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Abstract. We study the dimension spectrum for Lyapunov exponents for rational maps acting
on the Riemann sphere and characterize it by means of the Legendre–Fenchel transform of the hidden
variational pressure. This pressure is defined by means of the variational principle with respect to
nonatomic invariant probability measures and is associated to certain σ-finite conformal measures.
This allows to extend previous results to exceptional rational maps.

1. Introduction and main results

We are going to study the Lyapunov exponents of a rational function f : C → C
acting on the Riemann sphere, of degree at least 2. In particular, continuing the
investigations in [7], we are interested in the case that the map f is exceptional.
Slightly modifying [10, Section 1.3], we call f exceptional if there exists a finite,
nonempty, and forward invariant set Σ′ ⊂ J such that
(1) f−1(Σ′) \ Σ′ ⊂ Crit .

Here J = J(f) is the Julia set of f and Crit = Crit(f) is the set of critical points
of f . Every such set Σ′ has at most 4 points (see Lemma 1), hence there is a
maximal set with this property, which we denote by Σ(f). If f is non-exceptional we
put Σ(f) = ∅. When f is clear from the context we denote Σ(f) simply by Σ.

1.1. Main results. Given x ∈ J , denote by χ(x) and χ(x) the lower and
upper Lyapunov exponent at x, respectively. If both values coincide then we call the
common value the Lyapunov exponent at x and denote it by χ(x). Similarly, for
a f -invariant probability measure µ we denote by χ(µ)

def
=
´
log|f ′| dµ its Lyapunov

exponent. Let M be the set of all f -invariant Borel probability measures supported
on J and M̃ ⊂ M be the one of all nonatomic ones. Let M̃E and ME be the sets of
ergodic measures contained in M̃ and M, respectively. Let

α− def
= inf

µ∈ME

χ(µ), α+ def
= sup

µ∈ME

χ(µ) and α̃+ def
= sup

µ∈M̃E

χ(µ)
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(see Corollary 1 for equivalent definitions of α̃+).
For given numbers 0 ≤ α ≤ β, we consider the level sets

L(α, β)
def
= {x ∈ J : χ(x) = α, χ(x) = β}.

If α < β then L(α, β) is contained in the set of so-called irregular points. We
denote by L(α)

def
= L(α, α) the set of Lyapunov regular points with exponent α. We

will describe the complexity of such level sets in terms of their Hausdorff dimension
dimH. To do so, given a parameter t ∈ R let us consider the potential φt

def
= −t log |f ′|

and the pressure function

(2) P (φt)
def
= sup

µ∈M

(
hµ(f) +

ˆ
J

φt dµ

)
,

see [15] for further details on the definition of pressure. We define the hidden varia-
tional pressure

(3) P̃ (φt)
def
= sup

µ∈M̃

(
hµ(f) +

ˆ
J

φt dµ

)
(following the terminology in [10]). After Makarov and Smirnov [10, Theorem B],
the pressure function t 7→ P (φt) fails to be real analytic on the interval (−∞, 0) if
and only if f is exceptional and α+ > α̃+. By [10, Theorem A], for an arbitrary
rational function the hidden pressure function t 7→ P̃ (φt) is real analytic on the
interval (−∞, 0) and

(4) P (φt) = max{P̃ (φt),−t α+}.

For any α > 0 let

(5) F̃ (α)
def
=

1

α
inf
t∈R

(
P̃ (φt) + t α

)
and F̃ (0)

def
= lim

α→0+
F̃ (α).

This function is finite and non-negative on [α−, α̃+], and equal to −∞ on R\[α−, α̃+].
Our main result is the following theorem.

Theorem 1. Let f be a rational function of degree at least 2. For any α in
[α−, α̃+] \ {0}, we have

(6) dimH L(α) = F̃ (α),

and for every β in [α, α̃+], we have

(7) min{F̃ (α), F̃ (β)} ≤ dimH L(α, β) ≤ max
α≤q≤β

F̃ (q).

For α = 0 we also have
dimH L(0) ≥ F̃ (0).

Moreover, {
x ∈ J : −∞ < χ(x) < α−} =

{
x ∈ J \ Σ: χ(x) > α̃+

}
= ∅

and in the case α− > 0 we also have

dimH

{
x ∈ J : χ(x) > 0, χ(x) < α−} = 0.
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The result of the above theorem has been shown in [7] in the particular case that
f is non-exceptional.

