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Abstract. In this paper, we study the existence of infinitely many solutions to the following
quasilinear equation of p-Laplacian type in RV
(0.1) —Apu+ [ulP?u = AV (z) [uP2u + g(z,u), uwe WHP(RY)
with sign-changing radially symmetric potential V(z), where 1 < p < N, A € R and Apu =
div(|Du|P~2Du) is the p-Laplacian operator, g(x,u) € C(RY xR, R) is subcritical and p-superlinear
at 0 as well as at infinity. We prove that under certain assumptions on the potential V' and
the nonlinearity g, for any A € R, the problem (0.1) has infinitely many solutions by using a
fountain theorem over cones under Cerami condition. A minimax approach, allowing an estimate
of the corresponding critical level, is used. New linking structures, associated to certain variational
eigenvalues of —A,u + [u[P7?u = AV (z)|u|P~2u are recognized, even in absence of any direct sum
decomposition of W1P(RY) related to the eigenvalue itself.

Our main result can be viewed as an extension to a recent result of Degiovanni and Lancelotti
in [10] concerning the existence of nontrivial solutions for the quasilinear elliptic problem:

{A,,u = AV (2)|ulP~2u + g(z,u), in €,

0.2
(02) u =0, on 01},

where 2 € R” is a bounded open domain.

1. Introduction and main result

In this paper, we study the existence of infinitely many solutions to the following
nonlinear elliptic equation of p-Laplacian type in the entire space

—Apu A+ [uP?u = AV (2)|uP"?u + g(z,u), z€ RN,

(1.1) u e WH(RYN),

where A € R, 1 < p < N, Ayu = div(|Du|P~2Du) is the p-Laplacian operator. We
assume that the potential V(z): RY — R satisfies the following condition:
(H) Ve LYRN)NL®RYN), VT £ 0 and V is radially symmetric with respect to
.

The nonlinearity g € C(RY x R, R) satisfies the following conditions:
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(g91) There exists a constant C' > 0 such that
lg(z,t)] < C(14[t|71) for all (z,t) € RN x R,

where p < ¢ < p* = N—p and g is radially symmetric with respect to z;
(g2) ‘1|1mo ﬁ(‘f H— uniformly in z € RY;
t|—
(93) ‘ |lim G‘ngt) +00 uniformly in z € RY, where G(z, ) fo z,s)ds;
t|—+o0

(g94) For G(z,t) = %g(x,t)t — G(z,t), we have G(z,t) > 0 for any z € RN, ¢ # 0
and there exist C' > 0, M >0, 6 > % such that for any x € RN, [t| > M,

lg(,1)|” < CG(a, )| "®Y;
(95) g(x,—t) = —g(x,t) for any z € RY, t € R.
We call u € WH(RY) a weak solution to (1.1) i

) if
/ (|DulP~2 Du Dv + |ulP~*uv) do — )\/ V(z)|ulP2uv dx
RN RN

:/ g(z,u)vdz, Yo € WP(RN).
RN

By conditions (g1) and (g2), we deduce that there exists a constant C' > 0 such
that

(1.2) lg(@, )] < Ct" + 11",

where p < ¢ < p*. Hence u = 0 is a trivial solution to (1.1). We are interested in the
existence of multiple nontrivial solutions of (1.1).

Since Ambrosetti and Rabinowitz proposed the mountain-pass theorem in 1973
(see [1]), critical point theory has become one of the main tools for finding solutions
to elliptic equations of variational type. Clearly, weak solutions to (1.1) correspond
to critical points of the related variational functional

(13)  I(u) = é/RN(meu P da — %/RN Vi) uPde — | Gz, u)de

RN
defined on WP(RY). By (1.2), I € CY(W'?(R"),R).
Note that for any bounded open subset 2 C R”, the following p-Laplacian type
problem

_ p—2 —
(1.4) { Apu+ a(x)|ulP~u = g(z,u), =€,

u=0, x € 0f)

has been studied extensively in the past decades. The corresponding energy func-
tional to (1.4) is

B(u) :%/Q(|Du]p—0—a(x)]u\p) dx—/QG(:c,u) dz

where G(z,t) fo x,8)ds.

If a(z) > 0, and g(z,t) is subcritical and p-superlinear at 0 and at infinity, then
the functional ® possesses a mountain-pass geometric structure around v = 0. The
existence of a nontrivial solution to (1.4) can be obtained by using the mountain-pass



The existence of infinitely many solutions for p-Laplacian type equations on R 517

theorem and the existence of infinitely many solutions, when g(x,t) is odd in ¢, can
be obtained by the so-called fountain theorem, see e.g. [1, 8, 12, 22, 27, 38|.

