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Abstract. In this paper, we study the existence of infinitely many solutions to the following
quasilinear equation of p-Laplacian type in RN

(0.1) −△pu+ |u|p−2u = λV (x)|u|p−2u+ g(x, u), u ∈W 1,p(RN )

with sign-changing radially symmetric potential V (x), where 1 < p < N, λ ∈ R and △pu =
div(|Du|p−2Du) is the p-Laplacian operator, g(x, u) ∈ C(RN×R,R) is subcritical and p-superlinear
at 0 as well as at infinity. We prove that under certain assumptions on the potential V and
the nonlinearity g, for any λ ∈ R, the problem (0.1) has infinitely many solutions by using a
fountain theorem over cones under Cerami condition. A minimax approach, allowing an estimate
of the corresponding critical level, is used. New linking structures, associated to certain variational
eigenvalues of −△pu + |u|p−2u = λV (x)|u|p−2u are recognized, even in absence of any direct sum
decomposition of W 1,p(RN ) related to the eigenvalue itself.

Our main result can be viewed as an extension to a recent result of Degiovanni and Lancelotti
in [10] concerning the existence of nontrivial solutions for the quasilinear elliptic problem:

(0.2)

{
−△pu = λV (x)|u|p−2u+ g(x, u), in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded open domain.

1. Introduction and main result

In this paper, we study the existence of infinitely many solutions to the following
nonlinear elliptic equation of p-Laplacian type in the entire space

(1.1)

{
−△pu+ |u|p−2u = λV (x)|u|p−2u+ g(x, u), x ∈ RN ,

u ∈ W 1,p(RN),

where λ ∈ R, 1 < p < N , △pu = div(|Du|p−2Du) is the p-Laplacian operator. We
assume that the potential V (x) : RN → R satisfies the following condition:

(H) V ∈ L1(RN)∩L∞(RN), V + ̸= 0 and V is radially symmetric with respect to
x.

The nonlinearity g ∈ C(RN ×R,R) satisfies the following conditions:
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(g1) There exists a constant C > 0 such that

|g(x, t)| ≤ C(1 + |t|q−1) for all (x, t) ∈ RN ×R,

where p < q < p∗ = Np
N−p

and g is radially symmetric with respect to x;
(g2) lim

|t|→0

g(x,t)
|t|p−1 = 0 uniformly in x ∈ RN ;

(g3) lim
|t|→+∞

G(x,t)
|t|p = +∞ uniformly in x ∈ RN , where G(x, t) =

´ t

0
g(x, s)ds;

(g4) For G̃(x, t) = 1
p
g(x, t)t− G(x, t), we have G̃(x, t) > 0 for any x ∈ RN , t ̸= 0

and there exist C > 0, M > 0, θ > N
p

such that for any x ∈ RN , |t| ≥M ,

|g(x, t)|θ ≤ CG̃(x, t)|t|θ(p−1);

(g5) g(x,−t) = −g(x, t) for any x ∈ RN , t ∈ R.
We call u ∈ W 1,p(RN) a weak solution to (1.1) ifˆ

RN

(|Du|p−2DuDv + |u|p−2uv) dx− λ
ˆ
RN

V (x)|u|p−2uv dx

=

ˆ
RN

g(x, u)v dx, ∀v ∈ W 1,p(RN).

By conditions (g1) and (g2), we deduce that there exists a constant C > 0 such
that

(1.2) |g(x, t)| ≤ C(|t|p−1 + |t|q−1),

where p < q < p∗. Hence u = 0 is a trivial solution to (1.1). We are interested in the
existence of multiple nontrivial solutions of (1.1).

Since Ambrosetti and Rabinowitz proposed the mountain-pass theorem in 1973
(see [1]), critical point theory has become one of the main tools for finding solutions
to elliptic equations of variational type. Clearly, weak solutions to (1.1) correspond
to critical points of the related variational functional

(1.3) I(u) =
1

p

ˆ
RN

(|Du|p + |u|p) dx− λ

p

ˆ
RN

V (x)|u|p dx−
ˆ
RN

G(x, u) dx

defined on W 1,p(RN). By (1.2), I ∈ C1(W 1,p(RN),R).
Note that for any bounded open subset Ω ⊂ RN , the following p-Laplacian type

problem

(1.4)

{
−△pu+ a(x)|u|p−2u = g(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω

has been studied extensively in the past decades. The corresponding energy func-
tional to (1.4) is

Φ(u) =
1

p

ˆ
Ω

(|Du|p + a(x)|u|p) dx−
ˆ
Ω

G(x, u) dx,

where G(x, t) =
´ t

0
g(x, s) ds.

If a(x) ≥ 0, and g(x, t) is subcritical and p-superlinear at 0 and at infinity, then
the functional Φ possesses a mountain-pass geometric structure around u = 0. The
existence of a nontrivial solution to (1.4) can be obtained by using the mountain-pass
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theorem and the existence of infinitely many solutions, when g(x, t) is odd in t, can
be obtained by the so-called fountain theorem, see e.g. [1, 8, 12, 22, 27, 38].

If a(x) is sign-changing, when p = 2, the existence result can be obtained if the
energy functional possesses a linking geometric structure, see [21, 33, 38]. However,
such an existence result relies on a linking theorem on Hilbert spaces, which is based
on the fact that each eigenvalue of −△ induces a suitable direct sum decomposition
of W 1,2

0 (Ω). If p ̸= 2, the p-Laplacian operator −∆p is no longer a linear operator
and the properties of the set σ(−∆p) of the eigenvalues of −∆p are not clear. The
existence of a first eigenvalue λ1 = min σ(−∆p) > 0 and a second eigenvalue λ2 > λ1
was proved and several equivalent variational characterizations of λ1 and λ2 were
studied (see [2, 3, 9, 14, 23, 24]). There are at least three different variational ways
to define a diverging sequence {λn} ⊂ σ(−∆p) (see [6, 14, 31, 32]). However, one
does not know if these definitions are equivalent for n ≥ 3 or not (see [6, 10]). Also, a
direct sum decomposition of the space W 1,p

0 (Ω) according to the eigenvalues of −∆p

are not expected as one always does when p = 2. In [37], Szulkin and Willem proved
that the nonlinear eigenvalue problem

(1.5) −∆pu = λV (x)|u|p−2u, u ∈ D1,p
0 (Ω),

has a sequence of eigenvalues {λn} with λn → ∞ as n → ∞, where 1 < p < N
and Ω is an open, in general unbounded subset of RN and V satisfies the following
assumptions:

V ∈ L1
loc(Ω), V

+ = V1 + V2 ̸= 0, V1 ∈ L
N
p (Ω),

lim
x→y
x∈Ω
|x− y|pV2(x) = 0 for each y ∈ Ω̄, lim

|x|→∞
x∈Ω

|x|pV2(x) = 0.

