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Abstract. Let f be a sense-preserving harmonic mapping in the unit disk. We give a sufficient
condition in terms of the pre-Schwarzian derivative of f to ensure that it can be extended to a
quasiconformal map in the complex plane.

Introduction

A well-known criterion due to Becker [5] states that if a locally univalent analytic
function ϕ in the unit disk D satisfies

(1) sup
z∈D

∣∣∣∣ϕ′′(z)

ϕ′(z)

∣∣∣∣ (1− |z|2) ≤ 1,

then ϕ is, indeed, univalent in D. Becker and Pommerenke [6] proved later that the
constant 1 is sharp.

The quotient Pϕ = ϕ′′/ϕ′ is called the pre-Schwarzian derivative of ϕ, a function
that is well-defined in the unit disk for every locally univalent function ϕ in D.

In that paper [5], the author also proves that if

(2) sup
z∈D

|Pϕ(z)| (1− |z|2) ≤ k < 1,

then not only ϕ is univalent but it has a continuous extension ϕ̃ to D and ϕ̃(∂D)
is a quasicircle. Indeed, using Löwner’s chains, Becker shows that ϕ has a K-
quasiconformal extension to the whole complex plane C, where K = (1+ k)/(1− k).
Moreover, Ahlfors [3] gives an explicit quasiconformal extension. Namely, the func-
tion

Φ(z) =

{
ϕ̃(z), |z| ≤ 1,

ϕ
(
1
z

)
+ u

(
1
z

)
, |z| > 1,

where, for z ∈ D\{0}, u(z) = ϕ′(z)(1−|z|2)/z. This mapping Φ is K-quasiconformal
(with K as above) in the complex plane whenever (2) holds and coincides with ϕ in
D.

Let now f be a locally univalent harmonic mapping defined in the unit disk and
f = h+g its canonical representation, where h and g are analytic in D and g(0) = 0.
The (second) complex dilatation of f is ω = g′/h′. Since f is locally univalent, by
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Lewy’s Theorem (see [12]), the Jacobian Jf = |h′|2 − |g′|2 of f does not vanish in
the unit disk. Hence, either Jf > 0 or Jf < 0 in D. Any harmonic function f with
Jf > 0 is called sense-preserving. If Jf < 0, f is said to be sense-reversing. Note
that f is sense-preserving if and only if f = g + h is sense-reversing.

Throughout this paper we will consider sense-preserving harmonic mappings. It
is easy to check that, in this case, f = h+g with Jf = |h′|2(1−|ω|2) > 0. Equivalently,
the analytic part h of f is locally univalent and the second complex dilatation ω is
an analytic function in D with ∥ω∥∞ = supz∈D |ω(z)| ≤ 1. Note that ω ≡ 0 if and
only if f is analytic.

In a recent preprint [9], we have introduced a definition of the pre-Schwarzian
derivative Pf of locally univalent harmonic mappings f = h + g in the unit disk. If
f is sense-preserving, then

Pf =
h′′

h′
− ωω′

(1− |ω|2)
in D. Using this definition for the pre-Schwarzian derivative of f , we proved (see [9,
Theorem 9]) that if f = h + g is a sense-preserving harmonic mapping in the unit
disk with second complex dilatation ω and

(3) |Pf (z)|(1− |z|2) + |ω′(z)|(1− |z|2)
1− |ω(z)|2

≤ 1

for all |z| < 1, then f is univalent in D. The constant 1 is sharp.
The second term in (3) is the modulus of the hyperbolic derivative ω∗ of ω defined

by

ω∗(z) =
ω′(z)(1− |z|2)
1− |ω(z)|2

, z ∈ D.

As we mentioned before, if ϕ is analytic, then it is a sense-preserving harmonic
mapping with dilatation ω ≡ 0. Hence, (3) generalizes Becker’s criterion of univalence
(1) to sense-preserving harmonic mappings.

The purpose of this paper is to show that analogous results to those due to
Becker and Ahlfors that we have mentioned before also hold for the family of sense-
preserving harmonic mappings in the unit disk. Concretely, we prove the following
theorems.

Theorem 1. Let f = h+ g be a sense-preserving harmonic mapping in the unit
disk with second complex dilatation ω. Assume that

(4)
∣∣Pf (z)(1− |z|2)

∣∣+ |ω∗(z)| ≤ k < 1, z ∈ D.

Then, the harmonic mapping f has a continuous and injective extension f̃ to D.
Moreover, the function

(5) F (z) =

{
f̃(z), |z| ≤ 1,

f
(
1
z

)
+ U

(
1
z

)
, |z| > 1,

is a homeomorphic extension of f to the whole complex plane onto itself. The function
U that appears in (5) is defined by

U(z) =
h′(z)(1− |z|2)

z
+
g′(z)(1− |z|2)

z
, z ∈ D \ {0}.
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An extra condition on the second complex dilatation ω of the mapping f is needed
in the following theorem. We will justify in Section 3 below why this condition cannot
be omitted.