If a(x) is sign-changing, when p = 2, the existence result can be obtained if the
energy functional possesses a linking geometric structure, see |21, 33, 38]. However,
such an existence result relies on a linking theorem on Hilbert spaces, which is based
on the fact that each eigenvalue of —/A\ induces a suitable direct sum decomposition
of I/VO1 2(Q) If p # 2, the p-Laplacian operator —A, is no longer a linear operator
and the properties of the set o(—A,) of the eigenvalues of —A, are not clear. The
existence of a first eigenvalue \; = mino(—A,) > 0 and a second eigenvalue Ay > \;
was proved and several equivalent variational characterizations of A; and A\, were
studied (see (2, 3, 9, 14, 23, 24]). There are at least three different variational ways
to define a diverging sequence {\,} C o(—4,) (see |6, 14, 31, 32]). However, one
does not know if these definitions are equivalent for n > 3 or not (see [6, 10]). Also, a
direct sum decomposition of the space Wy*(Q) according to the eigenvalues of —A,,
are not expected as one always does when p = 2. In [37], Szulkin and Willem proved
that the nonlinear eigenvalue problem

(1.5) —Ayu = V(@) |uf2u, we DYPQ),

has a sequence of eigenvalues {\,} with A\, — 0o as n — oo, where 1 < p < N
and (2 is an open, in general unbounded subset of RY and V satisfies the following
assumptions:

VeLL(Q), VE=Vi+ T, £0, Vi € L7 (9),

loc
li_r)rllJ |z — y[PVa(z) = 0 for each y € €, | l‘im |z|PVa(z) = 0.
x x|—00
zeQ zeQ

In [18], Frigon introduced a new notion of linking, which includes many notions
of linking, such as homotopically linking, homologically linking, etc. In considering
continuous functionals, Frigon stated a deformation property in an abstract setting.
Then, with the new notion of linking, minimax critical point theorems for contin-
uous functionals on metric spaces were presented (Theorem 3.1 in [18]). After the
publication of [18], there are many papers on problem (1.4) for the sign-changing
potential case. In [11], Degiovanni and Lancelotti considered problem (1.4) under

the case a(r) = =\ and g(x,u) = |u|?"~2u, where 1 < p < N, p* = NN—f;, and obtained
that for every A > ), (1.4) has a nontrivial solution if NN—jl > p? or %z—ip; > p?

with certain smoothness assumption on the boundary of Q. In [10], they also studied
problem (1.4) with a(z) = —AV(x), where V € L*(Q), 1 <p< N, QC RV is a
bounded open domain with smooth boundary. They proved that for any A € R, (1.4)
admits a nontrivial weak solution if g is subcritical, p-superlinear at 0 and satisfies
the Ambrosetti-Rabinowitz condition ((AR) in short):

(AR) There exist p > p and R > 0 such that for all x € Q,
[t|] > R = 0 < uG(z,t) <tg(z,t).

In [39], Yan and Yang established a fountain theorem over cones under Palais—
Smale (PS) condition and its dual version (Theorem 1.1 and Theorem 1.2 in [39)]).
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By applying these two theorems to the quasilinear elliptic problem

{—Apu = AMu|"%u + plu[""?u  in Q,

1.6
(16) u =0, on 0,

where 1 <p < N, 1< q<p<~y<p, Qisasmooth bounded domain and A\, u € R,
they showed that problem (1.6) possesses a sequence of positive energy solutions for
each 1 > 0, A € R and (1.6) has a sequence of negative energy solutions for each
A>0, peR.

Recently, Liu and Zheng in [25] studied the following p-Laplacian equation in RY

—Apu+ b(@)|ulP2u = AV () |[ulP2u+ f(z,u), xRV,
u € WH(RYN),

where p > 1, A € R, V € L®(RY) and b(z) € C(RM,R) satisfies the following
condition:

(B) inf b(z) > by > 0, meas({r € RY| b(x) < M}) < oo VM > 0,

zeRN

and f(x,t) is of subcritical growth, p-superlinear at 0 and at infinity satisfying

(F) 30 > 1 such that 0F(x,t) > F(x,st) V (z,t) € RY x R and s € [0, 1],
where F(z,t) = f(z,t)t — pF(x,t), F(z,t) = fot f(x,s)ds, meas(-) denotes the
Lebesgue measure in RY. The condition (F) was first introduced in [19] for p = 2
and in [26] for gengeral p. By using a linking theorem over cones on a weighted
Sobolev space W = {u € W'(RY) | [on(|DulP + b(x)|ul?) dz < oo}, in which
Sobolev embeddings W < LI(RY), p < ¢ < p* are compact since (B) holds, they
proved that problem (1.7) has a nontrivial solution for each A € R.

