2
, π

2

]
, and this condition immediately determines the radial exponent q.

More precisely, the condition that determines q is given by [Aro86, p. 146], and
reads

π

v
= −φ

(π

2

)
+ φ

(
−π

2

)
= π

√
aq

aq + 1

(
1 +

1

q

)
− π.

This equation in q was derived and solved in [Aro86, Equation (8)] for v an integer,
but that assumption is needed only when the function is extended to the entire plane.
Solving the equation first for a = (p− 1)/(p− 2) and then for p, we obtain

(4.1) p = 1 +
1

1 + q
+

v2

(2v + 1)q − v2
.

From (4.1) we see that q is decreasing in p and increasing in v. Solving for q, we
arrive at a quadratic equation, whose unique positive root q = q(v, p) is given by
(2.1) in the Introduction.

We proceed by observing that µv,p is strictly decreasing in p, since p > 2 and
q is decreasing in p, with limp→∞ µv,p = v/(v + 1) and limp→2 µv,p = 1, so that
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µv,p ∈
(

v
v+1

, 1
)
. It is then easy to see that min|φ|≤ π

4v
hv,p(φ) ≥ c, for some constant

c > 0 independent of p ∈ (2,∞), since θv,p(φ) is bounded away from ±π
2
, uniformly

in p, if |φ| ≤ π
4v

and v ∈ [
1
2
,∞)

is fixed.
Next, note that 0 ≤ hv,p(φ) ≤ 1 for |φ| ≤ π

2v
, and that hv,p

(± π
2v

)
= 0. Finally,

using the formula [Aro86, page 143]

(4.2) h′v,p(φ) = q · sin θv,p(φ) ·
(
1 +

cos2 θv,p(φ)

aq

)− q+1
2

,

we have that |h′v,p(φ)| ≤ q, for all φ ∈ [− π
2v

, π
2v

]
, and hence also that |h′v,p(φ)| ≤ v,

since q(v, p) ≤ q(v, 2) = v. The proof of the lemma in the case when p ∈ (2,∞) is
complete.

Case 2: p = ∞. Letting a = 1 when p = ∞, the function from Case 1 is imme-
diately extended to the case when p = ∞. By [Aro86, Case 2 on p. 148] and [Aro86,
Lemma 3′], this function is smooth and ∞-harmonic when φ 6= 0. Consequently, the
function Hv,∞ satisfies the required conditions, except that it is not immediate that
the function is ∞-harmonic in the viscosity sense in the entire sector.

For v = 1, it was shown in [Bha04, Appendix I] that H1,∞ is indeed ∞-harmonic
in the viscosity sense. However, the exact same proof works for all v ≥ 1

2
; or more

generally for ∞-harmonic functions with polar representation r−qh(φ) ≥ 0, with
q · (q + 1) ≥ 0 and where h ∈ C1 is C2 for φ 6= 0, has a local maximum at φ = 0 and
satisfies limφ→0 h′′(φ) = −∞. Thus the proof of the lemma is complete in the case
when p = ∞.

Case 3: 1 < p < 2. It is convenient to view the p-values at hand as conjugate to
those in Case 1. Hence, let ε ∈ (0, 1), fix p′ ∈ (1 + ε, 2), and denote the conjugate
index by p = p′/(p′ − 1).

First we extend the domain of hv,p, defined in Case 1, to R. To do so, we first
extend θv,p by ‘pasting’ together copies of its graph on

[− π
2v

, π
2v

]
, so that, for instance,

θv,p(φ) = π + θv,p

(
φ + π

v

)
for φ ∈ [−π

v
,− π

2v

]
, which is the extension we will need.

Using this extension of θv,p, the domain of definition of hv,p is extended to R, and
although the function is no longer positive at all points, we still have that |hv,p| ≤ 1
and |h′v,p| ≤ q.

By [Aro86, Case 2 on p. 145], restricting (r, φ) 7→ r−qhv,p(φ), r > 0, φ ∈ R, to
any angular interval of length 2π or less yields a p-harmonic function. In particular,
let Hv,p(x, y) = r−qhv,p(φ) for r > 0 and φ ∈ [−π

v
, 0

]
, which is then p-harmonic for

r > 0 and φ ∈ (−π
v
, 0

)
. As we shall see, the stream function of Hv,p is, up to rotation,

the desired function.
Let Fv,p′(x, y) = r−q(v,p′)fv,p′(φ), for r > 0 and φ ∈ [−π

v
, 0

]
, where

fv,p′(φ) = sin θv,p(φ) ·
(
1− (2− p′) sin2 θv,p(φ)

(p′ − 1)q(v, p′)

)− q(v,p′)+1
2

.

