ON BANK-LAINE TYPE FUNCTIONS

Jianming Chang^{*} and Yuefei Wang[†]

Changshu Institute of Technology, Department of Mathematics Changshu, Jiangsu 215500, P. R. China; jmchang@cslg.edu.cn

Chinese Academy of Sciences, AMSS, Institute of Mathematics Beijing 100190, P. R. China; wangyf@math.ac.cn

Abstract. We continue our previous study on the Bank–Laine type functions: meromorphic functions f that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$ on the plane, where a, b are two distinct nonzero values. Using quasi-normality, we prove that there is no transcendental meromorphic function with this property when the quotient a/b is a positive integer. Moreover, we prove a quasi-normal criterion for families of such functions. This completes our previous results.

1. Introduction

A Bank-Laine function f is an entire function that has the following property: $f(z) = 0 \implies f'(z) \in \{-1, 1\}$. The Bank-Laine functions arise in connection with solutions of second order homogeneous linear differential equations [1], (see also [6]). In our previous paper [2], we studied the meromorphic functions f on the plane **C** that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$, where a, b are two distinct nonzero values. We call such functions *Bank-Laine type functions*. We constructed there some transcendental meromorphic functions with this property when the quotient a/b is a negative rational number, and proved the following results.

Theorem 1.1. For two distinct nonzero values a and b that satisfy $a/b \in \mathbf{N}$ (positive integers), there is no transcendental meromorphic function f of finite order that satisfies $f(z) = 0 \iff f'(z) \in \{a, b\}$.

A rational function f satisfying $f(z) = 0 \iff f'(z) \in \{a, b\}$ exists if and only if a/b or b/a is an integer. In fact, all such rational functions have been classified completely [2, Lemma 10, Lemma 11].

It remains a question: whether there are transcendental meromorphic functions f of *infinite order* that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$ for $a/b \in \mathbb{N}$. In this paper we answer this question completely by making use of quasi-normality.

Theorem 1.2. For two distinct nonzero values a and b that satisfy $a/b \in \mathbf{N}$, there is no transcendental meromorphic function f that satisfies $f(z) = 0 \iff f'(z) \in \{a, b\}$.

In order to prove Theorem 1.2, we first study the normality or quasi-normality of the family $\mathcal{F}_{a,b}(D)$ which consists of all meromorphic functions f in a plane domain $D \subset \mathbf{C}$ that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$.

doi: 10.5186/aasfm. 2013.3832

²⁰¹⁰ Mathematics Subject Classification: Primary 30D35, 30D45.

Key words: Meromorphic functions, Bank–Laine functions, quasi-normality, shared values and sets.

^{*}Supported by NNSF of P. R. China (Grant No. 11171045).

[†]Supported by NNSF of P. R. China (Grant No. 108310904).

The idea of proving the results in function theory by making use of quasinormality first appears in [7] where it was proved that the derivative of a transcendental meromorphic function with finitely many simple zeros takes every non-zero values infinitely often.

Recall [3, 9] that a family \mathcal{F} of meromorphic functions defined in a plane domain $D \subset \mathbf{C}$ is said to be normal (quasi-normal) on D, in the sense of Montel, if each sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence which converges spherically locally uniformly in D (minus a set E that has no accumulation point in D). The set E may depend on the subsequence. If there exists an integer $\nu \in \mathbf{N}$ such that the set E always can be chosen to contain at most ν points, then \mathcal{F} is said to be quasi-normal of order ν . Also, we say that the family \mathcal{F} is normal (quasi-normal) at a point $z_0 \in D$, if there exists a neighborhood $U \subset D$ of z_0 such that \mathcal{F} is normal (quasi-normal) on U. An useful fact, which can be proved by making use of the diagonal method, is that \mathcal{F} is normal (quasi-normal) on D if and only if \mathcal{F} is normal (quasi-normal) at every point in D. Another fact is that if \mathcal{F} is not quasi-normal of order ν in D, then there exist a sequence $\{f_n\} \subset \mathcal{F}$ and $\nu + 1$ points $z_1, z_2, \cdots, z_{\nu+1} \in D$ such that no subsequence of $\{f_n\}$ is normal at each z_j .

The family $\mathcal{F}_{a,b}(D)$ is not quasi-normal in general as showed by the following example.

Example 1. Let for each $n \in \mathbf{N}$

$$f_n(z) = \frac{\sin(nz)}{n} = \frac{e^{inz} - e^{-inz}}{2in}, \quad (i = \sqrt{-1}).$$

Then we have $f_n(z) = 0 \iff f'_n(z) \in \{-1, 1\}$. However, it is not difficult to see that no subsequence of $\{f_n\}$ can be normal at every point on the real axis. In fact, for $x_0 \in \mathbf{R}, f_n(x_0) \to 0$ while $\left|f_n\left(x_0 - \frac{i}{\sqrt{n}}\right)\right| \ge (e^{\sqrt{n}} - e^{-\sqrt{n}})/(2n) \to \infty$. Hence each subsequence of $\{f_n\}$ fails to be equicontinuous in any neighborhood of x_0 , and so $\mathcal{F}_{-1,1}(\mathbf{C})$ is not quasi-normal.

However, we prove in this paper the following quasi-normality criterion.

Theorem 1.3. For two distinct nonzero values a and b that satisfy $a/b \in \mathbf{N}$, the family $\mathcal{F}_{a,b}(D)$ is quasi-normal on D of order 1.

We remark that if $|\arg a/b| \leq \pi/3$ and neither a/b nor b/a is an integer, then the family $\mathcal{F}_{a,b}(D)$ is normal in D. This can be seen from [2]. We do not know whether the number $\pi/3$ can be replaced by a larger one.

The following example shows that the conclusion of Theorem 1.3 is sharp.

Example 2. Let $k \in \mathbf{N}$ and for each $n \in \mathbf{N}$

$$f_n(z) = z - \frac{1}{nz^k}.$$

Then $\{f_n\}$ is quasi-normal of order 1 on **C**, since $\{f_n\}$ converges locally uniformly to z on the punctured plane $\mathbf{C} \setminus \{0\}$ and no subsequence is normal at 0. We see that $f_n(z) = 0 \iff f'_n(z) = k + 1$ and $f'_n(z) \neq 1$. Hence $\{f_n\} \subset \mathcal{F}_{k+1,1}(\mathbf{C})$.

Our proof of Theorem 1.3 is inspired by [7, Theorem 1]. The structure of the present paper is in certain sense similar to [7], and this can be seen by comparing our Lemmas 2.4, 2.7 and 2.8 with Lemmas 4, 7 and 8 in [7], respectively. However, there are many different points and the proofs are different to a large extent.

2. Notations and preliminary results

Throughout in this paper, we denote by **C** the complex plane, by **C**^{*} the punctured complex plane $\mathbf{C} \setminus \{0\}$, by $\Delta(z_0, r)$ the open disk $\{z : |z - z_0| < r\}$, by $\Delta^{\circ}(z_0, r)$ the punctured disk $\Delta(z_0, r) \setminus \{z_0\} = \{z : 0 < |z - z_0| < r\}$, and by $\overline{\Delta}(z_0, r)$ the closed disk $\{z : |z - z_0| \le r\}$, where $z_0 \in \mathbf{C}$ and r > 0.

In Lemmas 2.8, 2.10 and their proofs, and in the proof of Theorem 1.3, we shall use frequently the following auxiliary function

$$F_{f,a,b}(z) := \frac{f\left(\frac{a+b}{2} + (a-b)z\right)}{a-b}$$

for a function f and two distinct constants a and b.

For a sequence $\{f_n\}$ of functions, we say that they are locally uniformly holomorphic (meromorphic) on D if for each compact subset $E \subset D$, there exists $N \in \mathbb{N}$ such that f_n for every n > N is holomorphic (meromorphic) on E.

Also, we write $f_n \xrightarrow{\chi} f$ on D to indicate that the sequence $\{f_n\}$ converges spherically locally uniformly to f on D, and $f_n \to f$ on D if the convergence is already in Euclidean metric.

Let f be a function meromorphic on D. Then for each closed disk $\Delta(z_0, r) \subset D$, define

$$A(z_0, r; f) := \frac{1}{\pi} \iint_{\overline{\Delta}(z_0, r)} [f^{\#}(z)]^2 \, d\sigma.$$

Here, as usual, $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$ is the spherical derivative. An important fact is that $A(z_0, r; f)$ is the normalized spherical area of the image of $\overline{\Delta}(z_0, r)$ under f [5].

We also use n(r, f) to denote the number of poles of f on $\Delta(0, r)$, counting multiplicity. Similarly, n(r, 1/f) denotes the number of zeros of f on $\Delta(0, r)$.

For a meromorphic function f on \mathbf{C} , its Ahlfors–Shimizu characteristic [5, 10] is defined by

$$T_0(r, f) = \int_0^r \frac{A(0, t; f)}{t} \, dt$$

and the order of f is defined by

$$\rho(f) = \limsup_{r \to \infty} \frac{\log^+ T_0(r, f)}{\log r}$$

Thus, each meromorphic function with bounded spherical derivative has order at most 2.

To prove our results, we require some preliminary results.

Lemma 2.1. [4] Let $\mathcal{F} = \{f\}$ be a family of meromorphic functions on D such that $f(z) \neq 0$ and $f'(z) \neq 1$. Then \mathcal{F} is normal on D.