Motivated by works just described, more precisely by results founded in [10] and
[39], a natural question is whether the same phenomenon of existence and multiplicity
holds or not when we consider problem (1.1). The purpose of this paper is to study
problem (1.1) without assuming the (AR) condition. Our basic assumptions on the
nonlinearity are (g1)—(g5). Note that the condition (g4) was introduced in [13] for
p = 2 and it was used in [28] for Kirchhoff type problems. Here, we employ a
fountain theorem over cones under Cerami condition. It is necessary to point out
that, if b(x) = 1 in (1.7), then the condition (B) does not hold, hence problem (1.1)
is not a special case of (1.7).

We state our main result:

Theorem 1.1. Suppose that (g1)—(gs) hold and let V' satisfy (H). Then, for each
A € R, the quasilinear elliptic problem (1.1) has infinitely many nontrivial solutions
in WHP(RM).

We do not assume that g(z,t) satisfies the (AR) condition. In fact, there are
functions which satisfy (g1)—(gs) but (AR). For example

g(x,t) = [t"*tlog(1 + [¢])

satisfies (g1)—(gs) but g(z,t) does not satisfy
(1.8) G(z,t) > Clt|* for all (z,t) € RN x R
for any p > p and some C' > 0, which is a direct consequence of (AR).

Remark 1.2. Assume that (g;) holds. Then (AR) implies (g3), (g4)-

(1.7)
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Remark 1.3. There are indeed functions which satisfy our conditions (g1)—(g4)
but the assumption (F) above. For example,

Gl =+ u = plep—sint (1)

Wherep<,u<p*,O<5<min{u—p,,u—“N+w}.

p p

We prove Theorem 1.1 by showing that the energy functional I possesses infinitely
many critical points in WP(RY). To do so, we will try to get Cerami sequences for
I and to prove that each Cerami sequence is bounded in W1?(R”) and converges to
a critical point of I in WHP(RY), which can be distinguished to each other.

There are several difficulties. First, as R" is translation invariant, the Sobolev
embeddings WP (RY) — LY(RYN) for ¢ € [p,p*) are not compact, which makes the
proof of the convergence of approximate critical points difficult. The assumption that
V(z), g(z,t) are radially symmetric in « makes it possible to deal with this difficulty
by using the so-called principle of symmetric criticality (see e.g. [29]) to work in the
radially symmetric Sobolev space

WP (RY) = {u € WH(RY) | u(z) = u(|a])}.

Secondly, one usually gets a Cerami sequence by using a mountain-pass geometric
structure or linking geometric structure of I. As the assumption (H) holds, I does
not have the mountain-pass geometric structure around v = 0. We have to show that
I possesses certain linking geometric structure and to establish a suitable fountain
theorem over cones. According to what people usually do for problems in bounded
domain, one has to deal with the eigenvalues for the p-Laplacian operator. However,
for unbounded domain, it is much more complicated. We consider the following
eigenvalue problem

—Apu+ |ulP?u = AV (2)|[ulPPu,  ue WH(RY)

and get a divergent sequence of eigenvalues

= inf {max/ (|DufP + |u|?) dx| A is compact and symmetric, Index(A) > m},
ACM ucA RN

where Index is the Zjy-cohomological index described in [15, 16] and M = {u €

WHP(RYN) | [gn V(@)|ufPdz = 1}. Then each ju, < fin41 induces a generalized

linking structure associated with the cones

or = {uews @) | [ (D +upyas < [ Viras),
RN RN

or = {uewpo @) [ (Dup+1u)ds 2 s [ Viapas}.
RN RN

Then we use a fountain theorem under Cerami condition (see Theorem 2.8 in Sec-
tion 2), a result which we have not found elsewhere, to get infinitely many Cerami
sequences. The main difficulty now is to prove that each Cerami sequence {u,} is
bounded in W!?(RY). To this end, we use the argument in [28] and the assumptions
(93), (g4). However, as we deal with problems in RY, the argument in [28] which
deals with problems in bounded domains, needs to be improved. We succeeded in
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doing so by more careful analysis. Whence the boundedness of {u,} is proved, the
result follows by using standard method.

Our paper is organized as follows. In Section 2 we give some basic definitions and
some preliminary results, including a fountain theorem over cones under Cerami con-
dition and an existence result of an eigenvalue problem for p-Laplacian type operator
in RY. In Section 3 we prove our main result Theorem 1.1.

We use standard notations. For example, for 1 < p < 400, ||ul|zr = ([gn [uf? dx)%
denotes the usual LP-norm. The N-dimensional Lebesgue measure of a set £ C RY is
denoted by |F|. We use “—” and “—" to denote the strong and weak convergence in
the related function space respectively. C' will denote a positive constant unless spec-
ified. We denote a subsequence of a sequence {u,} as {u,} to simplify the notation
unless specified.

