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Abstract. We continue our previous study on the Bank–Laine type functions: meromorphic
functions f that satisfy f(z) = 0 ⇐⇒ f ′(z) ∈ {a, b} on the plane, where a, b are two distinct nonzero
values. Using quasi-normality, we prove that there is no transcendental meromorphic function with
this property when the quotient a/b is a positive integer. Moreover, we prove a quasi-normal
criterion for families of such functions. This completes our previous results.

1. Introduction

A Bank–Laine function f is an entire function that has the following property:
f(z) = 0 =⇒ f ′(z) ∈ {−1, 1}. The Bank–Laine functions arise in connection with
solutions of second order homogeneous linear differential equations [1], (see also [6]).
In our previous paper [2], we studied the meromorphic functions f on the plane
C that satisfy f(z) = 0 ⇐⇒ f ′(z) ∈ {a, b}, where a, b are two distinct nonzero
values. We call such functions Bank–Laine type functions. We constructed there
some transcendental meromorphic functions with this property when the quotient
a/b is a negative rational number, and proved the following results.

Theorem 1.1. For two distinct nonzero values a and b that satisfy a/b ∈ N
(positive integers), there is no transcendental meromorphic function f of finite order
that satisfies f(z) = 0 ⇐⇒ f ′(z) ∈ {a, b}.

A rational function f satisfying f(z) = 0 ⇐⇒ f ′(z) ∈ {a, b} exists if and only
if a/b or b/a is an integer. In fact, all such rational functions have been classified
completely [2, Lemma 10, Lemma 11].

It remains a question: whether there are transcendental meromorphic functions
f of infinite order that satisfy f(z) = 0 ⇐⇒ f ′(z) ∈ {a, b} for a/b ∈ N. In this paper
we answer this question completely by making use of quasi-normality.

Theorem 1.2. For two distinct nonzero values a and b that satisfy a/b ∈ N,
there is no transcendental meromorphic function f that satisfies f(z) = 0⇐⇒ f ′(z) ∈
{a, b}.

In order to prove Theorem 1.2, we first study the normality or quasi-normality of
the family Fa,b(D) which consists of all meromorphic functions f in a plane domain
D ⊂ C that satisfy f(z) = 0 ⇐⇒ f ′(z) ∈ {a, b}.
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The idea of proving the results in function theory by making use of quasi-
normality first appears in [7] where it was proved that the derivative of a transcen-
dental meromorphic function with finitely many simple zeros takes every non-zero
values infinitely often.

Recall [3, 9] that a family F of meromorphic functions defined in a plane domain
D ⊂ C is said to be normal (quasi-normal) on D, in the sense of Montel, if each
sequence {fn} ⊂ F contains a subsequence which converges spherically locally uni-
formly in D (minus a set E that has no accumulation point in D). The set E may
depend on the subsequence. If there exists an integer ν ∈ N such that the set E al-
ways can be chosen to contain at most ν points, then F is said to be quasi-normal of
order ν. Also, we say that the family F is normal (quasi-normal) at a point z0 ∈ D,
if there exists a neighborhood U ⊂ D of z0 such that F is normal (quasi-normal) on
U . An useful fact, which can be proved by making use of the diagonal method, is
that F is normal (quasi-normal) on D if and only if F is normal (quasi-normal) at
every point in D. Another fact is that if F is not quasi-normal of order ν in D, then
there exist a sequence {fn} ⊂ F and ν + 1 points z1, z2, · · · , zν+1 ∈ D such that no
subsequence of {fn} is normal at each zj.

The family Fa,b(D) is not quasi-normal in general as showed by the following
example.

Example 1. Let for each n ∈ N

fn(z) =
sin(nz)

n
=

einz − e−inz

2in
, (i =

√
−1).

Then we have fn(z) = 0 ⇐⇒ f ′
n(z) ∈ {−1, 1}. However, it is not difficult to see that

no subsequence of {fn} can be normal at every point on the real axis. In fact, for
x0 ∈ R, fn(x0) → 0 while

∣∣∣fn (x0 − i√
n

)∣∣∣ ≥ (e
√
n − e−

√
n)/(2n) → ∞. Hence each

subsequence of {fn} fails to be equicontinuous in any neighborhood of x0, and so
F−1,1(C) is not quasi-normal.

However, we prove in this paper the following quasi-normality criterion.

Theorem 1.3. For two distinct nonzero values a and b that satisfy a/b ∈ N, the
family Fa,b(D) is quasi-normal on D of order 1.

We remark that if | arg a/b| ≤ π/3 and neither a/b nor b/a is an integer, then the
family Fa,b(D) is normal in D. This can be seen from [2]. We do not know whether
the number π/3 can be replaced by a larger one.

The following example shows that the conclusion of Theorem 1.3 is sharp.

Example 2. Let k ∈ N and for each n ∈ N

fn(z) = z − 1

nzk
.

Then {fn} is quasi-normal of order 1 on C, since {fn} converges locally uniformly to
z on the punctured plane C \ {0} and no subsequence is normal at 0. We see that
fn(z) = 0 ⇐⇒ f ′

n(z) = k + 1 and f ′
n(z) ̸= 1. Hence {fn} ⊂ Fk+1,1(C).

Our proof of Theorem 1.3 is inspired by [7, Theorem 1]. The structure of the
present paper is in certain sense similar to [7], and this can be seen by comparing
our Lemmas 2.4, 2.7 and 2.8 with Lemmas 4, 7 and 8 in [7], respectively. However,
there are many different points and the proofs are different to a large extent.
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2. Notations and preliminary results

Throughout in this paper, we denote by C the complex plane, by C∗ the punc-
tured complex plane C\{0}, by ∆(z0, r) the open disk {z : |z−z0| < r}, by ∆◦(z0, r)
the punctured disk ∆(z0, r)\{z0} = {z : 0 < |z− z0| < r}, and by ∆(z0, r) the closed
disk {z : |z − z0| ≤ r}, where z0 ∈ C and r > 0.

In Lemmas 2.8, 2.10 and their proofs, and in the proof of Theorem 1.3, we shall
use frequently the following auxiliary function

Ff,a,b(z) :=
f
(
a+b
2

+ (a− b)z
)

a− b

for a function f and two distinct constants a and b.
For a sequence {fn} of functions, we say that they are locally uniformly holo-

morphic (meromorphic) on D if for each compact subset E ⊂ D, there exists N ∈ N
such that fn for every n > N is holomorphic (meromorphic) on E.

Also, we write fn
χ→ f on D to indicate that the sequence {fn} converges spher-

ically locally uniformly to f on D, and fn → f on D if the convergence is already in
Euclidean metric.

Let f be a function meromorphic on D. Then for each closed disk ∆(z0, r) ⊂ D,
define

A(z0, r; f) :=
1

π

¨
∆(z0,r)

[f#(z)]2 dσ.

Here, as usual, f#(z) = |f ′(z)|/(1+ |f(z)|2) is the spherical derivative. An important
fact is that A(z0, r; , f) is the normalized spherical area of the image of ∆(z0, r) under
f [5].

We also use n(r, f) to denote the number of poles of f on ∆(0, r), counting
multiplicity. Similarly, n(r, 1/f) denotes the number of zeros of f on ∆(0, r).

