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Abstract. We consider meromorphic solutions of non-linear differential equation of the form

fn +Qd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Qd(z, f) is a differential polynomial in f of degree d ≤ n − 2 with rational functions as its
coefficients, p1, p2 are rational functions and α1, α2 are polynomials. More precisely and mainly
we have shown the conditions concerning α′

1/α
′
2 that will ensure the existence and forms of the

possible meromorphic solutions of the above equation. These results have extended and improved
some known results obtained most recently.

1. Introduction and main results

In studying differential equations in the complex plane C, it’s always an inter-
esting and quite difficult problem to prove the existence or uniqueness of the entire
or meromorphic solution of a given differential equation, particularly for a non-linear
ones. Since 1970’s , Nevanlinna’s value distribution theory (particularly Clunie type
of lemmas relating equations involving differential polynomials) have been used or
utilized by the second author of the paper and his co-workers (see, e.g., [9, 11, 12, 13])
to tackle the non-linear differential equations of the form

fn + Pd(z, f) = h,

where Pd(z, f) denotes a polynomial in f and its derivatives with a total degree
d ≤ n − 1, with small functions of f as the coefficients, and h is a given entire or
meromorphic function. Moreover, Pd(z, f) is called an algebraic differential poly-
nomial in f, if all its coefficients are polynomials in z. We assume that the reader
is familiar with the standard notations in the Nevanlinna theory (see[2, 4]) and its
associated standard notations, such as

T (r, f), m(r, f), N(r, f), N(r, f), · · · .
We denote by S(r, f) any quantity satisfying

S(r, f) = o{T (r, f)}, as r → ∞,
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possibly outside of a set E with finite linear measure, not necessarily the same at
each occurrence.

Recently, it is shown in [13] that the equation 4f 3(z) + 3f ′′(z) = − sin 3z has
exactly three nonconstant entire solutions, namely f1(z) = sin z, f2(z) =

√
3
2
cos z −

1
2
sin z, f3(z) = −

√
3
2
cos z− 1

2
sin z. More recently, the following two results have been

obtained:

Theorem A. [9] Let n ≥ 4 be an integer and Pd(z, f) denote an algebraic
differential polynomial in f(z) of degree d ≤ n − 3 with small functions of f as the
coefficients. If p1(z), p2(z) are two nonzero polynomials and α1, α2 are two nonzero
constants such that α1

α2
is not rational, then the equation

fn(z) + Pd(z, f) = p1(z)e
α1z + p2(z)e

α2z

does not have any transcendental entire solution.

Theorem B. [8] Let n ≥ 2 be an integer, Pd(z, f) be an algebraic differential
polynomial in f(z) of degree d ≤ n− 2 with small functions of f as the coefficients,
and p1, p2, α1, α2 be nonzero constants such that α1 ̸= α2. If f is a transcendental
meromorphic solution of the following equation

(1) fn(z) + Pd(z, f) = p1e
α1z + p2e

α2z,

and satisfying N(r, f) = S(r, f), then one of the following holds:

(1) f(z) = c0 + c1e
α1z
n ;

(2) f(z) = c0 + c2e
α2z
n ;

(3) f(z) = c1e
α1z
n + c2e

α2z
n , and α1 + α2 = 0,

where c0 is a small function of f(z) and c1, c2 are constants satisfying cn1 = p1, c
n
2 = p2.

Now we shall extend the above results by considering that h is a meromorphic
function of finite (integer) order and improve the results of Theorems A and B, as
well as that of [5, 6] and [15].

Theorem 1. Let n ≥ 3 and Qd(z, f) be a differential polynomial in f of degree
d with rational functions as its coefficients. Suppose that p1, p2 are rational functions
and α1, α2 are polynomials. If d ≤ n− 2, the following differential equation

(2) fn +Qd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

admits a meromorphic function f with finitely many poles. Then α′
1

α′
2

is a rational
number. Furthermore, only one of the following four cases holds:

(1) f(z) = q(z)eP (z) and α′
1

α′
2
= 1, where q(z) is a rational function and P (z) is a

polynomial with nP ′(z) = α′
1 = α′

2;
(2) f(z) = q(z)eP (z) and either α′

1

α′
2
= k

n
or α′

1

α′
2
= n

k
, where q(z) is a rational

function, k is an integer with 1 ≤ k ≤ d and P (z) is a polynomial with
nP ′(z) = α′

1 or nP ′(z) = α′
2;

(3) f satisfies the first order linear differential equation f ′ =
(

1
n

p′2
p2

+ 1
n
α′
2

)
f + ψ

and α′
1

α′
2
= n−1

n
or f satisfies the first order linear differential equation f ′ =(

1
n

p′1
p1

+ 1
n
α′
1

)
f + ψ and α′

1

α′
2
= n

n−1
, where ψ is a rational function;
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(4) f(z) = γ1(z)e
β1(z) + γ2(z)e

−β1(z) and α′
1

α′
2
= −1, where γ1, γ2 are rational func-

tions and β1(z) is a polynomial with nβ′
1 = α′

1 or nβ′
1 = α′

2.

