Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 38, 2013, 455–471

ON BANK–LAINE TYPE FUNCTIONS

Jianming Chang*[∗]* and Yuefei Wang*†*

Changshu Institute of Technology, Department of Mathematics Changshu, Jiangsu 215500, P. R. China; jmchang@cslg.edu.cn

Chinese Academy of Sciences, AMSS, Institute of Mathematics Beijing 100190, P. R. China; wangyf@math.ac.cn

Abstract. We continue our previous study on the Bank–Laine type functions: meromorphic functions *f* that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$ on the plane, where *a*, *b* are two distinct nonzero values. Using quasi-normality, we prove that there is no transcendental meromorphic function with this property when the quotient a/b is a positive integer. Moreover, we prove a quasi-normal criterion for families of such functions. This completes our previous results.

1. Introduction

A Bank–Laine function *f* is an entire function that has the following property: $f(z) = 0 \implies f'(z) \in \{-1, 1\}$. The Bank–Laine functions arise in connection with solutions of second order homogeneous linear differential equations [1], (see also [6]). In our previous paper [2], we studied the meromorphic functions *f* on the plane **C** that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$, where *a, b* are two distinct nonzero values. We call such functions *Bank–Laine type functions*. We constructed there some transcendental meromorphic functions with this property when the quotient a/b is a negative rational number, and proved the following results.

Theorem 1.1. For two distinct nonzero values a and b that satisfy $a/b \in N$ *(positive integers), there is no transcendental meromorphic function f of finite order that satisfies* $f(z) = 0 \iff f'(z) \in \{a, b\}.$

A rational function *f* satisfying $f(z) = 0 \iff f'(z) \in \{a, b\}$ exists if and only if a/b or b/a is an integer. In fact, all such rational functions have been classified completely [2, Lemma 10, Lemma 11].

It remains a question: whether there are transcendental meromorphic functions *f* of *infinite order* that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}$ for $a/b \in \mathbb{N}$. In this paper we answer this question completely by making use of quasi-normality.

Theorem 1.2. For two distinct nonzero values a and b that satisfy $a/b \in N$, *there is no transcendental meromorphic function f that satisfies* $f(z) = 0 \Longleftrightarrow f'(z) \in$ *{a, b}.*

In order to prove Theorem 1.2, we first study the normality or quasi-normality of the family $\mathcal{F}_{a,b}(D)$ which consists of all meromorphic functions f in a plane domain $D \subset \mathbf{C}$ that satisfy $f(z) = 0 \iff f'(z) \in \{a, b\}.$

doi:10.5186/aasfm.2013.3832

²⁰¹⁰ Mathematics Subject Classification: Primary 30D35, 30D45.

Key words: Meromorphic functions, Bank–Laine functions, quasi-normality, shared values and sets.

*[∗]*Supported by NNSF of P. R. China (Grant No. 11171045).

*[†]*Supported by NNSF of P. R. China (Grant No. 108310904).

The idea of proving the results in function theory by making use of quasinormality first appears in [7] where it was proved that the derivative of a transcendental meromorphic function with finitely many simple zeros takes every non-zero values infinitely often.

Recall $[3, 9]$ that a family $\mathcal F$ of meromorphic functions defined in a plane domain $D \subset \mathbf{C}$ is said to be normal (quasi-normal) on *D*, in the sense of Montel, if each sequence ${f_n} \subset F$ contains a subsequence which converges spherically locally uniformly in *D* (minus a set *E* that has no accumulation point in *D*). The set *E* may depend on the subsequence. If there exists an integer $\nu \in \mathbb{N}$ such that the set E always can be chosen to contain at most ν points, then $\mathcal F$ is said to be quasi-normal of order *ν*. Also, we say that the family *F* is normal (quasi-normal) at a point $z_0 \in D$, if there exists a neighborhood $U \subset D$ of z_0 such that $\mathcal F$ is normal (quasi-normal) on *U*. An useful fact, which can be proved by making use of the diagonal method, is that $\mathcal F$ is normal (quasi-normal) on D if and only if $\mathcal F$ is normal (quasi-normal) at every point in *D*. Another fact is that if $\mathcal F$ is not quasi-normal of order ν in *D*, then there exist a sequence $\{f_n\} \subset \mathcal{F}$ and $\nu + 1$ points $z_1, z_2, \dots, z_{\nu+1} \in D$ such that no subsequence of $\{f_n\}$ is normal at each z_j .

The family $\mathcal{F}_{a,b}(D)$ is not quasi-normal in general as showed by the following example.

Example 1. Let for each $n \in \mathbb{N}$

$$
f_n(z) = \frac{\sin(nz)}{n} = \frac{e^{inz} - e^{-inz}}{2in}, \quad (i = \sqrt{-1}).
$$

Then we have $f_n(z) = 0 \iff f'_n(z) \in \{-1, 1\}$. However, it is not difficult to see that no subsequence of ${f_n}$ can be normal at every point on the real axis. In fact, for $x_0 \in \mathbf{R}, f_n(x_0) \to 0$ while $\left| f_n(x_0) - \frac{i}{\sqrt{n}} \right|$ *n* $\left| \int_{0}^{\infty} \frac{1}{e^{i\sqrt{n}}} - e^{-\sqrt{n}} \right| / (2n) \to \infty$. Hence each subsequence of $\{f_n\}$ fails to be equicontinuous in any neighborhood of x_0 , and so *F*^{−1}*,*1(**C**) is not quasi-normal.

However, we prove in this paper the following quasi-normality criterion.

Theorem 1.3. For two distinct nonzero values a and b that satisfy $a/b \in N$, the *family* $\mathcal{F}_{a,b}(D)$ *is quasi-normal on D of order* 1*.*

We remark that if $|\arg a/b| \leq \pi/3$ and neither a/b nor b/a is an integer, then the family $\mathcal{F}_{a,b}(D)$ is normal in *D*. This can be seen from [2]. We do not know whether the number $\pi/3$ can be replaced by a larger one.

The following example shows that the conclusion of Theorem 1.3 is sharp.

Example 2. Let $k \in \mathbb{N}$ and for each $n \in \mathbb{N}$

$$
f_n(z) = z - \frac{1}{nz^k}.
$$

Then ${f_n}$ is quasi-normal of order 1 on **C**, since ${f_n}$ converges locally uniformly to *z* on the punctured plane $\mathbb{C} \setminus \{0\}$ and no subsequence is normal at 0. We see that $f_n(z) = 0 \iff f'_n(z) = k + 1 \text{ and } f'_n(z) \neq 1. \text{ Hence } \{f_n\} \subset \mathcal{F}_{k+1,1}(\mathbf{C}).$

Our proof of Theorem 1.3 is inspired by [7, Theorem 1]. The structure of the present paper is in certain sense similar to [7], and this can be seen by comparing our Lemmas 2.4, 2.7 and 2.8 with Lemmas 4, 7 and 8 in [7], respectively. However, there are many different points and the proofs are different to a large extent.

2. Notations and preliminary results

Throughout in this paper, we denote by C the complex plane, by C^* the punctured complex plane $\mathbb{C}\setminus\{0\}$, by $\Delta(z_0, r)$ the open disk $\{z: |z-z_0| < r\}$, by $\Delta^{\circ}(z_0, r)$ the punctured disk $\Delta(z_0, r) \setminus \{z_0\} = \{z : 0 < |z - z_0| < r\}$, and by $\overline{\Delta}(z_0, r)$ the closed disk $\{z : |z - z_0| \le r\}$, where $z_0 \in \mathbb{C}$ and $r > 0$.

In Lemmas 2.8, 2.10 and their proofs, and in the proof of Theorem 1.3, we shall use frequently the following auxiliary function

$$
F_{f,a,b}(z) := \frac{f\left(\frac{a+b}{2} + (a-b)z\right)}{a-b}
$$

for a function *f* and two distinct constants *a* and *b*.

For a sequence $\{f_n\}$ of functions, we say that they are locally uniformly holomorphic (meromorphic) on *D* if for each compact subset $E \subset D$, there exists $N \in \mathbb{N}$ such that f_n for every $n > N$ is holomorphic (meromorphic) on *E*.

Also, we write $f_n \stackrel{\chi}{\to} f$ on *D* to indicate that the sequence $\{f_n\}$ converges spherically locally uniformly to *f* on *D*, and $f_n \to f$ on *D* if the convergence is already in Euclidean metric.

Let *f* be a function meromorphic on *D*. Then for each closed disk $\overline{\Delta}(z_0, r) \subset D$, define

$$
A(z_0, r; f) := \frac{1}{\pi} \iint_{\overline{\Delta}(z_0, r)} [f^{\#}(z)]^2 d\sigma.
$$

Here, as usual, $f^*(z) = |f'(z)|/(1+|f(z)|^2)$ is the spherical derivative. An important fact is that $A(z_0, r; , f)$ is the normalized spherical area of the image of $\overline{\Delta}(z_0, r)$ under *f* [5].

We also use $n(r, f)$ to denote the number of poles of f on $\Delta(0, r)$, counting multiplicity. Similarly, $n(r, 1/f)$ denotes the number of zeros of f on $\Delta(0, r)$.

For a meromorphic function f on \mathbb{C} , its Ahlfors–Shimizu characteristic [5, 10] is defined by

$$
T_0(r, f) = \int_0^r \frac{A(0, t; f)}{t} dt,
$$

and the order of *f* is defined by

$$
\rho(f) = \limsup_{r \to \infty} \frac{\log^+ T_0(r, f)}{\log r}.
$$

Thus, each meromorphic function with bounded spherical derivative has order at most 2.

To prove our results, we require some preliminary results.