Lemma 2.2. [8, Lemma 2] Let \mathcal{F} be a family of meromorphic functions in a domain D, and suppose that there exists $A \geq 1$ such that $|f'(z)| \leq A$ whenever f(z) = 0 and $f \in \mathcal{F}$. Then if \mathcal{F} is not normal at z_0 , there exist,

(a) points $z_n \in D$, $z_n \to z_0$;

(b) functions $f_n \in \mathcal{F}$; and

(c) positive numbers $\rho_n \to 0$

such that $g_n(\zeta) := \rho_n^{-1} f_n(z_n + \rho_n \zeta) \xrightarrow{\chi} g(\zeta)$ on **C**, where g satisfies $g^{\#}(\zeta) \leq g^{\#}(0) = A + 1$, and hence is nonconstant and of finite order.

The following lemma is a direct corollary to the maximum modulus principle.

Lemma 2.3. Let z_0 be a point in D and $\{f_n\}$ be a sequence of meromorphic functions on D such that $f_n \xrightarrow{\chi} f$ on $D \setminus \{z_0\}$, where f may be identically ∞ .

- (a) If f_n are holomorphic on D and $f \not\equiv \infty$, then $f_n \to f$ on D, and f is holomorphic on D;
- (b) If f_n are zero-free on D and $f \neq 0$, then $f_n \xrightarrow{\chi} f$ on D, and $f \neq 0$ on D;
- (c) If f_n are holomorphic and zero-free on D, then $f_n \to f$ on D.

Proof. Since $f_n \xrightarrow{\chi} f$ on $D \setminus \{z_0\}$, f is also meromorphic on $D \setminus \{z_0\}$ or $f \equiv \infty$ [9, Corollary 3.1.4].

Now we turn to prove (a). Since f_n is holomorphic, we get $f_n \to f$ on $D \setminus \{z_0\}$ [9, Proposition 3.1.6]. Since $f \not\equiv \infty$, f is also holomorphic on $D \setminus \{z_0\}$ [9, Corollary 3.1.5]. Fix a bounded subdomain U of D such that $z_0 \in U$ and $\overline{U} \subset D$. Thus for arbitrary given number $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for n > N, $|f_n(z) - f(z)| < \varepsilon$ on the boundary ∂U of U. Hence for m, n > N, $|f_m(z) - f_n(z)| < 2\varepsilon$ on ∂U . Since f_n are holomorphic on D, by the maximum modulus principle, we get $|f_m(z) - f_n(z)| < 2\varepsilon$ on the domain \overline{U} . Thus, by Cauchy's criterion, $\{f_n\}$ converges uniformly to a function ϕ which is holomorphic on U. Uniqueness of the limit function shows that $f \equiv \phi$ on $U \setminus \{z_0\}$. This shows that f can be extended holomorphicly to z_0 and hence f is holomorphic on D, and $f_n \to f$ on D.

Applying (a) to the sequence $\{1/f_n\}$ and 1/f, we prove (b). The (c) is a direct corollary to (a) and (b).

Lemma 2.4. [2, Theorem 4(ii)] Let k be a positive integer. Then the nonconstant meromorphic functions $f \in \mathcal{F}_{k+1,1}(\mathbf{C})$ which are of finite order must be rational functions with the form

(1)
$$f(z) = z - z_0 - \frac{d}{(z - z_0)^k}$$

where d and z_0 are constants with $d \neq 0$.

Lemma 2.5. Let k be a positive integer. If the rational function f defined by (1) has two zeros $\pm 1/2$, then there exists a K = K(k) > k + 1 which only depends on k such that

$$\sup_{z \in \mathbf{C}} f^{\#}(z) \le K.$$

Proof. Since $f(\pm 1/2) = 0$, we have

(2)
$$\left(\frac{1}{2} - z_0\right)^{k+1} = \left(-\frac{1}{2} - z_0\right)^{k+1} = d.$$

Since $d \neq 0$, we have $z_0 \neq \pm 1/2$. Let $c = (\frac{1}{2} - z_0)/(-\frac{1}{2} - z_0)$. Then $c \neq 1$ and by (2), $c^{k+1} = 1$, so that

(3)
$$c \in \left\{ c_j = \exp\left(\frac{2j\pi}{k+1}i\right) : j = 1, 2, \cdots, k \right\}.$$

By
$$c = (\frac{1}{2} - z_0)/(-\frac{1}{2} - z_0)$$
, we get $z_0 = \frac{1+c}{2(1-c)}$, and hence by (2),
$$d = \left(-\frac{1}{2} - z_0\right)^{k+1} = \frac{(-1)^{k+1}}{(1-c)^{k+1}}.$$

Thus by (1) and (3), $f \in \{f_j : j = 1, 2, \dots, k\}$, where

(4)
$$f_j(z) = z - \frac{1+c_j}{2(1-c_j)} + \frac{(-1)^k}{(1-c_j)^{k+1} \left(z - \frac{1+c_j}{2(1-c_j)}\right)^k}$$

Since $f_j(z) \to \infty$ and $f'_j(z) \to 1$ as $z \to \infty$, we have $f_j^{\#}(z) \to 0$ as $z \to \infty$. Hence, the conclusion follows from the continuity of each $f_j^{\#}(z)$ on **C**.

Lemma 2.6. Let k be a positive integer. Then the sub-family \mathcal{F} of $\mathcal{F}_{k+1,1}(D)$ which consists of holomorphic functions is normal on D.

Proof. Suppose that \mathcal{F} is not normal at some point $z_0 \in D$. Then by Lemma 2.2, there exist functions $\{f_n\} \subset \mathcal{F}$, points $z_n \to z_0$ and positive numbers $\rho_n \to 0$ such that $g_n(\zeta) = \rho_n^{-1} f_n(z_n + \rho_n \zeta) \to g(\zeta)$ on **C**, where g is a nonconstant entire function of finite order and satisfy $g^{\#}(\zeta) \leq g^{\#}(0) = k + 2$.

We claim that $g(\zeta) = 0 \iff g'(\zeta) \in \{k+1, 1\}.$

To prove $g(\zeta) = 0 \Longrightarrow g'(\zeta) \in \{k+1,1\}$, let ζ_0 be a zero of g. Then as $g \neq 0$, by Hurwitz's theorem, there exist points $\zeta_n \to \zeta_0$ such that $g_n(\zeta_n) = 0$, and hence $f_n(z_n + \rho_n \zeta_n) = 0$. Since $f_n \in \mathcal{F}_{k+1,1}(D)$, we get $f'_n(z_n + \rho_n \zeta_n) \in \{k+1,1\}$, so that $g'_n(\zeta_n) \in \{k+1,1\}$. Since $g'_n \to g'$ on \mathbf{C} , we get $g'(\zeta_0) \in \{k+1,1\}$. This proves $g(\zeta) = 0 \Longrightarrow g'(\zeta) \in \{k+1,1\}$.

Now we turn to prove $g'(\zeta) \in \{k+1,1\} \Longrightarrow g(\zeta) = 0$. let ζ_0 be a point such that $g'(\zeta_0) \in \{k+1,1\}$. Suppose first that $g'(\zeta_0) = k+1$. Since $g^{\#}(0) = k+2$, we have $g'(\zeta) \not\equiv k+1$. Thus by $g'_n(\zeta) - (k+1) \to g'(\zeta) - (k+1)$ and Hurwitz's theorem, there exist points $\zeta_n \to \zeta_0$ such that $g'_n(\zeta_n) = k+1$, and hence $f'_n(z_n + \rho_n\zeta_n) = k+1$. Since $f_n \in \mathcal{F}_{k+1,1}(D)$, we get $f_n(z_n + \rho_n\zeta_n) = 0$, so that $g_n(\zeta_0) = 1$, we also have $g(\zeta_0) = 0$. This proves $g'(\zeta) \in \{k+1,1\} \Longrightarrow g(\zeta) = 0$.

Hence the claim is proved. However, by Lemma 2.4, such an entire function g must be a constant. This contradiction shows that \mathcal{F} is normal on D.

Lemma 2.7. Let k be a positive integer, and $\{f_n\}$ be a sequence in $\mathcal{F}_{k+1,1}(D)$. Let $z_0 \in D$. Suppose that

- (i) no subsequence of $\{f_n\}$ is normal at z_0 ;
- (ii) there exists $\delta > 0$ such that f_n for sufficiently large n has at most one single (simple or multiple) pole in $\Delta(z_0, \delta)$; and
- (iii) $\{f_n\}$ is normal on $D \setminus \{z_0\}$.

Then there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that

- (I) $f_n(z) \xrightarrow{\chi} z z_0$ on $D \setminus \{z_0\}$;
- (II) there exists $\delta_0 > 0$ such that every f_n takes each value $w \in \overline{\mathbb{C}}$ at most k + 1 times on $\Delta(z_0, \delta_0)$, counting multiplicity.