Theorem 2. Let the sense-preserving harmonic mapping f satisfy (4). If, in
addition, ∥ω∥∞ < 1, then f̃(∂D) is a quasicircle and f can be extended to a quasicon-
formal map in C. Indeed, the function defined by (5) is an explicit K-quasiconformal
extension of f whenever

k <
1− ∥ω∥∞
1 + ∥ω∥∞

.

The constant K equals

(6) K =
(1 + k) + (1− k)∥ω∥∞
(1− k)− (1 + k)∥ω∥∞

.

1. Background

1.1. Quasiconformal maps. A complex valued function f on a domain Ω ⊂ C
is absolutely continuous on lines (ACL) in Ω if for every rectangle of the form R =
{x+ iy : a < x < b, c < y < d} with R ⊂ Ω \ {∞, f−1(∞)}, the map f is absolutely
continuous on almost every horizontal and vertical line in R.

LetK be a real positive number withK ≥ 1. A sense-preserving homeomorphism
f : Ω → C is called quasiconformal (or K-quasiconformal) if f is ACL in Ω and |fz| ≤
k|fz| almost everywhere in Ω, where k = (K − 1)/(K + 1). The 1-quasiconformal
mappings are the conformal mappings.

The complex dilatation of f is the ratio µf = fz/fz. If f is sense-preserving, then
0 ≤ |µf | < 1. Hence, a sense-preserving ACL homeomorphism f is quasiconformal
if and only if µf is bounded away from 1 in the given region. The second complex
dilatation ωf of f is defined by ωf = fz/fz. Since |ωf | = |µf |, we conclude that f is
quasiconformal if and only if |ωf | ≤ k < 1.

Let now f be a harmonic mapping defined in a simply connected domain Ω ⊂ C.
It is not difficult to check that f has the representation (unique up to an additive
constant) f = h+ g for two analytic functions h and g in Ω.

For harmonic mappings f in the unit disk, it is convenient to choose the additive
constant in such a way that g(0) = 0. In this case, the representation f = h + g
is unique and it is called the canonical representation of f . Such function f is
quasiconformal if it is absolutely continuous on lines in D and |ωf | = |g′/h′| ≤ k < 1.

We refer the reader to the books by Lehto and Virtanen [11], Ahlfors [1], and
Astala, Iwaniec, and Martin [4], and to the book by Duren [7] for the general theory
of quasiconformal mappings and harmonic mappings in the plane, respectively.

1.2. Quasicircles. A Jordan curve Γ is a quasicircle if there exists a constant
M such that

min{diam Γ1, diam Γ2} ≤M |w1 − w2|, for w1, w2 ∈ Γ,

where Γ1 and Γ2 are the components of Γ \ {w1, w2}.
Ahlfors [2] proved that Γ is a quasicircle if and only if there exists a real positive

constant C such that for all w1, w2, w3, w4 ∈ Γ,

|(w1, w2, w3, w4)| ≤ C,
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where (w1, w2, w3, w4) is the cross ratio defined by

(7) (w1, w2, w3, w4) =
w1 − w3

w1 − w4

· w2 − w4

w2 − w3

.

A quasidisk is a domain bounded by a quasicircle. In the case when f is a
quasiconformal function in the unit disk, f(D) is a quasidisk if and only if f has a
quasiconformal extension to C (see [2] or [11, Theorem 8.3 on p. 98]).

1.3. Pre-Schwarzian derivatives of harmonic mappings. Let f = h+g be
a locally univalent harmonic mapping in the unit disk with second complex dilatation
ω = g′/h′. The pre-Schwarzian derivative Pf of f is defined in D by

Pf =
∂

∂z
log |Jf |,

where Jf = |h′|2 − |g′|2 is the Jacobian of the function f .
Notice that if f is analytic (this is, if ω ≡ 0), then Pf coincides with the classical

definition of pre-Schwarzian derivative of analytic mappings. It is also easy to check
that Pf = Pf . Hence, there is no loss of generality if we assume that f = h + g is
sense-preserving. In this case, the pre-Schwarzian derivative of the function f = h+g
equals

(8) Pf =
∂

∂z
log

(
|h′|2 · (1− |ω|2)

)
=
h′′

h′
− ωω′

(1− |ω|2)
.