Here q(v, p′) satisfies (
1 + q(v, p)

)
p =

(
1 + q(v, p′)

)
p′,

as can be verified by plugging in p′ = p
p−1

and then expanding the expression using the
definition of q, formula (2.1). Since, by a calculation, 2−p′

(p′−1)q( 1
2
,p′) ≤ 8

9
and q

(
1
2
, p′

) ≤
q(v, p′) ≤ q(v, 1 + ε), we see that |fv,p′(φ)| ≤ C, for a constant C depending only on
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ε and v. Then by [Per89, Theorem 2], as can also be verified using Lemma 4.2 and
(4.2), Fv,p′ is a stream function to the function γv,pHv,p, where

γv,p =
q(v, p′)

1
p−1

q(v, p)

(
q(v, p′)

(p− 1)q(v, p)

) q(v,p)+1
2

is a constant, and we see that γv,p ≤ C, for all p′ ∈ (1 + ε, 2) and p = p′/(p′ − 1),
where C only depends on ε and v.

Since Hv,p is p-harmonic for r > 0 and φ ∈ (−π
v
, 0

)
, it follows that Fv,p′ is p′-

harmonic in the same domain, and that |∇Fv,p′ | = γp−1
v,p · |∇Hv,p|p−1. Hence, writing

the gradient in polar coordinates and simplifying, we get that

|f ′v,p′(φ)| ≤ γp−1
v,p

((−q(v, p)hv,p(φ)
)2

+
(
h′v,p(φ)

)2
) p−1

2

where we have used the fact that (q(v, p)+1)(p−1) = q(v, p′)+1. Since |hv,p| ≤ 1 and
|h′v,p| ≤ q(v, p), we get that |f ′v,p′(φ)| ≤ C, for all φ ∈ [−π

v
, 0

]
and all p′ ∈ (1 + ε, 2),

for some constant C depending only on ε and v.
If v ∈ [

1
2
,∞)

is fixed, then θv,p(φ) is uniformly bounded away from 0 and π when
φ ∈ [−3π

4v
,− π

4v

]
and p′ ∈ (1, 2). Hence there exists a constant c > 0, independent of

p′ ∈ (1, 2), such that fv,p′(φ) ≥ c for all φ ∈ [−3π
4v

,− π
4v

]
. We also see that fv,p′(φ) ≥ 0,

all φ ∈ [−π
v
, 0

]
, and that fv,p′(0) = fv,p′

(−π
v

)
= 0. Letting hv,p′(φ) = fv,p′

(
φ + π

2v

)
,

for φ ∈ [−π
v
, 0

]
, we see that Hv,p′ = r−q(v,p′)hv,p′(φ) is the desired function. The proof

of Lemma 4.1 is complete. ¤
Proof of Theorem 2.1. Part (i). Fix p ∈ (1,∞], v ∈ [

1
2
,∞)

, and w ∈ ∂Ω \ {∞}.
After possibly translating and rotating, we may assume that w = (0, 0) and that
Ω ⊆ Sv, where Sv is the sector defined in (1.2). To simplify notation, we also put
Aδ = ∆

(
(0, 0), δ

)
= B

(
(0, 0), δ

) ∩ ∂Ω, for δ > 0.

w

Ω

(−δ, 0)
(x, y)

φ′

Figure 2. Geometry for the upper bound on ωp

(
Aδ, w0

)
, part (i) of Theorem 2.1. The function

H̃δ has a pole at (−δ, 0), and is shown to be bounded from below by some constant on Aδ. In the
figure v = 1, so that Ω is contained in a half-plane.

Let H̃δ(x, y) = (2δ)qHv,p(x+δ, y), for (x, y) ∈ Sv, where Hv,p is the function from
Lemma 4.1. If (x, y) ∈ Aδ, then we see geometrically that the polar angle φ′ of the
point (x + δ, y) satisfies |φ′| ≤ π

4v
, since φ′ is no larger than the inscribed angle of an

arc with central angle π
2v

(Figure 2). This fact, which trivially holds if v = 1
2
, can
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also be seen algebraically, for v > 1
2
, by letting (r, φ) be polar coordinates for (x, y),

and noting that

cot |φ′| = x + δ

|y| =
cos |φ|+ δ

r

sin |φ| ≥ cot
π

2v
+ csc

π

2v
= cot

π

4v
,

since r ≤ δ and |φ| ≤ π
2v
. Hence, we may use property (iii) in Lemma 4.1 to get that,

for (x, y) ∈ Aδ,

H̃δ(x, y) ≥ (2δ)q ·mv · (2δ)−q = mv,

since Aδ ⊆ B
(
(−δ, 0), 2δ

)
, implying that 1Aδ

≤ H̃δ/mv on ∂Ω. By the definition of
p-harmonic measure (Definition 1.1), this implies that, for all w0 = (x0, y0) ∈ Ω,

ωp(Aδ, w0) ≤ (2δ)q

mv

·Hv,p(x0 +δ, y0) ≤ (2δ)qMv,p

mv

· |(x0 +δ, y0)|−q ≤ 2qMv,p

mv

· δq

|w0 − w|q ,

allowing us to pick C1 = 2qMv,p/mv.
Finally, since Mv,p and q = q(v, p) are decreasing in p, we can conclude that C1

is decreasing in p, completing the proof of part (i) of Theorem 2.1.