Proof. Say $z_0 = 0$. Since $\{f_n\}$ is not normal at $z_0 = 0$, by Lemma 2.2, there exist a subsequence of $\{f_n\}$ which we continue to call $\{f_n\}$, points $z_n \to 0$ and positive

numbers $\rho_n \to 0$ such that $g_n(\zeta) = \rho_n^{-1} f_n(z_n + \rho_n \zeta) \xrightarrow{\chi} g(\zeta)$ on **C**, where g is a nonconstant meromorphic function of finite order and satisfies $g^{\#}(\zeta) \leq g^{\#}(0) = k+2$. Further, by an argument similar as showed in the proof of Lemma 2.6, we have $g(\zeta) = 0 \iff g'(\zeta) \in \{k+1,1\}$. Hence by Lemma 2.4,

(5)
$$g(\zeta) = \zeta - \zeta_0 - \frac{d}{(\zeta - \zeta_0)^k} = \frac{(\zeta - \zeta_0)^{k+1} - d}{(\zeta - \zeta_0)^k}$$

with $d, \zeta_0 \in \mathbf{C}$ and $d \neq 0$. Let $\zeta_0^{(j)}, j = 0, 1, \dots, k$, be k + 1 distinct zeros of g. Then by (5), $\prod_{j=0}^k (\zeta - \zeta_0^{(j)}) = P(\zeta) := (\zeta - \zeta_0)^{k+1} - d$, and hence for a given $j_0 \in \{0, 1, \dots, k\}, \prod_{j \neq j_0} (\zeta_0^{(j_0)} - \zeta_0^{(j)}) = P'(\zeta_0^{(j_0)}) = (k+1)(\zeta_0^{(j_0)} - \zeta_0)^k$. Thus

(6)
$$\frac{\prod_{j \neq j_0} (\zeta_0^{(j_0)} - \zeta_0^{(j)})}{(\zeta_0^{(j_0)} - \zeta_0)^k} = k + 1$$

for a given $j_0 \in \{0, 1, \dots, k\}$.

Since $g_n \xrightarrow{\chi} g$ on \mathbf{C} , g_n has a pole $\zeta_{n,\infty}$ with $\zeta_{n,\infty} \to \zeta_0$ and k+1 zeros $\zeta_{n,0}^{(j)}$, $(j = 0, 1, \dots, k)$, with $\zeta_{n,0}^{(j)} \to \zeta_0^{(j)}$. Thus f_n has a pole $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty} \to 0$ and k+1 zeros $z_{n,0}^{(j)} = z_n + \rho_n \zeta_{n,0}^{(j)} \to 0$, $(j = 0, 1, \dots, k)$.

By the assumption (ii), the multiplicity of the pole $z_{n,\infty}$ is k (for sufficiently large n). Let

(7)
$$f_n^*(z) = \frac{f_n(z)}{R_n(z)}, \text{ where } R_n(z) = \frac{\prod_{j=0}^k (z - z_{n,0}^{(j)})}{(z - z_{n,\infty})^k}$$

Then by (ii), f_n^* for sufficiently large *n* is holomorphic in $\Delta(0, \delta)$. Let $g_n^*(\zeta) = f_n^*(z_n + \rho_n \zeta)$. Then $\{g_n^*\}$ are locally uniformly holomorphic on **C**. Since

$$\rho_n^{-1} R_n(z_n + \rho_n \zeta) = \frac{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})}{(\zeta - \zeta_{n,\infty})^k} \xrightarrow{\chi} g(\zeta)$$

on **C**, and $\rho_n^{-1}R_n(z_n + \rho_n\zeta)g_n^*(\zeta) = g_n(\zeta) \xrightarrow{\chi} g(\zeta)$, we see that $\{g_n^*\}$ are locally uniformly zero-free on **C**, i.e., for each r > 0, there exists $N \in \mathbf{N}$ such that for $n > N, g_n^*(\zeta) \neq 0$ on $\overline{\Delta}(0, r)$. We also see that

(8)
$$g_n^*(\zeta) = f_n^*(z_n + \rho_n \zeta) \to 1$$

on $\mathbf{C} \setminus \{\zeta_0, \zeta_0^{(j)} : 0 \leq j \leq k\}$, and hence on \mathbf{C} by Lemma 2.3(c). In particular, $f_n^*(z_n) \neq 0$.

We claim that there exists η , $0 < \eta \leq \delta$, such that f_n^* for sufficiently large n has no zero in $\Delta(0, \eta)$.

Suppose not. Then there exist a subsequence of $\{f_n^*\}$, which we continue to call $\{f_n^*\}$, and a sequence $\{z_{n,0}\}$ of points satisfying $z_{n,0} \to 0$ such that $f_n^*(z_{n,0}) = 0$. Since $f_n^*(z_n) \neq 0$, we have $z_{n,0} \neq z_n$. We may say that $z_{n,0}$ is the nearest zero of f_n^* away from z_n , so that $f_n^*(z) \neq 0$ on $\Delta(z_n, |z_{n,0} - z_n|)$. By (8), we have

(9)
$$\zeta_{n,0} = \frac{z_{n,0} - z_n}{\rho_n} \to \infty$$

Set

(10)
$$f_n^*(z) = f_n^*(z_n + (z_{n,0} - z_n)z).$$

Then, $\{\hat{f}_n^*\}$ are locally uniformly holomorphic on **C**, $\hat{f}_n^*(z) \neq 0$ on $\Delta(0,1)$, and $\hat{f}_n^*(1) = 0$. Further, let

(11)
$$\hat{f}_n(z) = \frac{f_n(z_n + (z_{n,0} - z_n)z)}{z_{n,0} - z_n}.$$

Then $\hat{f}_n(z) = 0 \iff \hat{f}'_n(z) \in \{k+1,1\}$, since $f_n(z) = 0 \iff f'_n(z) \in \{k+1,1\}$. By (7), (10) and (11), we see that $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}^*_n(z)$, where

(12)
$$\hat{R}_n(z) = \frac{R_n(z_n + (z_{n,0} - z_n)z)}{z_{n,0} - z_n} = \frac{\prod_{j=0}^k (z - \frac{\rho_n}{z_{n,0} - z_n} \zeta_{n,0}^{(j)})}{(z - \frac{\rho_n}{z_{n,0} - z_n} \zeta_{n,\infty})^k}$$

Hence by (9) and since $\{\hat{f}_n^*\}$ are locally uniformly holomorphic on **C**, we see that $\{\hat{f}_n\}$ are locally uniformly holomorphic on **C**^{*}. By (9) and (12), we also see that $\hat{R}_n(z) \to z$ on **C**^{*}.

Thus, since $\hat{f}_n(z) = 0 \iff \hat{f}'_n(z) \in \{k+1,1\}$ and $\{\hat{f}_n\}$ are locally uniformly holomorphic on \mathbb{C}^* , by Lemma 2.6, $\{\hat{f}_n\}$ and hence $\{\hat{f}_n^*\}$ is normal on \mathbb{C}^* . Since $\hat{f}_n^*(1) = 0$, by taking a subsequence and renumbering, we may assume that $\hat{f}_n^* \to \hat{f}^*$ on \mathbb{C}^* with $\hat{f}^*(1) = 0$. As $\{\hat{f}_n^*\}$ are locally uniformly holomorphic on \mathbb{C} , by Lemma 2.3(a), we get $\hat{f}_n^* \to \hat{f}^*$ on \mathbb{C} and \hat{f}^* is an entire function. Hence, by $\hat{f}_n^*(0) = f_n^*(z_n) = g_n^*(0) \to 1$, we get $\hat{f}^*(0) = 1$. Thus $(z\hat{f}^*(z))' - 1 \not\equiv 0$. For otherwise, we would have $z\hat{f}^*(z) = z + c$ for some constant c, which contradicts that $\hat{f}^*(1) = 0$ and $\hat{f}^*(0) = 1$.

We claim that $\hat{f}'_n(z) \neq 1$ on $\Delta(0,1)$ for sufficiently large n. Suppose not. Then there exist a subsequence of $\{\hat{f}_n\}$, which we continue to call $\{\hat{f}_n\}$, and a sequence $\{z_n^*\}$ of points contained in $\Delta(0,1)$ such that $\hat{f}'_n(z_n^*) = 1$. Then, by $\hat{f}_n(z) = 0 \iff$ $\hat{f}'_n(z) \in \{k+1,1\}$, we get $\hat{f}_n(z_n^*) = 0$. Since $\hat{f}^*_n(z) \neq 0$ on $\Delta(0,1)$, we get from $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}^*_n(z)$ that $\hat{R}_n(z_n^*) = 0$. Thus by (12),

$$z_n^* = \frac{\rho_n}{z_{n,0} - z_n} \zeta_{n,0}^{(j_0)} \to 0$$

for some $j_0 \in \{0, 1, \dots, k\}$. Hence $\hat{f}_n^*(z_n^*) \to \hat{f}^*(0) = 1$ and by (6)

$$\hat{R}'_{n}(z_{n}^{*}) = \frac{\prod_{j \neq j_{0}} \left(\zeta_{n,0}^{(j_{0})} - \zeta_{n,0}^{(j)} \right)}{\left(\zeta_{n,0}^{(j_{0})} - \zeta_{n,\infty} \right)^{k}} \to \frac{\prod_{j \neq j_{0}} \left(\zeta_{0}^{(j_{0})} - \zeta_{0}^{(j)} \right)}{\left(\zeta_{0}^{(j_{0})} - \zeta_{0} \right)^{k}} = k + 1.$$

Thus by $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}_n^*(z)$, we get a contradiction:

$$\mathbf{l} = \hat{f}'_n(z_n^*) = \hat{R}'_n(z_n^*)\hat{f}^*_n(z_n^*) + \hat{R}_n(z_n^*)\hat{f}^*_n(z_n^*) = \hat{R}'_n(z_n^*)\hat{f}^*_n(z_n^*) \to k+1.$$

This contradiction shows that $\hat{f}'_n(z) \neq 1$ on $\Delta(0, 1)$.