For a meromorphic function f on C, its Ahlfors–Shimizu characteristic [5, 10] is
defined by

T0(r, f) =

ˆ r

0

A(0, t; f)

t
dt,

and the order of f is defined by

ρ(f) = lim sup
r→∞

log+ T0(r, f)

log r
.

Thus, each meromorphic function with bounded spherical derivative has order at
most 2.

To prove our results, we require some preliminary results.

Lemma 2.1. [4] Let F = {f} be a family of meromorphic functions on D such
that f(z) ̸= 0 and f ′(z) ̸= 1. Then F is normal on D.

Lemma 2.2. [8, Lemma 2] Let F be a family of meromorphic functions in a
domain D, and suppose that there exists A ≥ 1 such that |f ′(z)| ≤ A whenever
f(z) = 0 and f ∈ F . Then if F is not normal at z0, there exist,

(a) points zn ∈ D, zn → z0;
(b) functions fn ∈ F ; and
(c) positive numbers ρn → 0
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such that gn(ζ) := ρ−1
n fn(zn + ρnζ)

χ→ g(ζ) on C, where g satisfies g#(ζ) ≤ g#(0) =
A+ 1, and hence is nonconstant and of finite order.

The following lemma is a direct corollary to the maximum modulus principle.

Lemma 2.3. Let z0 be a point in D and {fn} be a sequence of meromorphic
functions on D such that fn

χ→ f on D \ {z0}, where f may be identically ∞.
(a) If fn are holomorphic on D and f ̸≡ ∞, then fn → f on D, and f is

holomorphic on D;
(b) If fn are zero-free on D and f ̸≡ 0, then fn

χ→ f on D, and f ̸= 0 on D;
(c) If fn are holomorphic and zero-free on D, then fn → f on D.

Proof. Since fn
χ→ f on D \ {z0}, f is also meromorphic on D \ {z0} or f ≡ ∞

[9, Corollary 3.1.4].
Now we turn to prove (a). Since fn is holomorphic, we get fn → f on D\{z0} [9,

Proposition 3.1.6]. Since f ̸≡ ∞, f is also holomorphic on D\{z0} [9, Corollary 3.1.5].
Fix a bounded subdomain U of D such that z0 ∈ U and U ⊂ D. Thus for arbitrary
given number ε > 0, there exists N ∈ N such that for n > N , |fn(z)− f(z)| < ε on
the boundary ∂U of U . Hence for m,n > N , |fm(z)−fn(z)| < 2ε on ∂U . Since fn are
holomorphic on D, by the maximum modulus principle, we get |fm(z)−fn(z)| < 2ε on
the domain U . Thus, by Cauchy’s criterion, {fn} converges uniformly to a function
ϕ which is holomorphic on U . Uniqueness of the limit function shows that f ≡ ϕ
on U \ {z0}. This shows that f can be extended holomorphicly to z0 and hence f is
holomorphic on D, and fn → f on D.

Applying (a) to the sequence {1/fn} and 1/f , we prove (b). The (c) is a direct
corollary to (a) and (b). �

Lemma 2.4. [2, Theorem 4(ii)] Let k be a positive integer. Then the noncon-
stant meromorphic functions f ∈ Fk+1,1(C) which are of finite order must be rational
functions with the form

(1) f(z) = z − z0 −
d

(z − z0)k
,

where d and z0 are constants with d ̸= 0.

Lemma 2.5. Let k be a positive integer. If the rational function f defined by
(1) has two zeros ±1/2, then there exists a K = K(k) > k + 1 which only depends
on k such that

sup
z∈C

f#(z) ≤ K.

Proof. Since f(±1/2) = 0, we have

(2)
(
1

2
− z0

)k+1

=

(
−1

2
− z0

)k+1

= d.

Since d ̸= 0, we have z0 ̸= ±1/2. Let c = (1
2
− z0)/(−1

2
− z0). Then c ̸= 1 and by (2),

ck+1 = 1, so that

(3) c ∈
{
cj = exp

(
2jπ

k + 1
i

)
: j = 1, 2, · · · , k

}
.
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By c = (1
2
− z0)/(−1

2
− z0), we get z0 =

1+c
2(1−c)

, and hence by (2),

d =

(
−1

2
− z0

)k+1

=
(−1)k+1

(1− c)k+1
.

Thus by (1) and (3), f ∈ {fj : j = 1, 2, · · · , k}, where

(4) fj(z) = z − 1 + cj
2(1− cj)

+
(−1)k

(1− cj)k+1
(
z − 1+cj

2(1−cj)

)k .
Since fj(z) → ∞ and f ′

j(z) → 1 as z → ∞, we have f#
j (z) → 0 as z → ∞. Hence,

the conclusion follows from the continuity of each f#
j (z) on C. �

Lemma 2.6. Let k be a positive integer. Then the sub-family F of Fk+1,1(D)
which consists of holomorphic functions is normal on D.

Proof. Suppose that F is not normal at some point z0 ∈ D. Then by Lemma 2.2,
there exist functions {fn} ⊂ F , points zn → z0 and positive numbers ρn → 0 such
that gn(ζ) = ρ−1

n fn(zn + ρnζ) → g(ζ) on C, where g is a nonconstant entire function
of finite order and satisfy g#(ζ) ≤ g#(0) = k + 2.

We claim that g(ζ) = 0 ⇐⇒ g′(ζ) ∈ {k + 1, 1}.
To prove g(ζ) = 0 =⇒ g′(ζ) ∈ {k + 1, 1}, let ζ0 be a zero of g. Then as g ̸≡ 0,

by Hurwitz’s theorem, there exist points ζn → ζ0 such that gn(ζn) = 0, and hence
fn(zn + ρnζn) = 0. Since fn ∈ Fk+1,1(D), we get f ′

n(zn + ρnζn) ∈ {k + 1, 1}, so that
g′n(ζn) ∈ {k + 1, 1}. Since g′n → g′ on C, we get g′(ζ0) ∈ {k + 1, 1}. This proves
g(ζ) = 0 =⇒ g′(ζ) ∈ {k + 1, 1}.

Now we turn to prove g′(ζ) ∈ {k+1, 1} =⇒ g(ζ) = 0. let ζ0 be a point such that
g′(ζ0) ∈ {k + 1, 1}. Suppose first that g′(ζ0) = k + 1. Since g#(0) = k + 2, we have
g′(ζ) ̸≡ k+1. Thus by g′n(ζ)− (k+1) → g′(ζ)− (k+1) and Hurwitz’s theorem, there
exist points ζn → ζ0 such that g′n(ζn) = k+1, and hence f ′

n(zn+ρnζn) = k+1. Since
fn ∈ Fk+1,1(D), we get fn(zn + ρnζn) = 0, so that gn(ζn) = 0. Thus by gn → g, we
get g(ζ0) = 0. A similar argument yields that for g′(ζ0) = 1, we also have g(ζ0) = 0.
This proves g′(ζ) ∈ {k + 1, 1} =⇒ g(ζ) = 0.

Hence the claim is proved. However, by Lemma 2.4, such an entire function g
must be a constant. This contradiction shows that F is normal on D. �

Lemma 2.7. Let k be a positive integer, and {fn} be a sequence in Fk+1,1(D).
Let z0 ∈ D. Suppose that

(i) no subsequence of {fn} is normal at z0;
(ii) there exists δ > 0 such that fn for sufficiently large n has at most one single

(simple or multiple) pole in ∆(z0, δ); and
(iii) {fn} is normal on D \ {z0}.