Lemma 2.1. [4] Let $\mathcal{F} = \{f\}$ be a family of meromorphic functions on D such *that* $f(z) \neq 0$ *and* $f'(z) \neq 1$ *. Then F is normal on D.*

Lemma 2.2. [8, Lemma 2] *Let F be a family of meromorphic functions in a domain D*, and suppose that there exists $A \geq 1$ such that $|f'(z)| \leq A$ whenever $f(z) = 0$ and $f \in \mathcal{F}$. Then if $\mathcal F$ is not normal at z_0 , there exist,

- (a) *points* $z_n \in D$, $z_n \to z_0$;
- (b) *functions* $f_n \in \mathcal{F}$; and
- (c) *positive numbers* $\rho_n \to 0$

such that $g_n(\zeta) := \rho_n^{-1} f_n(z_n + \rho_n \zeta) \stackrel{\chi}{\to} g(\zeta)$ on **C**, where g satisfies $g^{\#}(\zeta) \leq g^{\#}(0) =$ *A* + 1*, and hence is nonconstant and of finite order.*

The following lemma is a direct corollary to the maximum modulus principle.

Lemma 2.3. Let z_0 be a point in D and $\{f_n\}$ be a sequence of meromorphic *functions on D such that* $f_n \stackrel{\chi}{\to} f$ *on* $D \setminus \{z_0\}$ *, where f may be identically* ∞ *.*

- (a) If f_n are holomorphic on *D* and $f \neq \infty$, then $f_n \to f$ on *D*, and *f* is *holomorphic on D;*
- (b) If f_n are zero-free on D and $f \neq 0$, then $f_n \stackrel{\chi}{\rightarrow} f$ on D, and $f \neq 0$ on D;
- (c) If f_n are holomorphic and zero-free on *D*, then $f_n \to f$ on *D*.

Proof. Since $f_n \stackrel{\chi}{\to} f$ on $D \setminus \{z_0\}$, *f* is also meromorphic on $D \setminus \{z_0\}$ or $f \equiv \infty$ [9, Corollary 3.1.4].

Now we turn to prove (a). Since f_n is holomorphic, we get $f_n \to f$ on $D \setminus \{z_0\}$ [9, Proposition 3.1.6]. Since $f \not\equiv \infty$, f is also holomorphic on $D \setminus \{z_0\}$ [9, Corollary 3.1.5]. Fix a bounded subdomain *U* of *D* such that $z_0 \in U$ and $\overline{U} \subset D$. Thus for arbitrary given number $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n > N$, $|f_n(z) - f(z)| < \varepsilon$ on the boundary ∂U of U . Hence for $m, n > N$, $|f_m(z) - f_n(z)| < 2\varepsilon$ on ∂U . Since f_n are holomorphic on *D*, by the maximum modulus principle, we get $|f_m(z) - f_n(z)| < 2\varepsilon$ on the domain *U*. Thus, by Cauchy's criterion, ${f_n}$ converges uniformly to a function ϕ which is holomorphic on *U*. Uniqueness of the limit function shows that $f \equiv \phi$ on $U \setminus \{z_0\}$. This shows that f can be extended holomorphicly to z_0 and hence f is holomorphic on *D*, and $f_n \to f$ on *D*.

Applying (a) to the sequence $\{1/f_n\}$ and $1/f$, we prove (b). The (c) is a direct corollary to (a) and (b). \Box

Lemma 2.4. [2, Theorem 4(ii)] *Let k be a positive integer. Then the nonconstant meromorphic functions* $f \in \mathcal{F}_{k+1,1}(\mathbf{C})$ which are of finite order must be rational *functions with the form*

(1)
$$
f(z) = z - z_0 - \frac{d}{(z - z_0)^k},
$$

where *d* and z_0 are constants with $d \neq 0$.

Lemma 2.5. *Let k be a positive integer. If the rational function f defined by* (1) has two zeros $\pm 1/2$, then there exists a $K = K(k) > k+1$ which only depends *on k such that*

$$
\sup_{z \in \mathbf{C}} f^\#(z) \le K.
$$

Proof. Since $f(\pm 1/2) = 0$, we have

(2)
$$
\left(\frac{1}{2} - z_0\right)^{k+1} = \left(-\frac{1}{2} - z_0\right)^{k+1} = d.
$$

Since $d \neq 0$, we have $z_0 \neq \pm 1/2$. Let $c = (\frac{1}{2} - z_0)/(-\frac{1}{2} - z_0)$. Then $c \neq 1$ and by (2), $c^{k+1} = 1$, so that

(3)
$$
c \in \left\{c_j = \exp\left(\frac{2j\pi}{k+1}i\right) : j = 1, 2, \cdots, k\right\}.
$$

By
$$
c = (\frac{1}{2} - z_0)/(-\frac{1}{2} - z_0)
$$
, we get $z_0 = \frac{1+c}{2(1-c)}$, and hence by (2),

$$
d = \left(-\frac{1}{2} - z_0\right)^{k+1} = \frac{(-1)^{k+1}}{(1-c)^{k+1}}.
$$

Thus by (1) and (3), $f \in \{f_j : j = 1, 2, \dots, k\}$, where

(4)
$$
f_j(z) = z - \frac{1+c_j}{2(1-c_j)} + \frac{(-1)^k}{(1-c_j)^{k+1} \left(z - \frac{1+c_j}{2(1-c_j)}\right)^k}.
$$

Since $f_j(z) \to \infty$ and $f'_j(z) \to 1$ as $z \to \infty$, we have $f_j^{\#}$ $j_j^{\#}(z) \to 0$ as $z \to \infty$. Hence, the conclusion follows from the continuity of each $f_i^{\#}$ $j^{#}(z)$ on **C**.

Lemma 2.6. Let *k* be a positive integer. Then the sub-family $\mathcal F$ of $\mathcal F_{k+1,1}(D)$ *which consists of holomorphic functions is normal on D.*

Proof. Suppose that *F* is not normal at some point $z_0 \in D$. Then by Lemma 2.2, there exist functions ${f_n} \subset F$, points $z_n \to z_0$ and positive numbers $\rho_n \to 0$ such that $g_n(\zeta) = \rho_n^{-1} f_n(z_n + \rho_n \zeta) \to g(\zeta)$ on **C**, where *g* is a nonconstant entire function of finite order and satisfy $g^{\#}(\zeta) \leq g^{\#}(0) = k + 2$.

We claim that $g(\zeta) = 0 \iff g'(\zeta) \in \{k+1, 1\}.$

To prove $g(\zeta) = 0 \Longrightarrow g'(\zeta) \in \{k+1,1\}$, let ζ_0 be a zero of *g*. Then as $g \not\equiv 0$, by Hurwitz's theorem, there exist points $\zeta_n \to \zeta_0$ such that $g_n(\zeta_n) = 0$, and hence $f_n(z_n + \rho_n \zeta_n) = 0$. Since $f_n \in \mathcal{F}_{k+1,1}(D)$, we get $f'_n(z_n + \rho_n \zeta_n) \in \{k+1,1\}$, so that $g'_n(\zeta_n) \in \{k+1,1\}$. Since $g'_n \to g'$ on **C**, we get $g'(\zeta_0) \in \{k+1,1\}$. This proves $g(\zeta) = 0 \Longrightarrow g'(\zeta) \in \{k+1, 1\}.$

Now we turn to prove $g'(\zeta) \in \{k+1, 1\} \Longrightarrow g(\zeta) = 0$. let ζ_0 be a point such that *g*^{$′$}(ζ ⁰) ∈ {*k* + 1, 1}. Suppose first that *g*^{$′$}(ζ ⁰) = *k* + 1. Since *g*[#](0) = *k* + 2, we have $g'(\zeta) \neq k+1$. Thus by $g'_n(\zeta) - (k+1) \to g'(\zeta) - (k+1)$ and Hurwitz's theorem, there exist points $\zeta_n \to \zeta_0$ such that $g'_n(\zeta_n) = k+1$, and hence $f'_n(z_n + \rho_n \zeta_n) = k+1$. Since $f_n \in \mathcal{F}_{k+1,1}(D)$, we get $f_n(z_n + \rho_n \zeta_n) = 0$, so that $g_n(\zeta_n) = 0$. Thus by $g_n \to g$, we get $g(\zeta_0) = 0$. A similar argument yields that for $g'(\zeta_0) = 1$, we also have $g(\zeta_0) = 0$. This proves $g'(\zeta) \in \{k+1, 1\} \implies g(\zeta) = 0.$

Hence the claim is proved. However, by Lemma 2.4, such an entire function *g* must be a constant. This contradiction shows that $\mathcal F$ is normal on D .

Lemma 2.7. Let *k* be a positive integer, and $\{f_n\}$ be a sequence in $\mathcal{F}_{k+1,1}(D)$. *Let* $z_0 \in D$ *. Suppose that*

- (i) *no subsequence of* ${f_n}$ *is normal at* z_0 ;
- (ii) there exists $\delta > 0$ such that f_n for sufficiently large *n* has at most one single $(\text{simple or multiple})$ *pole in* $\Delta(z_0, \delta)$ *; and*
- (iii) $\{f_n\}$ is normal on $D \setminus \{z_0\}$.