Since $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}_n^*(z) \to z\hat{f}^*(z)$ on \mathbf{C}^* , we get $\hat{f}'_n(z) - 1 \to (z\hat{f}^*(z))' - 1$ on \mathbf{C}^* . Since $(z\hat{f}^*(z))' - 1 \not\equiv 0$ and $\hat{f}'_n(z) - 1 \neq 0$ on $\Delta(0, 1)$, by Lemma 2.3(b), we have $\hat{f}'_n(z) - 1 \xrightarrow{\chi} (z\hat{f}^*(z))' - 1$ on $\Delta(0, 1)$, and $(z\hat{f}^*(z))' - 1 \neq 0$ on $\Delta(0, 1)$. However, we have $(z\hat{f}^*(z))'\Big|_{z=0} = \hat{f}^*(0) = 1$. This is a contradiction.

Thus f_n^* for sufficiently large *n* is zero-free and holomorphic in $\Delta(0, \eta)$. Since $\{f_n^*\}$ is normal on $D \setminus \{0\}$, it follows from Lemma 2.3(c) that $\{f_n^*\}$ is normal at 0 and

hence is normal on D. Further, as $f_n^*(z_n) = g_n^*(0) \to 1$, there exists a subsequence of $\{f_n^*\}$, which we continue to call $\{f_n^*\}$, such that $f_n^* \xrightarrow{\chi} f^*$ on D with $f^*(0) = 1$.

Now we claim that there exists $\mu > 0$ such that $f'_n(z) \neq 1$ in $\Delta(0, \mu)$ for sufficiently large n. Suppose not. Then there exist a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, and a sequence $\{w_n\}$ of points satisfying $w_n \to 0$ such that $f'_n(w_n) = 1$. Then by the condition $f_n(z) = 0 \iff f'_n(z) \in \{k + 1, 1\}$, we see that $f_n(w_n) = 0$ and hence $R_n(w_n) = 0$ since $f_n = R_n f_n^*$ and f_n^* is zero-free in $\Delta(0, \eta)$. Thus by (7), $w_n = z_{n,0}^{(j_0)}$ for some $j_0 \in \{0, 1, \dots, k\}$. Hence we have $f_n^*(w_n) \to f^*(0) = 1$, and by (6)

(13)

$$R'_{n}(w_{n}) = R'_{n}(z_{n,0}^{(j_{0})}) = \frac{\prod_{j \neq j_{0}} (z_{n,0}^{(j_{0})} - z_{n,0}^{(j)})}{(z_{n,0}^{(j_{0})} - z_{n,\infty})^{k}}$$

$$= \frac{\prod_{j \neq j_{0}} \left(\zeta_{n,0}^{(j_{0})} - \zeta_{n,0}^{(j)} \right)}{\left(\zeta_{n,0}^{(j_{0})} - \zeta_{n,\infty} \right)^{k}} \rightarrow \frac{\prod_{j \neq j_{0}} \left(\zeta_{0}^{(j_{0})} - \zeta_{0}^{(j)} \right)}{\left(\zeta_{0}^{(j_{0})} - \zeta_{0} \right)^{k}} = k + 1.$$

Thus we get by $f_n = R_n f_n^*$ the following contradiction:

$$1 = f'_n(w_n) = R'_n(w_n)f^*_n(w_n) + R_n(w_n)f^*_n(w_n) = R'_n(w_n)f^*_n(w_n) \to k+1.$$

This proved the claim that for some $\mu > 0$, $f'_n(z) \neq 1$ in $\Delta(0, \mu)$ for sufficiently large n.

Next we prove that $(zf^*(z))' \equiv 1$. Suppose not. Since f_n^* for sufficiently large n is zero-free and holomorphic in $\Delta(0,\eta)$, we have by Lemma 2.3(a) that $f_n^* \to f^*$ on $\Delta(0,\eta)$ with $f^*(0) = 1$. It follows that $f_n(z) = R_n(z)f_n^*(z) \to zf^*(z)$ on $\Delta^{\circ}(0,\eta)$. Thus $f'_n(z) \to (zf^*(z))'$ and hence $f'_n(z) - 1 \to (zf^*(z))' - 1$ on $\Delta^{\circ}(0,\eta)$. Since $f'_n \neq 1$ in $\Delta(0,\mu)$, we may say that $f'_n - 1 \neq 0$ on $\Delta(0,\eta)$. Thus by Lemma 2.3(b), we get $f'_n(z) - 1 \xrightarrow{\chi} (zf^*(z))' - 1$ on $\Delta(0,\eta)$, and $(zf^*(z))' - 1 \neq 0$ on $\Delta(0,\eta)$. This contradicts that $(zf^*(z))'|_{z=0} = f^*(0) = 1$.

Thus $(zf^*(z))' \equiv 1$ and hence $zf^*(z) = z + c$ for some constant c. Since $f^*(0) = 1$, we get c = 0, and hence $f^*(z) \equiv 1$. Thus, by $R_n(z) \to z$ in \mathbb{C}^* and $f_n^* \xrightarrow{\chi} 1$ in D, we get $f_n(z) = R_n(z)f_n^*(z) \xrightarrow{\chi} z$ in $D \setminus \{0\}$. The assertion (I) for the special case $z_0 = 0$ is proved. In general case, one can consider the sequence $\{F_n\}$, where $F_n(z) = f_n(z_0+z)$ and $z \in U = \{z - z_0 \colon z \in D\}$, and obtain that $F_n(z) \xrightarrow{\chi} z$ in $U \setminus \{0\}$ by the special case. Then by the fact $f_n(z) = F_n(z - z_0)$, the assertion (I) follows.

Now we turn to prove the assertion (II). Fix a number $\delta_0 > 0$ such that $\overline{\Delta}(0, \delta_0) \subset D$. Then as $f_n = R_n f_n^*$ and $f_n^* \to f^* \equiv 1$ on $\overline{\Delta}(0, \delta_0)$, there exists $N_1 \in \mathbf{N}$ such that for $n > N_1$, f_n has exactly one pole with multiplicity k on $\overline{\Delta}(0, \delta_0) \subset D$ and $f_n \neq 0, \infty$ on the circle $|z| = \delta_0$. In other words, every f_n for $n > N_1$ takes the value ∞ exactly k times on $\overline{\Delta}(0, \delta_0)$.

For $w \neq \infty$, we consider two cases. Suppose first that $|w| \leq \delta_0/2$. By (I), we have $f_n(z) \xrightarrow{\chi} z$ on $D \setminus \{0\}$, and hence on the circle $|z| = \delta_0$, $f_n(z) \to z$, $f'_n(z) - 1 \to 0$ and $zf'_n(z) - f_n(z) \to 0$. Thus there exists $N_2 \in \mathbf{N}$, $N_2 \geq N_1$, such that for $n > N_2$ and the points z on $|z| = \delta_0$, $|f_n(z)| \geq 3\delta_0/4$, $|f'_n(z) - 1| \leq \delta_0/(16 + 8\delta_0)$ and $|zf'_n(z) - f_n(z)| \leq \delta_0/(16 + 8\delta_0)$. It follows from the argument principle that for

 $n > N_2$,

$$\begin{aligned} \left| n \left(\delta_0, \frac{1}{f_n - w} \right) - n \left(\delta_0, f_n - w \right) - 1 \right| \\ &= \left| \frac{1}{2\pi i} \int_{|z| = \delta_0} \frac{f'_n(z)}{f_n(z) - w} \, dz - \frac{1}{2\pi i} \int_{|z| = \delta_0} \frac{1}{z - w} \, dz \right| \\ &= \frac{1}{2\pi} \left| \int_{|z| = \delta_0} \frac{z f'_n(z) - f_n(z) - w (f'_n(z) - 1)}{(f_n(z) - w)(z - w)} \, dz \right| \\ &\leq \frac{1}{2\pi} \int_{|z| = \delta_0} \frac{\frac{\delta_0}{16 + 8\delta_0} (1 + \frac{\delta_0}{2})}{(\frac{3}{4}\delta_0 - \frac{1}{2}\delta_0) (\delta_0 - \frac{1}{2}\delta_0)} \, |dz| = \frac{1}{2}, \end{aligned}$$

and hence $n\left(\delta_0, \frac{1}{f_n - w}\right) - n\left(\delta_0, f_n - w\right) - 1 = 0$ since it is an integer. Thus $n\left(\delta_0, \frac{1}{f_n - w}\right) = n\left(\delta_0, f_n - w\right) + 1 = n\left(\delta_0, f_n\right) + 1 = k + 1$. That is to say, every f_n for $n > N_2$ takes each value w satisfying $|w| \le \delta_0/2$ exactly k + 1 times on $\overline{\Delta}(0, \delta_0) \subset D$.