A straightforward computation shows that given any a ∈ D and any sense-
preserving harmonic mapping f in the unit disk with canonical decomposition f =
h+g, the function fa = f+af is also a sense-preserving harmonic mapping. Let fa =
ha + ga be the canonical decomposition of fa and ωa its second complex dilatation.
Then,

ha = h+ ag, ga = g + ah, and ωa = φa ◦ ω,
where φa is the automorphism of the unit disk defined by

(9) φa(z) =
a+ z

1 + az
, z ∈ D.

The Jacobian Jfa of fa equals (1− |a|2)Jf . Hence, Pf = Pfa .
As in the classical (analytic) case, the Schwarzian derivative Sf of f is

Sf =
∂

∂z
Pf −

1

2
(Pf )

2.

The reader can find the main properties and several results related to the pre-
Schwarzian and Schwarzian derivatives of locally univalent harmonic mappings de-
fined in this section in [9].

1.4. Hyperbolic derivative of self-maps of the unit disk. Let ω be a
self-map of the unit disk, this is, an analytic function in D with ω(D) ⊂ D. As we
mentioned before, the hyperbolic derivative of such a function ω is

(10) ω∗(z) =
ω′(z)(1− |z|2)
1− |ω(z)|2

, z ∈ D.

Using the Schwarz–Pick lemma, we see that |ω∗| ≤ 1 in D and that if there
exists z0 ∈ D with |ω∗(z0)| = 1, then ω maps the unit disk conformally onto itself
and |ω∗| ≡ 1 in D.
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Given two self-maps ω and φ of the unit disk, the chain rule for the hyperbolic
derivative holds:

(φ ◦ ω)∗ (z) = φ∗(ω(z)) · ω∗(z).

In particular, if φ is a conformal self-map of D onto D, then |(φ ◦ ω)∗| ≡ |ω∗| in the
unit disk.

The exact value of the upper bound of the modulus of hyperbolic derivative of
the so-called lens-maps ℓα will be of particular importance for our purposes. For
0 < α < 1, the mapping ℓα is the self-map of the unit disk defined by

(11) ℓα(z) =
ℓ(z)α − 1

ℓ(z)α + 1
,

where ℓ(z) = (1 + z)/(1 − z). Note that ∥ℓα∥∞ = 1 for all 0 < α < 1. In [10], it is
explicitly checked that

(12) sup
z∈D

|ℓ∗α(z)| = α.

2. Proof of Theorem 1

As we mentioned in Section 1.3, we have that for all a ∈ D, Pfa = Pf , where
fa = f+af . It is easy to check that fa = ha+ga with ha = h+ag and ga = g+ah. The
second complex dilatation ωa of fa equals ωa = φa ◦ω (φa being the automorphism of
the unit disk defined by (9)). Hence, by the chain rule for the hyperbolic derivative,
we get |ω∗

a| = |ω∗| in the unit disk, where ω∗
a and ω∗ are the hyperbolic derivatives

of ωa and ω, respectively, defined by (10).

2.1. Step 1. We first prove that for all a ∈ D, the functions ha = h + ag have
a continuous and injective extension to the whole complex plane. To do so, we bear
in mind the last paragraph and use (4) to obtain that for all z ∈ D,

k ≥
∣∣Pfa(z)(1− |z|2)

∣∣+ |ω∗
a(z)|

=

∣∣∣∣∣h′′(z) + ag′′(z)

h′(z) + ag′(z)
− ωa(z)ω

′
a(z)

1− |ωa(z)|2

∣∣∣∣∣ (1− |z|2) + |ω∗
a(z)| .

(13)

Making use of the triangle inequality, we get from (13):∣∣∣∣h′′a(z)h′a(z)
(1− |z|2)

∣∣∣∣ ≤
∣∣∣∣∣h′′(z) + ag′′(z)

h′(z) + ag′(z)
− ωa(z)ω

′
a(z)

1− |ωa(z)|2

∣∣∣∣∣ (1− |z|2)

+

∣∣∣∣∣ ωa(z)ω
′
a(z)

1− |ωa(z)|2

∣∣∣∣∣ (1− |z|2)

≤
∣∣Pfa(z)(1− |z|2)

∣∣+ |ω∗
a(z)| ≤ k,

which implies, by the classical result due to Becker for analytic functions, that for
each a ∈ D, the function ha is univalent and can be extended to a continuous and
injective mapping h̃a in the closed unit disk. Moreover (see [3]), the function

(14) Ha(z) =

{
h̃a(z), |z| ≤ 1,

ha
(
1
z

)
+ ua

(
1
z

)
, |z| > 1,
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(where, for z ∈ D\{0}, ua(z) = h′a(z)(1−|z|2)/z) isK-quasiconformal in the complex
plane with K = (1+ k)/(1− k). Hence, in particular, Ha is continuous and injective
in C.