The multifractal formalism for Lyapunov exponents for conformal uniformly ex-
panding repellers has been covered for the first time by Barreira, Pesin, and Schmel-
ing [1] building also on work by Weiss [18] (see the monographs [12, 16] for more
details and references). To our best knowledge, the first results on irregular parts of
a spectrum were obtained by Besicovitch [3]. Its first complete description (for digit
expansions) was given in [2].

To prove our main result, in this paper we will create new technical tools in
order to deal with exceptional rational maps and then show how these tools can be
applied to adapt the original proofs in [7]. The paper is organized as follows. In
Section 2 we collect some known results about exceptional maps that will be used in
the rest of the paper. In Section 3 we will introduce the concept of hidden pressure
using backward branches of f , analogously to the tree pressure from [15]. In the
case of exceptional rational maps we do not always have at hand a finite conformal
measure with dense support, see Proposition 1. For that reason, in Section 4 we
introduce σ-finite conformal measures that are associated to the hidden pressure.
Finally, in Section 5 we apply these tools to prove Theorem 1. In Section 5.1 we
provide a lower bound for dimension using the fact that for any rational map we
can find an increasing family of uniformly expanding Cantor repellers contained in
J using a construction of bridges that has been established in [7] and applies to the
setting of this paper without changes. In Section 5.2 we provide an upper bound for
dimension applying Frostman’s Lemma to an appropriate σ-finite conformal measure
at a conical point. Finally, in Section 5.3, we show the existence of periodic orbits
in J \ Σ with exponent as large as possible. The proof of Theorem 1 is given at the
end of Section 5.3.

We give an alternative proof of this result in Appendix A via a variant of Bowen’s
periodic specification property, [4].

Throughout the rest of this paper we fix a rational map f of degree at least 2,
and denote the spherical distance on the Riemann sphere C by dist. Given an
integer a ≥ 1 and a function g defined on J , put

Sag
def
= g + g ◦ f + · · ·+ g ◦ fa−1.

2. Exceptional maps and phase transitions

For a critical point c ∈ Crit we will denote by degf (c) the local degree of f
at z = c. The following result has been proved by the same computation first in [6,
Lemma 2].

Lemma 1. If Σ′ is a finite subset of C such that f−1(Σ′) \ Σ′ ⊂ Crit, then
cardΣ′ ≤ 4. If f is a polynomial then card(Σ′ \ {∞}) ≤ 2.

Proof. Using that f has 2 deg(f) − 2 critical points counted with multiplicity,
by (1) we have

deg(f) cardΣ′ =
∑

x∈f−1(Σ′)

degf (x) = card f−1(Σ′) +
∑

x∈f−1(Σ′)

(degf (x)− 1)

≤ cardΣ′ + cardCrit+2(deg(f)− 1) ≤ cardΣ′ + 4(deg(f)− 1),
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so cardΣ′ ≤ 4. If f is a polynomial, then it has at most deg(f) − 1 finite critical
points counted with multiplicity, so in this case card(Σ′ \ {∞}) ≤ 2. �

The following is an example of a one parameter family of rational maps, such
that for some parameters the map is exceptional and its exceptional set contains a
critical point. See [9, Section 6] and [10, Section 1.3] for other examples of exceptional
rational maps.

Example 1. Let d ≥ 3 be an integer, and for λ ∈ C put

fλ(z)
def
= (λzd − λzd−1 + 1)−1.

The point z = 0 is critical of multiplicity d − 2, the point 1 = fλ(0) is fixed of
multiplier −λ, and the point z = ∞ is critical of multiplicity d − 1 and the only
preimage of z = 0. Thus, when z = 1 belongs to the Julia set we have {0, 1} ⊂ Σ.
There are three cases when this last property can happen: When |λ| > 1 (z = 1 is
repelling), when λ is a root of unity (z = 1 is parabolic), and the remaining case
when |λ| = 1, λ is not a root of unity, and fλ is not locally linearizable at z = 1
(z = 1 is Cremer).

If f is exceptional, then the set Σ contains at least one periodic point. Observe
that it hence must consist of a finite number of periodic points plus possibly some
of their preimages. We write Σ = Σ0 ∪ Σ+, where Σ0 denotes the subset of all
neutral periodic points in Σ plus its preimages and where Σ+ denotes the subset of
all repelling periodic points in Σ plus its preimages.

We will say that f has a phase transition in the negative spectrum if the func-
tion t 7→ P (φt) fails to be real analytic on (−∞, 0). In this case we put

t−
def
= sup

{
t < 0: P (φt) = −tα+

}
.