Then there exists a subsequence of $\{f_n\}$ *, which we continue to call* $\{f_n\}$ *, such that*

- (I) $f_n(z) \stackrel{\chi}{\rightarrow} z z_0$ on $D \setminus \{z_0\}$;
- (II) there exists $\delta_0 > 0$ such that every f_n takes each value $w \in \overline{C}$ at most $k + 1$ *times on* $\Delta(z_0, \delta_0)$ *, counting multiplicity.*

Proof. Say $z_0 = 0$. Since $\{f_n\}$ is not normal at $z_0 = 0$, by Lemma 2.2, there exist a subsequence of ${f_n}$ which we continue to call ${f_n}$, points $z_n \to 0$ and positive

numbers $\rho_n \to 0$ such that $g_n(\zeta) = \rho_n^{-1} f_n(z_n + \rho_n \zeta) \stackrel{\chi}{\to} g(\zeta)$ on **C**, where g is a nonconstant meromorphic function of finite order and satisfies $g^{\#}(\zeta) \leq g^{\#}(0) = k+2$. Further, by an argument similar as showed in the proof of Lemma 2.6, we have $g(\zeta) = 0 \iff g'(\zeta) \in \{k+1, 1\}$. Hence by Lemma 2.4,

(5)
$$
g(\zeta) = \zeta - \zeta_0 - \frac{d}{(\zeta - \zeta_0)^k} = \frac{(\zeta - \zeta_0)^{k+1} - d}{(\zeta - \zeta_0)^k}
$$

with $d, \zeta_0 \in \mathbf{C}$ and $d \neq 0$. Let $\zeta_0^{(j)}$ $j_0^{(0)}$, $j = 0, 1, \dots, k$, be $k + 1$ distinct zeros of *g*. Then by (5), $\prod_{j=0}^{k} (\zeta - \zeta_0^{(j)})$ $P(\zeta) = P(\zeta) := (\zeta - \zeta_0)^{k+1} - d$, and hence for a given $j_0 \in \{0, 1, \cdots, k\}, \prod_{j \neq j_0} (\zeta_0^{(j_0)} - \zeta_0^{(j)})$ $P'(\zeta_0^{(j_0)}) = P'(\zeta_0^{(j_0)})$ $\binom{(j_0)}{0} = (k+1)(\zeta_0^{(j_0)} - \zeta_0)^k$. Thus

(6)
$$
\frac{\prod_{j \neq j_0} (\zeta_0^{(j_0)} - \zeta_0^{(j)})}{(\zeta_0^{(j_0)} - \zeta_0)^k} = k + 1
$$

for a given $j_0 \in \{0, 1, \dots, k\}.$

Since $g_n \stackrel{\chi}{\to} g$ on **C**, g_n has a pole $\zeta_{n,\infty}$ with $\zeta_{n,\infty} \to \zeta_0$ and $k+1$ zeros $\zeta_{n,0}^{(j)}$ *n,*0 , $(j = 0, 1, \dots, k)$, with $\zeta_{n,0}^{(j)} \to \zeta_0^{(j)}$ $S_0^{(0)}$. Thus f_n has a pole $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty} \to 0$ and $k + 1$ zeros $z_{n,0}^{(j)} = z_n + \rho_n \zeta_{n,0}^{(j)} \to 0, (j = 0, 1, \dots, k).$

By the assumption (ii), the multiplicity of the pole $z_{n,\infty}$ is *k* (for sufficiently large *n*). Let

(7)
$$
f_n^*(z) = \frac{f_n(z)}{R_n(z)}, \text{ where } R_n(z) = \frac{\prod_{j=0}^k (z - z_{n,0}^{(j)})}{(z - z_{n,\infty})^k}.
$$

Then by (ii), f_n^* for sufficiently large *n* is holomorphic in $\Delta(0,\delta)$. Let $g_n^*(\zeta) =$ $f_n^*(z_n + \rho_n \zeta)$. Then $\{g_n^*\}$ are locally uniformly holomorphic on **C**. Since

$$
\rho_n^{-1} R_n(z_n + \rho_n \zeta) = \frac{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})}{(\zeta - \zeta_{n,\infty})^k} \stackrel{\chi}{\to} g(\zeta)
$$

on C, and $\rho_n^{-1}R_n(z_n+\rho_n\zeta)g_n^*(\zeta) = g_n(\zeta) \stackrel{\chi}{\to} g(\zeta)$, we see that $\{g_n^*\}$ are locally uniformly zero-free on **C**, i.e., for each $r > 0$, there exists $N \in \mathbb{N}$ such that for $n > N$, $g_n^*(\zeta) \neq 0$ on $\Delta(0, r)$. We also see that

(8)
$$
g_n^*(\zeta) = f_n^*(z_n + \rho_n \zeta) \to 1
$$

on $C \setminus {\zeta_0, \zeta_0^{(j)}}$: $0 \leq j \leq k$, and hence on C by Lemma 2.3(c). In particular, $f_n^*(z_n) \neq 0.$

We claim that there exists η , $0 < \eta \leq \delta$, such that f_n^* for sufficiently large *n* has no zero in $\Delta(0, \eta)$.

Suppose not. Then there exist a subsequence of $\{f_n^*\}$, which we continue to call ${f_n^*}$, and a sequence ${z_{n,0}}$ of points satisfying $z_{n,0} \to 0$ such that $f_n^*(z_{n,0}) = 0$. Since $f_n^*(z_n) \neq 0$, we have $z_{n,0} \neq z_n$. We may say that $z_{n,0}$ is the nearest zero of f_n^* away from z_n , so that $f_n^*(z) \neq 0$ on $\Delta(z_n, |z_{n,0} - z_n|)$. By (8), we have

(9)
$$
\zeta_{n,0} = \frac{z_{n,0} - z_n}{\rho_n} \to \infty.
$$

Set

(10)
$$
\hat{f}_n^*(z) = f_n^*(z_n + (z_{n,0} - z_n)z).
$$

Then, $\{\hat{f}_n^*\}\)$ are locally uniformly holomorphic on **C**, $\hat{f}_n^*(z) \neq 0$ on $\Delta(0,1)$, and $\hat{f}_n^*(1) = 0$. Further, let

(11)
$$
\hat{f}_n(z) = \frac{f_n(z_n + (z_{n,0} - z_n)z)}{z_{n,0} - z_n}.
$$

Then $\hat{f}_n(z) = 0 \Longleftrightarrow \hat{f}'_n(z) \in \{k+1,1\}$, since $f_n(z) = 0 \Longleftrightarrow f'_n(z) \in \{k+1,1\}$. By (7), (10) and (11), we see that $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}_n^*(z)$, where

(12)
$$
\hat{R}_n(z) = \frac{R_n(z_n + (z_{n,0} - z_n)z)}{z_{n,0} - z_n} = \frac{\prod_{j=0}^k (z - \frac{\rho_n}{z_{n,0} - z_n} \zeta_{n,0}^{(j)})}{(z - \frac{\rho_n}{z_{n,0} - z_n} \zeta_{n,\infty})^k}.
$$

Hence by (9) and since $\{\hat{f}_n^*\}$ are locally uniformly holomorphic on **C**, we see that $\{\hat{f}_n\}$ are locally uniformly holomorphic on \mathbb{C}^* . By (9) and (12), we also see that $\hat{R}_n(z) \to z$ on \mathbb{C}^* .

Thus, since $\hat{f}_n(z) = 0 \iff \hat{f}'_n(z) \in \{k+1,1\}$ and $\{\hat{f}_n\}$ are locally uniformly holomorphic on \mathbb{C}^* , by Lemma 2.6, $\{\hat{f}_n\}$ and hence $\{\hat{f}_n^*\}$ is normal on \mathbb{C}^* . Since $\hat{f}^*_{n}(1) = 0$, by taking a subsequence and renumbering, we may assume that $\hat{f}^*_{n} \to$ \hat{f}^* on \mathbb{C}^* with $\hat{f}^*(1) = 0$. As $\{\hat{f}^*_n\}$ are locally uniformly holomorphic on \mathbb{C} , by Lemma 2.3(a), we get $\hat{f}^*_{n} \to \hat{f}^*$ on **C** and \hat{f}^* is an entire function. Hence, by $\hat{f}_n^*(0) = f_n^*(z_n) = g_n^*(0) \to 1$, we get $\hat{f}^*(0) = 1$. Thus $(z\hat{f}^*(z))' - 1 \neq 0$. For otherwise, we would have $z\hat{f}^*(z) = z + c$ for some constant *c*, which contradicts that $\hat{f}^*(1) = 0$ and $\hat{f}^*(0) = 1$.

We claim that $\hat{f}'_n(z) \neq 1$ on $\Delta(0,1)$ for sufficiently large *n*. Suppose not. Then there exist a subsequence of $\{\hat{f}_n\}$, which we continue to call $\{\hat{f}_n\}$, and a sequence $\{z_n^*\}$ of points contained in $\Delta(0,1)$ such that $\hat{f}'_n(z_n^*) = 1$. Then, by $\hat{f}_n(z) = 0 \iff$ $\hat{f}'_n(z) \in \{k+1,1\}$, we get $\hat{f}_n(z_n^*) = 0$. Since $\hat{f}_n^*(z) \neq 0$ on $\Delta(0,1)$, we get from $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}_n^*(z)$ that $\hat{R}_n(z_n^*) = 0$. Thus by (12),

$$
z_n^* = \frac{\rho_n}{z_{n,0} - z_n} \zeta_{n,0}^{(j_0)} \to 0
$$

for some $j_0 \in \{0, 1, \dots, k\}$. Hence $\hat{f}_n^*(z_n^*) \to \hat{f}^*(0) = 1$ and by (6)

$$
\hat{R}'_n(z_n^*) = \frac{\prod_{j \neq j_0} \left(\zeta_{n,0}^{(j_0)} - \zeta_{n,0}^{(j)} \right)}{\left(\zeta_{n,0}^{(j_0)} - \zeta_{n,\infty} \right)^k} \to \frac{\prod_{j \neq j_0} \left(\zeta_0^{(j_0)} - \zeta_0^{(j)} \right)}{\left(\zeta_0^{(j_0)} - \zeta_0 \right)^k} = k + 1.
$$

Thus by $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}_n^*(z)$, we get a contradiction:

$$
1 = \hat{f}'_n(z_n^*) = \hat{R}'_n(z_n^*)\hat{f}_n^*(z_n^*) + \hat{R}_n(z_n^*)\hat{f}_n^{*'}(z_n^*) = \hat{R}'_n(z_n^*)\hat{f}_n^*(z_n^*) \to k+1.
$$

This contradiction shows that $\hat{f}'_n(z) \neq 1$ on $\Delta(0,1)$.