Take a complex number λ = eiθ ∈ ∂D and define

Hλ(z) = lim
r→1−

Hreiθ(z), z ∈ C.

According to [11, Theorem 5.3], the functions Hλ are either constant functions,
functions from C onto two points, or K-quasiconformal functions in the complex
plane. But using Hurwitz’s theorem, we see that for each λ ∈ ∂D, the function
h + λg is either a constant or univalent in D. Such a function h + λg cannot be
constant for any |λ| = 1 because it would imply that |h′| ≡ |g′| in the unit disk and
this is a contradiction with the condition |g′(0)| < |h′(0)| that holds for any sense-
preserving harmonic mapping. Therefore, we conclude that h + λg are univalent
for all λ ∈ ∂D. Since Hλ coincides with h + λg in D, we obtain that Hλ is a K-
quasiconformal function in the complex plane for each |λ| = 1. Thus Hλ is continuous
and one-to-one in C for all |λ| = 1 (hence for all |λ| ≤ 1).

2.2. Step 2. The next step is to construct an explicit candidate for a continuous
and injective extension of f to the whole complex plane.

We define, for each z ∈ C, the function

G(z) = H1(z)−H(z)

(where H = H0 and H1 denote the corresponding extension of h0 = h and h1 = h+g,
respectively, as in (14)), to obtain a continuous extension G of g to C given by

G(z) =


g(z), |z| < 1,

g̃(z) = h̃1(z)− h̃(z), |z| = 1,

g
(
1
z

)
+ v

(
1
z

)
, |z| > 1,

where

v(z) =
g′(z)(1− |z|2)

z
, z ∈ D \ {0}.

Note that for each z ∈ C and all a ∈ D,

Ha(z) = H(z) + aG(z).

Hence, since Ha are univalent in the complex plane for all a ∈ D, we see that H+aG
is injective in C for all such a.

We now construct the function defined by (5):

F (z) = H(z) +G(z) =


f(z), |z| < 1,

h̃(z) + g̃(z), |z| = 1,

f
(
1
z

)
+ U

(
1
z

)
, |z| > 1,

where U is defined in D \ {0} by

U(z) =
h′(z)(1− |z|2)

z
+
g′(z)(1− |z|2)

z
.

2.3. Step 3. We are going to show that the function F as in (5) is injective in
the complex plane. We use the arguments from [8].
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Assume, in order to get a contradiction, that F (z1) = F (z2) for two different
points z1 and z2 in C. Then, we have

(15) H(z1)−H(z2) = G(z2)−G(z1).

By hypothesis, H is univalent in the complex plane. Hence, H(z1) ̸= H(z2). Denote
by θ = arg {H(z1)−H(z2)} ∈ [0, 2π). Thus, we obtain from (15) that

e−iθ(H(z1)−H(z2)) = e−iθ
(
G(z1)−G(z2)

)
is a positive real number. Therefore, after taking conjugates on the right hand side
of the last equality, we get H(z1) −H(z2) = e2iθ(G(z1) − G(z2)), which contradicts
the fact that the function H − e2iθG is univalent in C.

2.4. Step 4. Finally, we will check that the function F defined by (5) is a
homeomorphism of C onto itself.

That the function F is continuous in the complex plane follows from the fact
that both H and G are continuous in C. Moreover, a straightforward computa-
tion (that mainly uses the triangle inequality and that f is sense-preserving) gives
lim|z|→∞ |F (z)| = ∞. Hence, we can extend continuously (and in a one-to-one man-
ner) the function F to the Riemann sphere C in such a way that F (∞) = ∞.
Therefore (see for instance [13, Theorem 5.6 on p. 167]), F is a homeomorphism of
the Riemann sphere onto F (C), so that F (C) = C. Since F (∞) = ∞, we conclude
that F is a homeomorphism of the complex plane onto itself.

3. Proof of Theorem 2

We would first like to remark that the hypotheses ∥ω∥∞ < 1 in this theorem
cannot be removed. To do so, consider the sense-preserving harmonic mapping f =
z+g, where g′ equals the lens-map ℓα defined by (11). Note that the second complex
dilatation ω of f equals ℓα. Then, on the one side, using (12) we obtain

sup
z∈D

(
|Pf (z)|(1− |z|2) + |ω∗(z)|

)
= sup

z∈D

(∣∣ℓαℓ∗α(z)∣∣+ |ℓ∗α(z)|
)
≤ 2α.

Therefore, by choosing any α < 1/2, we have that (4) holds (with k = 2α < 1). On
the other side, the function f is not quasiconformal since ∥ℓα∥∞ = 1.