Remark. The four cases in the theorem exist. For instance, f = ez + z + 1
solves the following non-linear differential equation f 3 − 2(z + 1)2f ′′ − (z + 1)2f =
e3z + 3(z + 1)e2z. This example shows the case (3) in the theorem certainly exists.

Corollary 1. Let n ≥ 3 and Qd(z, f) be a differential polynomial in f of degree
d with rational functions as its coefficients. Suppose that p1, p2 are rational functions
and α1, α2 are constants. If d ≤ n− 2, the following differential equation

(3) fn +Qd(z, f) = p1(z)e
α1z + p2(z)e

α2z,

admits a meromorphic function f with finitely many poles. Then α1

α2
is a rational

number. Furthermore, only one of the following four cases holds:

(1) α1

α2
= 1 and f(z) = q(z)e

α1z
n , where q(z)n = p1(z)+p2(z) is a rational function;

(2) α1

α2
= n

k
for some 1 ≤ k ≤ d and f(z) = q(z)e

α1z
n , where q(z)n = p1(z) or

α1

α2
= k

n
for some 1 ≤ k ≤ d and f(z) = q(z)e

α2z
n , where q(z)n = p2(z);

(3) α1

α2
= n−1

n
and f satisfies the first order linear differential equation f ′ =(

1
n

p′2
p2

+ 1
n
α2

)
f+ψ or

α1

α2

= n
n−1

and f satisfies the first order linear differential

equation f ′ =
(

1
n

p′1
p1

+ 1
n
α1

)
f + ψ, where ψ is a rational function;

(4) α1 + α2 = 0 and f(z) = q1(z)e
α1z
n + q2(z)e

−α1z
n , where q1(z)n = p1(z) and

q2(z)
n = p2(z).

Theorem 2. Let n ≥ 3 and Qd(z, f) be a differential polynomial in f of degree d
with rational functions as its coefficients. Suppose that R, p1, p2 are rational functions
and α1, α2 are polynomials. If d ≤ n− 2 and the following differential equation

(4) fn +R(z)fn−1 +Qd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

admits a meromorphic function f with finitely many poles. Then α′
1

α′
2

is a rational
number. Furthermore, only one of the following four cases holds:

(1) f(z) = −R(z)
n

+ q(z)eP (z) and α′
1

α′
2
= 1, where q(z) is a rational function with

and P (z) is a polynomial with nP ′(z) = α′
1 = α′

2;
(2) f(z) = −R(z)

n
+q(z)eP (z) and either α′

1

α′
2
= k

n
or α′

1

α′
2
= n

k
, where q(z) is a rational

function, k is an integer with 1 ≤ k ≤ d and P (z) is a polynomial with
nP ′(z) = α′

1 or nP ′(z) = α′
2;

(3) f satisfies the first order linear differential equation f ′ =
(

1
n

p′2
p2

+ 1
n
α′
2

)
f + ψ

and α′
1

α′
2
= n−1

n
or f satisfies the first order linear differential equation f ′ =(

1
n

p′1
p1

+ 1
n
α′
1

)
f + ψ and α′

1

α′
2
= n

n−1
, where ψ is a rational function;

(4) f(z) = −R(z)
n

+γ1(z)e
β1(z)+γ2(z)e

−β1(z) and α′
1

α′
2
= −1, where γ1, γ2 are rational

functions and β1(z) is a polynomial with nβ′
1 = α′

1 or nβ′
1 = α′

2.

Corollary 2. Let n ≥ 3 and Qd(z, f) be a differential polynomial in f of degree d
with rational functions as its coefficients. Suppose that R, p1, p2 are rational functions
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and α1, α2 are constants. If d ≤ n− 2, the following differential equation

(5) fn +R(z)fn−1 +Qd(z, f) = p1(z)e
α1z + p2(z)e

α2z,

admits a meromorphic function f with finitely many poles. Then α1

α2
is a rational

number. Furthermore, only one of the following four cases holds:
(1) α1

α2
= 1 and f(z) = R(z)

n
+ q(z)e

α1z
n , where q(z)n = p1(z) + p2(z) is a rational

function;
(2) α1

α2
= n

k
for some 1 ≤ k ≤ d and f(z) = R(z)

n
+q(z)e

α1z
n , where q(z)n = p1(z) or

α1

α2
= k

n
for some 1 ≤ k ≤ d and f(z) = R(z)

n
+ q(z)e

α2z
n , where q(z)n = p2(z);

(3) α1

α2
= n−1

n
and f satisfies the first order linear differential equation f ′ =(

1
n

p′2
p2

+ 1
n
α2

)
f+ψ or α1

α2
= n

n−1
and f satisfies the first order linear differential

equation f ′ =
(

1
n

p′1
p1

+ 1
n
α1

)
f + ψ, where ψ is a rational function;

(4) α1 + α2 = 0 and f(z) = −R(z)
n

+ q1(z)e
α1z
n + q2(z)e

−α1z
n , where q1(z)n = p1(z)

and q2(z)n = p2(z).