Since $\hat{f}_n(z) = \hat{R}_n(z)\hat{f}_n^*(z) \to z\hat{f}^*(z)$ on \mathbb{C}^* , we get $\hat{f}_n'(z) - 1 \to (z\hat{f}^*(z))' - 1$ on **C**^{*}. Since $(z \hat{f}^*(z))' - 1 \neq 0$ and $\hat{f}'_n(z) - 1 \neq 0$ on ∆(0,1), by Lemma 2.3(b), we have $\hat{f}'_n(z) - 1 \stackrel{\chi}{\to} (z \hat{f}^*(z))' - 1$ on $\Delta(0,1)$, and $(z \hat{f}^*(z))' - 1 \neq 0$ on $\Delta(0,1)$. However, we have $(z \hat{f}^*(z))' \Big|_{z=0} = \hat{f}^*(0) = 1$. This is a contradiction.

Thus f_n^* for sufficiently large *n* is zero-free and holomorphic in $\Delta(0, \eta)$. Since ${f_n^*}$ is normal on *D* $\set{0}$, it follows from Lemma 2.3(c) that ${f_n^*}$ is normal at 0 and hence is normal on *D*. Further, as $f_n^*(z_n) = g_n^*(0) \to 1$, there exists a subsequence of $\{f_n^*\}\$, which we continue to call $\{f_n^*\}\$, such that $f_n^* \stackrel{\chi}{\to} f^*$ on D with $f^*(0) = 1$.

Now we claim that there exists $\mu > 0$ such that $f'_n(z) \neq 1$ in $\Delta(0, \mu)$ for sufficiently large *n*. Suppose not. Then there exist a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, and a sequence $\{w_n\}$ of points satisfying $w_n \to 0$ such that $f'_n(w_n) = 1$. Then by the condition $f_n(z) = 0 \iff f'_n(z) \in \{k+1,1\}$, we see that $f_n(w_n) = 0$ and hence $R_n(w_n) = 0$ since $f_n = R_n f_n^*$ and f_n^* is zero-free in $\Delta(0, \eta)$. Thus by (7), $w_n = z_{n,0}^{(j_0)}$ $f_{n,0}^{(0)}$ for some $j_0 \in \{0, 1, \dots, k\}$. Hence we have $f_n^*(w_n) \to f^*(0) = 1$, and by (6)

(13)
\n
$$
R'_{n}(w_{n}) = R'_{n}(z_{n,0}^{(j_{0})}) = \frac{\prod_{j \neq j_{0}} (z_{n,0}^{(j_{0})} - z_{n,0}^{(j)})}{(z_{n,0}^{(j_{0})} - z_{n,\infty})^{k}}
$$
\n
$$
= \frac{\prod_{j \neq j_{0}} \left(\zeta_{n,0}^{(j_{0})} - \zeta_{n,0}^{(j)} \right)}{\left(\zeta_{n,0}^{(j_{0})} - \zeta_{n,\infty} \right)^{k}} \to \frac{\prod_{j \neq j_{0}} \left(\zeta_{0}^{(j_{0})} - \zeta_{0}^{(j)} \right)}{\left(\zeta_{0}^{(j_{0})} - \zeta_{0} \right)^{k}} = k + 1.
$$

Thus we get by $f_n = R_n f_n^*$ the following contradiction:

$$
1 = f'_n(w_n) = R'_n(w_n)f_n^*(w_n) + R_n(w_n) f_n^{*'}(w_n) = R'_n(w_n)f_n^*(w_n) \to k+1.
$$

This proved the claim that for some $\mu > 0$, $f'_{n}(z) \neq 1$ in $\Delta(0, \mu)$ for sufficiently large *n*.

Next we prove that $(zf^*(z))' \equiv 1$. Suppose not. Since f_n^* for sufficiently large *n* is zero-free and holomorphic in $\Delta(0, \eta)$, we have by Lemma 2.3(a) that $f_n^* \to f^*$ on $\Delta(0, \eta)$ with $f^*(0) = 1$. It follows that $f_n(z) = R_n(z)f_n^*(z) \to zf^*(z)$ on $\Delta^{\circ}(0, \eta)$. Thus $f'_n(z) \to (zf^*(z))'$ and hence $f'_n(z) - 1 \to (zf^*(z))' - 1$ on $\Delta^{\circ}(0, \eta)$. Since $f'_{n} \neq 1$ in $\Delta(0, \mu)$, we may say that $f'_{n} - 1 \neq 0$ on $\Delta(0, \eta)$. Thus by Lemma 2.3(b), we get $f'_n(z) - 1 \stackrel{\chi}{\to} (zf^*(z))' - 1$ on $\Delta(0, \eta)$, and $(zf^*(z))' - 1 \neq 0$ on $\Delta(0, \eta)$. This contradicts that $(zf^*(z))'|_{z=0} = f^*(0) = 1.$

Thus $(zf^*(z))' \equiv 1$ and hence $zf^*(z) = z + c$ for some constant *c*. Since $f^*(0) = 1$, we get $c = 0$, and hence $f^*(z) \equiv 1$. Thus, by $R_n(z) \to z$ in \mathbb{C}^* and $f_n^* \stackrel{\chi}{\to} 1$ in *D*, we get $f_n(z) = R_n(z) f_n^*(z) \stackrel{\chi}{\to} z$ in $D \setminus \{0\}$. The assertion (I) for the special case $z_0 = 0$ is proved. In general case, one can consider the sequence $\{F_n\}$, where $F_n(z) = f_n(z_0+z)$ and $z \in U = \{z - z_0 : z \in D\}$, and obtain that $F_n(z) \stackrel{\chi}{\to} z$ in $U \setminus \{0\}$ by the special case. Then by the fact $f_n(z) = F_n(z - z_0)$, the assertion (I) follows.

Now we turn to prove the assertion (II). Fix a number $\delta_0 > 0$ such that $\overline{\Delta}(0, \delta_0) \subset$ *D*. Then as $f_n = R_n f_n^*$ and $f_n^* \to f^* \equiv 1$ on $\Delta(0, \delta_0)$, there exists $N_1 \in \mathbb{N}$ such that for $n > N_1$, f_n has exactly one pole with multiplicity k on $\overline{\Delta}(0, \delta_0) \subset D$ and $f_n \neq 0$, ∞ on the circle $|z| = \delta_0$. In other words, every f_n for $n > N_1$ takes the value ∞ exactly *k* times on $\Delta(0, \delta_0)$.

For $w \neq \infty$, we consider two cases. Suppose first that $|w| \leq \delta_0/2$. By (I), we have $f_n(z) \stackrel{\chi}{\to} z$ on $D \setminus \{0\}$, and hence on the circle $|z| = \delta_0$, $f_n(z) \to z$, $f'_n(z) - 1 \to 0$ and $zf'_{n}(z) - f_{n}(z) \to 0$. Thus there exists $N_2 \in \mathbb{N}$, $N_2 \geq N_1$, such that for $n > N_2$ and the points z on $|z| = \delta_0$, $|f_n(z)| \ge 3\delta_0/4$, $|f'_n(z) - 1| \le \delta_0/(16 + 8\delta_0)$ and $|zf'_{n}(z) - f_{n}(z)| \leq \delta_{0}/(16 + 8\delta_{0}).$ It follows from the argument principle that for

 $n > N_2$

$$
\begin{split}\n&\left|n\left(\delta_{0}, \frac{1}{f_{n}-w}\right)-n\left(\delta_{0}, f_{n}-w\right)-1\right| \\
&=\left|\frac{1}{2\pi i}\int_{|z|=\delta_{0}}\frac{f'_{n}(z)}{f_{n}(z)-w}\,dz-\frac{1}{2\pi i}\int_{|z|=\delta_{0}}\frac{1}{z-w}\,dz\right| \\
&=\frac{1}{2\pi}\left|\int_{|z|=\delta_{0}}\frac{zf'_{n}(z)-f_{n}(z)-w\left(f'_{n}(z)-1\right)}{(f_{n}(z)-w)(z-w)}\,dz\right| \\
&\leq\frac{1}{2\pi}\int_{|z|=\delta_{0}}\frac{\frac{\delta_{0}}{16+8\delta_{0}}(1+\frac{\delta_{0}}{2})}{\left(\frac{3}{4}\delta_{0}-\frac{1}{2}\delta_{0}\right)(\delta_{0}-\frac{1}{2}\delta_{0})}\,|dz|=\frac{1}{2},\n\end{split}
$$

and hence $n\left(\delta_0, \frac{1}{f_n-1}\right)$ *fn−w* $)-n(\delta_0, f_n - w) - 1 = 0$ since it is an integer. Thus *n* $(\delta_0, \frac{1}{f_n - w})$ *fn−w* λ $= n(\delta_0, f_n - w) + 1 = n(\delta_0, f_n) + 1 = k + 1$. That is to say, every f_n for $n > N_2$ takes each value *w* satisfying $|w| \leq \delta_0/2$ exactly $k+1$ times on $\overline{\Delta}(0, \delta_0) \subset D$.