Suppose now that $|w| \ge \delta_0/2$. Similar as showed above, we have $f_n(z) \to z$, $f'_n(z) - 1 \to 0$ and $zf'_n(z) - f_n(z) \to 0$ on the circle $|z| = \delta_0/4$. Thus there exists $N_3 \in \mathbf{N}, N_3 \ge N_1$, such that for $n > N_3$ and the points z on $|z| = \delta_0/4$, $|f_n(z)| \le 3\delta_0/8$, $|f'_n(z) - 1| \le \delta_0/(16 + 8\delta_0)$ and $|zf'_n(z) - f_n(z)| \le \delta_0/(16 + 8\delta_0)$. It follows from the argument principle that for $n > N_3$,

$$\begin{aligned} \left| n\left(\frac{\delta_{0}}{4}, \frac{1}{f_{n} - w}\right) - n\left(\frac{\delta_{0}}{4}, f_{n} - w\right) \right| \\ &= \left| \frac{1}{2\pi i} \int_{|z| = \frac{\delta_{0}}{4}} \frac{f_{n}'(z)}{f_{n}(z) - w} \, dz - \frac{1}{2\pi i} \int_{|z| = \frac{\delta_{0}}{4}} \frac{1}{z - w} \, dz \\ &= \frac{1}{2\pi} \left| \int_{|z| = \frac{\delta_{0}}{4}} \frac{zf_{n}'(z) - f_{n}(z) - w(f_{n}'(z) - 1)}{(f_{n}(z) - w)(z - w)} \, dz \right| \\ &= \frac{1}{2\pi} \left| \int_{|z| = \frac{\delta_{0}}{4}} \frac{\frac{1}{w}(zf_{n}'(z) - f_{n}(z)) - (f_{n}'(z) - 1)}{(w - f_{n}(z))(1 - \frac{z}{w})} \, dz \right| \\ &\leq \frac{1}{2\pi} \int_{|z| = \frac{\delta_{0}}{4}} \frac{\frac{\delta_{0}}{(\frac{1}{2}\delta_{0} - \frac{3}{8}\delta_{0})(1 - \frac{1}{2})}{(\frac{1}{2}\delta_{0} - \frac{3}{8}\delta_{0})(1 - \frac{1}{2})} \, |dz| = \frac{1}{2}, \end{aligned}$$

and hence $n\left(\frac{\delta_0}{4}, \frac{1}{f_n - w}\right) = n\left(\frac{\delta_0}{4}, f_n - w\right) = n\left(\frac{\delta_0}{4}, f_n\right) \leq n\left(\delta_0, f_n\right) = k$. That is to say, every f_n for $n > N_3$ takes each value w satisfying $|w| \geq \delta_0/2$ at most k times on $\overline{\Delta}(0, \delta_0/4) \subset D$.

Thus for $n > N = \max\{N_1, N_2, N_3\}$, every f_n takes each value $w \in \overline{\mathbb{C}}$ on $\overline{\Delta}(0, \delta_0/4)$ at most k + 1 times.

The proof of Lemma 2.7 is completed.

Lemma 2.8. Let k be a positive integer, and $\{f_n\}$ be a sequence in $\mathcal{F}_{k+1,1}(D)$. Let $z_0 \in D$. Suppose that

- (i) no subsequence of $\{f_n\}$ is normal at z_0 ; and
- (ii) for every $\delta > 0$, there exists $N \in \mathbf{N}$ such that f_n for n > N has at least two distinct poles in $\Delta(z_0, \delta)$.

Then there exist a subsequence of $\{f_n\}$ which we continue to call $\{f_n\}$, and a sequence $\{\eta_n\}$ of positive numbers satisfying $\eta_n \to 0$ such that f_n has at least two distinct zeros a_n and b_n in $\Delta(z_0, \eta_n)$ such that

(14)
$$\sup_{\overline{\Delta}(0,1)} F_{f_n,a_n,b_n}^{\#}(z) \to \infty.$$

Proof. Say $z_0 = 0$. As showed in the proof of Lemma 2.7, since $\{f_n\}$ is not normal at 0, there exist a subsequence of $\{f_n\}$ which we continue to call $\{f_n\}$, points $z_n \to 0$ and positive numbers $\rho_n \to 0$ such that

(15)
$$g_n(\zeta) = \rho_n^{-1} f_n(z_n + \rho_n \zeta) \xrightarrow{\chi} g(\zeta) = \zeta - \zeta_0 - \frac{d}{(\zeta - \zeta_0)^k} = \frac{(\zeta - \zeta_0)^{k+1} - d}{(\zeta - \zeta_0)^k}$$

on **C**, where $d, \zeta_0 \in \mathbf{C}$ and $d \neq 0$.

As showed in the proof of Lemma 2.7, it follows that f_n has a pole $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty} \to 0$ with $\zeta_{n,\infty} \to \zeta_0$ and k+1 zeros $z_{n,0}^{(j)} = z_n + \rho_n \zeta_{n,0}^{(j)} \to 0$, $(j = 0, 1, \dots, k)$, with $\zeta_{n,0}^{(j)} \to \zeta_0^{(j)}$, where $\zeta_0^{(j)}$ are k+1 distinct zeros of g. Note that, we also have (6). We claim that $g'_n(\zeta) \neq 1$ locally uniformly on \mathbf{C} , i.e., for each r > 0, there exists

We claim that $g'_n(\zeta) \neq 1$ locally uniformly on \mathbb{C} , i.e., for each r > 0, there exists $N \in \mathbb{N}$ such that for n > N, $g'_n(\zeta) \neq 1$ on $\overline{\Delta}(0, r)$. Suppose not, then there exist $r_0 > 0$, a subsequence of $\{g_n\}$, which we continue to call $\{g_n\}$, and a sequence $\{\zeta_n\}$ of points contained in $\overline{\Delta}(0, r_0)$ such that $g'_n(\zeta_n) = 1$. By taking a subsequence, we may say $\zeta_n \to c \in \overline{\Delta}(0, r_0)$. By $g'_n(\zeta_n) = 1$, we get $f'_n(z_n + \rho_n\zeta_n) = 1$, and hence by the condition, $f_n(z_n + \rho_n\zeta_n) = 0$. Thus $g_n(\zeta_n) = 0$ and hence g(c) = 0 by $g_n \xrightarrow{\chi} g$, so that g and hence g_n (for sufficiently large n) are holomorphic in a neighborhood of c. It follows that $g_n \to g$ and hence $g'_n \to g'$ on this neighborhood. Thus by $g'_n(\zeta_n) = 1$, we get g'(c) = 1. This is a contradiction, since $g'(\zeta) \neq 1$ on \mathbb{C} .

Since $g_n \xrightarrow{\chi} g$ on **C** and ζ_0 is a pole of g with exact multiplicity k, every g_n (for sufficiently large n) has exactly k poles tending to ζ_0 .

We claim that the k poles of g_n coincide. Suppose not. Then g_n has $s \ge 2$ distinct poles $\zeta_{n,\infty}^{(j)}, 1 \le j \le s$ with multiplicity m_j such that $\sum_{j=1}^s m_j = k$ and $\zeta_{n,\infty}^{(j)} \to \zeta_0$. By taking subsequence, we may assume that the number s and the multiplicities m_j are all independent of n. Further, as ζ_0 is the unique pole of g, the poles of g_n other than $\zeta_{n,\infty}^{(j)}, 1 \le j \le s$, if exist, must tend to ∞ . Also, the zeros of g_n other than $\zeta_{n,0}^{(j)}, 0 \le j \le k$, if exist, must tend to ∞ . It follows that the sequence $\{g_n^*\}$ of functions defined by

(16)
$$g_n^*(\zeta) := \frac{\prod_{j=1}^s (\zeta - \zeta_{n,\infty}^{(j)})^{m_j}}{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})} g_n(\zeta)$$

is locally uniformly zero-free and holomorphic on **C**. Since $g_n \xrightarrow{X} g$ on **C**, we see from (16) that

(17)
$$g_n^*(\zeta) \to 1$$

on $\mathbf{C} \setminus \{\zeta_0, \zeta_0^{(j)} : 0 \le j \le k\}$, and hence on \mathbf{C} by Lemma 2.3(c). By (16), we have

$$g_n(\zeta) = \frac{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})}{\prod_{j=1}^s (\zeta - \zeta_{n,\infty}^{(j)})^{m_j}} g_n^*(\zeta)$$

and hence

$$g'_{n}(\zeta) = \frac{\left(g_{n}^{*}(\zeta)\prod_{j=0}^{k}(\zeta-\zeta_{n,0}^{(j)})\right)'}{\prod_{j=1}^{s}(\zeta-\zeta_{n,\infty}^{(j)})^{m_{j}}} - g_{n}^{*}(\zeta)\prod_{j=0}^{k}(\zeta-\zeta_{n,0}^{(j)})\frac{\sum_{j=1}^{s}m_{j}\prod_{i\neq j}(\zeta-\zeta_{n,\infty}^{(i)})}{\prod_{j=1}^{s}(\zeta-\zeta_{n,\infty}^{(j)})^{m_{j}+1}},$$

so that

(18)
$$g'_n(\zeta) - 1 = \frac{M_n(\zeta)}{\prod_{j=1}^s (\zeta - \zeta_{n,\infty}^{(j)})^{m_j + 1}},$$

where

(19)
$$M_{n}(\zeta) = \left(g_{n}^{*}(\zeta)\prod_{j=0}^{k}(\zeta-\zeta_{n,0}^{(j)})\right)'\prod_{j=1}^{s}(\zeta-\zeta_{n,\infty}^{(j)}) - g_{n}^{*}(\zeta)\prod_{j=0}^{k}(\zeta-\zeta_{n,0}^{(j)})\sum_{j=1}^{s}m_{j}\prod_{i\neq j}(\zeta-\zeta_{n,\infty}^{(i)}) - \prod_{j=1}^{s}(\zeta-\zeta_{n,\infty}^{(j)})^{m_{j}+1}.$$

Since $\zeta_{n,0}^{(j)} \to \zeta_0^{(j)}$, $(0 \le j \le k)$ and $\zeta_{n,\infty}^{(j)} \to \zeta_0$, $(1 \le j \le s)$, we see from (17) and (19) that

$$M_n(\zeta) \to (k+1)(\zeta - \zeta_0)^{k+s} - [(\zeta - \zeta_0)^{k+1} - d] \cdot k(\zeta - \zeta_0)^{s-1} - (\zeta - \zeta_0)^{k+s}$$

= $kd(\zeta - \zeta_0)^{s-1}$

on C. Thus, by Hurwitz's theorem, M_n has $s-1 \ge 1$ zeros (counting multiplicity) tending to ζ_0 .