Let R(z) = P (z)
Q(z)

̸≡ 0 be a rational function, where P (z), Q(z) are co-prime
polynomials. We define the degree of R at ∞ deg∞R = degP − degQ. If R(z) ≡ 0,
we define deg∞R = −∞. Thus, if R(z) is a non-zero polynomial, then deg∞R =
degR. It is easy to check that deg∞

R′

R
= −1 if R(z) is a non-constant rational

function. Hence, lim
z→∞

R′(z)
R(z)

= 0 if R(z) is a nonzero rational function. If R1, R2 are

two nonzero rational functions, then deg∞
R1

R2
= deg∞R1 − deg∞R2.

2. Lemmas

Lemma 1. [4, p. 51] Let f be a transcendental entire function, and 0 < δ < 1
4
.

Suppose that at the point z with |z| = r the inequality

(6) |f(z)| > M(r, f)ν(r, f)−
1
4
+δ

holds. Then there exists a set F in R+ of finite logarithmic measure, i.e.,
´
F
1/t dt <

+∞ such that

(7) f (m)(z) =

(
ν(r, f)

z

)m

(1 + o(1))f(z)

holds whenever m is a fixed nonnegative integer and r ̸∈ F .

Lemma 2. [14] Let f(z) be a nonconstant meromorphic function. Then

m

(
r,
f ′

f

)
= O(log r), r → ∞,

if f is of finite order, and

m

(
r,
f ′

f

)
= O(log(rT (r, f))), r → ∞,

possibly outside a set E of r with finite linear measure if f(z) is of infinite order.

The following can be easily derived from the proof of the Clunie lemma, see e.g.
[1, 4].
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Lemma 3. Let f(z) be meromorphic and transcendental function in the plane
and satisfy

fn(z)P (f) = Q(f),

where P (f), Q(f) are differential polynomials in f(z) with rational functions as the
coefficients and the degree of Q(f) is at most n, then

m(r, P (f)) = O(log r), r → ∞,

if f is of finite order, and

m(r, P (f)) = O(log(rT (r, f))), r → ∞,

possibly outside a set E of r with finite linear measure if f(z) is of infinite order.

Lemma 4. [14], [3, Lemma 5.1] Let aj(z) be entire funciton of finite order ≤ ρ.
Let gj(z) be entire and gk(z) − gj(z), j ̸= k, be a transcendental entire function or
polynomial of degree greater than ρ. Then

n∑
j=1

aj(z)e
gj(z) = a0(z)

holds only when
a0(z) = a1(z) = · · · = an(z) ≡ 0.

The following lemma is crucial to the proofs of our results.

Lemma 5. Let q1, q2, q3, a be rational functions and q3a ̸≡ 0. If the differential
equation

(8) q1(z)f
2 + q2(z)ff

′ + q3(z)f
′2 = a(z),

admits a transcendental meromorphic solution, then
(i) any meromorphic solution of (8) must be of finite order, and
(ii) the following identity holds:

q3(q
2
2 − 4q1q3)

a′

a
+ q2(q

2
2 − 4q1q3)− q3(q

2
2 − 4q1q3)

′ + (q22 − 4q1q3)q
′
3 ≡ 0,

and any transcendental meromorphic solution f of the equation (8) satisfies
the following linear second order differential equation

f ′′ =

(
a′

2a
− q′3

2q3
− q2

2q3

)
f ′ − 1

q2

(
q′1 − q1

a′

a

)
f.

Furthermore, if q22 − 4q1q3 ̸≡ 0 and deg∞ q2 ≥ deg∞ q3, then the differential
equation (8) has no transcendental meromorphic solution.

Proof. Let f be a transcendental meromorphic solution of the equation (8). If
z0 is a pole of f , which is not a zero and pole of q1, q2 and q3, then z0 is a pole of a.
Therefore, f has only finitely many poles. Thus there is a polynomial P (z) such that
f(z)P (z) = g(z) is a transcendental entire function. Let |g(z0)| = M(r, g), |z0| = r.
Then, by Lemma 1, we have

f ′(z0)

f(z0)
=
g′(z0)

g(z0)
− P ′(z0)

P (z0)
=
ν(r, g)

z0
(1 + o(1)), r ̸∈ F,
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where F is a set of a finite logarithmic measure. Then, from the equation (8), we
have

q3(z0)

(
ν(r, g)

z0
(1 + o(1))

)2

+ q2(z0)
ν(r, g)

z0
(1 + o(1)) + q1(z0) =

a(z0)P (z0)
2

g(z0)2
.