Going back to the proof, we first notice that it is enough to prove Theorem 2
for sense-preserving harmonic mappings f that have a canonical decomposition of
the form f = h + g, where both f and g are analytic in D. This is because given
any positive real number 0 < r < 1, we can define the sense-preserving harmonic
function fr(z) = f(rz) = h(rz) + g(rz). Each of these functions fr has second
complex dilatation ωr = ω(rz), so that ∥ωr∥∞ ≤ ∥ω∥∞ < 1.

Also, it is easy to check that if f satisfies (4), then

sup
z∈D

{
|Pfr(z)| (1− |z|2) + |ω∗

r(z)|
}
≤ r sup

z∈D
|Pf (z)| (1− |z|2) + r sup

z∈D
|ω∗(z)| ≤ rk < k,

so that fr satisfies (4) as well.
Now, if we check that fr can be extended to a K-quasiconformal function in the

complex plane for some constant K ≥ 1 that does not depend on r, then we can
use [11, Theorem 5.3] and argue as in Subsection 2.1 to conclude that f can be also
extended to a K-quasiconformal function in C. Hence, from now on, we can assume
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that the functions h and g in the canonical decomposition of f are both analytic
functions in D.

3.1. Some useful lemmas. We will use the following three lemmas.

Lemma 1. Let f = h + g be a sense-preserving harmonic mapping in D with
complex dilatation ω ̸≡ 0. Assume that ∥ω∥∞ < 1 and that f satisfies (4). Then,
the analytic functions ha = h+ ag are univalent in D for all 0 ≤ |a| < δ, where

1 < δ =
1 + k∥ω∥∞
k + ∥ω∥∞

≤ 1

∥ω∥∞
.

Moreover, ha has a continuous and injective extension h̃a to D.

Proof. Notice that the fact that ha is univalent in the unit disk for all |a| ≤ 1
has been already proved in Subsection 2.1. Indeed, we showed in that subsection
that ha has a continuous and injective extension to D of the form h̃a = h̃ + ag̃ for
suitable functions h̃ and g̃ that coincides with h and g in the unit disk, respectively.
Hence, we can extend these functions ha for any value of a in the complex plane via
the formula h̃a = h̃ + ag̃. Note that if we can prove that the function ha (for any
a ∈ C) can be extended continuously to the closed unit disk, then the extension will
coincide with h̃a.

We are going to show that these functions ha keep the univalence property in D

for 1 < |a| < δ and that the corresponding extensions h̃a are injective in D.
Since |a| < δ ≤ 1/∥ω∥∞ and h′a = h′(1 + aw), we see that ha is locally univalent

in the unit disk. Therefore, we can compute the pre-Schwarzian derivative of ha to
obtain

(16)
h′′a
h′a

=
h′′

h′
+

aω′

1 + aω
.

Keeping in mind Formula (8) for the pre-Schwarzian derivative of f and (16), we get

h′′a
h′a

= Pf + ω′
(

ω

1− |ω|2
+

a

1 + aω

)
= Pf +

ω′

1− |ω|2

(
ω + a

1− |ω|2

1 + aω

)
= Pf +

ω′

1− |ω|2
· ω + a

1 + aω
,

which implies that for all z ∈ D,

(17)
∣∣∣∣h′′a(z)h′a(z)

∣∣∣∣ (1− |z|2) ≤ |Pf (z)| (1− |z|2) + |ω∗(z)| ·
∣∣∣∣ ω(z) + a

1 + aω(z)

∣∣∣∣ .
Now, note that since f is supposed to satisfy (4), we get that its second complex
dilatation ω satisfies |ω∗| ≤ k in the unit disk. Moreover, we also have for all |z| < 1,

|Pf (z)| (1− |z|2) ≤ k − |ω∗(z)|.

Then, we obtain from (17):

(18)
∣∣∣∣h′′a(z)h′a(z)

∣∣∣∣ (1− |z|2) ≤ k + |ω∗(z)|
(∣∣∣∣ ω(z) + a

1 + aω(z)

∣∣∣∣− 1

)
≤ k

∣∣∣∣ ω(z) + a

1 + aω(z)

∣∣∣∣ .
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In view of the inequality (18), the proof of the lemma will follow from the classical
Becker’s criterion for analytic functions once we show that

(19) sup
z∈D

∣∣∣∣ ω(z) + a

1 + aω(z)

∣∣∣∣ < 1

k

for all 1 < |a| < δ. To check that (19) holds, we first note that for λ = a/|a|,∣∣∣∣ ω(z) + a

1 + aω(z)

∣∣∣∣ = ∣∣∣∣ λω(z) + λa

1 + λaλω(z)

∣∣∣∣ = ∣∣∣∣ λω(z) + |a|
1 + |a|λω(z)