In [18], Frigon introduced a new notion of linking, which includes many notions
of linking, such as homotopically linking, homologically linking, etc. In considering
continuous functionals, Frigon stated a deformation property in an abstract setting.
Then, with the new notion of linking, minimax critical point theorems for contin-
uous functionals on metric spaces were presented (Theorem 3.1 in [18]). After the
publication of [18], there are many papers on problem (1.4) for the sign-changing
potential case. In [11], Degiovanni and Lancelotti considered problem (1.4) under
the case a(x) = −λ and g(x, u) = |u|p∗−2u, where 1 < p < N , p∗ = Np

N−p
and obtained

that for every λ ≥ λ1, (1.4) has a nontrivial solution if N2

N+1
> p2 or N3+p3

N2+N
> p2

with certain smoothness assumption on the boundary of Ω. In [10], they also studied
problem (1.4) with a(x) = −λV (x), where V ∈ L∞(Ω), 1 < p < N , Ω ⊂ RN is a
bounded open domain with smooth boundary. They proved that for any λ ∈ R, (1.4)
admits a nontrivial weak solution if g is subcritical, p-superlinear at 0 and satisfies
the Ambrosetti-Rabinowitz condition ((AR) in short):

(AR) There exist µ > p and R > 0 such that for all x ∈ Ω,

|t| ≥ R =⇒ 0 < µG(x, t) ≤ tg(x, t).

In [39], Yan and Yang established a fountain theorem over cones under Palais–
Smale (PS) condition and its dual version (Theorem 1.1 and Theorem 1.2 in [39]).
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By applying these two theorems to the quasilinear elliptic problem

(1.6)

{
−△pu = λ|u|q−2u+ µ|u|γ−2u in Ω,

u = 0, on ∂Ω,

where 1 < p < N , 1 < q < p < γ < p∗, Ω is a smooth bounded domain and λ, µ ∈ R,
they showed that problem (1.6) possesses a sequence of positive energy solutions for
each µ > 0, λ ∈ R and (1.6) has a sequence of negative energy solutions for each
λ > 0, µ ∈ R.

Recently, Liu and Zheng in [25] studied the following p-Laplacian equation in RN

(1.7)

{
−△pu+ b(x)|u|p−2u = λV (x)|u|p−2u+ f(x, u), x ∈ RN ,

u ∈ W 1,p(RN),

where p > 1, λ ∈ R, V ∈ L∞(RN) and b(x) ∈ C(RN ,R) satisfies the following
condition:

(B) inf
x∈RN

b(x) ≥ b0 > 0, meas({x ∈ RN | b(x) ≤M}) <∞ ∀M > 0,

and f(x, t) is of subcritical growth, p-superlinear at 0 and at infinity satisfying
(F ) ∃ θ ≥ 1 such that θF(x, t) ≥ F(x, st) ∀ (x, t) ∈ RN ×R and s ∈ [0, 1],

where F(x, t) = f(x, t)t − pF (x, t), F (x, t) =
´ t

0
f(x, s) ds, meas(·) denotes the

Lebesgue measure in RN . The condition (F ) was first introduced in [19] for p = 2
and in [26] for gengeral p. By using a linking theorem over cones on a weighted
Sobolev space W = {u ∈ W 1,p(RN) |

´
RN (|Du|p + b(x)|u|p) dx < ∞}, in which

Sobolev embeddings W ↪→ Lq(RN), p ≤ q < p∗ are compact since (B) holds, they
proved that problem (1.7) has a nontrivial solution for each λ ∈ R.

Motivated by works just described, more precisely by results founded in [10] and
[39], a natural question is whether the same phenomenon of existence and multiplicity
holds or not when we consider problem (1.1). The purpose of this paper is to study
problem (1.1) without assuming the (AR) condition. Our basic assumptions on the
nonlinearity are (g1)–(g5). Note that the condition (g4) was introduced in [13] for
p = 2 and it was used in [28] for Kirchhoff type problems. Here, we employ a
fountain theorem over cones under Cerami condition. It is necessary to point out
that, if b(x) ≡ 1 in (1.7), then the condition (B) does not hold, hence problem (1.1)
is not a special case of (1.7).

We state our main result:

Theorem 1.1. Suppose that (g1)–(g5) hold and let V satisfy (H). Then, for each
λ ∈ R, the quasilinear elliptic problem (1.1) has infinitely many nontrivial solutions
in W 1,p(RN).

We do not assume that g(x, t) satisfies the (AR) condition. In fact, there are
functions which satisfy (g1)–(g5) but (AR). For example

g(x, t) = |t|p−2t log(1 + |t|)
satisfies (g1)–(g5) but g(x, t) does not satisfy

(1.8) G(x, t) ≥ C|t|µ for all (x, t) ∈ RN ×R

for any µ > p and some C > 0, which is a direct consequence of (AR).

Remark 1.2. Assume that (g1) holds. Then (AR) implies (g3), (g4).
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Remark 1.3. There are indeed functions which satisfy our conditions (g1)–(g4)
but the assumption (F ) above. For example,

G(x, t) = |t|µ + (µ− p)|t|µ−ε sin2

(
|t|ε

ε

)
,

where p < µ < p∗, 0 < ε < min
{
µ− p, µ− µN

p
+ 2N

p

}
.

We prove Theorem 1.1 by showing that the energy functional I possesses infinitely
many critical points in W 1,p(RN). To do so, we will try to get Cerami sequences for
I and to prove that each Cerami sequence is bounded in W 1,p(RN) and converges to
a critical point of I in W 1,p(RN), which can be distinguished to each other.

There are several difficulties. First, as RN is translation invariant, the Sobolev
embeddings W 1,p(RN) ↪→ Lq(RN) for q ∈ [p, p∗) are not compact, which makes the
proof of the convergence of approximate critical points difficult. The assumption that
V (x), g(x, t) are radially symmetric in x makes it possible to deal with this difficulty
by using the so-called principle of symmetric criticality (see e.g. [29]) to work in the
radially symmetric Sobolev space

W 1,p
r (RN) = {u ∈ W 1,p(RN) | u(x) = u(|x|)}.

Secondly, one usually gets a Cerami sequence by using a mountain-pass geometric
structure or linking geometric structure of I. As the assumption (H) holds, I does
not have the mountain-pass geometric structure around u = 0. We have to show that
I possesses certain linking geometric structure and to establish a suitable fountain
theorem over cones. According to what people usually do for problems in bounded
domain, one has to deal with the eigenvalues for the p-Laplacian operator. However,
for unbounded domain, it is much more complicated. We consider the following
eigenvalue problem

−∆pu+ |u|p−2u = λV (x)|u|p−2u, u ∈ W 1,p
r (RN)

and get a divergent sequence of eigenvalues

µm= inf
A⊆M

{
max
u∈A

ˆ
RN

(|Du|p + |u|p) dx |A is compact and symmetric, Index(A) ≥ m

}
,

where Index is the Z2-cohomological index described in [15, 16] and M = {u ∈
W 1,p

r (RN) |
´
RN V (x)|u|p dx = 1}. Then each µm < µm+1 induces a generalized

linking structure associated with the cones

Cm
− =

{
u ∈ W 1,p

r (RN) |
ˆ
RN

(|Du|p + |u|p) dx ≤ µm

ˆ
RN

V |u|p dx
}
,

Cm
+ =

{
u ∈ W 1,p

r (RN) |
ˆ
RN

(|Du|p + |u|p) dx ≥ µm+1

ˆ
RN

V |u|p dx
}
.