It follows for sufficiently large r that

ν(r, g) ≤ A

(∣∣∣∣q2(z0)z0q3(z0)

∣∣∣∣+ ∣∣∣∣ q1(z0)z
2
0

q3(z0)ν(r, g)

∣∣∣∣) ≤ A

(∣∣∣∣q2(z0)z0q3(z0)

∣∣∣∣+ ∣∣∣∣q1(z0)z20q3(z0)

∣∣∣∣) .
Hence, g has finite order, so does f . We rewrite the equation (8) as

(9)
1

f 2
=
q1
a
+
q2
a

f ′

f
+
q3
a

(
f ′

f

)2

.

According to Lemma 2 and the above equation , it follows that m
(
r, 1

f

)
= O(log r)

and T (r, f) = N
(
r, 1

f

)
+O(log r). Hence, f has infinitely many zeros. Further, a zero

of f is simple if it is not a zero of a(z) and a pole of q1, q2, q3. Differentiating (8)
yields

(10) q′1f
2 + (2q1 + q′2)ff

′ + q2ff
′′ + (q2 + q′3)(f

′)2 + 2q3f
′f ′′ = a′.

Assume z0 is a zero of f which is not the pole of q1, q2, q3 and a, also is not the zero of
a. Then from (8) and (10), we have q3(z0)f ′(z0)

2 = a(z0) and (q2(z0)+q
′
3(z0))f

′(z0)
2+

2q3(z0)f
′(z0)f

′′(z0) = a′(z0), which implies that z0 is a zero of (a′q3 − aq2 − aq′3)f
′ −

2aq3f
′′. Let

R(z) =
(a′q3 − aq2 − aq′3)f

′ − 2aq3f
′′

f
.

Then R(z) has only finitely many poles and it follows from Lemma 2 that m(r, R) =
O(log r). Hence R(z) is a rational function. It follows that

(11) f ′′ =
a′q3 − aq2 − aq′3

2aq3
f ′ − R

2aq3
f.

By substituting the above equation into (10), we obtain

(12)
(
q′1 −

Rq2
2aq3

)
f 2+

(
2q1 + q′2 +

q2(a
′q3 − aq2 − aq′3)

2aq3
− R

a

)
ff ′+ q3

a′

a
(f ′)2 = a′.

It follows from (8) and (12) that

(13) A(z)f +B(z)f ′ = 0,

where

A(z) = q′1 −
Rq2
2aq3

− q1
a′

a
and B(z) = 2q1 + q′2 −

q2a
′

2a
− q22 + q2q

′
3

2q3
− R

a
.

Noting A(z), B(z) are rational functions and f has infinitely many simple zeros, we
have B(z) ≡ 0, and hence A(z) ≡ 0. By eliminating R from the above two equations,
we can get, as asserted

q3(q
2
2 − 4q1q3)

a′

a
+ q2(q

2
2 − 4q1q3)− q3(q

2
2 − 4q1q3)

′ + (q22 − 4q1q3)q
′
3 ≡ 0,

and
f ′′ =

(
a′

2a
− q′3

2q3
− q2

2q3

)
f ′ − 1

q2

(
q′1 − q1

a′

a

)
f.
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Finally, if q22 − 4q1q3 ̸≡ 0, then the above equation can be written as

(14)
q2
q3

=
(q22 − 4q1q3)

′

q22 − 4q1q3
− a′

a
− q′3
q3
.

If deg∞
q2
q3

≥ 0, then the left side of the equation (14) goes to infinity or a non-
zero number as z → ∞. However, the right side of the equation (14) goes to zero
as z → ∞. This contradiction yields the conclusion that the equation (8) has no
transcendental meromorphic solution. This completes the proof of the lemma. �

Lemma 6. Let n ≥ 2 be an integer and Pd(z, f) denote an algebraic differential
polynomial in f(z) of degree d ≤ n− 1 with small functions of f as the coefficients.
If p1(z), p2(z) are small functions of f and α1, α2 are two nonconstant polynomials.
If f is a meromorphic solution of the equation

fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z)

and N(r, f) = S(r, f), then f is of finite order.

Proof. Clearly, any meromorphic function satisfying the equation in the lemma
must be transcendental. Denote k1 = degα1, k2 = degα2 and k = max{k1, k2}. By
Clunie Lemma and N(r, f) = S(r, f), we have

nT (r, f) = m(r, fn) + S(r, f)

≤ T (r, p1(z)e
α1(z) + p2(z)e

α2(z)) +m(r, Pd(z, f)) + S(r, f)

≤ Ark + dT (r, f) + S(r, f).

Thus (n− d)T (r, f) ≤ Ark + S(r, f) and f is of finite order. �

3. Proofs of the theorems

3.1. Proof of Theorem 1. Let f be a meromorphic solution with finitely
many poles of the equation (2). It follows from Lemma 6 that the order of f is finite.
Denote g(z) = Qd(z, f). Then

(15) nfn−1f ′ + g′ = (p′1 + α′
1p1)e

α1(z) + (p′2 + α′
2p2)e

α2(z).