2. Preliminary results

In this section, we give some preliminary results which will be used to prove our
main result.

We first give some definitions and results about the linking. Let (X,d) be a
metric space and H* be Alexander—Spanier cohomology (see [34]).

Definition 2.1. Let A C B C X, P € @ C X. We say that (B, A) links
(Q,P),if ANQ = BN P =g, and for every deformation n: B x [0, 1] — X\ P with
n(A x[0,1]) NP =, then n(B x {1}) N Q # &.

Definition 2.2. Suppose A C B C X, P C Q C X. Let m be a nonnega-
tive integer and K be a field. We say that (B, A) links (@, P) cohomologically in

dimension m over K, if ANQ = BN P = &, and the restriction homomorphism
H™(X\P, X\Q; K) - H™(B, A;K) is not identically zero.

In the setting of Definition 2.1 and 2.2, if P = & (resp. A = &), we simply write
(@) instead of (Q, @) (resp. B instead of (B, @)).

Proposition 2.3. (Proposition 2.4 in [10]) If (B, A) links (Q, P) cohomologi-
cally, then (B, A) links (Q, P).

Definition 2.4. Let A be a subset of a real normed space X. A is said to be
symmetric, if —u € A whenever u € A. A is said to be a cone, if tu € A whenever
ue Aandt>0.

Proposition 2.5. (Proposition 2.1 in [39]) Let X ba a real normed space and
C_,C4 be two cones in X such that Cy is closed in X, C_ N Cy = {0} and
(X,C_\{0}) links C cohomologically in dimension m. For r_,r, >0, set

D ={ueC_ |Jul<r}, S ={ueC |u]=r}
Di={ueCyllull<ri}, Sp={ueli]ull=ri}.
Denote
I['={yeCD_,X)|qls. =id}.
Then, for every v € I, (y(D-),S_) links Sy cohomologically in dimension m + 1,
ie.,

H™ (X, X\Sy; K) = H" " (y(D-), S-; K)

is not identically zero.
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For readers’ convenience, let us recall the definition and some properties of Z,-
cohomological index (see [15, 16, 32| for details). For simplicity, we only consider
the usual Zy-action on a linear space, i.e., Zo = {—1,1} and the action is the usual
multiplication. In this case, a Zs-set A is just a symmetric set, which means that
—A=A

Let W be a normed linear space and S(W') denote the class of symmetric subsets
of W\{0}. If 2 < dim W < oo, the index is defined as follows. Let ~ be the
equivalence relation in W\{0} which identifies v with —u. It is well known that
HY((W\{0})/ ~;Zs) ~ Zy. Let a be the generator of H*((W\{0})/ ~;Zy). For
any A € S(W), Index(A) is defined as the smallest nonnegative integer k such that
a”| 4/~ = 0. If no such integer exists, then Index(A) = co. We list some properties
of the cohomological index here for further use. Let A, B € S(WW).

(i) (Definiteness) Index(A) =0 <= A = @.

(ii) (Monotonicity) If there is an odd map A — B, then Index(A) < Index(B).
In particular, equality holds if A and B are homeomorphic.

(iii) (Continuity) If A is closed, then there is a closed neighborhood N € S(W)
of A such that Index(N) = Index(A). (iv)] (Neighborhood of zero) If U is
a bounded closed symmetric neighborhood of 0 in W, then Index (0U) =
dim W.

(v) For every symmetric, open subset A of W,

Index(A) = sup{Index(K) | K is compact and symmetric with K C A}.

Note that Index(A) < ~v(A), where the Krasnoselskii genus v(A) is by definition
the smallest nonnegative integer k£ for which there exists an odd mapping A —
R¥\{0}. If there is no such mapping for any k, then v(A) = +oo.

Let us also recall that Index(Y\{0}) = dim(Y"), whenever Y is a linear subspace
of W. Moreover, v7(A) < Index(A), where, as defined in [5], v"(A) = sup{m € N |
there exists an odd continuous map ¢: R™\{0} — A}.

Lemma 2.6. (Theorem 2.7 in [10]) Let X be a real normed space and let S, A
be two symmetric subsets of X such that SN A = @, 0 € A and Index(S) =
Index(X\A) < co. Then (X, S) links A cohomologically in dimension Index(S) over
Z,.

In particular, Proposition 2.5 holds if C'"_, 'y are symmetric cones such that
C_NCy ={0} and Index(C_\{0}) = Index(X\C}) < 0.

Let (X, -]|) be a real Banach space with its dual space (X*,|| - |), ¢ € R,
¢ € CHX,R). Recall that {u,} C X is called a Palais-Smale sequence of ¢ at
level ¢ ((PS), sequence in short) if p(u,) — ¢ and ¢'(u,) — 0 in X* as n — oo. If
o(un) — c and (1 + |lunl])¢’(u,) — 0 in X* as n — oo, then {u,} will be called a
Cerami sequence at level ¢ ((C). sequence in short).