Then we use a fountain theorem under Cerami condition (see Theorem 2.8 in Sec-
tion 2), a result which we have not found elsewhere, to get infinitely many Cerami
sequences. The main difficulty now is to prove that each Cerami sequence {un} is
bounded in W 1,p

r (RN). To this end, we use the argument in [28] and the assumptions
(g3), (g4). However, as we deal with problems in RN , the argument in [28] which
deals with problems in bounded domains, needs to be improved. We succeeded in
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doing so by more careful analysis. Whence the boundedness of {un} is proved, the
result follows by using standard method.

Our paper is organized as follows. In Section 2 we give some basic definitions and
some preliminary results, including a fountain theorem over cones under Cerami con-
dition and an existence result of an eigenvalue problem for p-Laplacian type operator
in RN . In Section 3 we prove our main result Theorem 1.1.

We use standard notations. For example, for 1 ≤ p < +∞, ∥u∥Lp = (
´
RN |u|p dx)

1
p

denotes the usual Lp-norm. The N-dimensional Lebesgue measure of a set E ⊂ RN is
denoted by |E|. We use “→” and “⇀” to denote the strong and weak convergence in
the related function space respectively. C will denote a positive constant unless spec-
ified. We denote a subsequence of a sequence {un} as {un} to simplify the notation
unless specified.

2. Preliminary results

In this section, we give some preliminary results which will be used to prove our
main result.

We first give some definitions and results about the linking. Let (X, d) be a
metric space and H∗ be Alexander–Spanier cohomology (see [34]).

Definition 2.1. Let A ⊂ B ⊂ X, P ⊂ Q ⊂ X. We say that (B,A) links
(Q,P ), if A ∩Q = B ∩ P = ∅, and for every deformation η : B × [0, 1]→ X\P with
η(A× [0, 1]) ∩ P = ∅, then η(B × {1}) ∩Q ̸= ∅.

Definition 2.2. Suppose A ⊂ B ⊂ X, P ⊂ Q ⊂ X. Let m be a nonnega-
tive integer and K be a field. We say that (B,A) links (Q,P ) cohomologically in
dimension m over K, if A ∩ Q = B ∩ P = ∅, and the restriction homomorphism
Hm(X\P,X\Q;K)→ Hm(B,A;K) is not identically zero.

In the setting of Definition 2.1 and 2.2, if P = ∅ (resp. A = ∅), we simply write
Q instead of (Q,∅) (resp. B instead of (B,∅)).

Proposition 2.3. (Proposition 2.4 in [10]) If (B,A) links (Q,P ) cohomologi-
cally, then (B,A) links (Q,P ).

Definition 2.4. Let A be a subset of a real normed space X. A is said to be
symmetric, if −u ∈ A whenever u ∈ A. A is said to be a cone, if tu ∈ A whenever
u ∈ A and t > 0.

Proposition 2.5. (Proposition 2.1 in [39]) Let X ba a real normed space and
C−, C+ be two cones in X such that C+ is closed in X, C− ∩ C+ = {0} and
(X,C−\{0}) links C+ cohomologically in dimension m. For r−, r+ > 0, set

D− = {u ∈ C− | ∥u∥ ≤ r−}, S− = {u ∈ C− | ∥u∥ = r−},
D+ = {u ∈ C+ | ∥u∥ ≤ r+}, S+ = {u ∈ C+ | ∥u∥ = r+}.

Denote
Γ = {γ ∈ C(D−, X) | γ|S− = id}.

Then, for every γ ∈ Γ, (γ(D−), S−) links S+ cohomologically in dimension m + 1,
i.e.,

Hm+1(X,X\S+;K)→ Hm+1(γ(D−), S−;K)

is not identically zero.
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For readers’ convenience, let us recall the definition and some properties of Z2-
cohomological index (see [15, 16, 32] for details). For simplicity, we only consider
the usual Z2-action on a linear space, i.e., Z2 = {−1, 1} and the action is the usual
multiplication. In this case, a Z2-set A is just a symmetric set, which means that
−A = A.

Let W be a normed linear space and S(W ) denote the class of symmetric subsets
of W\{0}. If 2 ≤ dim W ≤ ∞, the index is defined as follows. Let ∼ be the
equivalence relation in W\{0} which identifies u with −u. It is well known that
H1((W\{0})/ ∼;Z2) ≈ Z2. Let α be the generator of H1((W\{0})/ ∼;Z2). For
any A ∈ S(W ), Index(A) is defined as the smallest nonnegative integer k such that
αk|A/∼ = 0. If no such integer exists, then Index(A) = ∞. We list some properties
of the cohomological index here for further use. Let A,B ∈ S(W ).

(i) (Definiteness) Index(A) = 0⇐⇒ A = ∅.
(ii) (Monotonicity) If there is an odd map A → B, then Index(A) ≤ Index(B).

In particular, equality holds if A and B are homeomorphic.
(iii) (Continuity) If A is closed, then there is a closed neighborhood N ∈ S(W )

of A such that Index(N) = Index(A). (iv)] (Neighborhood of zero) If U is
a bounded closed symmetric neighborhood of 0 in W , then Index (∂U) =
dimW .

(v) For every symmetric, open subset A of W ,

Index(A) = sup{Index(K) | K is compact and symmetric with K ⊂ A}.

Note that Index(A) ≤ γ(A), where the Krasnoselskii genus γ(A) is by definition
the smallest nonnegative integer k for which there exists an odd mapping A →
Rk\{0}. If there is no such mapping for any k, then γ(A) = +∞.

Let us also recall that Index(Y \{0}) = dim(Y ), whenever Y is a linear subspace
of W . Moreover, γ+(A) ≤ Index(A), where, as defined in [5], γ+(A) = sup{m ∈ N |
there exists an odd continuous map ψ : Rm\{0} → A}.

Lemma 2.6. (Theorem 2.7 in [10]) Let X be a real normed space and let S,A
be two symmetric subsets of X such that S ∩ A = ∅, 0 ∈ A and Index(S) =
Index(X\A) <∞. Then (X,S) links A cohomologically in dimension Index(S) over
Z2.