By eliminating eα2 from the equation (3) and (15), we have

(16) (p′2 + α′
2p2)f

n − np2f
n−1f ′ + (p′2 + α′

2p2)g − p2g
′ = A1(z)e

α1(z),

where A1(z) = p1(p
′
2 + α′

2p2)− p2(p
′
1 + α′

1p1). If A1(z) ≡ 0, then α′
2 − α′

1 =
p′1
p1

− p′2
p2

.
Thus α′

2 − α′
1 ≡ 0 and the equation (16) becomes

(p′2 + α′
2p2)f

n − np2f
n−1f ′ = −(p′2 + α′

2p2)g + p2g
′.

It follows from Lemma 3 that

(p′2 + α′
2p2)f

2 − np2ff
′ = ψ1(z)

and
(p′2 + α′

2p2)f − np2f
′ = ψ2(z),

where ψ1(z), ψ2(z) are rational functions. If ψ2(z) ̸≡ 0, then f(z) = ψ1(z)
ψ2(z)

is a rational
function, which is a contradiction. Hence,

(p′2 + α′
2p2)f − np2f

′ = 0.
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By solving the above equation, we obtain f(z)n = Cp2e
α2(z). This is the case (1).

Now, we assume A1(z) ̸≡ 0. Denote

F (z) =
1

A1(z)

(
(p′2 + α′

2p2)f
n − np2f

n−1f ′ + (p′2 + α′
2p2)g − p2g

′) ,
then we have
(17) Brk1 = T (r, eα1) + o(1) = T (r, F ) + o(1) ≤ nT (r, f) + S(r, f),

where k1 = degα1 and B is a positive constant. By differentiating the equation (16),
we have

(p′2 + α′
2p2)

′fn + nα′
2p2f

n−1f ′ − n(n− 1)p2f
n−2f ′2 − np2f

n−1f ′′

+ (p′2 + α′
2p2)

′g + α′
2p2g

′ − p2g
′′ = (A′

1 + α′
1A1)e

α1(z).
(18)

By eliminating eα1(z) from the equation (16) and (18), we have

(h1(z)f
2 + h2(z)ff

′ + h3(z)f
′2 + h4(z)ff

′′)fn−2 = Q∗
d(z, f),

where
Q∗
d(z, f) = (p′2 + α′

2p2)
′A1g + α′

2p2A1g
′ − p2A1g

′′

− (p′2 + α′
2p2)(A

′
1 + α′

1A1)g + p2(A
′
1 + α′

1A1)g
′

is a differential polynomial of f with degree d ≤ n − 2 and rational functions as
coefficients and

h1 = (p′2 + α′
2p2)(A

′
1 + α′

1A1)− (p′2 + α′
2p2)

′A1,

h2 = −n(α′
1 + α′

2)p2A1 − np2A
′
1,

h3 = n(n− 1)p2A1,

h4 = np2A1,

are rational functions. It follows from Lemma 3 that

(19) h1(z)f
2 + h2(z)ff

′ + h3(z)f
′2 + h4(z)ff

′′ = a(z),

where a(z) is a rational function. Next, we discuss two cases.

Case 1. a(z) ≡ 0. Then the equation (19) can be rewritten as

h1(z)f
2 = −(h2(z)ff

′ + h3(z)f
′2 + h4(z)ff

′′).

Let z0 be a zero of f with multiplicity k, but no zero and pole of h1, h2, h3, h4. Then
z0 is a zero with multiplicity 2k of left side of the above equation and a zero with at
most multiplicity 2k − 1 of right side of the above equation. This contradiction lead
to that f has at most finitely many zeros. Thus, f(z) = q(z)eP (z), where q(z) is a
rational function and P (z) is a polynomial. Substituting f(z) = q(z)eP (z) into the
equation (2) yields

q(z)nenP (z) +
d∑

k=0

ak(z)e
kP (z) = p1(z)e

α1(z) + p2(z)e
α2(z),

where ak(z)(k = 0, 1 · · · d) are rational functions. If α′
1(z) ≡ α′

2(z), then α2(z) =
α1(z) + C and it follows from Lemma 4 that ak(z) ≡ 0 for all k(1 ≤ k ≤ d) and
nP ′(z) = α′

1(z). If α′
1(z) ̸≡ α′

2(z), it follows from Lemma 4 that ak(z) ̸≡ 0 for some
k(1 ≤ k ≤ d) and aj(z) ≡ 0 when j ̸= k(0 ≤ j ≤ d). Furthermore either q(z)n =
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B1p1(z), nP (z) = α1(z)+C1, kP (z) = α2(z)+C2 or q(z)n = B2p2(z), nP (z) = α2(z)+
C2, kP (z) = α1(z) + C1, where B1, B2, C1, C2 are constants and B1e

C1 = B2e
C2 = 1.

Hence, α′
1

α′
2
= n

k
or k

n
.