Suppose now that $|w| \geq \delta_0/2$. Similar as showed above, we have $f_n(z) \to z$, $f'_n(z) - 1 \to 0$ and $zf'_n(z) - f_n(z) \to 0$ on the circle $|z| = \delta_0/4$. Thus there exists *N*₃ \in **N**, *N*₃ \geq *N*₁, such that for *n* > *N*₃ and the points *z* on $|z| = \delta_0/4$, $|f_n(z)| \leq$ $3\delta_0/8$, $|f_n'(z)-1| \leq \delta_0/(16+8\delta_0)$ and $|zf_n'(z)-f_n(z)| \leq \delta_0/(16+8\delta_0)$. It follows from the argument principle that for $n > N_3$,

$$
\begin{split}\n&\left|n\left(\frac{\delta_{0}}{4},\frac{1}{f_{n}-w}\right)-n\left(\frac{\delta_{0}}{4},f_{n}-w\right)\right| \\
&=\left|\frac{1}{2\pi i}\int_{|z|=\frac{\delta_{0}}{4}}\frac{f'_{n}(z)}{f_{n}(z)-w}\,dz-\frac{1}{2\pi i}\int_{|z|=\frac{\delta_{0}}{4}}\frac{1}{z-w}\,dz\right| \\
&=\frac{1}{2\pi}\left|\int_{|z|=\frac{\delta_{0}}{4}}\frac{zf'_{n}(z)-f_{n}(z)-w(f'_{n}(z)-1)}{(f_{n}(z)-w)(z-w)}\,dz\right| \\
&=\frac{1}{2\pi}\left|\int_{|z|=\frac{\delta_{0}}{4}}\frac{\frac{1}{w}(zf'_{n}(z)-f_{n}(z))-(f'_{n}(z)-1)}{(w-f_{n}(z))(1-\frac{z}{w})}\,dz\right| \\
&\leq\frac{1}{2\pi}\int_{|z|=\frac{\delta_{0}}{4}}\frac{\frac{\delta_{0}}{16+8\delta_{0}}(\frac{2}{\delta_{0}}+1)}{(\frac{1}{2}\delta_{0}-\frac{3}{8}\delta_{0})(1-\frac{1}{2})}\,|dz|=\frac{1}{2},\n\end{split}
$$

and hence $n\left(\frac{\delta_0}{4}\right)$ $\frac{\delta_0}{4},\frac{1}{f_n}$ *fn−w* $\bigg) = n \left(\frac{\delta_0}{4} \right)$ $\frac{\delta_0}{4}$, $f_n - w$) = $n \left(\frac{\delta_0}{4} \right)$ $\left(\frac{\delta_0}{4}, f_n\right) \leq n \left(\delta_0, f_n\right) = k$. That is to say, every f_n for $n > N_3$ takes each value *w* satisfying $|w| \ge \delta_0/2$ at most *k* times on $\Delta(0, \delta_0/4) \subset D$.

Thus for $n > N = \max\{N_1, N_2, N_3\}$, every f_n takes each value $w \in \overline{C}$ on $\Delta(0, \delta_0/4)$ at most $k+1$ times.

The proof of Lemma 2.7 is completed.

Lemma 2.8. Let *k* be a positive integer, and $\{f_n\}$ be a sequence in $\mathcal{F}_{k+1,1}(D)$. *Let* $z_0 \in D$ *. Suppose that*

- (i) *no subsequence of* ${f_n}$ *is normal at* z_0 *; and*
- (ii) *for every* $\delta > 0$ *, there exists* $N \in \mathbb{N}$ *such that* f_n *for* $n > N$ *has at least two distinct poles in* $\Delta(z_0, \delta)$ *.*

Then there exist a subsequence of $\{f_n\}$ *which we continue to call* $\{f_n\}$ *, and a sequence* ${n \choose n}$ *of positive numbers satisfying* $\eta_n \to 0$ *such that* f_n *has at least two distinct zeros* a_n *and* b_n *in* $\Delta(z_0, \eta_n)$ *such that*

(14)
$$
\sup_{\overline{\Delta}(0,1)} F_{f_n,a_n,b_n}^{\#}(z) \to \infty.
$$

Proof. Say $z_0 = 0$. As showed in the proof of Lemma 2.7, since $\{f_n\}$ is not normal at 0, there exist a subsequence of $\{f_n\}$ which we continue to call $\{f_n\}$, points $z_n \to 0$ and positive numbers $\rho_n \to 0$ such that

(15)
$$
g_n(\zeta) = \rho_n^{-1} f_n(z_n + \rho_n \zeta) \stackrel{\chi}{\to} g(\zeta) = \zeta - \zeta_0 - \frac{d}{(\zeta - \zeta_0)^k} = \frac{(\zeta - \zeta_0)^{k+1} - d}{(\zeta - \zeta_0)^k}
$$

on **C**, where $d, \zeta_0 \in \mathbf{C}$ and $d \neq 0$.

As showed in the proof of Lemma 2.7, it follows that f_n has a pole $z_{n,\infty} = z_n + z_n$ $\rho_n\zeta_{n,\infty}\to 0$ with $\zeta_{n,\infty}\to \zeta_0$ and $k+1$ zeros $z_{n,0}^{(j)}=z_n+\rho_n\zeta_{n,0}^{(j)}\to 0$, $(j=0,1,\cdots,k)$, with $\zeta_{n,0}^{(j)} \to \zeta_0^{(j)}$ $\zeta_0^{(j)}$, where $\zeta_0^{(j)}$ $\binom{0}{0}$ are $k+1$ distinct zeros of *g*. Note that, we also have (6).

We claim that $g'_{n}(\zeta) \neq 1$ locally uniformly on **C**, i.e., for each $r > 0$, there exists $N \in \mathbb{N}$ such that for $n > N$, $g'_{n}(\zeta) \neq 1$ on $\Delta(0, r)$. Suppose not, then there exist $r_0 > 0$, a subsequence of $\{g_n\}$, which we continue to call $\{g_n\}$, and a sequence $\{\zeta_n\}$ of points contained in $\Delta(0, r_0)$ such that $g'_n(\zeta_n) = 1$. By taking a subsequence, we may say $\zeta_n \to c \in \Delta(0, r_0)$. By $g'_n(\zeta_n) = 1$, we get $f'_n(z_n + \rho_n \zeta_n) = 1$, and hence by the condition, $f_n(z_n + \rho_n \zeta_n) = 0$. Thus $g_n(\zeta_n) = 0$ and hence $g(c) = 0$ by $g_n \stackrel{\chi}{\to} g$, so that g and hence g_n (for sufficiently large n) are holomorphic in a neighborhood of c . It follows that $g_n \to g$ and hence $g'_n \to g'$ on this neighborhood. Thus by $g'_n(\zeta_n) = 1$, we get $g'(c) = 1$. This is a contradiction, since $g'(\zeta) \neq 1$ on **C**.

Since $g_n \stackrel{\chi}{\to} g$ on **C** and ζ_0 is a pole of *g* with exact multiplicity *k*, every g_n (for sufficiently large *n*) has exactly *k* poles tending to ζ_0 .

We claim that the *k* poles of g_n coincide. Suppose not. Then g_n has $s \geq 2$ distinct poles $\zeta_{n,\infty}^{(j)}$, $1 \leq j \leq s$ with multiplicity m_j such that $\sum_{j=1}^s m_j = k$ and $\zeta_{n,\infty}^{(j)} \to \zeta_0$. By taking subsequence, we may assume that the number *s* and the multiplicities m_j are all independent of *n*. Further, as ζ_0 is the unique pole of *g*, the poles of g_n other than $\zeta_{n,\infty}^{(j)}$, $1 \leq j \leq s$, if exist, must tend to ∞ . Also, the zeros of g_n other than $\zeta_{n,0}^{(j)}$ $n,0,0 \leq j \leq k$, if exist, must tend to ∞. It follows that the sequence $\{g_n^*\}$ of functions defined by

(16)
$$
g_n^*(\zeta) := \frac{\prod_{j=1}^s (\zeta - \zeta_{n,\infty}^{(j)})^{m_j}}{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})} g_n(\zeta)
$$

is locally uniformly zero-free and holomorphic on **C**. Since $g_n \overset{\chi}{\to} g$ on **C**, we see from (16) that

$$
(17) \t\t g_n^*(\zeta) \to 1
$$

on $\mathbf{C} \setminus \{\zeta_0, \zeta_0^{(j)} : 0 \le j \le k\}$, and hence on **C** by Lemma 2.3(c). By (16) , we have

$$
g_n(\zeta) = \frac{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})}{\prod_{j=1}^s (\zeta - \zeta_{n,\infty}^{(j)})^{m_j}} g_n^*(\zeta)
$$

and hence

$$
g'_n(\zeta) = \frac{\left(g_n^*(\zeta)\prod_{j=0}^k(\zeta-\zeta_{n,0}^{(j)})\right)^{\prime}}{\prod_{j=1}^s(\zeta-\zeta_{n,\infty}^{(j)})^{m_j}} - g_n^*(\zeta)\prod_{j=0}^k(\zeta-\zeta_{n,0}^{(j)})\frac{\sum_{j=1}^s m_j\prod_{i\neq j}(\zeta-\zeta_{n,\infty}^{(i)})}{\prod_{j=1}^s(\zeta-\zeta_{n,\infty}^{(j)})^{m_j+1}},
$$

so that

(18)
$$
g'_n(\zeta) - 1 = \frac{M_n(\zeta)}{\prod_{j=1}^s (\zeta - \zeta_{n,\infty}^{(j)})^{m_j + 1}},
$$

where

(19)
\n
$$
M_n(\zeta) = \left(g_n^*(\zeta)\prod_{j=0}^k(\zeta - \zeta_{n,0}^{(j)})\right)' \prod_{j=1}^s(\zeta - \zeta_{n,\infty}^{(j)})
$$
\n
$$
- g_n^*(\zeta) \prod_{j=0}^k(\zeta - \zeta_{n,0}^{(j)}) \sum_{j=1}^s m_j \prod_{i \neq j}(\zeta - \zeta_{n,\infty}^{(i)}) - \prod_{j=1}^s(\zeta - \zeta_{n,\infty}^{(j)})^{m_j+1}.
$$

Since $\zeta_{n,0}^{(j)} \to \zeta_0^{(j)}$ $\zeta_0^{(j)}$, $(0 \le j \le k)$ and $\zeta_{n,\infty}^{(j)} \to \zeta_0$, $(1 \le j \le s)$, we see from (17) and (19) that

$$
M_n(\zeta) \to (k+1)(\zeta - \zeta_0)^{k+s} - [(\zeta - \zeta_0)^{k+1} - d] \cdot k(\zeta - \zeta_0)^{s-1} - (\zeta - \zeta_0)^{k+s} \\
= kd(\zeta - \zeta_0)^{s-1}
$$

on **C**. Thus, by Hurwitz's theorem, M_n has $s - 1 \geq 1$ zeros (counting multiplicity) tending to ζ_0 .