Part (ii). Fix p ∈ (1,∞], v ∈ [
1
2
,∞)

, and w ∈ ∂Ω \ {∞}. After possibly
translating and rotating, we may assume that w = (0, 0) and that E(q, r1, v) ⊆ Ω
(Figure 3), where E(q, r1, v) is the set in Definition 1.2.

Ω

∂E
(

q(v, p), r1, v
)

w

φ′

(x, y)

(2δ, 0)

Figure 3. Geometry for the lower estimate of ωp(Aδ, w0), part (ii) of Theorem 2.1. The function
H∗

δ has a pole at (2δ, 0), and is bounded from above by Cδq on ∂E(q, r1, v), and by ωp(Aδ, w0) on
∂B

(
(2δ, 0), δ tan π

8v

)
. In the figure p = 4 and a = 1.

Choice of δ0. Fix δ0 > 0 so small that δ0 < r1

48
and

(4.3)
mv

Mv,p

· (4δ0)
−q − π

2v

( 2

r1

)q

≥
(
tan

π

8v

)−q

where Mv,p and mv are the constants from Lemma 4.1. Note that δ0 can be chosen
to be increasing in p. In the case when p ∈ (1, 2], we also assume that δ0 < r0,
where r0 is the constant from the exterior corkscrew condition (3.1). Let B̃δ =
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B
(
(2δ, 0), δ tan π

8v

)
, for δ > 0, where B denotes the closure of B. We now show that,

for all δ ∈ (0, δ0),

(4.4) B̃δ ⊆ E
( v2

2v + 1
, r1, v

)
⊆ E(q, r1, v) ⊆ Ω,

where the second inclusion follows immediately since q ≥ v2

2v+1
, and the last inclusion

holds by assumption. For the remaining inclusion, let (r, φ) be polar coordinates for
(x, y) ∈ B̃δ. Now |φ| ≤ π

8v
, since if (x−2δ)2 +y2 ≤ (

δ tan π
8v

)2, then x ≥ δ, and hence
also |y| ≤ x tan π

8v
. Consequently, B̃δ ⊆ E

(
v2

2v+1
, r1, v

)
, since cos (vφ) ≥ cos

(
v · π

8v

) ≥
(

r
r1

) v2

2v+1 , where the last inequality holds since r ≤ 3δ < r1

16
and v2

2v+1
≥ 1

8
.

Lower bound of ωp on B̃δ. Let δ ∈ (0, δ0). Aiming to find c1 > 0 such that
ωp(Aδ, · ) ≥ c1 on B̃δ, we first find such a lower bound near the boundary.

If p > 2, then all points on ∂Ω are p-regular, see [HKM93, pages 124–125], and
hence the boundary convergence in Lemma 3.1 holds. Let, for z ∈ B

(
(0, 0), δ

)
,

f(z) = 1−
∣∣∣z
δ

∣∣∣
α

, where α = α(p) =
p− 2

p− 1
and α(∞) = 1.

Recall that f is p-harmonic in B
(
(0, 0), δ

) \ {(0, 0)}, with f(0, 0) = 1 and f = 0 on
∂B

(
(0, 0), δ

)
. Moreover, by Lemma 3.1 and by the comparison principle we see that

ωp(Aδ, · ) ≥ f whenever both functions are defined. Hence ωp

(
Aδ, (δ/2, 0)

) ≥ 1−2−α.
If p ∈ (1, 2], then by assumption Ω satisfies the exterior corkscrew condition on

Aδ. This implies that Aδ is p-regular and hence we may apply Lemma 3.1 and the
comparison principle. Consider the p-harmonic function

g(x) =

{
a|x− x0|(p−2)/(p−1) + b, if p 6= 2,

a log |x− x0|+ b, if p = 2,

for some a, b. Choose a and b such that g has boundary values g = 1 on ∂B
(
aδ/4(0, 0),

δ/(4M)
)
and g = 0 on ∂B

(
aδ/4(0, 0), δ/2

)
. Here, M and aδ/4( · ) are given by the

exterior corkscrew condition (3.1). By construction and by the comparison principle,
we have g ≤ ωp(Aδ, · ) whenever both functions are defined. Hence, by the Harnack
inequality we conclude the existence of a constant c, increasing in p and depending
only on M and p, such that ωp

(
Aδ, (δ, 0)

) ≥ c.
Consequently, for all p ∈ (1,∞), the Harnack inequality shows that ωp(Aδ, · ) ≥

c1 on B̃δ, for some constant c1 > 0, depending only on p and, if p ∈ (1, 2], also on
M . Furthermore, c1 is increasing in p when p > 2.