We have t− < 0 and, since the function t 7→ P (φt) is convex, for each t ∈ (−∞, t−)
we have P (φt) = −tα+.

In the following proposition we gather several results in [10, 15]. A measurable
subset A of C is said to be special if f : A → f(A) is injective. Given a measurable
function ψ : C → [−∞,+∞], a (possibly infinite) Borel measure ν on J is said to be
eψ-conformal outside Z ⊂ J if for every special set A ⊂ J \ Z we have

ν(f(A)) =

ˆ
A

eψ(x) dν(x).

If Z = ∅ we simply say that ν is eψ-conformal.

Proposition 1. Let f be a rational map of degree at least 2 and let t ∈ R. Then
we have the following properties:

1. Suppose that f does not have a phase transition in the negative spectrum, or
that f has a phase transition in the negative spectrum and t > t−. Then P̃ (φt) =
P (φt) and there is a finite

(
eP (φt)−φt

)
-conformal measure whose support is

equal to J ;
2. Suppose that f has a phase transition in the negative spectrum and that t ≤ t−.

Then f is exceptional, there is a repelling periodic point p ∈ Σ such that
P (φt) = −tχ(p) and for every neighborhood V of p and every measure ν that
is
(
eP (φt)−φt

)
-conformal outside Crit and that is not supported on Σ, we have

ν(V \ {p}) = +∞.
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Proof. The equality P̃ (φt) = P (φt) in part 1 follows from the definition of t−.
The existence of the conformal measure in part 1 follows from [10, Lemma 3.5] if t < 0
and from [15, Theorem A] if t ≥ 0.

The fact that f is exceptional and that there is a repelling periodic point p ∈ Σ
such that P (φt) = −tχ(p) in part 2 is given by [10, Theorem B]. To complete the proof
of part 2, let ν be a

(
eP (φt)−φt

)
-conformal measure outside Crit that is not supported

on Σ. We first prove that the support of ν is equal to J . Since by hypothesis ν is not
supported on Σ, there is a point z0 of J \Σ in the support of ν. It follows that there
is a sequence of points (zn)∞n=1 in J \Crit not contained in a periodic orbit, and such
that for every n we have f(zn) = zn−1. The conformality of ν outside Crit implies
that for every n ≥ 0 the point zn is in the support of ν. It follows that there is an
integer N ≥ 0 such that zN is not in the forward orbit of a critical point of f . Using
the conformality of ν outside Crit again, we conclude that every iterated preimage
of zN is in the support of ν. Since the iterated preimages of zN are dense in J , it
follows that the support of ν is equal to J , as claimed.

Let n ≥ 1 be the period of the periodic point p and let r > 0 be sufficiently small
so that B(p, r)\{p} ⊂ V \(Σ∪Crit), and so that the inverse branch ϕ of fn fixing p is
defined on a neighborhood of B(p, r) and satisfies ϕ(B(p, r)) ⊂ B(p, r). Note that if
we put U def

= B(p, r) \ ϕ(B(p, r)), then we have ν(U) > 0; otherwise the conformality
of ν outside Crit would imply that for every integer m ≥ 1 we have ν(ϕm(U)) = 0,
and therefore

ν(B(p, r) \ {p}) =
∞∑
m=0

ν(ϕm(U)) = 0,

but this is not possible because the open set B(p, r)\{p} intersects J and the support
of ν is equal to J . Since ϕ is defined on a neighborhood of B(p, r) and ϕ(B(p, r)) ⊂
B(p, r), there is a distortion constant C > 0 such that for each integer m ≥ 1 we
have, by the conformality of ν outside Crit,

ν(ϕm(U)) ≥ C−1ν(U)e−m(nP (φt)−Snφt(p)) = C−1ν(U).

Thus

ν(V \ {p}) ≥ ν(B(p, r) \ {p}) =
∞∑
m=0

ν(ϕm(U)) = +∞,

completing the proof of the proposition. �

3. Hidden tree pressure

The goal of this section is to prove equivalence of three pressure functions: The
hidden variational pressure defined in (3) as well as the hidden hyperbolic pressure
and the hidden tree pressure defined in (8) and (10) below.