On the other hand, we can see from (19) that for each $1 \leq \nu \leq s$,

$$
M_n(\zeta_{n,\infty}^{(\nu)}) = -g_n^*(\zeta_{n,\infty}^{(\nu)}) \prod_{j=0}^k (\zeta_{n,\infty}^{(\nu)} - \zeta_{n,0}^{(j)}) \cdot m_\nu \prod_{i \neq \nu} (\zeta_{n,\infty}^{(\nu)} - \zeta_{n,\infty}^{(i)}) \neq 0.
$$

Hence, the $s - 1 \geq 1$ zeros of M_n are different from the points $\{\zeta_{n,\infty}^{(j)} : 1 \leq j \leq s\}$, so that by (18), $g'_{n}(\zeta) - 1$ has $s - 1 \geq 1$ zeros tending to ζ_0 . This contradicts the above claim that $g'_{n}(\zeta) \neq 1$ locally uniformly on **C**.

This contradiction shows that the *k* poles of g_n coincide, and hence $\zeta_{n,\infty}$ is a pole of g_n with exact multiplicity k . Thus by (15), $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty}$ is a pole of f_n with exact multiplicity *k*.

Now let

(20)
$$
R_n(z) = \frac{\prod_{j=0}^k (z - z_{n,0}^{(j)})}{(z - z_{n,\infty})^k},
$$

(21)
$$
f_n^*(z) = \frac{f_n(z)}{R_n(z)},
$$

(22)
$$
g_n^*(\zeta) = f_n^*(z_n + \rho_n \zeta) = \frac{(\zeta - \zeta_{n,\infty})^k}{\prod_{j=0}^k (\zeta - \zeta_{n,0}^{(j)})} g_n(\zeta).
$$

Then as showed above, by (15) and (22) , we have

$$
(23) \t\t\t g_n^*(\zeta) \to 1
$$

on $\mathbf{C} \setminus \{\zeta_0, \zeta_0^{(j)} : 0 \le j \le k\}$, and hence on **C** by Lemma 2.3(c).

We claim that for every $\delta > 0$, there exists $N \in \mathbb{N}$ such that f_n^* for $n > N$ has at least one zero in $\Delta(0,\delta)$.

Suppose not, then there exist $\delta_0 > 0$ and a subsequence of $\{f_n^*\}$, which we continue to call $\{f_n^*\}$, such that $f_n^* \neq 0$ on $\Delta(0, \delta_0)$. Since $f_n = R_n f_n^*$ and $f_n(z) = 0$ $f'_n(z) \in \{1, k+1\}$, we see by (20) that $f_n(z) \neq 0$ and $f'_n(z) \neq 1$ for $z \in$ $\Delta(0,\delta_{0})\,\backslash\,\{z_{n,0}^{(j)}$ $z_{n,0}^{(j)}$: $0 \leq j \leq k$. Since $z_{n,0}^{(j)} \to 0$, by Gu's criterion (Lemma 2.1), $\{f_n\}$ and hence $\{f_n^*\}\$ is normal on $\Delta^\circ(0, \delta_0)$. So we may assume that $f_n^* \stackrel{\chi}{\to} f^*$ on $\Delta^\circ(0, \delta_0)$, where f^* may be ∞ identically.

We prove further that there exists $0 < \delta_1 \leq \delta_0$ such that $f'_n(z) \neq 1$ on $\Delta(0, \delta_1)$ for sufficiently large *n*. Suppose not, then as showed in the proof of Lemma 2.7 (before (13)), there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that $f'_n(z_{n,0}^{(j_0)}$ $f_{n,0}^{(0)}$ = 1 for some j_0 . This, combined with (21), (23) and (6), would lead to the following contradiction:

$$
1 = f'_n(z_{n,0}^{(j_0)}) = R'_n(z_{n,0}^{(j_0)})f_n^*(z_{n,0}^{(j_0)}) = \frac{\prod_{j \neq j_0} (z_{n,0}^{(j_0)} - z_{n,0}^{(j)})}{(z_{n,0}^{(j_0)} - z_{n,\infty})^k} f_n^*(z_{n,0}^{(j_0)})
$$

=
$$
\frac{\prod_{j \neq j_0} (\zeta_{n,0}^{(j_0)} - \zeta_{n,0}^{(j)})}{(\zeta_{n,0}^{(j_0)} - \zeta_{n,\infty})^k} g_n^*(\zeta_{n,0}^{(j_0)}) \to \frac{\prod_{j \neq j_0} (\zeta_{n,0}^{(j_0)} - \zeta_{n,0}^{(j)})}{(\zeta_{n,0}^{(j_0)} - \zeta_{n,0})^k} = k + 1.
$$

We claim that $f^* \neq 0$. For otherwise, we would have $f_n \stackrel{\chi}{\to} 0$ and hence $f'_n \to 0$, $f''_n \to 0$ on $\Delta^{\circ}(0, \delta_1)$. Thus by the argument principle and $f'_n(z) \neq 1$ on $\Delta(0, \delta_1)$,

$$
n\left(\frac{\delta_1}{2}, f'_n - 1\right) = \left|n\left(\frac{\delta_1}{2}, f'_n - 1\right) - n\left(\frac{\delta_1}{2}, \frac{1}{f'_n - 1}\right)\right| = \frac{1}{2\pi} \left| \int_{|z| = \frac{\delta_1}{2}} \frac{f''_n}{f'_n - 1} \, dz \right| \to 0.
$$

It follows that f'_n has no poles in $\Delta(0, \delta_1/2)$. This is a contradiction, since $z_{n,\infty} \to 0$ is a pole of f_n .

Thus $f^* \neq 0$. Hence by $f_n^* \neq 0$ on $\Delta(0, \delta_0)$ and $f_n^* \stackrel{\chi}{\to} f^*$ on $\Delta^{\circ}(0, \delta_0)$, it follows from Lemma 2.3(b) that $f_n^* \stackrel{\chi}{\to} f^*$ on $\Delta(0, \delta_0)$. Since $f_n^*(z_n) = g_n^*(0) \to 1$, we get $f^*(0) = 1$. This shows that f^* is holomorphic in some neighborhood $\Delta(0, \delta_2)$ of 0 and hence so is f_n^* in $\Delta(0, \delta_2/2)$ for sufficiently large *n*. Thus by $f_n = R_n f_n^*$, f_n has only one single pole (of multiplicity *k*) in $\Delta(0, \delta_2/2)$. This contradicts the assumption (ii).

Thus, for every $\delta > 0$, there exists $N \in \mathbb{N}$ such that f_n^* for $n > N$ has at least one zero in $\Delta(0,\delta)$. It follows that there exists a subsequence of $\{f_n^*\}$, which we continue to call $\{f_n^*\}$, such that f_n^* has a zero b_n in $\Delta(0,1/n)$. By (22) and (23), we have

(24)
$$
\zeta_n^* = \frac{b_n - z_n}{\rho_n} \to \infty.
$$

Set $a_n = z_{n,0}^{(1)}$ $\eta_{n,0}^{(1)}$ and $\eta_n = \left| z_{n,0}^{(1)} \right|$ *n,*0 $+ 1/n$. Then by $z_{n,\infty} = z_n + \rho_n \zeta_{n,\infty}$ with $\zeta_{n,\infty} \to \zeta_0$ and $a_n = z_n + \rho_n \zeta_{n,0}^{(1)}$ with $\zeta_{n,0}^{(1)} \to \zeta_0^{(1)}$ $\eta_0^{(1)}$, we see that $\eta_n \to 0$, $a_n, b_n \in \Delta(0, \eta_n)$ and from (24) that $a_n \neq b_n$ and

$$
\frac{z_{n,\infty} - \frac{a_n + b_n}{2}}{a_n - b_n} = \frac{2\zeta_{n,\infty} - \zeta_{n,0}^{(1)} - \zeta_n^*}{2(\zeta_{n,0}^{(1)} - \zeta_n^*)} \to \frac{1}{2}.
$$

This, combined with $F_{f_n, a_n, b_n}(1/2) = f_n(a_n)/(a_n - b_n) = 0$ and

$$
F_{f_n,a_n,b_n}\left(\frac{z_{n,\infty}-\frac{a_n+b_n}{2}}{a_n-b_n}\right)=\frac{f_n(z_{n,\infty})}{a_n-b_n}=\infty,
$$

shows that each subsequence of ${F_{f_n,a_n,b_n}}$ fails to be equicontinuous in any neighborhood of $z = 1/2$ and hence fails to be normal at $1/2$. Now (14) follows from Marty's theorem. Lemma 2.8 is proved.