Then there exists a subsequence of {fn}, which we continue to call {fn}, such that

(I) fn(z)
χ→ z − z0 on D \ {z0};

(II) there exists δ0 > 0 such that every fn takes each value w ∈ C at most k + 1
times on ∆(z0, δ0), counting multiplicity.

Proof. Say z0 = 0. Since {fn} is not normal at z0 = 0, by Lemma 2.2, there exist
a subsequence of {fn} which we continue to call {fn}, points zn → 0 and positive
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numbers ρn → 0 such that gn(ζ) = ρ−1
n fn(zn + ρnζ)

χ→ g(ζ) on C, where g is a
nonconstant meromorphic function of finite order and satisfies g#(ζ) ≤ g#(0) = k+2.
Further, by an argument similar as showed in the proof of Lemma 2.6, we have
g(ζ) = 0 ⇐⇒ g′(ζ) ∈ {k + 1, 1}. Hence by Lemma 2.4,

(5) g(ζ) = ζ − ζ0 −
d

(ζ − ζ0)k
=

(ζ − ζ0)
k+1 − d

(ζ − ζ0)k

with d, ζ0 ∈ C and d ̸= 0. Let ζ
(j)
0 , j = 0, 1, · · · , k, be k + 1 distinct zeros of

g. Then by (5),
∏k

j=0(ζ − ζ
(j)
0 ) = P (ζ) := (ζ − ζ0)

k+1 − d, and hence for a given
j0 ∈ {0, 1, · · · , k},

∏
j ̸=j0

(ζ
(j0)
0 − ζ

(j)
0 ) = P ′(ζ

(j0)
0 ) = (k + 1)(ζ

(j0)
0 − ζ0)

k. Thus

(6)
∏

j ̸=j0
(ζ

(j0)
0 − ζ

(j)
0 )

(ζ
(j0)
0 − ζ0)k

= k + 1

for a given j0 ∈ {0, 1, · · · , k}.
Since gn

χ→ g on C, gn has a pole ζn,∞ with ζn,∞ → ζ0 and k + 1 zeros ζ
(j)
n,0,

(j = 0, 1, · · · , k), with ζ
(j)
n,0 → ζ

(j)
0 . Thus fn has a pole zn,∞ = zn + ρnζn,∞ → 0 and

k + 1 zeros z
(j)
n,0 = zn + ρnζ

(j)
n,0 → 0, (j = 0, 1, · · · , k).

By the assumption (ii), the multiplicity of the pole zn,∞ is k (for sufficiently large
n). Let

(7) f ∗
n(z) =

fn(z)

Rn(z)
, where Rn(z) =

∏k
j=0(z − z

(j)
n,0)

(z − zn,∞)k
.

Then by (ii), f ∗
n for sufficiently large n is holomorphic in ∆(0, δ). Let g∗n(ζ) =

f ∗
n(zn + ρnζ). Then {g∗n} are locally uniformly holomorphic on C. Since

ρ−1
n Rn(zn + ρnζ) =

∏k
j=0(ζ − ζ

(j)
n,0)

(ζ − ζn,∞)k
χ→ g(ζ)

on C, and ρ−1
n Rn(zn + ρnζ)g

∗
n(ζ) = gn(ζ)

χ→ g(ζ), we see that {g∗n} are locally
uniformly zero-free on C, i.e., for each r > 0, there exists N ∈ N such that for
n > N , g∗n(ζ) ̸= 0 on ∆(0, r). We also see that

(8) g∗n(ζ) = f ∗
n(zn + ρnζ) → 1

on C \ {ζ0, ζ(j)0 : 0 ≤ j ≤ k}, and hence on C by Lemma 2.3(c). In particular,
f ∗
n(zn) ̸= 0.

We claim that there exists η, 0 < η ≤ δ, such that f ∗
n for sufficiently large n has

no zero in ∆(0, η).
Suppose not. Then there exist a subsequence of {f ∗

n}, which we continue to call
{f ∗

n}, and a sequence {zn,0} of points satisfying zn,0 → 0 such that f ∗
n(zn,0) = 0.

Since f ∗
n(zn) ̸= 0, we have zn,0 ̸= zn. We may say that zn,0 is the nearest zero of f ∗

n

away from zn, so that f ∗
n(z) ̸= 0 on ∆(zn, |zn,0 − zn|). By (8), we have

(9) ζn,0 =
zn,0 − zn

ρn
→ ∞.

Set

(10) f̂ ∗
n(z) = f ∗

n(zn + (zn,0 − zn)z).
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Then, {f̂ ∗
n} are locally uniformly holomorphic on C, f̂ ∗

n(z) ̸= 0 on ∆(0, 1), and
f̂ ∗
n(1) = 0. Further, let

(11) f̂n(z) =
fn(zn + (zn,0 − zn)z)

zn,0 − zn
.

Then f̂n(z) = 0 ⇐⇒ f̂ ′
n(z) ∈ {k + 1, 1}, since fn(z) = 0 ⇐⇒ f ′

n(z) ∈ {k + 1, 1}.
By (7), (10) and (11), we see that f̂n(z) = R̂n(z)f̂

∗
n(z), where

(12) R̂n(z) =
Rn(zn + (zn,0 − zn)z)

zn,0 − zn
=

∏k
j=0(z −

ρn
zn,0−zn

ζ
(j)
n,0)

(z − ρn
zn,0−zn

ζn,∞)k
.

Hence by (9) and since {f̂ ∗
n} are locally uniformly holomorphic on C, we see that

{f̂n} are locally uniformly holomorphic on C∗. By (9) and (12), we also see that
R̂n(z) → z on C∗.

Thus, since f̂n(z) = 0 ⇐⇒ f̂ ′
n(z) ∈ {k + 1, 1} and {f̂n} are locally uniformly

holomorphic on C∗, by Lemma 2.6, {f̂n} and hence {f̂ ∗
n} is normal on C∗. Since

f̂ ∗
n(1) = 0, by taking a subsequence and renumbering, we may assume that f̂ ∗

n →
f̂ ∗ on C∗ with f̂ ∗(1) = 0. As {f̂ ∗

n} are locally uniformly holomorphic on C, by
Lemma 2.3(a), we get f̂ ∗

n → f̂ ∗ on C and f̂ ∗ is an entire function. Hence, by
f̂ ∗
n(0) = f ∗

n(zn) = g∗n(0) → 1, we get f̂ ∗(0) = 1. Thus (zf̂ ∗(z))′ − 1 ̸≡ 0. For
otherwise, we would have zf̂ ∗(z) = z+ c for some constant c, which contradicts that
f̂ ∗(1) = 0 and f̂ ∗(0) = 1.

We claim that f̂ ′
n(z) ̸= 1 on ∆(0, 1) for sufficiently large n. Suppose not. Then

there exist a subsequence of {f̂n}, which we continue to call {f̂n}, and a sequence
{z∗n} of points contained in ∆(0, 1) such that f̂ ′

n(z
∗
n) = 1. Then, by f̂n(z) = 0 ⇐⇒

f̂ ′
n(z) ∈ {k + 1, 1}, we get f̂n(z

∗
n) = 0. Since f̂ ∗

n(z) ̸= 0 on ∆(0, 1), we get from
f̂n(z) = R̂n(z)f̂

∗
n(z) that R̂n(z

∗
n) = 0. Thus by (12),

z∗n =
ρn

zn,0 − zn
ζ
(j0)
n,0 → 0

for some j0 ∈ {0, 1, · · · , k}. Hence f̂ ∗
n(z

∗
n) → f̂ ∗(0) = 1 and by (6)

R̂′
n(z

∗
n) =

∏
j ̸=j0

(
ζ
(j0)
n,0 − ζ

(j)
n,0

)
(
ζ
(j0)
n,0 − ζn,∞

)k →

∏
j ̸=j0

(
ζ
(j0)
0 − ζ

(j)
0

)
(
ζ
(j0)
0 − ζ0

)k = k + 1.