Given t ∈ R, the hidden hyperbolic pressure is defined as

(8) P̃hyp(φt)
def
= supPf |X(φt),

where the supremum is taken over all compact f -invariant (i.e. f(X) ⊂ X) isolated
expanding subsets of J \ Σ. We call such a set uniformly expanding repeller. Here
isolated means that there exists a neighborhood U of X such that fn(x) ∈ U for all
n ≥ 0 implies x ∈ X.

Proposition 2. P̃ (φt) = P̃hyp(φt) for every t ∈ R.
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Proof. The inequality P̃ (φt) ≥ P̃hyp(φt) follows from the variational principle. On
the other hand [16, Theorem 11.6.1] implies that for any µ ∈ M̃ we have P̃hyp(φt) ≥
hµ(f) +

´
J
φt dµ and hence P̃hyp(φt) ≥ P̃ (φt). �

Before defining the hidden tree pressure, let us recall some concepts from [14], [15],
and [16, Chapter 12.5]. Given z ∈ C and t ∈ R, we consider the tree pressure of φt
at z defined by

Ptree(z, φt)
def
= lim sup

n→∞

1

n
log

∑
x∈f−n(z)

|(fn)′(x)|−t.

A point z ∈ C is said to be safe if

z /∈
∞∪
n=1

fn(Crit) and lim
n→∞

1

n
log dist(z, fn(Crit)) = 0.

A point z ∈ C is said to be expanding if there exist numbers ∆ > 0 and λ > 1
such that for all sufficiently large n the map fn is univalent on f−n

z (B(fn(z),∆)) and
satisfies |(fn)′(z)| ≥ λn. Here, for a subset U of C and z ∈ U we denote by f−n

z (U)
the connected component of f−n(U) containing z.

We point out that every point in C outside a set of Hausdorff dimension zero
is safe, and that for each safe point z ∈ C we have Ptree(z, φt) = P (φt), see [15,
Theorem A], and compare with [14, Theorem 3.4]. Moreover, there is at least one
safe point in J \ Σ that is also expanding, see for example [16, Proposition 12.5.10].

Let us now define the hidden tree pressure that is an analogue of the tree pressure,
obtained by considering a restricted tree of preimages. Given a subset V of J and z ∈
J \ V which is not in the forward orbit of a critical point, we define

(9) Pn(z, φt, V )
def
=

1

n
log

∑
x∈f−n(z)∩J\V

|(fn)′(x)|−t

and we consider the hidden tree pressure of φt at z defined by

(10) Ptree(z, φt, V )
def
= lim sup

n→∞
Pn(z, φt, V ).

Usually the point z will be expanding safe in J \ Σ, and V a neighborhood of Σ not
containing z.

Lemma 2. If t ≤ 0, V is a sufficiently small neighborhood of Σ, and z ∈ J \ V
is expanding safe, then the pressure Ptree(z, φt, V ) does not depend on V .

To prove the above lemma we need the following technical lemma.

Lemma 3. For an arbitrary neighborhood V of Σ and an arbitrary number ε > 0
there exists a number δ > 0 and positive integers N ≤ M such that for every point
x ∈ J \ V there exist numbers 0 ≤ i, j ≤M and a point z ∈ f−j(f i({x})) such that
the set A def

= f−N({z}) is ε-dense in J and satisfies

dist
(N+j−1∪

s=0

f s(A),Crit
)
≥ δ.
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Proof. By the locally eventually onto property of f on J there is an integer N ≥ 1
such that for each z ∈ J the set f−N(z) is ε-dense in J . We put

C(N)
def
=

N∪
s=1

f s(Crit).

For each integer M ≥ 0 let ΦM : J → R be defined by

ΦM(x)
def
= max

{
min

{
dist(y, C(N)), dist

( j−1∪
s=0

f s(y),Crit
)}

:

0 ≤ i, j ≤M, y ∈ f−j(f i(x))

}
.

We will show that for each x ∈ J \Σ there is an integer M(x) ≥ 0 such ΦM(x)(x) > 0.
Since for each M ≥ 0 the function ΦM is continuous and for each x ∈ J the sequence
(ΦM(x))∞M=0 is nondecreasing, it follows that there is a number M ≥ N so that ΦM

is strictly positive on J \ Σ. This will imply the desired assertion with

δ
def
= inf{ΦM(x) : x ∈ J \ V } · (sup |f ′(x)|)−N .

We distinguish three cases:
1) If x ∈ J \ Σ is not in the forward orbit of a critical point then Φ0(x) > 0.
2) If x ∈ J \ Σ is in the forward orbit of a critical point that is not preperiodic

then there exists a number i = i(x) ∈ {0, . . . , cardC(N)} such that f i(x) is disjoint
from C(N). Hence, we obtain that ΦcardC(N)(x) > 0.