Lemma 2.9. *If f is a meromorphic function of infinite order, then there exist points* $z_n \to \infty$ *and positive numbers* $\varepsilon_n \to 0$ *such that*

(25)
$$
A(z_n, \varepsilon_n; f) = \frac{1}{\pi} \iint_{\overline{\Delta}(z_n, \varepsilon_n)} (f^{\#}(z))^2 d\sigma \to \infty.
$$

Proof. See [7, p. 12]. □

Lemma 2.10. *Let k be a positive integer, and f be a meromorphic function in* $\mathcal{F}_{k+1,1}(\mathbf{C})$. If *f* is of infinite order, then *f* has infinitely many pairs of distinct zeros $(z_{n,1}, z_{n,2})$ *such that* $z_{n,1} - z_{n,2} \to 0$ *and*

(26)
$$
\sup_{\overline{\Delta}(0,1)} F_{f,z_{n,1},z_{n,2}}(z) \to \infty.
$$

Proof. Since *f* is of infinite order, by Lemma 2.9, we have (25) for some points $z_n \to \infty$ and positive numbers $\varepsilon_n \to 0$. It follows that there exist $w_n \in \overline{\Delta}(z_n, \varepsilon_n)$ such that $f^{\#}(w_n) \to \infty$. Thus, by Marty's theorem, no subsequence of $\{f_n\}$ is normal at 0, where

$$
(27) \t\t f_n(z) = f(w_n + z).
$$

Thus, by Lemma 2.6, f_n for sufficiently large *n* has at least one pole w_n such that $w_n \to w_0$.

Suppose first that there exist $\delta > 0$ and $N \in \mathbb{N}$ such that f_n for $n > N$ has at most one single (simple or multiple) pole in $\Delta(0,\delta)$. Then f_n for $n > N$ is holomorphic on $\Delta(0, \delta) \setminus \{w_n\}$. Since $w_n \to w_0$, it follows from Lemma 2.6 that $\{f_n\}$ is normal on $\Delta^{\circ}(0, \delta)$. So by Lemma 2.7, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that for some $\delta_0 > 0$, f_n takes each value $w \in \overline{C}$ at most $k+1$ times on $\Delta(0, \delta_0)$, counting multiplicity. Thus for sufficiently large *n*,

$$
A(z_n, \varepsilon_n; f) \le A(0, \delta_0; f_n) \le k + 1,
$$

which contradicts (25) .

Thus there exists a subsequence of ${f_n}$, which we continue to call ${f_n}$, such that for every $\delta > 0$, there exists $N \in \mathbb{N}$ such that f_n for $n > N$ has at least two distinct poles in $\Delta(0, \delta)$. Then by Lemma 2.8, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that each f_n has at least two distinct zeros a_n and b_n tending to 0 such that

(28)
$$
\sup_{\overline{\Delta}(0,1)} F_{f_n,a_n,b_n}^{\#}(z) \to \infty.
$$

Let $z_{n,1} = w_n + a_n$, $z_{n,2} = w_n + b_n$. Then $(z_{n,1}, z_{n,2})$ is a pair of distinct zeros of *f* satisfying $z_{n,1} - z_{n,2} \to 0$, and (26) follows from (28), since $F_{f,z_{n,1},z_{n,2}}(z) \equiv F_{f_n,a_n,b_n}(z)$ by (27). The lemma is proved.

3. Proof of Theorem 1.3

By the definition, we have $\mathcal{F}_{a,b} = b\mathcal{F}_{a/b,1} = \{bf \} \in \mathcal{F}_{a/b,1} \}$ for $b \neq 0$. Thus by the assumption that a/b is a positive integer and $a \neq b$, we may assume that $a = k + 1$ and $b = 1$, where *k* is a positive integer.

Let $E \subset D$ be the set of points at which $\mathcal{F}_{k+1,1}(D)$ is not normal. Then for every $z_0 \in E$, there exists at least one sequence $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ such that no subsequence of ${f_n}$ is normal at z_0 . We consider two cases.

Case 1. For every $z_0 \in E$ and every sequence $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ which has no subsequence normal at z_0 , there exist $\delta > 0$ and $N \in \mathbb{N}$ such that f_n for $n > N$ has at most one single (simple or multiple) pole in $\Delta(z_0, \delta)$.

We first show that $\mathcal{F}_{k+1,1}(D)$ is quasi-normal at every point $w_0 \in D$.

To prove this, let ${f_n} \subset F_{k+1,1}(D)$ be a sequence. If $w_0 \notin E$, the by the definition of E , $\{f_n\}$ is normal at w_0 ; If $w_0 \in E$, there are two cases: one is that ${f_n}$ has subsequence which is normal at w_0 , and the other is that no subsequence is normal at w_0 . In the later case, by Lemma 2.6, f_n for sufficiently large *n* has at least one pole w_n such that $w_n \to w_0$. Hence, by the hypothesis, there exists $\delta > 0$ such that f_n for sufficiently large *n* is holomorphic in $\Delta(w_0, \delta) \setminus \{w_n\}$. Thus, again by Lemma 2.6, $\{f_n\}$ is normal on $\Delta^\circ(w_0, \delta)$. These discussions show that every sequence $\{f_n\}$ has a subsequence which is normal on $\Delta^{\circ}(w_0, \eta)$ for some $\eta > 0$. Thus, by the definition, $\mathcal{F}_{k+1,1}(D)$ is quasi-normal at every point in *D*. Hence, $\mathcal{F}_{k+1,1}(D)$ is quasi-normal on *D*.

Next, we show further that $\mathcal{F}_{k+1,1}(D)$ is quasi-normal of order 1.

To prove this, let $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ be a sequence. Since $\mathcal{F}_{k+1,1}(D)$ is quasinormal on *D*, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, and a set E_0 having no accumulation points in \overline{D} such that $f_n \stackrel{\chi}{\to} \phi$ on $D \setminus E_0$.

We have to show that the set E_0 can be chosen to be a single-point set. Suppose not. Then there exist two distinct points z_1 and z_2 such that no subsequence of $\{f_n\}$ is normal at z_1 or z_2 . Then by Lemma 2.7, the limit function ϕ coincides with $z - z_1$ in a punctured neighborhood of z_1 and with $z - z_2$ in a punctured neighborhood of *z*₂. It follows from the uniqueness of the limit function that $z - z_1 \equiv z - z_2$. This is impossible, since $z_1 \neq z_2$.

Case 2. There exist $z_0 \in E$ and a sequence $\{f_n\} \subset \mathcal{F}_{k+1,1}(D)$ which has no subsequence normal at z_0 such that for every $\delta > 0$, there exists $N \in \mathbb{N}$ such that f_n for $n > N$ has at least two distinct poles in $\Delta(z_0, \delta)$.

We argue by contradictions for showing that this case can not occur.

By Lemma 2.8, there exists a subsequence of $\{f_n\}$, which we continue to call ${f_n}$, such that each f_n (for sufficiently large *n*) has at least two distinct zeros u_n and v_n tending to z_0 as $n \to \infty$ such that

(29)
$$
\sup_{\overline{\Delta}(0,1)} F^{\#}_{f_n,u_n,v_n}(z) > K+1,
$$

where the constant $K > k+1$ is defined in Lemma 2.5.

Fix $\delta > 0$ such that $\Delta(z_0, 3\delta) \subset D$. It guarantees that for each pair (a, b) of distinct zeros of f_n in $\Delta(z_0, \delta)$, the corresponding function $F_{f_n, a, b}(z)$ is meromorphic on $\Delta(0,1)$. Since $f_n \neq 0$, each f_n has finitely many zeros in $\Delta(z_0,\delta)$. This, combined

with (29), shows that the set

(30)
$$
E_n = \left\{ (a, b) : a, b \in f_n^{-1}(0) \cap \Delta(z_0, \delta) \text{ satisfying } \sup_{\Delta(0, 1)} F_{f_n, a, b}^{\#}(z) > K + 1 \right\}
$$

is non-empty and finite. For $(a, b) \in E_n$, define

(31)
$$
\tau(a,b) := \frac{|a-b|}{\delta - \left|\frac{a+b}{2} - z_0\right|} > 0.
$$

Then there exists $(a_n, b_n) \in E_n$ such that for every $(a, b) \in E_n$,

(32)
$$
\tau_n := \tau(a_n, b_n) \leq \tau(a, b).
$$

Since $(u_n, v_n) \in E_n$, we have $\tau_n \leq \tau(u_n, v_n) \to 0$ and hence $a_n - b_n \to 0$.

Let $h_n(z) = F_{f_n, a_n, b_n}(z)$. Then by $a_n - b_n \to 0$, the sequence $\{h_n\}$ are locally uniformly meromorphic on **C**. And by the definition of the set E_n , we have

(33)
$$
\sup_{\overline{\Delta}(0,1)} h_n^{\#}(z) > K + 1.
$$

We claim that no subsequence of $\{h_n\}$ is normal on **C**. Suppose not, by taking a subsequence, we may say $h_n \stackrel{\chi}{\to} h$ on **C**. Since $h_n(\pm 1/2) = 0$, we have $h(\pm 1/2) = 0$ so that $h \not\equiv \infty$. Thus by (33),

(34)
$$
\sup_{\overline{\Delta}(0,1)} h^{\#}(z) \geq K + 1.
$$

It then follows that *h* is nonconstant and from $K > k + 1$ that $h'(z) \neq 1$ and $h'(z) \not\equiv k+1$.

Since $f_n(z) = 0 \Longleftrightarrow f'_n(z) \in \{1, k+1\}$, we have $h_n(z) = 0 \Longleftrightarrow h'_n(z) \in \{1, k+1\}$. Hence, by Hurwitz's theorem, $h(z) = 0 \iff h'(z) \in \{1, k+1\}.$

We claim that *h* is of infinite order. Suppose not, then as *h* is nonconstant, it follows from Lemma 2.4 that *h* is a rational function with the form (1). Hence, as $h(\pm 1/2) = 0$, we get by Lemma 2.5 that $\sup_{\overline{\Delta}(0,1)} h^{\#}(z) \leq K$. This contradicts (34).