Let ¢ € R, we say that ¢ satisfies (PS). condition if any (PS),. sequence {u,} C
X has a strongly convergent subsequence in X. If any (C),. sequence {u,} C X has
a strongly convergent subsequence in X, then we say that ¢ satisfies (C'). condition.

The following lemma, which is a special case of a deformation lemma on a Banach
space (Theorem 2.6 in [21]), will be useful in this paper.

Lemma 2.7. Let X be a Banach space. Assume that ¢ € C'(X,R) is an even
functional and S C X is symmetric. Let ¢ € R, €,0 > 0 such that
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8
Vu € ¢! ([e = 25,04+ 26)) N S5 = (1+ [ul) ¢ @) 2 =
Then there exists n € C([0,1] x X, X)) such that
(i) n(t,u) =uift =0 or ifu & o '([c — 2&,c+ 2¢]) N Sas,
(i) (1,9 NS) C e,
(iil) n(t, ) is a homeomorphism of X for eacht € [0, 1],
(iv) go(n(t w)) is nonincreasing for eachw € X, and (t, ) is odd for every t € [0, 1].

The following fountain theorem over cones under (C'). condition extends Theo-
rem 1.1 of [39], which is under the (PS) condition.

Let X be a Banach space with dim X > 2 and for each m € N, {C™},{C"} be
two sequences of symmetric cones in X. For v, 7" > 0, we define

={ueCl | |ul| <™}, ST ={ueCT||lu] =r"},
—fueCT|Jul 7}, ST ={ueCT | Jul =7
Theorem 2.8. Let I € C'(X,R) be an even functional. Suppose that for every
m € N, CT is closed in X with C™ N CT = {0} and
(2.1) Index(C™\{0}) = Index(X\CY') < o0
holds. Let

= inf I
em = inf max I(y(u)),

where I', = {v € C(D™,X) | v is even and y|gm = id}. If there exist ™ > r'7" > 0
such that

(1) by, = gnnff(u) — 00 as m — o9,
+
(2) ay, = Irégnxl(u) <0,

then ¢, > by, and there is a (C).,, sequence {u,} C X such that

I(un) = cm, [ (un) [1+(1 + [Jn]]) — 0.

Moreover, if I satisfies the (C). condition for any ¢ > 0, then I has an unbounded
sequence of critical values {c,,}.

Proof. By Lemma 2.6 and Proposition 2.5, (2.1) implies that (y(D™), S™) links
ST cohomologically for each v € I',, then v(D™) NSy # @ for every v € I'y,. So
Cm = by,

By contradiction, if there is no (C).
then there exist €,0 > 0 such that

sequence {u,} C X as stated, let S = X,

m

8
V€ I [em — 26, em + 2¢]) = (14 DT ()], > §

We can further require that ¢ > 0 such that
(2.2) Cm — 26 > Q.
By the definition of ¢,,, there exists v € I',,, such that

< .
max I(y(u)) < em +¢
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Then by Lemma 2.7, there exists an odd decent flow n € C([0,1] x X, X) such that

< — €.
max I(n(1,7(u)) < cm —€

Denote f(u) = n(1,7(u)). For u € S™, by (2.2), f(u) = n(1,7(u)) = n(l,u) = u.
Then it follows that 5 € I',,. Hence

Cn < max I((u)) = max I(n(1,7(u)) < cn — ¢,

which is a contradiction. O

Since V' and ¢ are radially symmetric in 2, we can study problem (1.1) in the
radially symmetric Sobolev space

Wy P(RY) = {u e W(RY) | u(x) = u(|z])}

with the norm defined by |Ju|| = (/ (| Dul? + |ul?) dm) " for all u € Whr(RN). It
RN

is well known that WIP(RY) — LI(RY) for p < ¢ < p*. Moreover, the embeddings
WhP(RN) — L*(RY) are compact for p < s < p*.
Consider the following nonlinear eigenvalue problem

(2.3) —Apu+ P2 = AV (2)|ufP2u,  uw e WHPRY),

where A, = div(|Du[P"2Du) is the p-Laplacian operator with 1 < p < N and V
satisfies (H). Denote

o = [ D+ 1) da

and

v = [ Vil .

Note that V' € L*(RM)NLYRY), then V € L%(RN), hence ¢, ¢ € CH(WP(RY),R).
Set

(2.4) M = {u € WPRN) | (u) =1}.
Recall that ¢ € R is a regular value of a C! function f if and only if f'(z) # 0

for all z € f~!(c). Since ¥(u) = %(W(u), u), 1 is a regular value of the functional ¢

in M. Hence the implicit function theorem implies that M is a C*-Finsler manifold
with the natural Finsler structure induced by . Since v is continuous and even, M
is complete, symmetric and 0 is not contained in M.