3) If x ∈ J \ Σ is in the forward orbit of a preperiodic critical point then, there
is i and an infinite backward trajectory starting at f i(x) that is disjoint from Crit
and in particular this backward trajectory is longer than cardC(N). Hence, we can
choose numbers i = i(x), j = j(x) ≥ 0 and a point y = y(x) ∈ f−j(f i(x)) such that y
is not in the forward orbit of a critical point and such that for each s ∈ {0, . . . , j−1}
we have f s(y) /∈ Crit. In particular, we have y /∈ C(N). Thus, if we put

M(x)
def
= max{i(x), j(x)},

then ΦM(x)(x) > 0. �
Proof of Lemma 2. Let V1, V2 be two neighborhoods of Σ. Without loss of

generality we can assume that V1 ⊂ V2. By Lemma 3, every backward branch of
f−n starting at z and ending at some point x1 ∈ V2 \ V1 can be modified to end at
some x2 /∈ V2. The modification involves only removing at most M last steps, that
decreases |(fn)′(x)|−t at most by a constant factor because t ≤ 0, and replacing them
by at most M + N steps, which stay in a uniformly bounded from below distance
from critical points. Hence we conclude that Pn(z, φt, V1) and Pn(z, φt, V2) differ at
most by O(n−1). This proves the lemma. �

We denote by Dist g|Z
def
= supx,y∈Z |g′(x)|/|g′(y)| the maximal distortion of a map

g on a set Z. We establish one preliminary approximation result.

Proposition 3. Given t ≤ 0, a sufficiently small neighborhood V of Σ and an
expanding safe point z ∈ J \ Σ, for every ε > 0 there exists a uniformly expanding
repeller X ⊂ J \ Σ such that

Pf |X(φt) ≥ Ptree(z, φt, V )− ε.
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Proof. We start by recalling the construction used in [15, Proposition 2.1] to
prove an analogous statement for t ≥ 0 and then we modify it using Lemma 3 to
prove the proposition.

As z is expanding safe, there exist ∆ > 0, C0 > 0 and λ > 1 so that for all ℓ ≥ 1

the map f ℓ is univalent on Vℓ
def
= f−ℓ

z (B(f ℓ(z),∆)) and |(f ℓ)′(z)| ≥ C0λ
ℓ. Hence, in

particular, the distortion Dist f ℓ|Vℓ is bounded from above uniformly in ℓ by some
number C1 > 1. Given r < ∆/2, let ℓ = ℓ(r) be the smallest integer satisfying
|(f ℓ)′(z)| ≥ C1∆/r. Hence, with the above, we have f−ℓ(B(f ℓ(z),∆)) ⊂ B(z, r) and
ℓ ≤ C ′′ −C ′ log r, where C ′ = 1/ log λ and C ′′ = (log λ+ logC−1

0 C1∆)C ′. Let m ≥ 1
be such that fm(B(y,∆/2)) = J for any y ∈ J .

Let us choose positive constants α, κ and n ≥ m large enough so that κn−α < ∆/2
and that for every j = 1, . . . , 2n for every point zj ∈ f−j(z) on the component
f−j
zj

(B(z, κn−α)) the map f j is univalent and satisfies

(11) f−j
zj

(B(z, κn−α)) ⊂ B(zj,∆/2).

Note that with this choice we have for large n,

ℓ
def
= ℓ(κn−α) ≤ C ′′ − C ′ log κ+ αC ′ log n≪ n−m.

As m ≤ n and fm(B(f ℓ(z),∆))) covers J , we can conclude that for every preim-
age zn ∈ f−n(z) there exists a component Wzn of f−m(f−n

zn (B(z, κn−α))
)

contained
in B

(
f ℓ(z),∆

)
. The map fm+n, and hence fm+n+ℓ, is univalent on Wzn . Thus, the

map

(12) F
def
= fm+n+ℓ :

∪
zn∈f−n(z)

Wzn → B
(
f ℓ(z),∆

)
has no critical points, and Z

def
=
∩∞
k=1 F

−k(B(f ℓ(z),∆)) is a uniformly expanding
repeller with respect to F .

. . .

...

B(f ℓ(z),∆)

f ℓ(z)

z
⊃ J

B(z, κn−α)

zn

f ℓ

fn

fm

Figure 1. Construction of the uniformly expanding repeller Z.