In particular, Proposition 2.5 holds if C−, C+ are symmetric cones such that
C− ∩ C+ = {0} and Index(C−\{0}) = Index(X\C+) <∞.

Let (X, ∥ · ∥) be a real Banach space with its dual space (X∗, ∥ · ∥∗), c ∈ R,
φ ∈ C1(X,R). Recall that {un} ⊂ X is called a Palais–Smale sequence of φ at
level c ((PS)c sequence in short) if φ(un) → c and φ′(un) → 0 in X∗ as n → ∞. If
φ(un) → c and (1 + ∥un∥)φ′(un) → 0 in X∗ as n → ∞, then {un} will be called a
Cerami sequence at level c ((C)c sequence in short).

Let c ∈ R, we say that φ satisfies (PS)c condition if any (PS)c sequence {un} ⊂
X has a strongly convergent subsequence in X. If any (C)c sequence {un} ⊂ X has
a strongly convergent subsequence in X, then we say that φ satisfies (C)c condition.

The following lemma, which is a special case of a deformation lemma on a Banach
space (Theorem 2.6 in [21]), will be useful in this paper.

Lemma 2.7. Let X be a Banach space. Assume that φ ∈ C1(X,R) is an even
functional and S ⊂ X is symmetric. Let c ∈ R, ε, δ > 0 such that
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∀u ∈ φ−1([c− 2ε, c+ 2ε]) ∩ S2δ =⇒ (1 + ∥u∥)∥φ′(u)∥∗ ≥
8ε

δ
.

Then there exists η ∈ C([0, 1]×X,X) such that
(i) η(t, u) = u if t = 0 or if u /∈ φ−1([c− 2ε, c+ 2ε]) ∩ S2δ,
(ii) η(1, φc+ε ∩ S) ⊂ φc−ε,
(iii) η(t, ·) is a homeomorphism of X for each t ∈ [0, 1],
(iv) φ(η(t, u)) is nonincreasing for each u ∈ X, and η(t, ·) is odd for every t ∈ [0, 1].

The following fountain theorem over cones under (C)c condition extends Theo-
rem 1.1 of [39], which is under the (PS) condition.

Let X be a Banach space with dim X ≥ 2 and for each m ∈ N, {Cm
− }, {Cm

+ } be
two sequences of symmetric cones in X. For rm− , rm+ > 0, we define

Dm
− = {u ∈ Cm

− | ∥u∥ ≤ rm−}, Sm
− = {u ∈ Cm

− | ∥u∥ = rm−},
Dm

+ = {u ∈ Cm
+ | ∥u∥ ≤ rm+}, Sm

+ = {u ∈ Cm
+ | ∥u∥ = rm+}.

Theorem 2.8. Let I ∈ C1(X,R) be an even functional. Suppose that for every
m ∈ N, Cm

+ is closed in X with Cm
− ∩ Cm

+ = {0} and

(2.1) Index(Cm
− \{0}) = Index(X\Cm

+ ) <∞

holds. Let
cm = inf

γ∈Γm

max
u∈Dm

−
I(γ(u)),

where Γm = {γ ∈ C(Dm
− , X) | γ is even and γ|Sm

−
= id}. If there exist rm− > rm+ > 0

such that
(1) bm := inf

Sm
+

I(u)→∞ as m→∞,

(2) am := max
Sm
−
I(u) ≤ 0,

then cm ≥ bm and there is a (C)cm sequence {un} ⊂ X such that

I(un)→ cm, ∥I ′(un)∥∗(1 + ∥un∥)→ 0.

Moreover, if I satisfies the (C)c condition for any c > 0, then I has an unbounded
sequence of critical values {cm}.

Proof. By Lemma 2.6 and Proposition 2.5, (2.1) implies that (γ(Dm
− ), S

m
− ) links

Sm
+ cohomologically for each γ ∈ Γm, then γ(Dm

− ) ∩ Sm
+ ̸= ∅ for every γ ∈ Γm. So

cm ≥ bm.
By contradiction, if there is no (C)cm sequence {un} ⊂ X as stated, let S = X,

then there exist ε, δ > 0 such that

∀u ∈ I−1([cm − 2ε, cm + 2ε]) ⇒ (1 + ∥u∥)∥I ′(u)∥∗ ≥
8ε

δ
.

We can further require that ε > 0 such that

(2.2) cm − 2ε > am.

By the definition of cm, there exists γ ∈ Γm such that

max
u∈Dm

−
I(γ(u)) ≤ cm + ε.
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Then by Lemma 2.7, there exists an odd decent flow η ∈ C([0, 1]×X,X) such that

max
u∈Dm

−
I(η(1, γ(u))) ≤ cm − ε.

Denote β(u) = η(1, γ(u)). For u ∈ Sm
− , by (2.2), β(u) = η(1, γ(u)) = η(1, u) = u.

Then it follows that β ∈ Γm. Hence

cm ≤ max
u∈Dm

−
I(β(u)) = max

u∈Dm
−
I(η(1, γ(u))) ≤ cm − ε,

which is a contradiction. �
Since V and g are radially symmetric in x, we can study problem (1.1) in the

radially symmetric Sobolev space

W 1,p
r (RN) := {u ∈ W 1,p(RN) | u(x) = u(|x|)}

with the norm defined by ∥u∥ =
(ˆ

RN

(|Du|p + |u|p) dx
) 1

p

for all u ∈ W 1,p
r (RN). It

is well known that W 1,p
r (RN) ↪→ Lq(RN) for p ≤ q ≤ p∗. Moreover, the embeddings

W 1,p
r (RN) ↪→ Ls(RN) are compact for p < s < p∗.

Consider the following nonlinear eigenvalue problem

(2.3) −∆pu+ |u|p−2u = λV (x)|u|p−2u, u ∈ W 1,p
r (RN),

where ∆p = div(|Du|p−2Du) is the p-Laplacian operator with 1 < p < N and V
satisfies (H). Denote

φ(u) =

ˆ
RN

(|Du|p + |u|p) dx

and

ψ(u) =

ˆ
RN

V (x)|u|p dx.

Note that V ∈ L∞(RN)∩L1(RN), then V ∈ L
N
p (RN), hence φ, ψ ∈ C1(W 1,p

r (RN),R).
Set

(2.4) M = {u ∈ W 1,p
r (RN) | ψ(u) = 1}.

Recall that c ∈ R is a regular value of a C1 function f if and only if f ′(x) ̸= 0
for all x ∈ f−1(c). Since ψ(u) = 1

p
⟨ψ′(u), u⟩, 1 is a regular value of the functional ψ

inM. Hence the implicit function theorem implies thatM is a C1-Finsler manifold
with the natural Finsler structure induced by ψ. Since ψ is continuous and even,M
is complete, symmetric and 0 is not contained inM.