Thus by f̂n(z) = R̂n(z)f̂
∗
n(z), we get a contradiction:

1 = f̂ ′
n(z

∗
n) = R̂′

n(z
∗
n)f̂

∗
n(z

∗
n) + R̂n(z

∗
n) f̂

∗
n

′
(z∗n) = R̂′

n(z
∗
n)f̂

∗
n(z

∗
n) → k + 1.

This contradiction shows that f̂ ′
n(z) ̸= 1 on ∆(0, 1).

Since f̂n(z) = R̂n(z)f̂
∗
n(z) → zf̂ ∗(z) on C∗, we get f̂ ′

n(z)− 1 → (zf̂ ∗(z))′ − 1 on
C∗. Since (zf̂ ∗(z))′ − 1 ̸≡ 0 and f̂ ′

n(z)− 1 ̸= 0 on ∆(0, 1), by Lemma 2.3(b), we have
f̂ ′
n(z)− 1

χ→ (zf̂ ∗(z))′ − 1 on ∆(0, 1), and (zf̂ ∗(z))′ − 1 ̸= 0 on ∆(0, 1). However, we
have (zf̂ ∗(z))′

∣∣∣
z=0

= f̂ ∗(0) = 1. This is a contradiction.
Thus f ∗

n for sufficiently large n is zero-free and holomorphic in ∆(0, η). Since
{f ∗

n} is normal on D\{0}, it follows from Lemma 2.3(c) that {f ∗
n} is normal at 0 and
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hence is normal on D. Further, as f ∗
n(zn) = g∗n(0) → 1, there exists a subsequence of

{f ∗
n}, which we continue to call {f ∗

n}, such that f ∗
n

χ→ f ∗ on D with f ∗(0) = 1.
Now we claim that there exists µ > 0 such that f ′

n(z) ̸= 1 in ∆(0, µ) for sufficiently
large n. Suppose not. Then there exist a subsequence of {fn}, which we continue to
call {fn}, and a sequence {wn} of points satisfying wn → 0 such that f ′

n(wn) = 1.
Then by the condition fn(z) = 0 ⇐⇒ f ′

n(z) ∈ {k + 1, 1}, we see that fn(wn) = 0
and hence Rn(wn) = 0 since fn = Rnf

∗
n and f ∗

n is zero-free in ∆(0, η). Thus by (7),
wn = z

(j0)
n,0 for some j0 ∈ {0, 1, · · · , k}. Hence we have f ∗

n(wn) → f ∗(0) = 1, and
by (6)

R′
n(wn) = R′

n(z
(j0)
n,0 ) =

∏
j ̸=j0

(z
(j0)
n,0 − z

(j)
n,0)

(z
(j0)
n,0 − zn,∞)k

=

∏
j ̸=j0

(
ζ
(j0)
n,0 − ζ

(j)
n,0

)
(
ζ
(j0)
n,0 − ζn,∞

)k →

∏
j ̸=j0

(
ζ
(j0)
0 − ζ

(j)
0

)
(
ζ
(j0)
0 − ζ0

)k = k + 1.

(13)

Thus we get by fn = Rnf
∗
n the following contradiction:

1 = f ′
n(wn) = R′

n(wn)f
∗
n(wn) +Rn(wn) f

∗
n
′ (wn) = R′

n(wn)f
∗
n(wn) → k + 1.

This proved the claim that for some µ > 0, f ′
n(z) ̸= 1 in ∆(0, µ) for sufficiently large

n.
Next we prove that (zf ∗(z))′ ≡ 1. Suppose not. Since f ∗

n for sufficiently large n
is zero-free and holomorphic in ∆(0, η), we have by Lemma 2.3(a) that f ∗

n → f ∗ on
∆(0, η) with f ∗(0) = 1. It follows that fn(z) = Rn(z)f

∗
n(z) → zf ∗(z) on ∆◦(0, η).

Thus f ′
n(z) → (zf ∗(z))′ and hence f ′

n(z) − 1 → (zf ∗(z))′ − 1 on ∆◦(0, η). Since
f ′
n ̸= 1 in ∆(0, µ), we may say that f ′

n − 1 ̸= 0 on ∆(0, η). Thus by Lemma 2.3(b),
we get f ′

n(z)− 1
χ→ (zf ∗(z))′ − 1 on ∆(0, η), and (zf ∗(z))′ − 1 ̸= 0 on ∆(0, η). This

contradicts that (zf ∗(z))′|z=0 = f ∗(0) = 1.
Thus (zf ∗(z))′ ≡ 1 and hence zf ∗(z) = z+c for some constant c. Since f ∗(0) = 1,

we get c = 0, and hence f ∗(z) ≡ 1. Thus, by Rn(z) → z in C∗ and f ∗
n

χ→ 1 in D, we
get fn(z) = Rn(z)f

∗
n(z)

χ→ z in D\{0}. The assertion (I) for the special case z0 = 0 is
proved. In general case, one can consider the sequence {Fn}, where Fn(z) = fn(z0+z)

and z ∈ U = {z − z0 : z ∈ D}, and obtain that Fn(z)
χ→ z in U \ {0} by the special

case. Then by the fact fn(z) = Fn(z − z0), the assertion (I) follows.
Now we turn to prove the assertion (II). Fix a number δ0 > 0 such that ∆(0, δ0) ⊂

D. Then as fn = Rnf
∗
n and f ∗

n → f ∗ ≡ 1 on ∆(0, δ0), there exists N1 ∈ N such that
for n > N1, fn has exactly one pole with multiplicity k on ∆(0, δ0) ⊂ D and fn ̸= 0,∞
on the circle |z| = δ0. In other words, every fn for n > N1 takes the value ∞ exactly
k times on ∆(0, δ0).