Let us now slightly modify the construction of Z by (12) and ignore all those
backward branches f−(m+n+ℓ) that correspond to a point zn ∈ V . Given κ = ∆/2,
let us consider the positive integers N ≤ M and the number δ > 0 provided by
Lemma 3. Then, by Lemma 3, for each point zn ∈ f−n(z) ∩ V there exist numbers
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j(zn), i(zn) ≤ M , a point z∗n ∈ f−(N+j(zn))(f i(zn)(zn)) in B(f ℓ(z),∆/2). Any such
branch stays δ-far from Crit. Note that the distortion of fn+N+j(zn)−i(zn)+ℓ on

W ∗
zn

def
= f

−(n+N+j(zn)−i(zn))
z∗n

(B(z, κn−α))

is bounded by a constant D > 1 independent of zn and n. Given an integer k ∈
{n+N −M, . . . , n+N +M}, put

Pk
def
= {zn ∈ f−n(z) \ V : n+N + j(zn)− i(zn) = k}.

Note that for distinct zn and z′n in Pk the sets W ∗
zn and W ∗

z′n
are disjoint. Setting

F ∗
k

def
= fk+ℓ :

∪
zn∈Pk

W ∗
zn → B(f ℓ(z),∆),

the sets

Z∗
k

def
=

∞∩
j=1

(F ∗
k )

−j (B(f ℓ(z),∆)
)

and X∗
k

def
=

k+ℓ−1∪
j=0

f j(Z∗
k)

are uniformly expanding repellers for F ∗
k and f , respectively. Both of these sets are

disjoint from Σ by construction. On the other hand there, letting

L
def
= min

{
1, inf

J\B(Crit,δ)
|f ′|
}

and L̃
def
= max

{
1, sup

J
|f ′|
}

we have

Pf |X∗
k
(−t log |f ′|) ≥ 1

k + ℓ
PF ∗

k |Z
∗
k

(
− t log |F ∗

k |
)

≥ 1

n+N +M + ℓ
log

(
Dt

∑
zn∈Pk

|(fk+ℓ)′(z∗n)|−t
)

≥ 1

n+N +M + ℓ
log

(
Dt(C−1

1 C0λ
ℓ)−tL−t(N+M)L̃tM

∑
zn∈Pk

|(fn)′(zn)|−t
)
.

Since
∪n+N+M
k=n+N−M Pk = f−n(z) \ V , there is k such that∑

zn∈Pk

|(fn)′(zn)|−t ≥
1

2M + 1

∑
zn∈f−n(z)\V

|(fn)′(zn)|−t.

Hence, if we put D̃ def
= D−1C−1

1 C0 λ
ℓLN+M L̃−M , then

Pf |X∗
k
(−t log |f ′|) ≥ 1

n+N +M + ℓ
log

D̃−t 1

2M + 1

∑
zn∈f−n(z)\V

|(fn)′(zn)|−t
 .

Since N , M , D̃ are independent of n and ℓ ≤ C ′′ − C ′ log κ + αC ′ log n, we obtain
the desired assertion by taking a sufficiently large n. �

We are now ready to prove one further equivalence.

Proposition 4. Given a sufficiently small neighborhood V of Σ and an expand-
ing safe point z ∈ J \ V , for every t ≤ 0 we have

Ptree(z, φt, V ) = P̃hyp(φt) = P̃ (φt).
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Proof. The second equality holds by Proposition 2.
By Proposition 3, we have P̃hyp(φt) ≥ Ptree(z, φt, V ).
In view of Lemma 2, to prove the inequality P̃hyp(φt) ≤ Ptree(z, φt, V ) it is enough

to show that for each expanding repeller X that does not intersect Σ, there is a
neighborhood V0 of Σ such that Pf |X(φt) ≤ Ptree(z, φt, V0). Notice that for every
x ∈ X and every neighborhood V0 of Σ disjoint from X we have,

Pf |X(φt) ≤ Ptree(x, φt, V0).

This follows easily considering the contribution of the backward branches of f−n(x)
contained in X in the sum in (9).

Let Y be a neighborhood of X on which f |Y is uniformly expanding. Thus,
there is a constant C > 1 and for every y ∈ Y there is x ∈ X such that for every
integer n ≥ 1 and every x′ ∈ f−n(x) there is y′ ∈ f−n(y) shadowing x′ and so that

C−1 < |(fn)′(y′)|/|(fn)′(x′)| < C.