By Proposition 5.12 in [38], the norm of the derivative of the restriction of φ to
M at u is given by ∥(φ|M)′(u)∥∗ = min

µ∈R
∥φ′(u)− µψ′(u)∥ (here the norm ∥ · ∥∗ is the

norm in TuM, which is the tangent space ofM at u).
Similar to the proof of Lemma 2.13 in [38], it is easy to prove the next lemma:

Lemma 2.9. If V satisfies (H), then
(i) ψ′ is a compact operator from W 1,p

r (RN) to (W 1,p
r (RN))∗,

(ii) ψ(u) is weakly continuous in W 1,p
r (RN).

The following Lemma is a direct consequence of Lemma 2.7 in [20].
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Lemma 2.10. Let un, u ∈ W 1,p
r (RN). If

lim
n→+∞

ˆ
RN

(|Dun|p−2Dun − |Du|p−2Du)(Dun −Du) dx = 0

and

lim
n→+∞

ˆ
RN

(|un|p−2un − |u|p−2u)(un − u) dx = 0,

then un → u in W 1,p
r (RN).

Lemma 2.11. φ|M satisfies the (PS)c condition for any c > 0.

Proof. For c > 0, suppose that {un} is a (PS)c sequence for φ|M, i.e.,

(φ|M)(un)→ c and (φ|M)′(un)→ 0 in (W 1,p
r (RN))∗

as n→ +∞. Then there exists a sequence {µn} ⊂ R such that

(2.5) φ′(un)− µnψ
′(un)→ 0 in (W 1,p

r (RN))∗.

Since φ(un) → c, {un} is bounded in W 1,p
r (RN), passing to a subsequence, we may

assume that un ⇀ u in W 1,p
r (RN) for some u ∈ W 1,p

r (RN). Hence by Lemma 2.9,

ψ′(un)→ ψ′(u) in (W 1,p
r (RN))∗ and ψ(u) = lim

n→∞
ψ(un) = 1,

then we have that u ̸= 0. By (2.5),

p(φ(un)− µn) = ⟨φ′(un), un⟩ − µn⟨ψ′(un), un⟩ → 0.

So {µn} is bounded and we may assume that µn → µ for some µ ∈ R. Moreover,
0 < φ(u) ≤ µ. It follows from µn → µ and ψ′(un)→ ψ′(u) in (W 1,p

r (RN))∗ that

⟨φ′(un), un − u⟩ = ⟨φ′(un)− µnψ
′(un), un − u⟩+ (µn − µ)⟨ψ′(un), un − u⟩

+ µ⟨ψ′(un)− ψ′(u), un − u⟩+ µ⟨ψ′(u), un − u⟩ → 0,

and then ⟨φ′(un)− φ′(u), un − u⟩ → 0, i.e.,ˆ
RN

(|Dun|p−2Dun − |Du|p−2Du)(Dun −Du) dx

+

ˆ
RN

(|un|p−2un − |u|p−2u)(un − u) dx→ 0,

hence ˆ
RN

(|Dun|p−2Dun − |Du|p−2Du)(Dun −Du) dx→ 0

and ˆ
RN

(|un|p−2un − |u|p−2u)(un − u) dx→ 0.

Then by Lemma 2.10, un → u in W 1,p
r (RN). �

Denote by A the class of compact symmetric subsets ofM. For m ∈ N, let

Fm := {A ∈ A | Index(A) ≥ m}

and set

(2.6) µm = inf
A∈Fm

max
u∈A

φ(u).
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Since M ̸= ∅, for each m there is a set A ⊂M which is homeomorphic to the unit
sphere Sm−1 ⊂ Rm by an odd homeomorphism. Since γ+(Sm−1) = m, all µm are
well defined. Moreover, µ1 = inf

u∈M
φ(u) > 0.

Following [4], to prove that {µm} is a sequence of eigenvalues of problem (2.3),
we define a family of manifolds onM. For fixed α > 0, we denote

Fα = {Mβ | β ∈ [0, α]} and F∗
α = {Mβ | β ∈ [−α, 0]},

whereMβ = {u ∈ W 1,p
r (RN) | ψ(u) = 1 + β}.

Definition 2.12. Let c ∈ R be a regular value of φ|M. The family Fα is said
to be admissible for φ at c if φ is defined on Mβ for all β ∈ [0, α] and there exist
constants τ, ρ, ε1 > 0 such that

(2.7) ∀ β ∈ [0, α], u ∈Mβ, |φ(u)−c| ≤ ε1 =⇒ ∥(φ|Mβ
)′(u)∥∗ > ρ and ∥ψ′(u)∥ > τ.

Lemma 2.13. (A deformation lemma on a C1-manifold, Theorem 2.5 in [4]) Let
M = {u ∈ X | ψ(u) = 1} be a C1 submanifold of a Banach space X, where ψ is
a C1 functional and 1 is not a critical value of ψ. Let φ be a C1 functional on a
neighborhood of M and c be a noncritical value of φ|M and α > 0 be such that Fα

or F∗
α is admissible for φ at c. Then there exists ε̂ > 0 such that for all 0 < ε < ε̂

there exists an homeomorphism η ofM ontoM such that
(1) η(u) = u if φ(u) /∈ [c− ε̂, c+ ε̂];
(2) φ(η(u)) ≤ φ(u) for all u ∈M;
(3) φ(η(u)) ≤ c− ε for all u ∈M such that φ(u) ≤ c+ ε;
(4) ifM is symmetric (M = −M) and φ is even, then η is odd.

Proposition 2.14. Under the assumption (H), {µm} is a sequence of eigenvalues
of problem (2.3) and µm →∞ as m→∞.

Proof. 1. Note first that critical values of φ|M coincide with eigenvalues of
problem (2.3).

2. Claim: For each m, if µm is not a critical value of φ|M, then there exists
α > 0 such that Fα is admissible for φ at µm, i.e. there exist constants τ, ρ, ε1 > 0
satisfying (2.7).

Proof of the Claim. In fact, if there are sequences εn → 0, {un} ⊂ Mεn with
|φ(un)− µm| → 0 such that

∥(φ|Mεn
)′(un)∥∗ → 0 or ∥ψ′(un)∥∗ → 0.

If ∥(φ|Mεn
)′(un)∥∗ → 0, then {un} is a (PS)µm sequence of φ|Mεn

. By Lemma 2.11,
{un} possesses a convergent subsequence, thus µm is a critical value of φ|M, which
is a contradiction.

Therefore we must have ∥ψ′(un)∥∗ → 0.
Since φ(un) is bounded, passing to a subsequence, we may assume that un ⇀ u

in W 1,p
r (RN). Then by Lemma 2.9, we have

ψ(u) = lim
n→∞

ψ(un) = 1 and ⟨ψ′(u), v⟩ = lim
n→∞
⟨ψ′(un), v⟩ = 0 ∀ v ∈ W 1,p

r (RN),

i.e., 1 is a critical value of ψ, which is also a contradiction. Hence the Claim follows.
3. For each m, if µm is not a critical value of φ, then Lemma 2.13 implies that

there exist ε̂ > 0 and an odd homeomorphism η ofM such that η(φµm+ε) ⊂ φµm−ε for
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all ε ∈ (0, ε̂). Taking A ∈ Fm with maxφ(A) ≤ µm+ε, then we have Ã = η(A) ∈ Fm,
hence maxφ(Ã) ≤ µm − ε, which contradicts to the definition of µm.