By Proposition 5.12 in [38], the norm of the derivative of the restriction of ¢ to
M at u is given by ||(¢|m) (w)]l« = ngrtl |’ (u) — pt)' (w)]| (here the norm || - ||, is the

norm in 7, M, which is the tangent space of M at u).
Similar to the proof of Lemma 2.13 in [38], it is easy to prove the next lemma:
Lemma 2.9. IfV satisfies (H), then
(i) ' is a compact operator from WP (RYN) to (WIP(RN))*,
(ii) ¥ (u) is weakly continuous in W1P(RYN).

The following Lemma is a direct consequence of Lemma 2.7 in [20].
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Lemma 2.10. Let u,,u € WP(RN). If

lim / (|Dun|P~2Duy, — |Du|P~2Du)(Du,, — Du) dz = 0
N

n—-4o00 R
and

lim (|un)P~ 2, — |uP~u) (u, — u) dz = 0,
n—-+00 RN

then u, — u in WP(RN).
Lemma 2.11. ¢|x satisfies the (PS). condition for any ¢ > 0.
Proof. For ¢ > 0, suppose that {u,} is a (PS). sequence for ¢|pq, i.e.,

(Pla)(un) = ¢ and  (plu) (un) = 0 in (WP (RY))*
as n — +o0o. Then there exists a sequence {u,} C R such that
(2.5) ¢ (un) = pnt (up) = 0 in (WP(RY))".

Since ¢(u,) — ¢, {u,} is bounded in W!P(RY), passing to a subsequence, we may
assume that u,, — u in WP(RY) for some u € W P(RY). Hence by Lemma 2.9,

V() = () i (WP RY) and 6(u) = lim w(u,) =1,
then we have that u # 0. By (2.5),
ple(tn) = ) = (@' (Un), tn) = pn (Y’ (un), un) — 0.

So {un,} is bounded and we may assume that p, — p for some p € R. Moreover,
0 < p(u) < p. Tt follows from g, — p and ¥/ (u,) — ' (u) in (WEHP(RN))* that

<90/(un)7 Up — u> = <90,(un) - ﬂn¢,(un)> Up — u> + (:un - :u) <wl(un)7 Up — u>
+ :U’<1//<un) - wl(u>v Up — u> + N<¢/<u)7 Up — u> — 07
and then (¢'(u,) — ¢'(u),u, —u) = 0, i.e.,

/ (| Dun|P~2Du, — |Du|P"2Du)(Du,, — Du) dx
RN

+ / (|t [P 2wy — [uP~?u) (u, — u) dz — 0,
RN

hence
/ (1D "Dy~ |Dul? ™ Du)(Duy — Du) e = 0
and .
/ (ttn P21, — [uf~20)(t, — ) dzt — 0.
RN
Then by Lemma 2.10, u,, — u in W'P(RN). O
Denote by A the class of compact symmetric subsets of M. For m € N, let
Fm ={A € A|Index(A) > m}
and set

20 i = 2, )
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Since M # @, for each m there is a set A C M which is homeomorphic to the unit
sphere S™1 C R™ by an odd homeomorphism. Since v"(S™ ') = m, all u,, are
well defined. Moreover, p; = in/a o(u) > 0.

ue

Following [4], to prove that {u,,} is a sequence of eigenvalues of problem (2.3),
we define a family of manifolds on M. For fixed o > 0, we denote

Fo={Ms|B€0,a]} and F,={Ms|pe€[-,0]},

where Mg = {u € WHRN) | (u) =1+ 8}

Definition 2.12. Let ¢ € R be a regular value of ¢|y. The family F, is said
to be admissible for ¢ at ¢ if ¢ is defined on Mg for all 5 € [0, ] and there exist
constants 7, p, €1 > 0 such that

(2.7) VB €0, 0], u € Mg, [p(u)—c| < &1 = [[(¢lm,) (w)lls > pand [[¢(u)]| > 7.

Lemma 2.13. (A deformation lemma on a C'-manifold, Theorem 2.5 in [4]) Let
M ={u € X | ¢¥(u) = 1} be a C' submanifold of a Banach space X, where 1 is
a C' functional and 1 is not a critical value of 1. Let ¢ be a C' functional on a
neighborhood of M and ¢ be a noncritical value of p|x and a > 0 be such that F,
or F is admissible for ¢ at c. Then there exists € > 0 such that for all 0 < e < &
there exists an homeomorphism n of M onto M such that

(1) n(u) = u if p(u) & [c — & c+é];

(2) e(n(u)) < @(u) for all u € M;

(3) ¢(n(u)) < c—e for all u € M such that p(u) < c+¢;

(4) if M is symmetric (M = —M ) and ¢ is even, then 7 is odd.