∣∣∣∣ .
Therefore,

sup
z∈D

∣∣∣∣ λω(z) + λa

1 + λaλω(z)

∣∣∣∣ = sup
z∈D

∣∣∣∣ λω(z) + |a|
1 + |a|λω(z)

∣∣∣∣ ≤ sup
|z|≤∥ω∥∞

∣∣∣∣ z + |a|
1 + |a|z

∣∣∣∣ .
Now, using again that |a| < δ ≤ 1/∥ω∥∞, we have that the linear fractional

transformation

T (z) =
z + |a|
1 + |a|z

maps the disk D(0, ∥ω∥∞) of center at z = 0 and radius ∥ω∥∞ onto a disk D,
say. Moreover, the Taylor coefficients of T are real numbers, hence D is symmetric
with respect to the real axes. A straightforward calculation shows that the Möbius
transformation T maps the interval (−∥ω∥∞, ∥ω∥∞) onto the interval(

|a|+ ∥ω∥∞
1 + |a|∥ω∥∞

,
|a| − ∥ω∥∞
1− |a|∥ω∥∞

)
,

so that

sup
|z|≤∥ω∥∞

∣∣∣∣ z + |a|
1 + |a|z

∣∣∣∣ = |a| − ∥ω∥∞
1− |a|∥ω∥∞

<
1

k

since

|a| < δ =
1 + k∥ω∥∞
k + ∥ω∥∞

.

Thus (19) holds, which completes the proof. �

Lemma 2. Let f = h+g satisfy the hypothesis of Lemma 1. Assume in addition
that both h and g are analytic functions in D. Then,

sup
α,β∈D, α ̸=β

∣∣∣∣ g(α)− g(β)

h(α)− h(β)

∣∣∣∣ ≤ 1

δ
=

k + ∥ω∥∞
1 + k∥ω∥∞

< 1.

Proof. Fix an arbitrary point β ∈ D and define the function

ψβ(α) =

{
g(α)−g(β)
h(α)−h(β)

, α ̸= β,

ω(α), α = β,
α ∈ D,

where ω is the second complex dilatation of f .
The function ψβ is continuous in |α| ≤ 1, so that there exists α0 ∈ D such that

S = supα∈D |ψβ(α)| = |ψβ(α0)|.
If α0 = β, then S ≤ ∥ω∥∞ and the result follows because δ ≤ 1/∥ω∥∞.
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Assume that α0 ̸= β. In order to get a contradiction, suppose that S > 1/δ.
Then, there exist a positive real number ε < δ, |λ| = 1, and α1 ∈ D with

g(α1)− g(β)

h(α1)− h(β)
=

λ

δ − ε
,

which implies that the function h − λ(δ − ε) g is not univalent in D. This is in
contradiction with the result obtained in Lemma 1. �

The third lemma is related to the analytic part h of f .

Lemma 3. Let f = h + g ba a sense-preserving harmonic mapping in the unit
disk for which (4) holds. For any positive real number r < 1, define the function
hr by hr(z) = h(rz), z ∈ D. Then, there exists a constant M > 0 such that for all
r ∈ (0, 1] and all four different points wi, i = 1, 2, 3, 4, in Γr = hr(∂D), the modulus
of the cross ratio (w1, w2, w3, w4) defined by (7) is bounded by M .

Proof. Using the arguments in the proof of Theorem 1, since we are assuming
that f satisfies (4), we have that the analytic part h of f can be extended continuously
to an injective function h̃ in D with the property that h̃(∂D) is a quasicircle.

Hence, given any four different points wi, i = 1, 2, 3, 4, in Γ = h̃(∂D), the modulus
of the cross ratio |(w1, w2, w3, w4)| is bounded by a constant M . This implies that
for any four different points |ζi| = 1, i = 1, 2, 3, 4, we have

(20)

∣∣∣∣∣ h̃(ζ1)− h̃(ζ3)

h̃(ζ1)− h̃(ζ4)
· h̃(ζ2)− h̃(ζ4)

h̃(ζ2)− h̃(ζ3)

∣∣∣∣∣ ≤M.

Now, if we fix four different points αi, i = 1, 2, 3, 4, on the boundary of the unit disk
and define the function

~(λ) =
h̃(λα1)− h̃(λα3)

h̃(λα1)− h̃(λα4)
· h̃(λα2)− h̃(λα4)

h̃(λα2)− h̃(λα3)
, λ ∈ D,

we conclude (using (20) and the Maximum Modulus Principle) that for all 0 < r < 1,
the inequality

(21)
∣∣∣∣h(rα1)− h(rα3)

h(rα1)− h(rα4)
· h(rα2)− h(rα4)

h(rα2)− h(rα3)

∣∣∣∣ ≤M

holds. Since αi, i = 1, 2, 3, 4 were arbitrary and since w ∈ hr(∂D) if and only if
w = h(rα) for some α ∈ ∂D, the conclusion of the lemma follows from (21). �

We now have all the tools to prove Theorem 2.