Hence, for each neighborhood V0 disjoint from Y we have Pf |X (φt) ≤ Ptree(y, φt, V0).
By the eventually onto property of f on J , we have fm(Y ) = J for some m ≥ 1.

Fix y ∈ Y ∩ f−m(z) and let V0 neighborhood of Σ disjoint from Y . Then we have

Pm+n(z, φt, V0) =
1

m+ n
log

∑
x∈f−(m+n)(z)∩J\V0

|(fm+n)′(x)|−t

≥ 1

m+ n
log|(fm)′(y)|−t + n

m+ n
Pn(y, φt, V0).

This shows Ptree(z, φt, V0) ≥ Ptree(y, φt, V0) and completes the proof of the inequality
Ptree(z, φt, V0) ≥ P̃hyp(φt). �

4. σ-finite conformal measures

Recall that f is a rational map of degree at least 2. If f is exceptional, then Σ
is the maximal finite and forward invariant subset of J satisfying f−1(Σ) \Σ ⊂ Crit.
Otherwise Σ = ∅.

In the following proposition we adapt the classical method by Patterson and
Sullivan to construct a

(
eP̃ (φt)−φt

)
-conformal measure on J for each t < 0. For a

map without a phase transition in the negative spectrum or for a map with a phase
transition in the negative spectrum at some parameter t− < t, we obtain a finite
conformal measure supported on J , as in part 1 of Proposition 1. For a map having a
phase transition in the negative spectrum at some parameter t− > t this construction
gives us a conformal measure outside Crit, which is finite outside each neighborhood
of Σ. Recall that by part 2 of Proposition 1, existence of phase transition implies
that there does not exist a finite

(
eP̃ (φt)−φt

)
-conformal measure for t < t−.

Proposition 5. Let f be a rational function of degree at least 2. For each t < 0

there exists a Borel measure on J that is
(
eP̃ (φt)−φt

)
-conformal outside Crit, finite

outside any neighborhood of Σ, gives zero measure to Σ∪Crit and whose support is
equal to J .

Proof. As a first step we will apply the Patterson–Sullivan method while consid-
ering only those inverse branches outside a given neighborhood V of Σ. We obtain in
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this way a measure that is
(
eP̃ (φt)−φt

)
-conformal outside the set V ∪ f−1(V ) ∪ Crit.

We will obtain a measure
(
eP̃ (φt)−φt

)
-conformal outside Crit by taking the limit of

the measures obtained by repeating this construction with V replaced by smaller and
smaller neighborhoods.

We start with the following lemma. Recall that Σ0 denotes the set of neutral
periodic points in Σ plus its preimages.

Lemma 4. Given t < 0, for every λ > 0 there exist positive numbers r and A
such that for every x ∈ J and every integer ℓ ≥ 1 we have∑

|(f ℓ)′(y)|−t ≤ Aeℓλ,

where the sum is taken over all y ∈ f−ℓ(x) satisfying f j(y) ∈ B(Σ0, r) for every
j ∈ {0, . . . , ℓ− 1}.

Proof. Let r > 0 be sufficiently small so that for each periodic point p ∈ Σ0 of
minimal period n ≥ 1 we have

sup
y∈B(p,r)

|(fn)′(y)|−t ≤ eλn.

Hence, there is some constant A0 > 0 such for every integer ℓ ≥ 1 and every point y
satisfying f j(y) ∈ B(Σ0, r) for every j ∈ {0, . . . , ℓ− 1} we have

|(f ℓ)′(y)|−t ≤ A0 e
ℓλ.

Reducing r if necessary, we may assume that for every p ∈ Σ0 the map f is injective
on B(p, r) and the set f(B(p, r)) is disjoint from B

(
Σ0\{f(p)}, r

)
. So for each p ∈ Σ0

and w ∈ B(f(p), r) there is at most one point w′ ∈ B(p, r) such that f(w′) = w. By
induction we can conclude that for each ℓ ≥ 1, x ∈ J , and p, p′ ∈ Σ0 there is at most
one point y ∈ f−ℓ(x) such that

y ∈ B(p, r) and f ℓ−1(y) ∈ B(p′, r).