Proposition 2.14. Under the assumption (H ), { i, } is a sequence of eigenvalues
of problem (2.3) and fi,,, — 00 as m — oo.

Proof. 1. Note first that critical values of |y coincide with eigenvalues of
problem (2.3).

2. Claim: For each m, if u,, is not a critical value of (|, then there exists
a > 0 such that F, is admissible for ¢ at p,,, i.e. there exist constants 7, p, €1 > 0
satisfying (2.7).

Proof of the Claim. In fact, if there are sequences ¢, — 0, {u,} C M., with
|o(tn) — pom| — 0 such that

||(90|Mgn),(un)||* —0 or ||Q/}/(un)||* — 0.

If [[(¢lme, ) (un)]l« — O, then {u,} is a (PS),,, sequence of ¢|r., . By Lemma 2.11,
{u,} possesses a convergent subsequence, thus pu,, is a critical value of |y, which
is a contradiction.

Therefore we must have ||¢'(uy,)||« — 0.

Since ¢(u,) is bounded, passing to a subsequence, we may assume that u, — u
in WhP(RY). Then by Lemma 2.9, we have

Y(u) = lim ¥(u,) =1 and (¥ (u),v) = lim (' (u,),v) =0 Yv € WP(RY),
n—oo n—oo
i.e., 11is a critical value of v, which is also a contradiction. Hence the Claim follows.
3. For each m, if p,, is not a critical value of ¢, then Lemma 2.13 implies that
there exist £ > 0 and an odd homeomorphism 7 of M such that n(ptm*¢) C @*m~¢ for
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alle € (0,2). Taking A € F,, with max p(A) < fim+¢, then we have A = 5(A) € Fn,
hence max ¢(A) < pu,, — €, which contradicts to the definition of fi,,.
4. Obviously, iy, < pms1. Recall that the Ljusternik—Schnirelmann eigenvalues

Am = (}4r)1f sup p(u) — oo, which are defined by the genus v (see Theorem 4.4 in
Y(A)z2m yeA

[37]). But Index(A) < ~(A), S0 fty > A\p. Then p,, — 0o as m — +oc. O
Let {um} be the sequence defined in (2.6). For each g, with i, < ptm41, define

(28) Cm= {u e Wi (RY) | /RN(|Du|” FlulP) dz < o, /RN V()ul? dm},

29 cp ={ue W @) | [ (D +luPyds 2 s [ Vil o),
RN RN

which are two sequences of symmetric cones in WP(RY).

Lemma 2.15. If m > 1 is such that p,, < ft;m11, then
Index(C™\{0}) = Index <W}’p(RN)\O_T) —m.

Moreover, (WP(RY), C™\{0}) links C"" cohomologically in dimension m over Zs.

Proof. The proof is similar to that of Theorem 3.2 in [10], where the cones were
similarly defined on W, (€2), where Q is a bounded domain. We give a detailed proof
here for the readers’ convenience.

Set

C={ueM|p() <pm}, U={uveM]o(u)<pma},
we have Index(C') < m < Index(U). By contradiction, if Index(C') < m — 1, by the
continuity of the index, there exists a closed symmetric neighborhood N € A of C'
such that Index(N) = Index(C'). By Lemma 2.13 above, there exist ¢ > 0 and an
odd continuous map 7 satisfying n ({u € M | o(u) < pi, +€}) C {u € M | p(u) <
pm — e} UN = N. It follows that Index({u € M | p(u) < pm +¢}) < m— 1.
By the definition of p,,, there exists M € F,, such that max p(M) < p,, + €, then
M C{ue M| p(u) < pn+ e} and thus Index(M) < m — 1, which contradicts to
the choice of M.
Since the index is invariant by odd deformation maps, it follows that

Index <{u e WP(RN) | /R (1Dul” + [uf) da < /R Vlul das}) — Index(C) = m.

Assume, by contradiction, that Index(U) > m+1, then there is a symmetric, compact
subset K of U with Index(K’) > m+ 1, which contradicts the definition of ji,41 since
max{p(u)| v € K} < fim41. Again, since the index is invariant by odd deformations,
we have that

Index ({u e Who(RY) |/ (| DulP+|uf?) dz < um+1/ V|u|pdx}> — Index(U) = m.
RN RN
Then Index(C™\{0}) = Index(W'?(R")\C?*) = m. From Lemma 2.6, we conclude
that (W!?(RY), C™\{0}) links C"" cohomologically in dimension m over Z,. O
Let r™,r* > 0, denote

(2.10) B ={ueC™||lu <r™}; 8™ ={ueCm||ul =r");
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(2.11) BY ={ue C¥ [|lul <rY}; ST ={ue C | ul| =T}

Let us define

b, 1nf[( )y =supI(u).