On the other hand, we can see from (19) that for each $1 \le \nu \le s$,

$$M_n(\zeta_{n,\infty}^{(\nu)}) = -g_n^*(\zeta_{n,\infty}^{(\nu)}) \prod_{j=0}^{\kappa} (\zeta_{n,\infty}^{(\nu)} - \zeta_{n,0}^{(j)}) \cdot m_{\nu} \prod_{i \neq \nu} (\zeta_{n,\infty}^{(\nu)} - \zeta_{n,\infty}^{(i)}) \neq 0.$$

Hence, the $s-1 \ge 1$ zeros of M_n are different from the points $\{\zeta_{n,\infty}^{(j)} : 1 \le j \le s\}$, so that by (18), $g'_n(\zeta) - 1$ has $s-1 \ge 1$ zeros tending to ζ_0 . This contradicts the above claim that $g'_n(\zeta) \ne 1$ locally uniformly on **C**.

This contradiction shows that the k poles of g_n coincide, and hence $\zeta_{n,\infty}$ is a pole of g_n with exact multiplicity k. Thus by (15), $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty}$ is a pole of f_n with exact multiplicity k.

Now let

(20)
$$R_n(z) = \frac{\prod_{j=0}^k (z - z_{n,0}^{(j)})}{(z - z_{n,\infty})^k},$$

(21)
$$f_n^*(z) = \frac{f_n(z)}{R_n(z)},$$

(22)
$$g_n^*(\zeta) = f_n^*(z_n + \rho_n \zeta) = \frac{(\zeta - \zeta_{n,\infty})^k}{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})} g_n(\zeta).$$

Then as showed above, by (15) and (22), we have

(23)
$$g_n^*(\zeta) \to 1$$

on $\mathbf{C} \setminus \{\zeta_0, \zeta_0^{(j)} : 0 \le j \le k\}$, and hence on \mathbf{C} by Lemma 2.3(c).

We claim that for every $\delta > 0$, there exists $N \in \mathbf{N}$ such that f_n^* for n > N has at least one zero in $\Delta(0, \delta)$.

Suppose not, then there exist $\delta_0 > 0$ and a subsequence of $\{f_n^*\}$, which we continue to call $\{f_n^*\}$, such that $f_n^* \neq 0$ on $\Delta(0, \delta_0)$. Since $f_n = R_n f_n^*$ and $f_n(z) = 0$ $\iff f'_n(z) \in \{1, k + 1\}$, we see by (20) that $f_n(z) \neq 0$ and $f'_n(z) \neq 1$ for $z \in \Delta(0, \delta_0) \setminus \{z_{n,0}^{(j)} : 0 \leq j \leq k\}$. Since $z_{n,0}^{(j)} \to 0$, by Gu's criterion (Lemma 2.1), $\{f_n\}$ and hence $\{f_n^*\}$ is normal on $\Delta^{\circ}(0, \delta_0)$. So we may assume that $f_n^* \xrightarrow{\chi} f^*$ on $\Delta^{\circ}(0, \delta_0)$, where f^* may be ∞ identically.

We prove further that there exists $0 < \delta_1 \leq \delta_0$ such that $f'_n(z) \neq 1$ on $\Delta(0, \delta_1)$ for sufficiently large *n*. Suppose not, then as showed in the proof of Lemma 2.7 (before (13)), there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that $f'_n(z_{n,0}^{(j_0)}) = 1$ for some j_0 . This, combined with (21), (23) and (6), would lead to the following contradiction:

$$1 = f'_{n}(z_{n,0}^{(j_{0})}) = R'_{n}(z_{n,0}^{(j_{0})})f_{n}^{*}(z_{n,0}^{(j_{0})}) = \frac{\prod_{j \neq j_{0}} (z_{n,0}^{(j_{0})} - z_{n,0}^{(j)})}{(z_{n,0}^{(j_{0})} - z_{n,\infty})^{k}}f_{n}^{*}(z_{n,0}^{(j_{0})})$$
$$= \frac{\prod_{j \neq j_{0}} (\zeta_{n,0}^{(j_{0})} - \zeta_{n,0}^{(j)})}{(\zeta_{n,0}^{(j_{0})} - \zeta_{n,\infty})^{k}}g_{n}^{*}(\zeta_{n,0}^{(j_{0})}) \to \frac{\prod_{j \neq j_{0}} (\zeta_{0}^{(j_{0})} - \zeta_{0}^{(j)})}{(\zeta_{0}^{(j_{0})} - \zeta_{0})^{k}} = k + 1.$$

We claim that $f^* \not\equiv 0$. For otherwise, we would have $f_n \xrightarrow{\chi} 0$ and hence $f'_n \to 0$, $f''_n \to 0$ on $\Delta^{\circ}(0, \delta_1)$. Thus by the argument principle and $f'_n(z) \neq 1$ on $\Delta(0, \delta_1)$,

$$n\left(\frac{\delta_1}{2}, f'_n - 1\right) = \left| n\left(\frac{\delta_1}{2}, f'_n - 1\right) - n\left(\frac{\delta_1}{2}, \frac{1}{f'_n - 1}\right) \right| = \frac{1}{2\pi} \left| \int_{|z| = \frac{\delta_1}{2}} \frac{f''_n}{f'_n - 1} \, dz \right| \to 0.$$

It follows that f'_n has no poles in $\Delta(0, \delta_1/2)$. This is a contradiction, since $z_{n,\infty} \to 0$ is a pole of f_n .

Thus $f^* \neq 0$. Hence by $f_n^* \neq 0$ on $\Delta(0, \delta_0)$ and $f_n^* \stackrel{\chi}{\to} f^*$ on $\Delta^{\circ}(0, \delta_0)$, it follows from Lemma 2.3(b) that $f_n^* \stackrel{\chi}{\to} f^*$ on $\Delta(0, \delta_0)$. Since $f_n^*(z_n) = g_n^*(0) \to 1$, we get $f^*(0) = 1$. This shows that f^* is holomorphic in some neighborhood $\Delta(0, \delta_2)$ of 0 and hence so is f_n^* in $\Delta(0, \delta_2/2)$ for sufficiently large n. Thus by $f_n = R_n f_n^*$, f_n has only one single pole (of multiplicity k) in $\Delta(0, \delta_2/2)$. This contradicts the assumption (ii).

Thus, for every $\delta > 0$, there exists $N \in \mathbf{N}$ such that f_n^* for n > N has at least one zero in $\Delta(0, \delta)$. It follows that there exists a subsequence of $\{f_n^*\}$, which we continue to call $\{f_n^*\}$, such that f_n^* has a zero b_n in $\Delta(0, 1/n)$. By (22) and (23), we have

(24)
$$\zeta_n^* = \frac{b_n - z_n}{\rho_n} \to \infty.$$

Set $a_n = z_{n,0}^{(1)}$ and $\eta_n = \left| z_{n,0}^{(1)} \right| + 1/n$. Then by $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty}$ with $\zeta_{n,\infty} \to \zeta_0$ and $a_n = z_n + \rho_n \zeta_{n,0}^{(1)}$ with $\zeta_{n,0}^{(1)} \to \zeta_0^{(1)}$, we see that $\eta_n \to 0$, $a_n, b_n \in \Delta(0, \eta_n)$ and from (24) that $a_n \neq b_n$ and

$$\frac{z_{n,\infty} - \frac{a_n + b_n}{2}}{a_n - b_n} = \frac{2\zeta_{n,\infty} - \zeta_{n,0}^{(1)} - \zeta_n^*}{2(\zeta_{n,0}^{(1)} - \zeta_n^*)} \to \frac{1}{2}.$$

This, combined with $F_{f_n,a_n,b_n}(1/2) = f_n(a_n)/(a_n - b_n) = 0$ and

$$F_{f_n,a_n,b_n}\left(\frac{z_{n,\infty}-\frac{a_n+b_n}{2}}{a_n-b_n}\right) = \frac{f_n(z_{n,\infty})}{a_n-b_n} = \infty,$$

shows that each subsequence of $\{F_{f_n,a_n,b_n}\}$ fails to be equicontinuous in any neighborhood of z = 1/2 and hence fails to be normal at 1/2. Now (14) follows from Marty's theorem. Lemma 2.8 is proved.

Lemma 2.9. If f is a meromorphic function of infinite order, then there exist points $z_n \to \infty$ and positive numbers $\varepsilon_n \to 0$ such that

(25)
$$A(z_n, \varepsilon_n; f) = \frac{1}{\pi} \iint_{\overline{\Delta}(z_n, \varepsilon_n)} (f^{\#}(z))^2 d\sigma \to \infty.$$

Proof. See [7, p. 12].