Upper bound of the comparison function. Let H∗
δ (x, y) = c1

Mv,p

(
δ tan π

8v

)q
Hv,p(x−

2δ, y), for (x, y) ∈ R2 such that (x− 2δ, y) ∈ Sv, First note that if (x, y) ∈ ∂B̃δ, then

H∗
δ (x, y) ≤ c1

Mv,p

(
δ tan

π

8v

)q

·
(
δ tan

π

8v

)−q

·Mv,p ≤ ωp

(
Aδ, (x, y)

)
,

where the first inequality follows from property (ii) in Lemma 4.1.
Let D be the set of points (x, y) ∈ E(q, r1, v) such that (x− 2δ, y) ∈ Sv. We now

show that H∗
δ (x, y) ≤ C0δ

q on ∂D \ {(2δ, 0)}, where
C0 =

πc1

2v

( 2

r1

tan
π

8v

)q

.
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Let (r′, φ′) be polar coordinates for (x−2δ, y). Since Hv,p(x−2δ, y) = (r′)−q ·hv,p(φ
′),

where hv,p by Lemma 4.1 satisfies hv,p

(± π
2v

)
= 0 and |h′v,p| ≤ Mv,p, the mean value

theorem yields

Hv,p(x− 2δ, y) ≤ Mv,p · (r′)−q
∣∣∣φ′ ∓ π

2v

∣∣∣.
Hence, if (x, y) ∈ ∂D and if we pick φ′ ∈ [− π

2v
, π

2v

]
, then

Hv,p(x− 2δ, y) ≤ Mv,p · (r′)−q
( π

2v
− |φ′|

)
≤ πMv,p

2v
(r′)−q cos vφ′.

We now show that cos vφ′ ≤ (
2r′
r1

)q on ∂D. If (x − 2δ, y) ∈ E
(
q, r1

2
, v

)
, then

(2x − 4δ, 2y) ∈ E(q, r1, v) by definition. As the latter set is star-shaped around
(4δ, 0), we get that (x, y) = 1

2
(2x−4δ, 2y)+ 1

2
(4δ, 0) ∈ E(q, r1, v), and hence also that

(x, y) ∈ D, since |φ′| ≤ π
2v

(Figure 4). In particular, this implies that if (x, y) ∈ ∂D,
then (x− 2δ, y) /∈ E

(
q, r1

2
, v

)
, and hence cos vφ′ ≤ (

2r′
r1

)q.
By definition of H∗

δ and C0, we then get that H∗
δ (x, y) ≤ C0δ

q for all (x, y) ∈
∂D \ {(2δ, 0)}; in fact, we even have that H∗

δ = 0 on ∂D \ ∂E(q, r1, v).

E
(

q(v, p), r1

2
, v

)

+ (2δ, 0) D

∂E
(

q(v, p), r1, v
)

π

v
(2δ, 0)(0, 0)

Figure 4. The shaded set D is the part of E(q, r1, v) that lies within a sector with aperture π
v

and apex at (2δ, 0). Contained in D is the set E
(
q, r1

2 , v
)
translated by (2δ, 0). In the figure, p = 4

and v = 2.

Final comparison. Combining the last estimate with the bound of H∗
δ on ∂B̃δ,

the comparison principle yields that H∗
δ ≤ ωp(Aδ, · ) + C0δ

q on D \ B̃δ. In particular
for the point (4δ0, 0), which is in the set,

ωp

(
Aδ, (4δ0, 0)

) ≥ c1

Mv,p

(
δ tan

π

8v

)q

Hv,p(4δ0 − 2δ, 0)− C0δ
q

≥ c1δ
q

(
mv

Mv,p

(4δ0)
−q − π

2v

( 2

r1

)q
)
·
(
tan

π

8v

)q

≥ c1δ
q,

where the last inequality follows from the assumption in (4.3) on δ0. An application
of the Harnack inequality yields ωp(Aδ, w0) ≥ c ωp

(
Aδ, (4δ0, 0)

)
for some constant

c > 0 depending on δ0, dist(w0, ∂Ω) and |w − w0|. This completes the proof of
Theorem 2.1. ¤
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