Lemma 2.16. For any A\ € R, there exist ™ > r* > 0 such that b,, — o0 as
m — oo and a,, < 0.

Proof. By (¢1), (g2), for Ve > 0, there is C. > 0 such that
|G(z,u)| < elulP + Celul|?, p<qg<p

For u € S™, by the inequality [t} < C(1+ [¢|9) for all t € R and V € L®(R") N
LY(RY), then

V(z)|ulP dx
RN

< c/ V@)1 + |uf*) dz < C[V |1 +C||V|ym/ ful? dz
RN

RN
<C (1+/ |u|qu) ,
RN

where |||z denotes the L> norm in RY. Hence, choosing ¢ small satisfying ¢ <

QC’p’
we have that
1 A
T(w) = Ll - 2 / V(@)|ul? o — / Cla.u) da
p b JrN RN
1
L = RIE (1+ / |u|de) [
p RN RN
1
(212) > e / e Ny T
p RN RN b Jrw D
1
> (S-cc) - [ rae-BC [ ujeas - P
p RN p RN p
1 |)\|C e
> |lyllP — q q_
> pollalP = Sl = 2
where 8, =  sup HuHLq
u€CT, |lull=1

1

We choose 77" = (W) " >0, then

G-3)r-e

We claim that §,, — 0. Indeed, since f3,, > B,,+1, we assume that 3,, — 8 > 0. Let
{um} C CT be a sequence satisfying |u,|| = 1 and By > |Juml[re > 18, We may
assume that u,, — u in WP(RY), then ¥ (u,,) — ¥(u). On the other hand, since
up, € CF', then

I{u) =

N —

1= lumll” > s / V(@) u|Pde,
RN

which and p,,,41 — oo imply that ¢ (u,,) — 0, then u = 0. The Sobolev embedding
implies that ||tm,||z« — 0. The claim follows. As a result, r" — oo and b,, — 00 as
m — 0.
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We next show that there is »™ > 0 such that a,, < 0. For u, € S™, since
V e L=®(RY), we have that

[ [P Sum/ V(@) |ux|Pda SumHVHLw/ |ug[Pd.
RV RN
Then by Sobolev embedding inequality and (g3), we have that
1 A
I(ug) = —||ugl|” — —/ V(x)|ug|P dx —/ G(z,uy) dz
b P JrN RN
A
A / V(z)|ugl? dx —/ G(z,uy) dx
RN RN

1

< —flugll” + —

p p

1+ C|V] g | A

+ H ”L ‘ |||Uk:||p_/ G(x,uk)d:v
p RN

TN (1 + Cl|V ||z |A| _/ G(x,up) dm)
p ry sl

— —o0  as ||ug|| = +o0.

IN

Hence there exist r™ > r* > 0 such that I(u) <0 for u € S™, then a,, < 0. O

Lemma 2.17. [ satisfies (C'). condition for any ¢ > 0.

Proof. Suppose that {u,} C W?(R") is a (C). sequence for I, i.e., I(u,) — ¢
and (1 + |lun|)]| L' (un)|l« — 0. Then

(2.13) I(u,) = ¢, (I'(up),un) =0
as n — +o00. Hence for large n, there exists a positive constant C' such that
1 ~
(2.14) C > I(uy) — —(I'(up), un) = / G(z,u,) dz.
p RN
Arguing by contradiction, we may assume that ||u,| — +oo. Set v, = IIZZH' Then
|lvn|| = 1, up to a subsequence, we have for some v € WIP(RY) that

v, — v in WHPRY), v, = vin L*(RY) for s € (p, p*)
and
vp(x) = v(z) a.e. in RY

as n — +o00.
We first consider the case where v # 0 in W!?(RY). Observe that

/ p
(2.15) 0o L) _y )\/ Vil / oo tnlin g,
[[un [P Ry [lual? Ry lun|?
From V € L*(RY), we have that ’ / x)|u, [P dx‘ < Cl|ug]|P for some C' > 0.

It follows from (2.15) that

g(z, up)vy,
(2.16) ‘/ x‘ <C
R JunfP
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Since 0 # v(x) = nl_l)r_il_loo vp(z) = n1—1>I—&I-100 miz'f a.e. in RV, |u,(x)| = +o0 a.e. in RY.

By Fatou’s Lemma and (g3), we have

/ 9w, )t dx = / 9@, u) v [P~ Yoy, do — 400
R R

N Hun“p_l N g P71

as n — +o00, which contradicts to (2.16).
If v =0 in W5?(RY), then by Lemma 2.9, we have that

p
/ Via)lun]? dr = V(z)|v,|P dx — 0.
RN

[P RY