Thus, *h* is of infinite order. Hence, by Lemma 2.10, there exist two distinct zeros *α* and *β* of *h* which are not 0 such that $|α - β| < 1$ and

(35)
$$
\sup_{\overline{\Delta}(0,1)} F_{h,\alpha,\beta}^{\#}(z) > K + 2.
$$

Since $h_n \stackrel{\chi}{\to} h$ on **C**, there exist points $\alpha_n \to \alpha$ and $\beta_n \to \beta$ such that $h_n(\alpha_n) =$ $h_n(\beta_n) = 0$, and by (35), for sufficiently large *n*,

(36)
$$
\sup_{\overline{\Delta}(0,1)} F_{h_n,\alpha_n,\beta_n}^{\#}(z) > K + 1.
$$

Now set

(37)
$$
\hat{a}_n = \frac{a_n + b_n}{2} + (a_n - b_n)\alpha_n, \quad \hat{b}_n = \frac{a_n + b_n}{2} + (a_n - b_n)\beta_n.
$$

Then \hat{a}_n and \hat{b}_n are two distinct zeros of f_n by the definition of h_n . Since $\tau_n \to 0$ and $\alpha_n \to \alpha$, we have

$$
|\hat{a}_n - z_0| \le \left| \frac{a_n + b_n}{2} - z_0 \right| + |a_n - b_n||\alpha_n| = \delta - \left(\frac{1}{\tau_n} - |\alpha_n| \right)|a_n - b_n| < \delta
$$

for sufficiently large *n*. Thus $\hat{a}_n \in \Delta(z_0, \delta)$. Similarly, $\hat{b}_n \in \Delta(z_0, \delta)$.

Further, as $F_{f_n,\hat{a}_n,\hat{b}_n}(z) \equiv F_{h_n,\alpha_n,\beta_n}(z)$, we get by (36) that

$$
\sup_{\overline{\Delta}(0,1)} F^{\#}_{f_n,\hat{a}_n,\hat{b}_n}(z) > K + 1.
$$

Thus $(\hat{a}_n, \hat{b}_n) \in E_n$ by (30), and hence $\tau(a_n, b_n) \leq \tau(\hat{a}_n, \hat{b}_n)$ by (32). However, by (31) and (37), we have

(38)
\n
$$
\frac{\tau(\hat{a}_n, \hat{b}_n)}{\tau(a_n, b_n)} = \frac{\delta - \left| \frac{a_n + b_n}{2} - z_0 \right|}{\delta - \left| \frac{a_n + b_n}{2} - z_0 + \frac{\alpha_n + \beta_n}{2} (a_n - b_n) \right|} | \alpha_n - \beta_n |
$$
\n
$$
\leq \frac{\delta - \left| \frac{a_n + b_n}{2} - z_0 \right|}{\delta - \left| \frac{a_n + b_n}{2} - z_0 \right| - \left| \frac{\alpha_n + \beta_n}{2} \right| | a_n - b_n |} | \alpha_n - \beta_n |
$$
\n
$$
= \frac{|\alpha_n - \beta_n|}{1 - \left| \frac{\alpha_n + \beta_n}{2} \right| \tau_n} \to |\alpha - \beta| < 1,
$$

so that for sufficiently large $n, \tau(\hat{a}_n, \hat{b}_n) < \tau(a_n, b_n)$. This contradicts that $\tau(a_n, b_n) \le$ $\tau(\hat{a}_n, \hat{b}_n)$.

Thus no subsequence of $\{h_n\}$ is normal on **C**. Now let *H* be the set of points at which ${h_n}$ is not normal. Then *H* is non-empty.

Suppose first that for every $\zeta_0 \in H$ and every subsequence $\{h_{n_j}\}\$ of $\{h_n\}$ which has no subsequence normal at ζ_0 , there exist $\eta > 0$ and $J \in \mathbb{N}$ such that h_{n_j} for $j > J$ has at most one single (simple or multiple) pole in $\Delta(\zeta_0, \eta)$.

Then by an argument similar to that in Case 1, $\{h_n\}$ is quasinormal of order 1 on **C**, and further, there exists a subsequence of $\{h_n\}$, which we continue to call $\{h_n\}$, and a point $\zeta_0^* \in H$ such that $h_n(z) \stackrel{\chi}{\to} z - \zeta_0^*$ on $\mathbb{C} \setminus {\zeta_0^*}$. But, this contradicts $h_n(\pm 1/2) = 0.$

Thus there exist $\zeta_0^* \in H$ and a subsequence $\{h_{n_j}\}\$ of $\{h_n\}$ which has no subsequence normal at ζ_0^{**} such that for every $\eta > 0$, there exists $J \in \mathbb{N}$ such that h_{n_j} for $j > J$ has at least two distinct poles in $\Delta(\zeta_0^{**}, \eta)$. We rewrite the subsequence $\{h_{n_j}\}$ by $\{h_n\}$.

Then by Lemma 2.8, there exists a subsequence of $\{h_n\}$, which we continue to call $\{h_n\}$, such that each h_n has at least two distinct zeros a_n^* and b_n^* tending to ζ_0^{**} as $n \to \infty$ such that

(39)
$$
\sup_{\overline{\Delta}(0,1)} F^{\#}_{h_n,a_n^*,b_n^*}(z) > K + 1.
$$

Now let

$$
A_n = \frac{a_n + b_n}{2} + (a_n - b_n)a_n^*, \quad B_n = \frac{a_n + b_n}{2} + (a_n - b_n)b_n^*.
$$

Then as showed above, A_n and B_n are two distinct zeros of f_n in $\Delta(z_0, \delta)$, and by (39) with the fact $F_{f_n, A_n, B_n}(z) \equiv F_{h_n, a_n^*, b_n^*}(z)$,

$$
\sup_{\overline{\Delta}(0,1)} F_{f_n, A_n, B_n}^{\#}(z) > K + 1.
$$

It follows that $(A_n, B_n) \in E_n$ and hence $\tau(a_n, b_n) \leq \tau(A_n, B_n)$ by (32). However, an argument similar to (38) yields that $\tau(A_n, B_n) < \tau(a_n, b_n)$ for sufficiently large *n*, which contradicts that $\tau(a_n, b_n) \leq \tau(A_n, B_n)$.

The proof of Theorem 1.3 is completed.

4. Proof of Theorem 1.2

As *a/b* is a positive integer and *a, b* are distinct and nonzero, we may assume that ${a, b} = {k + 1, 1}$, where *k* is a positive integer.

Suppose that there is a transcendental meromorphic function f in $\mathcal{F}_{k+1,1}(\mathbf{C})$. By Theorem A, the function *f* is of infinite order.

Thus by Lemma 2.9, there exist points $z_n \to \infty$ and positive numbers $\varepsilon_n \to 0$ such that

(40)
$$
A(z_n, \varepsilon_n; f) = \frac{1}{\pi} \iint_{\overline{\Delta}(z_n, \varepsilon_n)} (f^{\#}(z))^2 d\sigma \to \infty.
$$

It follows that there exist $w_n \in \overline{\Delta}(z_n, \varepsilon_n)$, $w_n \to \infty$, such that $f^{\#}(w_n) \to \infty$, and hence by Marty's theorem, no subsequence of $\{f_n\}$ is normal at 0, where $f_n(z)$ $f(w_n + z)$.

Since $f \in \mathcal{F}_{k+1,1}(\mathbf{C})$, we see that $\{f_n\} \subset \mathcal{F}_{k+1,1}(\mathbf{C})$. Thus by Theorem 1.3, ${f_n}$ is quasi-normal of order 1 on **C**. Since no subsequence of ${f_n}$ is normal at 0, ${f_n}$ is normal on \mathbb{C}^* . Further, by the proof of Theorem 1.3, only the Case 1 can occur. It follows that there exist $\delta > 0$ and $N \in \mathbb{N}$ such that f_n for $n > N$ has at most one single (simple or multiple) pole in $\Delta(0,\delta)$. So by Lemma 2.7(II), there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, such that on some neighborhood $\overline{\Delta}(0, \delta_0)$ of 0, each f_n takes each value $a \in \overline{\mathbf{C}}$ at most $k+1$ times, counting multiplicity. Thus $A(z_n, \varepsilon_n; f) \leq A(0, \delta_0; f_n) \leq k+1$. This contradicts (40).

The proof of Theorem 1.2 is completed.

Acknowledgement. The authors are grateful to the referee for his/her valuable suggestions and comments, which help a lot in improving the paper.

References

- [1] BANK, S., and I. LAINE: On the oscillation theory of $f'' + Af = 0$ where A is entire. Trans. Amer. Math. Soc. 273, 1982, 351–363.
- [2] Chang, J. M., and Y. F. Wang: Shared values, Picard values and vormality. Tohoku Math. J. 63, 2011, 149–162.
- [3] Chuang, C. T.: Normal families of meromorphic functions. World Scientific, 1993.
- [4] Gu, Y. X.: A criterion for normality of families of meromorphic functions. Sci. Sinica, special issue 1 on Math., 1979, 267–274 (in Chinese).
- [5] Hayman, W. K.: Meromorphic functions. Clarendon Press, Oxford, 1964.
- [6] Laine, I.: Nevanlinna theory and complex differential equations. de Gruyter Stud. Math. 15, Walter de Gruyter, Berlin, 1993.
- [7] Nevo, S., X. C. Pang, and L. Zalcman: Quasinormality and meromorphic functions with multiple zeros. - J. Anal. Math. 101, 2007, 1–23.
- [8] Pang, X. C., and L. Zalcman: Normal families and shared values. Bull. London Math. Soc. 32, 2000, 325–331.
- [9] SCHIFF, J.: Normal families. Springer-Verlag, Berlin, 1993.
- [10] Yang, L.: Value distribution theory. Springer-Verlag, Berlin, 1993.

Received 9 September 2011 *•* First revised received 25 January 2012 *•* Second revised received 11 September 2012 *•* Accepted 12 December 2012