The proof of Theorem 2. Note that if ω ≡ 0 in the unit disk, Theorem 2
holds by the classical theorems due to Becker and Ahlfors that we have mentioned
in the introduction. Therefore, we will assume that ω ̸≡ 0 in D.

We first show that if

(22) k <
1− ∥ω∥∞
1 + ∥ω∥∞

,

then the function F defined by (5) is K-quasiconformal in the whole complex plane,
where K is the constant defined by (6). To do so, it suffices to prove (since h satisfies
(2)) that for all |z| ̸= 1, the dilatation µF = Fz/Fz of F is bounded by (K−1)/(K+1).
(Notice that this is enough for our purposes since |z| = 1 is a removable set in C.)
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If |z| < 1, then |µF (z)| = |ω(z)| ≤ ∥ω∥∞.
Let now w have modulus bigger than 1. Hence, w = 1/z for some |z| < 1 and a

straightforward computation shows that

|µF (w)| =

∣∣∣∣∣h′(z) + Uz(z)

g′(z) + Uz(z)

∣∣∣∣∣ =
∣∣∣∣∣z2h′′(z)(1− |z|2)− zg′(z)

z2g′′(z)(1− |z|2)− zh′(z)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
z2
h′′(z)

h′(z)
(1− |z|2)− zω(z)

h′(z)

h′(z)

z2
g′′(z)

h′(z)
(1− |z|2)− z

h′(z)

h′(z)

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣h′′(z)
h′(z)

∣∣∣ (1− |z|2) + ∥ω(z)∥∞

1−
∣∣∣g′′(z)h′(z)

∣∣∣ (1− |z|2)
.

(23)

On the one hand, using that f satisfies (4), we get∣∣∣∣∣h′′(z)h′(z)
− ω(z)ω′(z)

1− |ω(z)|2

∣∣∣∣∣ (1− |z|2) ≤ k − |ω∗(z)|,

which implies (by the triangle inequality)

(24)
∣∣∣∣h′′(z)h′(z)

(1− |z|2)
∣∣∣∣ ≤ k − |ω∗(z)|+ |ω(z)ω∗(z)| ≤ k − (1− ∥ω∥∞)|ω∗(z)|.

On the other hand, we have g′′ = (ω h′)′ = ω′h′ +ωh′′ in the unit disk. Hence, for all
z ∈ D we obtain

g′′(z)

h′(z)
(1− |z|2) =

(
ω(z)

h′′(z)

h′(z)
+ ω′(z)

)
(1− |z|2)

= ω(z)
h′′(z)

h′(z)
(1− |z|2) + ω′(z)(1− |z|2)

1− |ω(z)|2
(1− |ω(z)|2)

= ω(z)Pf (z)(1− |z|2) + ω′(z)(1− |z|2)
1− |ω(z)|2

.

Therefore, ∣∣∣∣g′′(z)h′(z)

∣∣∣∣ (1− |z|2) ≤ |ω(z)| |Pf (z)|(1− |z|2) + |ω∗(z)|

≤ ∥ω∥∞ (k − |ω∗(z)|) + |ω∗(z)|
= k ∥ω∥∞ + (1− ∥ω∥∞)|ω∗(z)|.

(25)

Using (24) and (25) in (23), we deduce

|µF (w)| ≤
k − (1− ∥ω∥∞)|ω∗(z)|+ ∥ω∥∞

1− (k∥ω∥∞ + (1− ∥ω∥∞)|ω∗(z)|)

=
k + ∥ω∥∞ − (1− ∥ω∥∞) |ω∗(z)|
1− k∥ω∥∞ − (1− ∥ω∥∞)|ω∗(z)|

.

(26)

Define the function ρ(x) : [0, k] → R by

ρ(x) =
k + ∥ω∥∞ − (1− ∥ω∥∞) x

1− k∥ω∥∞ − (1− ∥ω∥∞)x
.
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Bearing in mind that (22) holds, we see that ρ′(x) < 0 for all x ∈ [0, k]. Thus,

ρ(x) ≤ ρ(0) =
k + ∥ω∥∞
1− k∥ω∥∞

=
K − 1

K + 1
.