For w ̸= ∞, we consider two cases. Suppose first that |w| ≤ δ0/2. By (I), we
have fn(z)

χ→ z on D\{0}, and hence on the circle |z| = δ0, fn(z) → z, f ′
n(z)−1 → 0

and zf ′
n(z)− fn(z) → 0. Thus there exists N2 ∈ N, N2 ≥ N1, such that for n > N2

and the points z on |z| = δ0, |fn(z)| ≥ 3δ0/4, |f ′
n(z) − 1| ≤ δ0/(16 + 8δ0) and

|zf ′
n(z) − fn(z)| ≤ δ0/(16 + 8δ0). It follows from the argument principle that for
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n > N2, ∣∣∣∣n(δ0, 1

fn − w

)
− n (δ0, fn − w)− 1

∣∣∣∣
=

∣∣∣∣ 1

2πi

ˆ
|z|=δ0

f ′
n(z)

fn(z)− w
dz − 1

2πi

ˆ
|z|=δ0

1

z − w
dz

∣∣∣∣
=

1

2π

∣∣∣∣ˆ
|z|=δ0

zf ′
n(z)− fn(z)− w(f ′

n(z)− 1)

(fn(z)− w)(z − w)
dz

∣∣∣∣
≤ 1

2π

ˆ
|z|=δ0

δ0
16+8δ0

(1 + δ0
2
)

(3
4
δ0 − 1

2
δ0)(δ0 − 1

2
δ0)

|dz| = 1

2
,

and hence n
(
δ0,

1
fn−w

)
−n (δ0, fn − w)−1 = 0 since it is an integer. Thus n

(
δ0,

1
fn−w

)
= n (δ0, fn − w) + 1 = n (δ0, fn) + 1 = k + 1. That is to say, every fn for n > N2

takes each value w satisfying |w| ≤ δ0/2 exactly k + 1 times on ∆(0, δ0) ⊂ D .
Suppose now that |w| ≥ δ0/2. Similar as showed above, we have fn(z) → z,

f ′
n(z) − 1 → 0 and zf ′

n(z) − fn(z) → 0 on the circle |z| = δ0/4. Thus there exists
N3 ∈ N, N3 ≥ N1, such that for n > N3 and the points z on |z| = δ0/4, |fn(z)| ≤
3δ0/8, |f ′

n(z) − 1| ≤ δ0/(16 + 8δ0) and |zf ′
n(z) − fn(z)| ≤ δ0/(16 + 8δ0). It follows

from the argument principle that for n > N3,∣∣∣∣n(δ0
4
,

1

fn − w

)
− n

(
δ0
4
, fn − w

)∣∣∣∣
=

∣∣∣∣∣ 1

2πi

ˆ
|z|= δ0

4

f ′
n(z)

fn(z)− w
dz − 1

2πi

ˆ
|z|= δ0

4

1

z − w
dz

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
ˆ
|z|= δ0

4

zf ′
n(z)− fn(z)− w(f ′

n(z)− 1)

(fn(z)− w)(z − w)
dz

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
ˆ
|z|= δ0

4

1
w
(zf ′

n(z)− fn(z))− (f ′
n(z)− 1)

(w − fn(z))(1− z
w
)

dz

∣∣∣∣∣
≤ 1

2π

ˆ
|z|= δ0

4

δ0
16+8δ0

( 2
δ0
+ 1)

(1
2
δ0 − 3

8
δ0)(1− 1

2
)
|dz| = 1

2
,

and hence n
(

δ0
4
, 1
fn−w

)
= n

(
δ0
4
, fn − w

)
= n

(
δ0
4
, fn
)
≤ n (δ0, fn) = k. That is to

say, every fn for n > N3 takes each value w satisfying |w| ≥ δ0/2 at most k times on
∆(0, δ0/4) ⊂ D.

Thus for n > N = max{N1, N2, N3}, every fn takes each value w ∈ C on
∆(0, δ0/4) at most k + 1 times.

The proof of Lemma 2.7 is completed. �

Lemma 2.8. Let k be a positive integer, and {fn} be a sequence in Fk+1,1(D).
Let z0 ∈ D. Suppose that

(i) no subsequence of {fn} is normal at z0; and
(ii) for every δ > 0, there exists N ∈ N such that fn for n > N has at least two

distinct poles in ∆(z0, δ).
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Then there exist a subsequence of {fn} which we continue to call {fn}, and a sequence
{ηn} of positive numbers satisfying ηn → 0 such that fn has at least two distinct zeros
an and bn in ∆(z0, ηn) such that

(14) sup
∆(0,1)

F#
fn,an,bn

(z) → ∞.

Proof. Say z0 = 0. As showed in the proof of Lemma 2.7, since {fn} is not
normal at 0, there exist a subsequence of {fn} which we continue to call {fn}, points
zn → 0 and positive numbers ρn → 0 such that

(15) gn(ζ) = ρ−1
n fn(zn + ρnζ)

χ→ g(ζ) = ζ − ζ0 −
d

(ζ − ζ0)k
=

(ζ − ζ0)
k+1 − d

(ζ − ζ0)k

on C, where d, ζ0 ∈ C and d ̸= 0.
As showed in the proof of Lemma 2.7, it follows that fn has a pole zn,∞ = zn +

ρnζn,∞ → 0 with ζn,∞ → ζ0 and k + 1 zeros z
(j)
n,0 = zn + ρnζ

(j)
n,0 → 0, (j = 0, 1, · · · , k),

with ζ
(j)
n,0 → ζ

(j)
0 , where ζ

(j)
0 are k+1 distinct zeros of g. Note that, we also have (6).

We claim that g′n(ζ) ̸= 1 locally uniformly on C, i.e., for each r > 0, there exists
N ∈ N such that for n > N , g′n(ζ) ̸= 1 on ∆(0, r). Suppose not, then there exist
r0 > 0, a subsequence of {gn}, which we continue to call {gn}, and a sequence {ζn}
of points contained in ∆(0, r0) such that g′n(ζn) = 1. By taking a subsequence, we
may say ζn → c ∈ ∆(0, r0). By g′n(ζn) = 1, we get f ′

n(zn + ρnζn) = 1, and hence by
the condition, fn(zn + ρnζn) = 0. Thus gn(ζn) = 0 and hence g(c) = 0 by gn

χ→ g, so
that g and hence gn (for sufficiently large n) are holomorphic in a neighborhood of c.
It follows that gn → g and hence g′n → g′ on this neighborhood. Thus by g′n(ζn) = 1,
we get g′(c) = 1. This is a contradiction, since g′(ζ) ̸= 1 on C.

Since gn
χ→ g on C and ζ0 is a pole of g with exact multiplicity k, every gn (for

sufficiently large n) has exactly k poles tending to ζ0.
We claim that the k poles of gn coincide. Suppose not. Then gn has s ≥ 2 distinct

poles ζ
(j)
n,∞, 1 ≤ j ≤ s with multiplicity mj such that

∑s
j=1mj = k and ζ

(j)
n,∞ → ζ0.

By taking subsequence, we may assume that the number s and the multiplicities
mj are all independent of n. Further, as ζ0 is the unique pole of g, the poles of gn
other than ζ

(j)
n,∞, 1 ≤ j ≤ s, if exist, must tend to ∞. Also, the zeros of gn other

than ζ
(j)
n,0, 0 ≤ j ≤ k, if exist, must tend to ∞. It follows that the sequence {g∗n} of

functions defined by

(16) g∗n(ζ) :=

∏s
j=1(ζ − ζ

(j)
n,∞)mj∏k

j=0(ζ − ζ
(j)
n,0)

gn(ζ)

is locally uniformly zero-free and holomorphic on C. Since gn
χ→ g on C, we see from

(16) that

(17) g∗n(ζ) → 1

on C \ {ζ0, ζ(j)0 : 0 ≤ j ≤ k}, and hence on C by Lemma 2.3(c).
By (16), we have

gn(ζ) =

∏k
j=0(ζ − ζ

(j)
n,0)∏s

j=1(ζ − ζ
(j)
n,∞)mj

g∗n(ζ)
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and hence

g′n(ζ) =

(
g∗n(ζ)

∏k
j=0(ζ − ζ

(j)
n,0)
)′

∏s
j=1(ζ − ζ

(j)
n,∞)mj

− g∗n(ζ)
k∏

j=0

(ζ − ζ
(j)
n,0)

∑s
j=1mj

∏
i̸=j(ζ − ζ

(i)
n,∞)∏s

j=1(ζ − ζ
(j)
n,∞)mj+1

,

so that

(18) g′n(ζ)− 1 =
Mn(ζ)∏s

j=1(ζ − ζ
(j)
n,∞)mj+1

,

where

Mn(ζ) =

(
g∗n(ζ)

k∏
j=0

(ζ − ζ
(j)
n,0)

)′ s∏
j=1

(ζ − ζ(j)n,∞)

− g∗n(ζ)
k∏

j=0

(ζ − ζ
(j)
n,0)

s∑
j=1

mj

∏
i̸=j

(ζ − ζ(i)n,∞)−
s∏

j=1

(ζ − ζ(j)n,∞)mj+1.