4. Obviously, µm ≤ µm+1. Recall that the Ljusternik–Schnirelmann eigenvalues
λm = inf

γ(A)≥m
sup
u∈A

φ(u) → ∞, which are defined by the genus γ (see Theorem 4.4 in

[37]). But Index(A) ≤ γ(A), so µm ≥ λm. Then µm →∞ as m→ +∞. �
Let {µm} be the sequence defined in (2.6). For each µm with µm < µm+1, define

(2.8) Cm
− =

{
u ∈ W 1,p

r (RN) |
ˆ
RN

(|Du|p + |u|p) dx ≤ µm

ˆ
RN

V (x)|u|p dx
}
,

(2.9) Cm
+ =

{
u ∈ W 1,p

r (RN) |
ˆ
RN

(|Du|p + |u|p) dx ≥ µm+1

ˆ
RN

V (x)|u|p dx
}
,

which are two sequences of symmetric cones in W 1,p
r (RN).

Lemma 2.15. If m ≥ 1 is such that µm < µm+1, then

Index(Cm
− \{0}) = Index

(
W 1,p

r (RN)\Cm
+

)
= m.

Moreover, (W 1,p
r (RN), Cm

− \{0}) links Cm
+ cohomologically in dimension m over Z2.

Proof. The proof is similar to that of Theorem 3.2 in [10], where the cones were
similarly defined on W 1,p

0 (Ω), where Ω is a bounded domain. We give a detailed proof
here for the readers’ convenience.

Set
C = {u ∈M | φ(u) ≤ µm}, U = {u ∈M | φ(u) < µm+1},

we have Index(C) ≤ m ≤ Index(U). By contradiction, if Index(C) ≤ m− 1, by the
continuity of the index, there exists a closed symmetric neighborhood N ∈ A of C
such that Index(N) = Index(C). By Lemma 2.13 above, there exist ε > 0 and an
odd continuous map η satisfying η ({u ∈M | φ(u) ≤ µm + ε}) ⊂ {u ∈ M | φ(u) ≤
µm − ε} ∪ N = N . It follows that Index({u ∈ M | φ(u) ≤ µm + ε}) ≤ m − 1.
By the definition of µm, there exists M ∈ Fm such that maxφ(M) < µm + ε, then
M ⊆ {u ∈ M | φ(u) ≤ µm + ε} and thus Index(M) ≤ m − 1, which contradicts to
the choice of M .

Since the index is invariant by odd deformation maps, it follows that

Index
({
u ∈ W 1,p

r (RN) |
ˆ
RN

(|Du|p + |u|p) dx ≤ µm

ˆ
RN

V |u|p dx
})

= Index(C) = m.

Assume, by contradiction, that Index(U) ≥ m+1, then there is a symmetric, compact
subset K of U with Index(K) ≥ m+1, which contradicts the definition of µm+1 since
max{φ(u)| u ∈ K} < µm+1. Again, since the index is invariant by odd deformations,
we have that

Index
({
u ∈ W 1,p

r (RN) |
ˆ
RN

(|Du|p+|u|p) dx < µm+1

ˆ
RN

V |u|p dx
})

= Index(U) = m.

Then Index(Cm
− \{0}) = Index(W 1,p

r (RN)\Cm
+ ) = m. From Lemma 2.6, we conclude

that (W 1,p
r (RN), Cm

− \{0}) links Cm
+ cohomologically in dimension m over Z2. �

Let rm− , rm+ > 0, denote

(2.10) Bm
− = {u ∈ Cm

− | ∥u∥ ≤ rm−}; Sm
− = {u ∈ Cm

− | ∥u∥ = rm−};
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(2.11) Bm
+ = {u ∈ Cm

+ | ∥u∥ ≤ rm+}; Sm
+ = {u ∈ Cm

+ | ∥u∥ = rm+}.

Let us define
bm = inf

Sm
+

I(u), am = sup
Sm
−

I(u).

Lemma 2.16. For any λ ∈ R, there exist rm− > rm+ > 0 such that bm → ∞ as
m→∞ and am ≤ 0.

Proof. By (g1), (g2), for ∀ ε > 0, there is Cε > 0 such that

|G(x, u)| ≤ ε|u|p + Cε|u|q, p < q < p∗.

For u ∈ Sm
+ , by the inequality |t|p ≤ C(1 + |t|q) for all t ∈ R and V ∈ L∞(RN) ∩

L1(RN), then∣∣∣∣ˆ
RN

V (x)|u|p dx
∣∣∣∣ ≤ C

ˆ
RN

|V (x)|(1 + |u|q) dx ≤ C∥V ∥L1 + C∥V ∥L∞

ˆ
RN

|u|q dx

≤ C

(
1 +

ˆ
RN

|u|q dx
)
,

where ∥·∥L∞ denotes the L∞ norm in RN . Hence, choosing ε small satisfying ε ≤ 1
2Cp

,
we have that

I(u) =
1

p
∥u∥p − λ

p

ˆ
RN

V (x)|u|p dx−
ˆ
RN

G(x, u) dx

≥ 1

p
∥u∥p − |λ|C

p

(
1 +

ˆ
RN

|u|q dx
)
−
ˆ
RN

G(x, u) dx

≥ 1

p
∥u∥p − ε

ˆ
RN

|u|p dx− Cε

ˆ
RN

|u|q dx− |λ|C
p

ˆ
RN

|u|q dx− |λ|C
p

≥
(
1

p
− εC

)
∥u∥p − Cε

ˆ
RN

|u|q dx− |λ|C
p

ˆ
RN

|u|q dx− |λ|C
p

≥ 1

2p
∥u∥p − |λ|C

p
βq
m∥u∥q −

|λ|C
p

,

(2.12)

where βm = sup
u∈Cm

+ ,∥u∥=1

∥u∥Lq .

We choose rm+ =
(

1
2Cqβq

m

) 1
q−p

> 0, then

I(u) ≥ 1

2

(
1

p
− 1

q

)
(rm+ )

p − C.