Lemma 2.10. Let k be a positive integer, and f be a meromorphic function in $\mathcal{F}_{k+1,1}(\mathbf{C})$. If f is of infinite order, then f has infinitely many pairs of distinct zeros $(z_{n,1}, z_{n,2})$ such that $z_{n,1} - z_{n,2} \to 0$ and

(26)
$$\sup_{\overline{\Delta}(0,1)} F_{f,z_{n,1},z_{n,2}}(z) \to \infty.$$

Proof. Since f is of infinite order, by Lemma 2.9, we have (25) for some points $z_n \to \infty$ and positive numbers $\varepsilon_n \to 0$. It follows that there exist $w_n \in \overline{\Delta}(z_n, \varepsilon_n)$ such that $f^{\#}(w_n) \to \infty$. Thus, by Marty's theorem, no subsequence of $\{f_n\}$ is normal at 0, where

(27)
$$f_n(z) = f(w_n + z).$$

Thus, by Lemma 2.6, f_n for sufficiently large n has at least one pole w_n such that $w_n \to w_0$.

Suppose first that there exist $\delta > 0$ and $N \in \mathbf{N}$ such that f_n for n > N has at most one single (simple or multiple) pole in $\Delta(0, \delta)$. Then f_n for n > N is holomorphic on $\Delta(0, \delta) \setminus \{w_n\}$. Since $w_n \to w_0$, it follows from Lemma 2.6 that $\{f_n\}$ is normal on $\Delta^{\circ}(0, \delta)$. So by Lemma 2.7, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that for some $\delta_0 > 0$, f_n takes each value $w \in \overline{\mathbf{C}}$ at most k + 1 times on $\Delta(0, \delta_0)$, counting multiplicity. Thus for sufficiently large n,

$$A(z_n, \varepsilon_n; f) \le A(0, \delta_0; f_n) \le k+1,$$

which contradicts (25).

Thus there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that for every $\delta > 0$, there exists $N \in \mathbb{N}$ such that f_n for n > N has at least two distinct poles in $\Delta(0, \delta)$. Then by Lemma 2.8, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that each f_n has at least two distinct zeros a_n and b_n tending to 0 such that

(28)
$$\sup_{\overline{\Delta}(0,1)} F_{f_n,a_n,b_n}^{\#}(z) \to \infty.$$

Let $z_{n,1} = w_n + a_n$, $z_{n,2} = w_n + b_n$. Then $(z_{n,1}, z_{n,2})$ is a pair of distinct zeros of f satisfying $z_{n,1} - z_{n,2} \to 0$, and (26) follows from (28), since $F_{f,z_{n,1},z_{n,2}}(z) \equiv F_{f_n,a_n,b_n}(z)$ by (27). The lemma is proved.

3. Proof of Theorem 1.3

By the definition, we have $\mathcal{F}_{a,b} = b\mathcal{F}_{a/b,1} = \{bf : f \in \mathcal{F}_{a/b,1}\}$ for $b \neq 0$. Thus by the assumption that a/b is a positive integer and $a \neq b$, we may assume that a = k + 1 and b = 1, where k is a positive integer.

Let $E \subset D$ be the set of points at which $\mathcal{F}_{k+1,1}(D)$ is not normal. Then for every $z_0 \in E$, there exists at least one sequence $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ such that no subsequence of $\{f_n\}$ is normal at z_0 . We consider two cases.

Case 1. For every $z_0 \in E$ and every sequence $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ which has no subsequence normal at z_0 , there exist $\delta > 0$ and $N \in \mathbb{N}$ such that f_n for n > N has at most one single (simple or multiple) pole in $\Delta(z_0, \delta)$.

We first show that $\mathcal{F}_{k+1,1}(D)$ is quasi-normal at every point $w_0 \in D$.

To prove this, let $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ be a sequence. If $w_0 \notin E$, the by the definition of E, $\{f_n\}$ is normal at w_0 ; If $w_0 \in E$, there are two cases: one is that $\{f_n\}$ has subsequence which is normal at w_0 , and the other is that no subsequence is normal at w_0 . In the later case, by Lemma 2.6, f_n for sufficiently large n has at least one pole w_n such that $w_n \to w_0$. Hence, by the hypothesis, there exists $\delta > 0$ such that f_n for sufficiently large n is holomorphic in $\Delta(w_0, \delta) \setminus \{w_n\}$. Thus, again by Lemma 2.6, $\{f_n\}$ is normal on $\Delta^{\circ}(w_0, \delta)$. These discussions show that every sequence $\{f_n\}$ has a subsequence which is normal on $\Delta^{\circ}(w_0, \eta)$ for some $\eta > 0$. Thus, by the definition, $\mathcal{F}_{k+1,1}(D)$ is quasi-normal at every point in D. Hence, $\mathcal{F}_{k+1,1}(D)$ is quasi-normal on D.

Next, we show further that $\mathcal{F}_{k+1,1}(D)$ is quasi-normal of order 1.

To prove this, let $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ be a sequence. Since $\mathcal{F}_{k+1,1}(D)$ is quasinormal on D, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, and a set E_0 having no accumulation points in D such that $f_n \xrightarrow{\chi} \phi$ on $D \setminus E_0$.

We have to show that the set E_0 can be chosen to be a single-point set. Suppose not. Then there exist two distinct points z_1 and z_2 such that no subsequence of $\{f_n\}$ is normal at z_1 or z_2 . Then by Lemma 2.7, the limit function ϕ coincides with $z - z_1$ in a punctured neighborhood of z_1 and with $z - z_2$ in a punctured neighborhood of z_2 . It follows from the uniqueness of the limit function that $z - z_1 \equiv z - z_2$. This is impossible, since $z_1 \neq z_2$.

Case 2. There exist $z_0 \in E$ and a sequence $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ which has no subsequence normal at z_0 such that for every $\delta > 0$, there exists $N \in \mathbb{N}$ such that f_n for n > N has at least two distinct poles in $\Delta(z_0, \delta)$.

We argue by contradictions for showing that this case can not occur.

By Lemma 2.8, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that each f_n (for sufficiently large n) has at least two distinct zeros u_n and v_n tending to z_0 as $n \to \infty$ such that

(29)
$$\sup_{\overline{\Delta}(0,1)} F_{f_n,u_n,v_n}^{\#}(z) > K+1,$$

where the constant K > k + 1 is defined in Lemma 2.5.

Fix $\delta > 0$ such that $\Delta(z_0, 3\delta) \subset D$. It guarantees that for each pair (a, b) of distinct zeros of f_n in $\Delta(z_0, \delta)$, the corresponding function $F_{f_n,a,b}(z)$ is meromorphic on $\overline{\Delta}(0, 1)$. Since $f_n \neq 0$, each f_n has finitely many zeros in $\Delta(z_0, \delta)$. This, combined

with (29), shows that the set

(30)
$$E_n = \left\{ (a,b): a, b \in f_n^{-1}(0) \cap \Delta(z_0,\delta) \text{ satisfying } \sup_{\overline{\Delta}(0,1)} F_{f_n,a,b}^{\#}(z) > K+1 \right\}$$

is non-empty and finite. For $(a, b) \in E_n$, define

(31)
$$\tau(a,b) := \frac{|a-b|}{\delta - \left|\frac{a+b}{2} - z_0\right|} > 0.$$

Then there exists $(a_n, b_n) \in E_n$ such that for every $(a, b) \in E_n$,

(32)
$$\tau_n := \tau(a_n, b_n) \le \tau(a, b).$$

Since $(u_n, v_n) \in E_n$, we have $\tau_n \leq \tau(u_n, v_n) \to 0$ and hence $a_n - b_n \to 0$.

Let $h_n(z) = F_{f_n,a_n,b_n}(z)$. Then by $a_n - b_n \to 0$, the sequence $\{h_n\}$ are locally uniformly meromorphic on **C**. And by the definition of the set E_n , we have

(33)
$$\sup_{\overline{\Delta}(0,1)} h_n^{\#}(z) > K+1.$$

We claim that no subsequence of $\{h_n\}$ is normal on **C**. Suppose not, by taking a subsequence, we may say $h_n \xrightarrow{\chi} h$ on **C**. Since $h_n(\pm 1/2) = 0$, we have $h(\pm 1/2) = 0$ so that $h \not\equiv \infty$. Thus by (33),

(34)
$$\sup_{\overline{\Delta}(0,1)} h^{\#}(z) \ge K+1.$$

It then follows that h is nonconstant and from K > k + 1 that $h'(z) \neq 1$ and $h'(z) \neq k + 1$.

Since $f_n(z) = 0 \iff f'_n(z) \in \{1, k+1\}$, we have $h_n(z) = 0 \iff h'_n(z) \in \{1, k+1\}$. Hence, by Hurwitz's theorem, $h(z) = 0 \iff h'(z) \in \{1, k+1\}$.

We claim that h is of infinite order. Suppose not, then as h is nonconstant, it follows from Lemma 2.4 that h is a rational function with the form (1). Hence, as $h(\pm 1/2) = 0$, we get by Lemma 2.5 that $\sup_{\overline{\Delta}(0,1)} h^{\#}(z) \leq K$. This contradicts (34).