(19)

Since ζ
(j)
n,0 → ζ

(j)
0 , (0 ≤ j ≤ k) and ζ

(j)
n,∞ → ζ0, (1 ≤ j ≤ s), we see from (17) and (19)

that

Mn(ζ) → (k + 1)(ζ − ζ0)
k+s − [(ζ − ζ0)

k+1 − d] · k(ζ − ζ0)
s−1 − (ζ − ζ0)

k+s

= kd(ζ − ζ0)
s−1

on C. Thus, by Hurwitz’s theorem, Mn has s − 1 ≥ 1 zeros (counting multiplicity)
tending to ζ0.

On the other hand, we can see from (19) that for each 1 ≤ ν ≤ s,

Mn(ζ
(ν)
n,∞) = −g∗n(ζ

(ν)
n,∞)

k∏
j=0

(ζ(ν)n,∞ − ζ
(j)
n,0) ·mν

∏
i̸=ν

(ζ(ν)n,∞ − ζ(i)n,∞) ̸= 0.

Hence, the s− 1 ≥ 1 zeros of Mn are different from the points {ζ(j)n,∞ : 1 ≤ j ≤ s}, so
that by (18), g′n(ζ)− 1 has s− 1 ≥ 1 zeros tending to ζ0. This contradicts the above
claim that g′n(ζ) ̸= 1 locally uniformly on C.

This contradiction shows that the k poles of gn coincide, and hence ζn,∞ is a pole
of gn with exact multiplicity k. Thus by (15), zn,∞ = zn+ ρnζn,∞ is a pole of fn with
exact multiplicity k.

Now let

Rn(z) =

∏k
j=0(z − z

(j)
n,0)

(z − zn,∞)k
,(20)

f ∗
n(z) =

fn(z)

Rn(z)
,(21)

g∗n(ζ) = f ∗
n(zn + ρnζ) =

(ζ − ζn,∞)k∏k
j=0(ζ − ζ

(j)
n,0)

gn(ζ).(22)

Then as showed above, by (15) and (22), we have

(23) g∗n(ζ) → 1

on C \ {ζ0, ζ(j)0 : 0 ≤ j ≤ k}, and hence on C by Lemma 2.3(c).
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We claim that for every δ > 0, there exists N ∈ N such that f ∗
n for n > N has

at least one zero in ∆(0, δ).
Suppose not, then there exist δ0 > 0 and a subsequence of {f ∗

n}, which we
continue to call {f ∗

n}, such that f ∗
n ̸= 0 on ∆(0, δ0). Since fn = Rnf

∗
n and fn(z) = 0

⇐⇒ f ′
n(z) ∈ {1, k + 1}, we see by (20) that fn(z) ̸= 0 and f ′

n(z) ̸= 1 for z ∈
∆(0, δ0)\{z(j)n,0 : 0 ≤ j ≤ k}. Since z

(j)
n,0 → 0, by Gu’s criterion (Lemma 2.1), {fn} and

hence {f ∗
n} is normal on ∆◦(0, δ0). So we may assume that f ∗

n

χ→ f ∗ on ∆◦(0, δ0),
where f ∗ may be ∞ identically.

We prove further that there exists 0 < δ1 ≤ δ0 such that f ′
n(z) ̸= 1 on ∆(0, δ1) for

sufficiently large n. Suppose not, then as showed in the proof of Lemma 2.7 (before
(13)), there exists a subsequence of {fn}, which we continue to call {fn}, such that
f ′
n(z

(j0)
n,0 ) = 1 for some j0. This, combined with (21), (23) and (6), would lead to the

following contradiction:

1 = f ′
n(z

(j0)
n,0 ) = R′

n(z
(j0)
n,0 )f

∗
n(z

(j0)
n,0 ) =

∏
j ̸=j0

(z
(j0)
n,0 − z

(j)
n,0)

(z
(j0)
n,0 − zn,∞)k

f ∗
n(z

(j0)
n,0 )

=

∏
j ̸=j0

(ζ
(j0)
n,0 − ζ

(j)
n,0)

(ζ
(j0)
n,0 − ζn,∞)k

g∗n(ζ
(j0)
n,0 ) →

∏
j ̸=j0

(ζ
(j0)
0 − ζ

(j)
0 )

(ζ
(j0)
0 − ζ0)k

= k + 1.

We claim that f ∗ ̸≡ 0. For otherwise, we would have fn
χ→ 0 and hence f ′

n → 0,
f ′′
n → 0 on ∆◦(0, δ1). Thus by the argument principle and f ′

n(z) ̸= 1 on ∆(0, δ1),

n

(
δ1
2
, f ′

n − 1

)
=

∣∣∣∣n(δ1
2
, f ′

n − 1

)
− n

(
δ1
2
,

1

f ′
n − 1

)∣∣∣∣ = 1

2π

∣∣∣∣∣
ˆ
|z|= δ1

2

f ′′
n

f ′
n − 1

dz

∣∣∣∣∣→ 0.

It follows that f ′
n has no poles in ∆(0, δ1/2). This is a contradiction, since zn,∞ → 0

is a pole of fn.
Thus f ∗ ̸≡ 0. Hence by f ∗

n ̸= 0 on ∆(0, δ0) and f ∗
n

χ→ f ∗ on ∆◦(0, δ0), it follows
from Lemma 2.3(b) that f ∗

n

χ→ f ∗ on ∆(0, δ0). Since f ∗
n(zn) = g∗n(0) → 1, we get

f ∗(0) = 1. This shows that f ∗ is holomorphic in some neighborhood ∆(0, δ2) of 0 and
hence so is f ∗

n in ∆(0, δ2/2) for sufficiently large n. Thus by fn = Rnf
∗
n, fn has only

one single pole (of multiplicity k) in ∆(0, δ2/2). This contradicts the assumption (ii).
Thus, for every δ > 0, there exists N ∈ N such that f ∗

n for n > N has at least one
zero in ∆(0, δ). It follows that there exists a subsequence of {f ∗

n}, which we continue
to call {f ∗

n}, such that f ∗
n has a zero bn in ∆(0, 1/n). By (22) and (23), we have

(24) ζ∗n =
bn − zn

ρn
→ ∞.