We claim that βm → 0. Indeed, since βm ≥ βm+1, we assume that βm → β ≥ 0. Let
{um} ⊂ Cm

+ be a sequence satisfying ∥um∥ = 1 and βm ≥ ∥um∥Lq ≥ 1
2
βm. We may

assume that um ⇀ u in W 1,p
r (RN), then ψ(um) → ψ(u). On the other hand, since

um ∈ Cm
+ , then

1 = ∥um∥p ≥ µm+1

ˆ
RN

V (x)|um|pdx,

which and µm+1 → ∞ imply that ψ(um) → 0, then u = 0. The Sobolev embedding
implies that ∥um∥Lq → 0. The claim follows. As a result, rm+ → ∞ and bm → ∞ as
m→∞.
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We next show that there is rm− > 0 such that am ≤ 0. For uk ∈ Sm
− , since

V ∈ L∞(RN), we have that

∥uk∥p ≤ µm

ˆ
RN

V (x)|uk|pdx ≤ µm∥V ∥L∞

ˆ
RN

|uk|pdx.

Then by Sobolev embedding inequality and (g3), we have that

I(uk) =
1

p
∥uk∥p −

λ

p

ˆ
RN

V (x)|uk|p dx−
ˆ
RN

G(x, uk) dx

≤ 1

p
∥uk∥p +

|λ|
p

∣∣∣∣ˆ
RN

V (x)|uk|p dx
∣∣∣∣− ˆ

RN

G(x, uk) dx

≤ 1 + C∥V ∥L∞ |λ|
p

∥uk∥p −
ˆ
RN

G(x, uk) dx

= ∥uk∥p
(
1 + C∥V ∥L∞|λ|

p
−
ˆ
RN

G(x, uk)

∥uk∥p
dx

)
→ −∞ as ∥uk∥ → +∞.

Hence there exist rm− > rm+ > 0 such that I(u) ≤ 0 for u ∈ Sm
− , then am ≤ 0. �

Lemma 2.17. I satisfies (C)c condition for any c > 0.

Proof. Suppose that {un} ⊂ W 1,p
r (RN) is a (C)c sequence for I, i.e., I(un) → c

and (1 + ∥un∥)∥I ′(un)∥∗ → 0. Then

(2.13) I(un)→ c, ⟨I ′(un), un⟩ → 0

as n→ +∞. Hence for large n, there exists a positive constant C such that

(2.14) C ≥ I(un)−
1

p
⟨I ′(un), un⟩ =

ˆ
RN

G̃(x, un) dx.

Arguing by contradiction, we may assume that ∥un∥ → +∞. Set vn = un

∥un∥ . Then
∥vn∥ = 1, up to a subsequence, we have for some v ∈ W 1,p

r (RN) that

vn ⇀ v in W 1,p
r (RN), vn → v in Ls(RN) for s ∈ (p, p∗)

and
vn(x)→ v(x) a.e. in RN

as n→ +∞.
We first consider the case where v ̸= 0 in W 1,p

r (RN). Observe that

(2.15) 0← ⟨I
′(un), un⟩
∥un∥p

= 1− λ
ˆ
RN

V (x)|un|p

∥un∥p
dx−

ˆ
RN

g(x, un)vn
∥un∥p−1

dx.

From V ∈ L∞(RN), we have that
∣∣∣ ˆ

RN

V (x)|un|p dx
∣∣∣ ≤ C∥un∥p for some C > 0.

It follows from (2.15) that

(2.16)
∣∣∣ ˆ

RN

g(x, un)vn
∥un∥p−1

dx
∣∣∣ ≤ C.
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Since 0 ̸= v(x) = lim
n→+∞

vn(x) = lim
n→+∞

un(x)
∥un∥ a.e. in RN , |un(x)| → +∞ a.e. in RN .

By Fatou’s Lemma and (g3), we haveˆ
RN

g(x, un)vn
∥un∥p−1

dx =

ˆ
RN

g(x, un)

|un|p−1
|vn|p−1vn dx→ +∞

as n→ +∞, which contradicts to (2.16).
If v = 0 in W 1,p

r (RN), then by Lemma 2.9, we have thatˆ
RN

V (x)|un|p

∥un∥p
dx =

ˆ
RN

V (x)|vn|p dx→ 0.

By (2.15) again, we have

(2.17) lim
n→+∞

ˆ
RN

g(x, un)vn
∥un∥p−1

= 1.

Inspired by [28], for r ≥ 0, we set

(2.18) h(r) = inf{G̃(x, u) | x ∈ RN and u ∈ R with |u| ≥ r}.

Then (g4) implies that h(r) > 0 for all r > 0, and (g3)(g4) imply that h(r)→ +∞ as
r → +∞. For 0 ≤ α < β ≤ +∞, set

An(α, β) = {x ∈ RN | α ≤ |un(x)| < β}.

and

Sβ
α = inf

{
G̃(x, u)

|u|p
| x ∈ RN and u ∈ R with α ≤ |u(x)| < β

}
.

Since G̃(x, u) > 0 for any |u| > 0, we have that for each α > 0, Sβ
α > 0 and

G̃(x, un) ≥ Sβ
α|un|p for all x ∈ An(α, β). It follows from (2.14) that

C ≥
ˆ
An(0,α)

G̃(x, un) dx+

ˆ
An(α,β)

G̃(x, un) dx+

ˆ
An(β,+∞)

G̃(x, un) dx

≥ Sβ
α

ˆ
An(α,β)

|un|p dx+ h(β)|An(β,+∞)| ≥ h(β)|An(β,+∞)|.

Since h(r) → +∞ as r → +∞, |An(β,+∞)| → 0 as β → +∞ uniformly in n. By
Hölder’s inequality, for any s ∈ [1, p∗),

ˆ
An(β,+∞)

|vn|s dx ≤
(ˆ

An(β,+∞)

|vn|p
∗
) s

p∗

|An(β,+∞)|
p∗−s
p∗

≤ C|An(β,+∞)|
p∗−s
p∗ → 0

(2.19)

as β → +∞ uniformly in n.
Since for any α > 0, it may occur that |An(0, α)| = +∞, the methods used in

[28] to prove that ∣∣∣ ˆ
An(0,α)

g(x, un)un
∥un∥p

dx
∣∣∣→ 0 as n→ +∞

does not work now. More careful analysis is needed as follows.
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By (g1) and (g2), for any σ > 0, there exists some Cσ > 0 independent of n such
that

(2.20) |g(x, un)| ≤ σ|un|p−1 + Cσ|un|q−1 for all (x, un) ∈ RN ×R,

where q ∈ (p, p∗). Then∣∣∣ˆ
An(0,α)

g(x, un)un
∥un∥p

dx
∣∣∣ ≤ σ

´
An(0,α)

|un|p dx
∥un∥p

+
Cσ

´
An(0,α)

|un|q dx
∥un∥p

≤ σ

ˆ
An(0,α)

|vn|p dx+ Cσ

´
An(0,α)

|un|p dx · αq−p

∥un∥p

≤ σ

ˆ
An(0,α)

|vn|p dx+ Cσ

ˆ
An(0,α)

|vn|p dx · αq−p

≤ σ + Cσ α
q−p.