Thus, h is of infinite order. Hence, by Lemma 2.10, there exist two distinct zeros α and β of h which are not 0 such that $|\alpha - \beta| < 1$ and

(35)
$$\sup_{\overline{\Delta}(0,1)} F_{h,\alpha,\beta}^{\#}(z) > K+2.$$

Since $h_n \xrightarrow{\chi} h$ on **C**, there exist points $\alpha_n \to \alpha$ and $\beta_n \to \beta$ such that $h_n(\alpha_n) = h_n(\beta_n) = 0$, and by (35), for sufficiently large n,

(36)
$$\sup_{\overline{\Delta}(0,1)} F^{\#}_{h_n,\alpha_n,\beta_n}(z) > K+1.$$

Now set

(37)
$$\hat{a}_n = \frac{a_n + b_n}{2} + (a_n - b_n)\alpha_n, \quad \hat{b}_n = \frac{a_n + b_n}{2} + (a_n - b_n)\beta_n$$

Then \hat{a}_n and \hat{b}_n are two distinct zeros of f_n by the definition of h_n . Since $\tau_n \to 0$ and $\alpha_n \to \alpha$, we have

$$|\hat{a}_n - z_0| \le \left|\frac{a_n + b_n}{2} - z_0\right| + |a_n - b_n||\alpha_n| = \delta - \left(\frac{1}{\tau_n} - |\alpha_n|\right)|a_n - b_n| < \delta$$

for sufficiently large n. Thus $\hat{a}_n \in \Delta(z_0, \delta)$. Similarly, $\hat{b}_n \in \Delta(z_0, \delta)$.

Further, as $F_{f_n,\hat{a}_n,\hat{b}_n}(z) \equiv F_{h_n,\alpha_n,\beta_n}(z)$, we get by (36) that

$$\sup_{\overline{\Delta}(0,1)} F_{f_n,\hat{a}_n,\hat{b}_n}^{\#}(z) > K+1$$

Thus $(\hat{a}_n, \hat{b}_n) \in E_n$ by (30), and hence $\tau(a_n, b_n) \leq \tau(\hat{a}_n, \hat{b}_n)$ by (32). However, by (31) and (37), we have

(38)

$$\frac{\tau(\hat{a}_{n},\hat{b}_{n})}{\tau(a_{n},b_{n})} = \frac{\delta - \left|\frac{a_{n}+b_{n}}{2} - z_{0}\right|}{\delta - \left|\frac{a_{n}+b_{n}}{2} - z_{0} + \frac{\alpha_{n}+\beta_{n}}{2}(a_{n}-b_{n})\right|} \left|\alpha_{n} - \beta_{n}\right| \\
\leq \frac{\delta - \left|\frac{a_{n}+b_{n}}{2} - z_{0}\right|}{\delta - \left|\frac{a_{n}+b_{n}}{2} - z_{0}\right| - \left|\frac{\alpha_{n}+\beta_{n}}{2}\right| \left|a_{n} - b_{n}\right|} \left|\alpha_{n} - \beta_{n}\right| \\
= \frac{\left|\alpha_{n} - \beta_{n}\right|}{1 - \left|\frac{\alpha_{n}+\beta_{n}}{2}\right| \tau_{n}} \rightarrow \left|\alpha - \beta\right| < 1,$$

so that for sufficiently large $n, \tau(\hat{a}_n, \hat{b}_n) < \tau(a_n, b_n)$. This contradicts that $\tau(a_n, b_n) \leq \tau(\hat{a}_n, \hat{b}_n)$.

Thus no subsequence of $\{h_n\}$ is normal on **C**. Now let *H* be the set of points at which $\{h_n\}$ is not normal. Then *H* is non-empty.

Suppose first that for every $\zeta_0 \in H$ and every subsequence $\{h_{n_j}\}$ of $\{h_n\}$ which has no subsequence normal at ζ_0 , there exist $\eta > 0$ and $J \in \mathbb{N}$ such that h_{n_j} for j > J has at most one single (simple or multiple) pole in $\Delta(\zeta_0, \eta)$.

Then by an argument similar to that in Case 1, $\{h_n\}$ is quasinormal of order 1 on **C**, and further, there exists a subsequence of $\{h_n\}$, which we continue to call $\{h_n\}$, and a point $\zeta_0^* \in H$ such that $h_n(z) \xrightarrow{\chi} z - \zeta_0^*$ on $\mathbf{C} \setminus \{\zeta_0^*\}$. But, this contradicts $h_n(\pm 1/2) = 0$.

Thus there exist $\zeta_0^{**} \in H$ and a subsequence $\{h_{n_j}\}$ of $\{h_n\}$ which has no subsequence normal at ζ_0^{**} such that for every $\eta > 0$, there exists $J \in \mathbf{N}$ such that h_{n_j} for j > J has at least two distinct poles in $\Delta(\zeta_0^{**}, \eta)$. We rewrite the subsequence $\{h_{n_j}\}$ by $\{h_n\}$.

Then by Lemma 2.8, there exists a subsequence of $\{h_n\}$, which we continue to call $\{h_n\}$, such that each h_n has at least two distinct zeros a_n^* and b_n^* tending to ζ_0^{**} as $n \to \infty$ such that

(39)
$$\sup_{\overline{\Delta}(0,1)} F_{h_n,a_n^*,b_n^*}^{\#}(z) > K+1.$$

Now let

$$A_n = \frac{a_n + b_n}{2} + (a_n - b_n)a_n^*, \quad B_n = \frac{a_n + b_n}{2} + (a_n - b_n)b_n^*.$$

Then as showed above, A_n and B_n are two distinct zeros of f_n in $\Delta(z_0, \delta)$, and by (39) with the fact $F_{f_n,A_n,B_n}(z) \equiv F_{h_n,a_n^*,b_n^*}(z)$,

$$\sup_{\overline{\Delta}(0,1)} F_{f_n,A_n,B_n}^{\#}(z) > K+1.$$

It follows that $(A_n, B_n) \in E_n$ and hence $\tau(a_n, b_n) \leq \tau(A_n, B_n)$ by (32). However, an argument similar to (38) yields that $\tau(A_n, B_n) < \tau(a_n, b_n)$ for sufficiently large n, which contradicts that $\tau(a_n, b_n) \leq \tau(A_n, B_n)$.

The proof of Theorem 1.3 is completed.

4. Proof of Theorem 1.2

As a/b is a positive integer and a, b are distinct and nonzero, we may assume that $\{a, b\} = \{k + 1, 1\}$, where k is a positive integer.

Suppose that there is a transcendental meromorphic function f in $\mathcal{F}_{k+1,1}(\mathbf{C})$. By Theorem A, the function f is of infinite order.

Thus by Lemma 2.9, there exist points $z_n \to \infty$ and positive numbers $\varepsilon_n \to 0$ such that

(40)
$$A(z_n, \varepsilon_n; f) = \frac{1}{\pi} \iint_{\overline{\Delta}(z_n, \varepsilon_n)} (f^{\#}(z))^2 \, d\sigma \to \infty.$$

It follows that there exist $w_n \in \overline{\Delta}(z_n, \varepsilon_n)$, $w_n \to \infty$, such that $f^{\#}(w_n) \to \infty$, and hence by Marty's theorem, no subsequence of $\{f_n\}$ is normal at 0, where $f_n(z) = f(w_n + z)$.

Since $f \in \mathcal{F}_{k+1,1}(\mathbf{C})$, we see that $\{f_n\} \subset \mathcal{F}_{k+1,1}(\mathbf{C})$. Thus by Theorem 1.3, $\{f_n\}$ is quasi-normal of order 1 on \mathbf{C} . Since no subsequence of $\{f_n\}$ is normal at 0, $\{f_n\}$ is normal on \mathbf{C}^* . Further, by the proof of Theorem 1.3, only the Case 1 can occur. It follows that there exist $\delta > 0$ and $N \in \mathbf{N}$ such that f_n for n > N has at most one single (simple or multiple) pole in $\Delta(0, \delta)$. So by Lemma 2.7(II), there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that on some neighborhood $\overline{\Delta}(0, \delta_0)$ of 0, each f_n takes each value $a \in \overline{\mathbf{C}}$ at most k + 1 times, counting multiplicity. Thus $A(z_n, \varepsilon_n; f) \leq A(0, \delta_0; f_n) \leq k+1$. This contradicts (40).

The proof of Theorem 1.2 is completed.

Acknowledgement. The authors are grateful to the referee for his/her valuable suggestions and comments, which help a lot in improving the paper.

References

- [1] BANK, S., and I. LAINE: On the oscillation theory of f'' + Af = 0 where A is entire. Trans. Amer. Math. Soc. 273, 1982, 351–363.
- [2] CHANG, J. M., and Y. F. WANG: Shared values, Picard values and vormality. Tohoku Math. J. 63, 2011, 149–162.
- [3] CHUANG, C. T.: Normal families of meromorphic functions. World Scientific, 1993.
- [4] GU, Y. X.: A criterion for normality of families of meromorphic functions. Sci. Sinica, special issue 1 on Math., 1979, 267–274 (in Chinese).
- [5] HAYMAN, W. K.: Meromorphic functions. Clarendon Press, Oxford, 1964.
- [6] LAINE, I.: Nevanlinna theory and complex differential equations. de Gruyter Stud. Math. 15, Walter de Gruyter, Berlin, 1993.
- [7] NEVO, S., X. C. PANG, and L. ZALCMAN: Quasinormality and meromorphic functions with multiple zeros. - J. Anal. Math. 101, 2007, 1–23.
- [8] PANG, X. C., and L. ZALCMAN: Normal families and shared values. Bull. London Math. Soc. 32, 2000, 325–331.
- [9] SCHIFF, J.: Normal families. Springer-Verlag, Berlin, 1993.
- [10] YANG, L.: Value distribution theory. Springer-Verlag, Berlin, 1993.

Received 9 September 2011 • First revised received 25 January 2012 • Second revised received 11 September 2012 • Accepted 12 December 2012