Case 2. a(z) ̸≡ 0. If f has only finitely many zeros, then by the similar argument
in Case 1, we have f(z) = q(z)eP (z), where q(z) is a rational function and P (z) is
a polynomial, and one of the following two subcases holds: (i) α′

1 ≡ α′
2; (ii) either

q(z)n = B1p1(z),
α′
1

α′
2
= n

k
or q(z)n = B2p2(z),

α′
1

α′
2
= k

n
.

Now we assume that f has infinitely many zeros. By differentiating (19), we get

(20) h′1f
2+(2h1+h

′
2)ff

′+(h2+h
′
3)f

′2+(h2+h
′
4)ff

′′+(2h3+h4)f
′f ′′+h4ff

′′′ = a′(z)

Suppose z0 is a zero of f that is not the zero and pole of h1, h2, h3, h4 and a(z). Then
from (19) and (20), we have

h3(z0)f
′(z0)

2 = a(z0),

and
(h2(z0) + h′3(z0)) f

′(z0)
2 + (2h3(z0) + h4(z0))f

′(z0)f
′′(z0) = a′(z0),

which implies that f ′(z0) ̸= 0 and z0 is a simple zero of f , and further z0 is a zero of
(a′h3 − ah2 − ah′3)f

′ − (2ah3 + ah4)f
′′. Let

β =
(a′h3 − ah2 − ah′3)f

′ − (2ah3 + ah4)f
′′

f
.

Then we have T (r, β) = O(log r), thus β is a rational function. It follows that

(21) f ′′ =
a′h3 − ah2 − ah′3

2ah3 + ah4
f ′ − β

2ah3 + ah4
f.

By substituting the above equation into (19), we have

(22) q1(z)f
2 + q2(z)ff

′ + q3(z)(f
′)2 = a(z),

where

q1(z) = h1 −
β

2ah3 + ah4
h4, q2(z) = h2 +

a′h3 − ah2 − ah′3
2ah3 + ah4

h4 and q3(z) = h3

are rational function. Furthermore,

(23)
q2(z)

q3(z)
= − 2

(2n− 1)
(α′

1 + α′
2)−

3

2n− 1

A′
1

A1

+
1

2n− 1

a′

a
− 1

2n− 1

p′2
p2
.

If α′
1 + α′

2 ̸≡ 0, then deg∞
q2(z)
q3(z)

≥ 0. If q22 − 4q1q3 ̸≡ 0, then by Lemma 5, at this case
the equation (22) has no meromorphic solution. If q22 − 4q1q3 ≡ 0, then by Lemma 5,
f satisfies the following differential equation

(24) f ′′ =

(
a′

2a
− q′3

2q3
− q2

2q3

)
f ′ − q2

4q3

(
q′1
q1

− a′

a

)
f.

It follows from the equations (21) and (24) that

β

2ah3 + ah4
=

q2
4q3

(
q′1
q1

− a′

a

)
.
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By q22 − 4q1q3 ≡ 0, we also have

β

2ah3 + ah4
=
h1
h4

− 1

4h3h4

(
h2 +

a′h3 − ah2 − ah′3
2ah3 + ah4

h4

)2

.

The above two equations yield that(
− 1

2(2n− 1)
(α′

1 + α′
2)−

3

4(2n− 1)

A′
1

A1

+
1

4(2n− 1)

a′

a
− 1

4(2n− 1)

(p2)
′

p2

)(
q′1
q1

− a′

a

)
=

1

n

(
α′
1α

′
2 +

p′2
p2

A′
1

A1

+ α′
2

A′
1

A1

+ α′
1

p′2
p2

− p′′2
p2

− α′′
2 − α′

2

p′2
p2

)
− n− 1

4

(
− 2

(2n− 1)
(α′

1 + α′
2)−

3

2n− 1

A′
1

A1

+
1

2n− 1

a′

a
− 1

2n− 1

p′2
p2

)2

.

This yields that deg∞(α′
1+α

′
2)

2 = deg∞ α′
1α

′
2 ≥ 0 and lim

z→∞
α′
1α

′
2

(α′
1+α

′
2)

2 = n(n−1)
(2n−1)2

. Hence,
we have degα1 = degα2. Let α1(z) = amz

m + am−1z
m−1 + · · · + a1z + a0 and

α2(z) = bmz
m + bm−1z

m−1 + · · · + b1z + b0, where ambm ̸= 0,m ≥ 1. It follows from
lim
z→∞

α′
1α

′
2

(α′
1+α

′
2)

2 = n(n−1)
(2n−1)2

that lim
z→∞

ambm
(am+bm)2

= n(n−1)
(2n−1)2

. Thus am
bm

= n−1
n

or n
n−1

.