Set 0 < ε < 1
3
. We can first choose σ > 0 small such that σ < ε

2
. Then we take α > 0

small enough such that Cσα
q−p < ε

2
. Hence

(2.21)
∣∣∣ ˆ

An(0,α)

g(x, un)un
∥un∥p

dx
∣∣∣ < ε

for all n.
Furthermore, for any fixed 0 < α < β,ˆ

An(α,β)

|vn|p dx =
1

∥un∥p

ˆ
An(α,β)

|un|p dx =
1

∥un∥p

ˆ
An(α,β)

Sβ
α|un|p

Sβ
α

dx

≤ 1

∥un∥p Sβ
α

ˆ
An(α,β)

G̃(x, un) dx ≤
C

∥un∥p Sβ
α

→ 0

(2.22)

as n→ +∞. Note that there exists C = C(α, β) > 0 independent of n such that

|g(x, un)| ≤ C|un|p−1 for all x ∈ An(α, β).

Then by (2.22), ∃N0, n > N0 implies that∣∣∣ ˆ
An(α,β)

g(x, un)un
∥un∥p

dx
∣∣∣ = ∣∣∣ˆ

An(α,β)

g(x, un)vn
∥un∥p−1

dx
∣∣∣ ≤ ˆ

An(α,β)

C|un|p−1vn
∥un∥p−1

dx

= C

ˆ
An(α,β)

|vn|p dx < ε.

(2.23)

Let θ′ = θ
θ−1

. Since θ > N
p
, we have θ′ ∈ (1, N

N−p
), then pθ′ ∈ (p, p∗). By (2.19)

we can take β large enough such that∣∣∣ ˆ
An(β,+∞)

g(x, un)vn
∥un∥p−1

dx
∣∣∣ ≤ ˆ

An(β,+∞)

|g(x, un)|
|un|p−1

|vn|p dx

≤

(ˆ
An(β,+∞)

∣∣∣∣g(x, un)|un|p−1

∣∣∣∣θ dx
) 1

θ (ˆ
An(β,+∞)

|vn|pθ
′
dx

) 1
θ′

≤
(ˆ

An(β,+∞)

CG̃(x, un) dx

) 1
θ
(ˆ

An(β,+∞)

|vn|pθ
′
dx

) 1
θ′

< ε

(2.24)

for all n > N0.
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Therefore, (2.21), (2.23), (2.24) imply that for n > N0,ˆ
RN

g(x, un)un
∥un∥p

dx < 3ε < 1,

which contradicts (2.17). Then {un} is bounded in W 1,p
r (RN). So we may assume,

up to a subsequence,
un ⇀ u in W 1,p

r (RN)

for some u ∈ W 1,p
r (RN), and

un → u in Ls(RN), s ∈ (p, p∗),

as n→ +∞.
Set J(u) =

´
RN G(x, u) dx for all u ∈ W 1,p

r (RN), then J ∈ C1(W 1,p
r (RN),R) and

⟨J ′(u), v⟩ =
´
RN g(x, u)v dx for any u, v ∈ W 1,p

r (RN).
From (2.20), we have∣∣∣ ˆ

RN

(
g(x, un)− g(x, u)

)
(un − u) dx

∣∣∣
≤
ˆ
RN

σ
(
|un|p−1 + |u|p−1

)
(un − u) dx+

ˆ
RN

Cσ

(
|un|q−1 + |u|q−1

)
(un − u) dx

≤ σC
(
∥un∥p−1

Lp + ∥u∥p−1
Lp

)
∥un − u∥Lp + Cσ

(
∥un∥q−1

Lq + ∥u∥q−1
Lq

)
∥un − u∥Lq

≤ C(σ + Cσ∥un − u∥Lq),

where C is independent of σ and of n. Then we haveˆ
RN

(
g(x, un)− g(x, u)

)
(un − u) dx→ 0

as n→ +∞, i.e.

(2.25) ⟨J ′(un)− J ′(u), un − u⟩ → 0

as n→ +∞.
Since I ′(un) = φ′(un) − λψ′(un) − J ′(un) → 0 and ψ′(un) → ψ′(u), we have

that φ′(un) + J ′(un) → λψ′(u) in W 1,p
r (RN), then it follows from (2.25) and un ⇀

u in W 1,p
r (RN) that

⟨φ′(un), un − u⟩ = ⟨φ′(un) + J ′(un)− λψ′(u), un − u⟩+ ⟨λψ′(u), un − u⟩
− ⟨J ′(un)− J ′(u), un − u⟩+ ⟨J ′(u), un − u⟩ → 0.

Then ⟨φ′(un)− φ′(u), un − u⟩ → 0, hence un → u in W 1,p
r (RN) by Lemma 2.10. �

3. The proof of the main result

Proof of Theorem 1.1. By Lemma 2.14, µm → +∞ as m→ +∞ where {µm} is
given in (2.6). For each m with µm < µm+1. Define Cm

− , Cm
+ as in (2.8) (2.9), then

Cm
− , Cm

+ are two symmetric closed cones in W 1,p
r (RN) with Cm

− ∩ Cm
+ = {0}.

For each m, by Lemma 2.15, Index(Cm
− \{0}) = Index

(
W 1,p

r (RN)\Cm
+

)
= m. Let

Bm
+ , B

m
− , S

m
+ , S

m
− be defined as in (2.10)(2.11) and

cm = inf
γ∈Γm

sup
u∈Bm

−

I(γ(u))),
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where Γm = {γ ∈ C(Bm
− ,W

1,p
r (RN)) : γ is even and γ|Sm

−
= id}. By Lemma 2.16,

Lemma 2.17 and Theorem 2.8, {cm} is a sequence of critical values of I and cm ≥ bm.
Since bm →∞ as m→∞, I has infinitely many unbounded positive critical values.
Then by the principle of symmetric criticality the proof is completed. �

Remark. If we want to get the existence of at least one nontrivial weak solution
instead of infinitely many solutions to problem (1.1), then the assumption on V (x)
could be weaken as
(Hp) V ∈ L1

loc(R
N), V + = V1 + V2 ̸= 0, V1, V − ∈ L

N
p (RN), lim

x→y
|x − y|pV2(x) = 0

for each y ∈ RN , lim
|x|→∞

|x|pV2(x) = 0.

Under the assumption (Hp) on V , following the arguments in [37], we can also get a
divergent sequence {µm} of eigenvalues defined in (2.6). By exchanging (λ, V ) with
(−λ,−V ), we may assume that λ ≥ 0. For λ ≥ µ1, there exists some m ≥ 1 such that
µm ≤ λ < µm+1, then we could prove that I possesses a linking structure over cones
under the condition (Hp). By the linking theorem over cones under (C)c condition
(see, e.g., Lemma 2.2 in [25]), we can get the existence of one nontrivial solution for
problem (1.1). For 0 ≤ λ < µ1, we could obtain the existence result by mountain
pass theorem.
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