Set an = z
(1)
n,0 and ηn =

∣∣∣z(1)n,0

∣∣∣+1/n. Then by zn,∞ = zn + ρnζn,∞ with ζn,∞ → ζ0 and

an = zn+ρnζ
(1)
n,0 with ζ

(1)
n,0 → ζ

(1)
0 , we see that ηn → 0, an, bn ∈ ∆(0, ηn) and from (24)

that an ̸= bn and

zn,∞ − an+bn
2

an − bn
=

2ζn,∞ − ζ
(1)
n,0 − ζ∗n

2(ζ
(1)
n,0 − ζ∗n)

→ 1

2
.
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This, combined with Ffn,an,bn (1/2) = fn(an)/(an − bn) = 0 and

Ffn,an,bn

(
zn,∞ − an+bn

2

an − bn

)
=

fn(zn,∞)

an − bn
= ∞,

shows that each subsequence of {Ffn,an,bn} fails to be equicontinuous in any neighbor-
hood of z = 1/2 and hence fails to be normal at 1/2. Now (14) follows from Marty’s
theorem. Lemma 2.8 is proved. �

Lemma 2.9. If f is a meromorphic function of infinite order, then there exist
points zn → ∞ and positive numbers εn → 0 such that

(25) A(zn, εn; f) =
1

π

ˆˆ
∆(zn,εn)

(f#(z))2dσ → ∞.

Proof. See [7, p. 12]. �

Lemma 2.10. Let k be a positive integer, and f be a meromorphic function in
Fk+1,1(C). If f is of infinite order, then f has infinitely many pairs of distinct zeros
(zn,1, zn,2) such that zn,1 − zn,2 → 0 and

(26) sup
∆(0,1)

Ff,zn,1,zn,2(z) → ∞.

Proof. Since f is of infinite order, by Lemma 2.9, we have (25) for some points
zn → ∞ and positive numbers εn → 0. It follows that there exist wn ∈ ∆(zn, εn) such
that f#(wn) → ∞. Thus, by Marty’s theorem, no subsequence of {fn} is normal at
0, where

(27) fn(z) = f(wn + z).

Thus, by Lemma 2.6, fn for sufficiently large n has at least one pole wn such that
wn → w0.

Suppose first that there exist δ > 0 and N ∈ N such that fn for n > N has
at most one single (simple or multiple) pole in ∆(0, δ). Then fn for n > N is
holomorphic on ∆(0, δ) \ {wn}. Since wn → w0, it follows from Lemma 2.6 that {fn}
is normal on ∆◦(0, δ). So by Lemma 2.7, there exists a subsequence of {fn}, which
we continue to call {fn}, such that for some δ0 > 0, fn takes each value w ∈ C at
most k + 1 times on ∆(0, δ0), counting multiplicity. Thus for sufficiently large n,

A(zn, εn; f) ≤ A(0, δ0; fn) ≤ k + 1,

which contradicts (25).
Thus there exists a subsequence of {fn}, which we continue to call {fn}, such

that for every δ > 0, there exists N ∈ N such that fn for n > N has at least two
distinct poles in ∆(0, δ). Then by Lemma 2.8, there exists a subsequence of {fn},
which we continue to call {fn}, such that each fn has at least two distinct zeros an
and bn tending to 0 such that

(28) sup
∆(0,1)

F#
fn,an,bn

(z) → ∞.

Let zn,1 = wn + an, zn,2 = wn + bn. Then (zn,1, zn,2) is a pair of distinct zeros of f
satisfying zn,1−zn,2 → 0, and (26) follows from (28), since Ff,zn,1,zn,2(z) ≡ Ffn,an,bn(z)
by (27). The lemma is proved. �
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3. Proof of Theorem 1.3

By the definition, we have Fa,b = bFa/b,1 = {bf : f ∈ Fa/b,1} for b ̸= 0. Thus
by the assumption that a/b is a positive integer and a ̸= b, we may assume that
a = k + 1 and b = 1, where k is a positive integer.

Let E ⊂ D be the set of points at which Fk+1,1(D) is not normal. Then for every
z0 ∈ E, there exists at least one sequence {fn} ⊂ Fk+1,1(D) such that no subsequence
of {fn} is normal at z0. We consider two cases.

Case 1. For every z0 ∈ E and every sequence {fn} ⊂ Fk+1,1(D) which has no
subsequence normal at z0, there exist δ > 0 and N ∈ N such that fn for n > N has
at most one single (simple or multiple) pole in ∆(z0, δ).

We first show that Fk+1,1(D) is quasi-normal at every point w0 ∈ D.
To prove this, let {fn} ⊂ Fk+1,1(D) be a sequence. If w0 ̸∈ E, the by the

definition of E, {fn} is normal at w0; If w0 ∈ E, there are two cases: one is that
{fn} has subsequence which is normal at w0, and the other is that no subsequence
is normal at w0. In the later case, by Lemma 2.6, fn for sufficiently large n has
at least one pole wn such that wn → w0. Hence, by the hypothesis, there exists
δ > 0 such that fn for sufficiently large n is holomorphic in ∆(w0, δ) \ {wn}. Thus,
again by Lemma 2.6, {fn} is normal on ∆◦(w0, δ). These discussions show that every
sequence {fn} has a subsequence which is normal on ∆◦(w0, η) for some η > 0. Thus,
by the definition, Fk+1,1(D) is quasi-normal at every point in D. Hence, Fk+1,1(D)
is quasi-normal on D.

Next, we show further that Fk+1,1(D) is quasi-normal of order 1.
To prove this, let {fn} ⊂ Fk+1,1(D) be a sequence. Since Fk+1,1(D) is quasi-

normal on D, there exists a subsequence of {fn}, which we continue to call {fn}, and
a set E0 having no accumulation points in D such that fn

χ→ ϕ on D \ E0.
We have to show that the set E0 can be chosen to be a single-point set. Suppose

not. Then there exist two distinct points z1 and z2 such that no subsequence of {fn}
is normal at z1 or z2. Then by Lemma 2.7, the limit function ϕ coincides with z− z1
in a punctured neighborhood of z1 and with z − z2 in a punctured neighborhood of
z2. It follows from the uniqueness of the limit function that z − z1 ≡ z − z2. This is
impossible, since z1 ̸= z2.

Case 2. There exist z0 ∈ E and a sequence {fn} ⊂ Fk+1,1(D) which has no
subsequence normal at z0 such that for every δ > 0, there exists N ∈ N such that fn
for n > N has at least two distinct poles in ∆(z0, δ).

We argue by contradictions for showing that this case can not occur.
By Lemma 2.8, there exists a subsequence of {fn}, which we continue to call

{fn}, such that each fn (for sufficiently large n) has at least two distinct zeros un

and vn tending to z0 as n → ∞ such that

(29) sup
∆(0,1)

F#
fn,un,vn

(z) > K + 1,

where the constant K > k + 1 is defined in Lemma 2.5.
Fix δ > 0 such that ∆(z0, 3δ) ⊂ D. It guarantees that for each pair (a, b) of

distinct zeros of fn in ∆(z0, δ), the corresponding function Ffn,a,b(z) is meromorphic
on ∆(0, 1). Since fn ̸≡ 0, each fn has finitely many zeros in ∆(z0, δ). This, combined
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with (29), shows that the set

(30) En =

{
(a, b) : a, b ∈ f−1

n (0) ∩∆(z0, δ) satisfying sup
∆(0,1)

F#
fn,a,b

(z) > K + 1

}
is non-empty and finite. For (a, b) ∈ En, define

(31) τ(a, b) :=
|a− b|

δ −
∣∣a+b

2
− z0

∣∣ > 0.

Then there exists (an, bn) ∈ En such that for every (a, b) ∈ En,

(32) τn := τ(an, bn) ≤ τ(a, b).