First, we discuss the case am
bm

= n−1
n

. The equation (16) can be written as

(25) (p′2 + α′
2p2)f

n − np2f
n−1f ′ + (p′2 + α′

2p2)g − p2g
′ = ϕ1(z)e

amzm ,

where ϕ1(z) = (p1(p
′
2 + α′

2p2)− p2(p
′
1 + α′

1p1)) e
am−1zm−1+···+a0 . It follows from (17)

that T (r, ϕ1) = Crk−1 = S(r, f). Similarly, we have

(26) (p′1 + α′
1p1)f

n − np1f
n−1f ′ + (p′1 + α′

1p1)g − p1g
′ = ϕ2(z)e

bmzm ,

where ϕ2(z) = − (p1(p
′
2 + α′

2p2)− p2(p
′
1 + α′

1p1)) e
bm−1zm−1+···+b0 and T (r, ϕ2) = S(r,

f). It follows from (25) and (26) that

(p′2 + α′
2p2)f

n − np2f
n−1f ′ + (p′2 + α′

2p2)g − p2g
′

= ϕ1(z)

(
(p′1 + α′

1p1)f
n − np1f

n−1f ′ + (p′1 + α′
1p1)g − p1g

′

ϕ2(z)

)n−1
n

.

Thus

(p′2 + α′
2p2) f − np2f

′ = −(p′2 + α′
2p2)g − p2g

′

fn−1

+ ϕ1(z)

(
(p′1 + α′

1p1)f
n − np1f

n−1f ′ + (p′1 + α′
1p1)g − p1g

′

ϕ2(z)fn

)n−1
n

.

(27)

Since f has only finitely many poles, we have

T (r, (p′2 + α′
2p2)f − np2f

′) = m(r, (p′2 + α′
2p2)f − np2f

′) + S(r, f)

=
1

2π

ˆ
E1

log+
∣∣(p′2(reiθ) + α′

2(re
iθ)p2(re

iθ))f(reiθ)− np2(re
iθ)f ′(reiθ))

∣∣ dθ+
1

2π

ˆ
E2

log+
∣∣(p′2(reiθ) + α′

2(re
iθ)p2(re

iθ))f(reiθ)− np2(re
iθ)f ′(reiθ))

∣∣ dθ + S(r, f),
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where E1 = {θ : |f(reiθ)| ≤ 1}, E2 = {θ : |f(reiθ)| ≥ 1}. Now
1

2π

ˆ
E1

log+
∣∣(p′2(reiθ) + α′

2(re
iθ)p2(re

iθ))f(reiθ)− np2(re
iθ)f ′(reiθ))

∣∣ dθ
≤ 1

2π

ˆ
E1

log+
∣∣f ′(reiθ)

∣∣ dθ +O(log r) ≤ 1

2π

ˆ
E1

log+
∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣ dθ +O(log r)

≤ 1

2π

ˆ 2π

0

log+
∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣ dθ +O(log r) = S(r, f).

It follows from (27) that
1

2π

ˆ
E2

log+
∣∣(p′2(reiθ) + α′

2(re
iθ)p2(re

iθ))f(reiθ)− np2(re
iθ)f ′(reiθ))

∣∣ dθ
≤ 1

2π

ˆ
E2

log+
∣∣∣∣(p′2 + α′

2p2)g − p2g
′

fn−1
(reiθ)

∣∣∣∣ dθ + 1

2π

ˆ
E2

log+
∣∣ϕ1(re

iθ)
∣∣ dθ

+
n− 1

n

1

2π

ˆ
E2

log+
∣∣∣∣(p′1 + α′

1p1)f
n − np1f

n−1f ′ + (p′1 + α′
1p1)g − p1g

′

ϕ2fn
(reiθ)

∣∣∣∣ dθ
= S(r, f).

Hence
T (r, (p′2 + α′

2p2)f − np2f
′) = S(r, f).

Thus

(28) (p′2 + α′
2p2)f − np2f

′ = ϕ3(z),

where T (r, ϕ3) = S(r, f). It follows from (28) that

(29) f ′ =

(
1

n

p′2
p2

+
1

n
α′
2

)
f − ψ3,

where ψ3 =
ϕ3

np2
is a small meromorphic function of f . Differentiating (29), we obtain

(30) f ′′ =

(
1

n

p′2
p2

+
1

n
α′
2

)
f ′ +

(
1

n

p′2
p2

+
1

n
α′
2

)′

f − ψ′
3.

It follows from (24) and (30) that

(31)
(
a′

2a
− q′3

2q3
− q2

2q3
− 1

n

p′2
p2

− 1

n
α′
2

)
f ′=

[
q2
4q3

(
q′1
q1

− a′

a

)
+

(
1

n

p′2
p2

+
1

n
α′
2

)′]
f−ψ′

3.

By (29) and (31), we have

(32)
(
a′

2a
− q′3
2q3

− q2
2q3

− 1

n

p′2
p2

− 1

n
α′
2

)(
1

n

p′2
p2

+
1

n
α′
2

)
=
q2
4q3

(
q′1
q1
− a′

a

)
+

(
1

n

p′2
p2

+
1

n
α′
2

)′

.