We then conclude by (26) that for all |w| > 1 the inequality |µF (w)| ≤ (K−1)/(K+1)
holds. A straightforward computation shows that ∥ω∥∞ ≤ (K − 1)/(K + 1) as well.
Therefore, we obtain, in fact, |µF (z)| ≤ (K − 1)/(K + 1) for all |z| ̸= 1. This proves
that the function F defined by (5) is K-quasiconformal whenever (22) holds.

To finish the proof of Theorem 2, we are to show that even if (22) does not hold
(so that we cannot ensure that the function defined by (5) is quasiconformal), the
harmonic mapping f can be extended to some quasiconformal map in the complex
plane.

By considering the dilations fr defined by fr(z) = f(rz) and using [11, Theo-
rem 5.3] one more time, we have that the result will follow once we prove that it
holds under the additional assumption that f has a canonical decomposition of the
form h + g, where h and g are analytic functions in D, provided that we can show
that each of the functions fr has a K-quasiconformal extension Fr to C, where K is
a constant that does not depend on r (and is not necessarily equal to that constant
K defined by (6)). To do so, we are going to check that the cross ratio of any four
different points in Γr = fr(∂D) is uniformly bounded by a universal positive constant
C for all r ∈ (0, 1). This will be enough for our purposes (see [2]) since, in this case,
we conclude that Γr is a quasicircle so that fr admits a K-quasiconformal reflection,
where the constant K only depends on C (hence, K is independent of r, as needed).

Note that, at this point, we know that for each λ ∈ D, the analytic function
φr,λ = hr + λgr has a K-quasiconformal extension Φr,λ to C. Hence, the Jordan
curve Φr,λ(∂D) is a quasicircle for each |λ| ≤ 1. As a consequence, we see that
given any four different arbitrary points wi ∈ Φr,λ(∂D), i = 1, 2, 3, 4, the cross ratio
(w1, w2, w3, w4) defined by (7) is bounded by a constant Kr,λ (that can depend on r
and on λ).

Take four different arbitrary points wi, i = 1, 2, 3, 4 in Γr = fr(∂D). The fact
that wi ∈ Γr implies that there exists |ζi| = 1 such that wi = fr(ζi) = hr(ζi)+gr(ζi) =
hi + gi, i = 1, 2, 3, 4. Thus, we can write

|(w1, w2, w3, w4)| =
∣∣∣∣h1 − h3 + g1 − g3
h1 − h4 + g1 − g4

· h2 − h4 + g2 − g4
h2 − h3 + g2 − g3

∣∣∣∣
=

∣∣∣∣h1 − h3 + λ13(g1 − g3)

h1 − h4 + λ14(g1 − g4)

∣∣∣∣ · ∣∣∣∣h2 − h4 + λ24(g2 − g4)

h2 − h3 + λ23(g2 − g3)

∣∣∣∣
=

∣∣∣∣h13h14
· h24
h23

∣∣∣∣ · ∣∣∣∣1 + λ13Λ13

1 + λ14Λ14

∣∣∣∣ · ∣∣∣∣1 + λ24Λ24

1 + λ23Λ23

∣∣∣∣ ,
(27)

where λij(gi−gj) = gi − gj (so that |λij| = 1), hij = hi−hj, and Λij = (gi−gj)/(hi−
hj), with i, j = 1, 2, 3, 4.

Using Lemma 3, we see that there exists a constant M that does not depend on
r such that for any four different points |ζi| = 1, i = 1, 2, 3, 4,

(28) | (hr(ζ1), hr(ζ2), hr(ζ3), hr(ζ4)) | =
∣∣∣∣h13h14

· h24
h23

∣∣∣∣ ≤M.
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Hence, we deduce that the first factor in (27) is uniformly bounded by that constant
M .

On the other hand, define

δr =
1 + k∥ωr∥∞
k + ∥ωr∥∞

(where ωr is the dilatation of fr) and use Lemma 2 to obtain∣∣∣∣1 + λ13Λ13

1 + λ14Λ14

∣∣∣∣ · ∣∣∣∣1 + λ24Λ24

1 + λ23Λ23

∣∣∣∣ ≤ (
1 + 1/δr
1− 1/δr

)2

=

(
1 + k

1− k

)2

·
(
1 + ∥ωr∥∞
1− ∥ωr∥∞

)2

≤
(
1 + k

1− k

)2

·
(
1 + ∥ω∥∞
1− ∥ω∥∞

)2

.

(29)

Therefore, as a direct consequence of (28) and (29), we get from (27)

|(w1, w2, w3, w4)| ≤M ·
(
1 + k

1− k

)2

·
(
1 + ∥ω∥∞
1− ∥ω∥∞

)2

= C.

This proves that fr (hence f) admits a K-quasiconformal reflection, so that f has a
quasiconformal extension to C. This ends the proof of Theorem 2.
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