Since (un, vn) ∈ En, we have τn ≤ τ(un, vn) → 0 and hence an − bn → 0.
Let hn(z) = Ffn,an,bn(z). Then by an − bn → 0, the sequence {hn} are locally

uniformly meromorphic on C. And by the definition of the set En, we have

(33) sup
∆(0,1)

h#
n (z) > K + 1.

We claim that no subsequence of {hn} is normal on C. Suppose not, by taking a
subsequence, we may say hn

χ→ h on C. Since hn(±1/2) = 0, we have h(±1/2) = 0
so that h ̸≡ ∞. Thus by (33),

(34) sup
∆(0,1)

h#(z) ≥ K + 1.

It then follows that h is nonconstant and from K > k + 1 that h′(z) ̸≡ 1 and
h′(z) ̸≡ k + 1.

Since fn(z) = 0⇐⇒ f ′
n(z) ∈ {1, k+1}, we have hn(z) = 0⇐⇒ h′

n(z) ∈ {1, k+1}.
Hence, by Hurwitz’s theorem, h(z) = 0 ⇐⇒ h′(z) ∈ {1, k + 1}.

We claim that h is of infinite order. Suppose not, then as h is nonconstant, it
follows from Lemma 2.4 that h is a rational function with the form (1). Hence, as
h(±1/2) = 0, we get by Lemma 2.5 that sup∆(0,1) h

#(z) ≤ K. This contradicts (34).
Thus, h is of infinite order. Hence, by Lemma 2.10, there exist two distinct zeros

α and β of h which are not 0 such that |α− β| < 1 and

(35) sup
∆(0,1)

F#
h,α,β(z) > K + 2.

Since hn
χ→ h on C, there exist points αn → α and βn → β such that hn(αn) =

hn(βn) = 0, and by (35), for sufficiently large n,

(36) sup
∆(0,1)

F#
hn,αn,βn

(z) > K + 1.

Now set

(37) ân =
an + bn

2
+ (an − bn)αn, b̂n =

an + bn
2

+ (an − bn)βn.

Then ân and b̂n are two distinct zeros of fn by the definition of hn. Since τn → 0 and
αn → α, we have

|ân − z0| ≤
∣∣∣∣an + bn

2
− z0

∣∣∣∣+ |an − bn||αn| = δ −
(

1

τn
− |αn|

)
|an − bn| < δ

for sufficiently large n. Thus ân ∈ ∆(z0, δ). Similarly, b̂n ∈ ∆(z0, δ).
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Further, as Ffn,ân,b̂n
(z) ≡ Fhn,αn,βn(z), we get by (36) that

sup
∆(0,1)

F#

fn,ân,b̂n
(z) > K + 1.

Thus (ân, b̂n) ∈ En by (30), and hence τ(an, bn) ≤ τ(ân, b̂n) by (32).
However, by (31) and (37), we have

τ(ân, b̂n)

τ(an, bn)
=

δ −
∣∣an+bn

2
− z0

∣∣
δ −

∣∣an+bn
2

− z0 +
αn+βn

2
(an − bn)

∣∣ |αn − βn|

≤
δ −

∣∣an+bn
2

− z0
∣∣

δ −
∣∣an+bn

2
− z0

∣∣− ∣∣αn+βn

2

∣∣ |an − bn|
|αn − βn|

=
|αn − βn|

1−
∣∣αn+βn

2

∣∣ τn → |α− β| < 1,

(38)

so that for sufficiently large n, τ(ân, b̂n) < τ(an, bn). This contradicts that τ(an, bn) ≤
τ(ân, b̂n).

Thus no subsequence of {hn} is normal on C. Now let H be the set of points at
which {hn} is not normal. Then H is non-empty.

Suppose first that for every ζ0 ∈ H and every subsequence {hnj
} of {hn} which

has no subsequence normal at ζ0, there exist η > 0 and J ∈ N such that hnj
for

j > J has at most one single (simple or multiple) pole in ∆(ζ0, η).
Then by an argument similar to that in Case 1, {hn} is quasinormal of order 1 on

C, and further, there exists a subsequence of {hn}, which we continue to call {hn},
and a point ζ∗0 ∈ H such that hn(z)

χ→ z − ζ∗0 on C \ {ζ∗0}. But, this contradicts
hn(±1/2) = 0.

Thus there exist ζ∗∗0 ∈ H and a subsequence {hnj
} of {hn} which has no subse-

quence normal at ζ∗∗0 such that for every η > 0, there exists J ∈ N such that hnj
for

j > J has at least two distinct poles in ∆(ζ∗∗0 , η). We rewrite the subsequence {hnj
}

by {hn}.
Then by Lemma 2.8, there exists a subsequence of {hn}, which we continue to

call {hn}, such that each hn has at least two distinct zeros a∗n and b∗n tending to ζ∗∗0
as n → ∞ such that

(39) sup
∆(0,1)

F#
hn,a∗n,b

∗
n
(z) > K + 1.

Now let

An =
an + bn

2
+ (an − bn)a

∗
n, Bn =

an + bn
2

+ (an − bn)b
∗
n.

Then as showed above, An and Bn are two distinct zeros of fn in ∆(z0, δ), and by
(39) with the fact Ffn,An,Bn(z) ≡ Fhn,a∗n,b

∗
n
(z),

sup
∆(0,1)

F#
fn,An,Bn

(z) > K + 1.

It follows that (An, Bn) ∈ En and hence τ(an, bn) ≤ τ(An, Bn) by (32). However,
an argument similar to (38) yields that τ(An, Bn) < τ(an, bn) for sufficiently large n,
which contradicts that τ(an, bn) ≤ τ(An, Bn).

The proof of Theorem 1.3 is completed. �
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4. Proof of Theorem 1.2

As a/b is a positive integer and a, b are distinct and nonzero, we may assume
that {a, b} = {k + 1, 1}, where k is a positive integer.

Suppose that there is a transcendental meromorphic function f in Fk+1,1(C). By
Theorem A, the function f is of infinite order.

Thus by Lemma 2.9, there exist points zn → ∞ and positive numbers εn → 0
such that

(40) A(zn, εn; f) =
1

π

¨
∆(zn,εn)

(f#(z))2 dσ → ∞.

It follows that there exist wn ∈ ∆(zn, εn), wn → ∞, such that f#(wn) → ∞, and
hence by Marty’s theorem, no subsequence of {fn} is normal at 0, where fn(z) =
f(wn + z).

Since f ∈ Fk+1,1(C), we see that {fn} ⊂ Fk+1,1(C). Thus by Theorem 1.3,
{fn} is quasi-normal of order 1 on C. Since no subsequence of {fn} is normal at 0,
{fn} is normal on C∗. Further, by the proof of Theorem 1.3, only the Case 1 can
occur. It follows that there exist δ > 0 and N ∈ N such that fn for n > N has
at most one single (simple or multiple) pole in ∆(0, δ). So by Lemma 2.7(II), there
exists a subsequence of {fn}, which we continue to call {fn}, such that on some
neighborhood ∆(0, δ0) of 0, each fn takes each value a ∈ C at most k + 1 times,
counting multiplicity. Thus A(zn, εn; f) ≤ A(0, δ0; fn) ≤ k+1. This contradicts (40).

The proof of Theorem 1.2 is completed.
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