It follows from (23) and (32) that(
1

2n− 1
α′
1−

n− 1

n(2n− 1)
α′
2+

n− 1

2n− 1

a′

a
− n− 2

2n− 1

A′
1

A1

−n2 + n− 1

n(2n− 1)

p′2
p2

)(
1

n

p′2
p2

+
1

n
α′
2

)
=

1

4

(
− 2

(2n− 1)
(α′

1 + α′
2)−

3

2n− 1

A′
1

A1

+
1

2n− 1

a′

a
− 1

2n− 1

p′2
p2

)(
q′1
q1

− a′

a

)
+

(
1

n

p′2
p2

+
1

n
α′
2

)′

.

(33)
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If 1
2n−1

α′
1 − n−1

n(2n−1)
α′
2 ̸≡ 0, then denote 1

2n−1
α′
1 − n−1

n(2n−1)
α′
2 = ckz

k + · · · + c0, k ≥ 0,
ck ̸= 0. Dividing the both sides of (33) by zm+k−1 and taking limits as z → ∞, we
obtain an impossible equation m

n
ckbm = 0. This yields that 1

2n−1
α′
1 − n−1

n(2n−1)
α′
2 ≡ 0,

i.e. α′
1

α′
2
= n−1

n
. It follows from (29), (31) and α′

1

α′
2
= n−1

n
that

ψ′
3

ψ3

=
n− 1

2n− 1

a′

a
− n− 2

2n− 1

A′
1

A1

− n2 + n− 1

n(2n− 1)

p′2
p2
.

This equation yields that ψ3 is a rational function. If am
bm

= n
n−1

, by similar arguments,
we have α′

1

α′
2
= n

n−1
and

f ′ =

(
1

n

p′1
p1

+
1

n
α′
1

)
f + ψ,

where ψ is a rational function.
If α′

1 + α′
2 ≡ 0, then α2 = −α1 + C, where C is constant, and the equation (2)

becomes

(34) fn +Qd(z, f) = p1(z)e
α1(z) + p3(z)e

−α1(z),

where p3(z) = eCp2(z). We now denote Qd(z, f) by g(z). By differentiating the
equation (34), we get

(35) nfn−1f ′ + g′ = (p′1 + p1α
′
1)e

α1(z) + (p′3 − p3α
′
1)e

−α1(z).

Eliminating eα1(z) and e−α1(z) respectively from the equations (34) and (35) yields

(p′3 − p3α
′
1)f

n − np3f
n−1f ′ + (p′3 − p3α

′
1)g − p3g

′

= [p1(p
′
3 − p3α

′
1)− p3(p

′
1 + p1α

′
1)]e

α1(z),
(36)

and
(p′1 + p1α

′
1)f

n − np1f
n−1f ′ + (p′1 + p1α

′
1)g − p1g

′

= [p3(p
′
1 + p1α

′
1)− p1(p

′
3 − p3α

′
1)]e

−α1(z).
(37)

It follows from the equations (36) and (37) that

(38) [(p′3 − p3α
′
1)f − np3f

′][(p′1 + p1α
′
1)f − np1f

′]f 2n−2 +Q2n−2(z, f) = −A(z)2,
where

Q2n−2(z, f) = [(p′3 − p3α
′
1)f

n − np3f
n−1f ′][(p′1 + p1α

′
1)g − p1g

′]

+ [(p′1 + p1α
′
1)f

n − np1f
n−1f ′][+(p′3 − p3α

′
1)g − p3g

′]

is a differential polynomial of f with degree ≤ 2n − 2, with rational functions as
coefficients, and A(z) = [p1(p

′
3 − p3α

′
1) − p3(p

′
1 + p1α

′
1)] is a rational function. It

follows from Lemma 3 again that

(39) [(p′3 − p3α
′
1)f − np3f

′][(p′1 + p1α
′
1)f − np1f

′] = b(z),

where b(z) is a rational function. Hence,

(40) (p′3 − p3α
′
1)f − np3f

′ = b1(z)e
β1(z),

and

(41) (p′1 + p1α
′
1)f − np1f

′ = b2(z)e
−β1(z),
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where b1(z), b2(z) are rational functions such that b1(z)b2(z) = b(z) and β1(z) is a
polynomial. The above two equations yield immediately that

f = γ1(z)e
β1(z) + γ2(z)e

−β1(z),

where
γ1 =

p1b1(z)

p1p′3 − p′1p3 − 2p1p3α′
1

, γ2 =
−p3b2(z)

p1p′3 − p′1p3 − 2p1p3α′
1

.

This also completes the proof of the theorem.

3.2. Proof of Theorem 2. Assume that f is a meromorphic solution with
only finitely many poles of the equation (4). Let g(z) = f(z) + R(z)

n
. Then, g is a

transcendental meromorphic function with only finitely many poles and satisfies the
following differential equation

(42) fn +Q∗
n−2(z, f) = p1(z)e

α1(z) + p2(z)e
α2(z),

where Q∗
n−2(z, f) is a differential equation with degree ≤ n − 2. The conclusions of

the theorem follows immediately from Theorem 1.
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