Thus the assertion follows with A def
= A0(cardΣ0)

2. �
We now continue in proving the proposition. Let z ∈ J \ Σ be an expanding

safe point. Given λ = P̃ (φt)/3, let r and A be the positive numbers provided by
Lemma 4. Reducing r > 0 if necessary, we can assume that z /∈ B(Σ, r) and by
Proposition 4 we can assume that V def

= B(Σ, r) satisfies Ptree(z, φt, V ) = P̃ (φt).
There exists a sequence (bn)n≥1 of positive reals such that

(13)
∞∑
n=1

bne
−np

∑
x∈f−n(z)∩J\V

|(fn)′(x)|−t
{
<∞ if p > P̃ (φt),

= ∞ if p ≤ P̃ (φt),

and limn→∞ bn/bn+1 = 1 (see, for example, [5, Lemma 3.1]). Given t < 0 and
p > P̃ (φt), let us define

Mt,p
def
=

∞∑
n=1

bne
−np

∑
x∈f−n(z)∩J\V

|(fn)′(x)|−t
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and for each neighborhood W of Σ define the measure

(14) µt,W,p
def
=

1

Mt,p

∞∑
n=1

bne
−np

∑
x∈f−n(z)∩J\W

|(fn)′(x)|−t δx,

where δx denotes the Dirac measure supported at x.
Observe that the measure µt,V,p is probabilistic for any p > P̃ (φt). If W ⊂ V

is a neighborhood of Σ the measure µt,W,p is not probabilistic in general, however it
is finite as shown in the following lemma. Let us denote by |µ| the total mass of a
measure µ, that is, let |µ| = µ(J).

Lemma 5. For every neighborhood W of Σ contained in V there is a positive
constant C(W ) such that for every p > P̃ (φt) we have

1 ≤ |µt,W,p| ≤ C(W ).

Proof. Since by assumption W ⊂ V , we have |µt,W,p| ≥ |µt,V,p| = 1.
It only remains to prove the upper bound. Put

(15) V1
def
= V, and for i ≥ 1 put Vi+1

def
= Vi ∩ f−1(Vi).

Note that Vi+1 is the subset of V consisting of all points that under forward iteration
do not leave V for at least i steps. In particular,

(16) f(Vi \ Vi+1) ⊂ C \ Vi

for all i ≥ 1.
We will first consider a simple case and assume that we have Vi0 ⊂ W for some

integer i0 ≥ 1. We establish an upper bound for |µt,Vi0 ,p| and hence for |µt,W,p|.
Observe first that for every i ≥ 1 we have

|µt,Vi+1,p| = µt,Vi+1,p(Vi \ Vi+1) + µt,Vi+1,p(J \ Vi) ≤ µt,Vi+1,p(Vi \ Vi+1) + |µt,Vi,p|.

By (16) for any point x ∈ Vi \ Vi+1 we have f(x) ∈ C \ Vi. Hence, we can estimate

Mt,p · µt,Vi+1,p(Vi \ Vi+1) =
∞∑
n=1

bn e
−np

∑
x∈f−n(z)∩Vi\Vi+1

|(fn)′(x)|−t

≤ e−p deg f sup
J

|f ′|−t
∞∑
n=1

bne
−(n−1)p

∑
y∈f−(n−1)(z)∩J\Vi

|(fn−1)′(y)|−t

≤ e−p deg f sup
J

|f ′|−t
b1 +max

k≥2

bk
bk−1

∞∑
n=1

bn e
−np

∑
x∈f−n(z)∩J\Vi

|(fn)′(x)|−t


= e−p deg f sup
J

|f ′|−t
(
b1 +max

k≥2

bk
bk−1

Mt,p · |µt,Vi,p|
)
.

Since limk→∞ bk/bk+1 = 1, we have maxk≥2 bk/bk−1 < ∞. So, if choosing constants
C0 = deg f ·maxk≥2 bk/bk−1 and C1 = deg f · b1M−1

t,p , we obtain

|µt,Vi+1,p| ≤ C1e
−p sup

J
|f ′|−t + |µt,Vi,p|

(
1 + C0 e

−p sup
J

|f ′|−t
)
.
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Now let C def
= 1+C1C

−1
0 and C ′ def

= C0. Since |µt,V1,p| = 1, we obtain by induction in i
that

(17) |µt,Vi0 ,p| ≤ C

(
1 + C ′ e−p sup

J
|f ′|−t

)i0−1

.

Finally, recalling that |µt,W,p| ≤ |µt,Vi0 ,p|, this proves the lemma in this first simple
case that we considered.

Naturally, if Σ = Σ+ then we can choose V in such a way that
∩∞
i=1 Vi = Σ

and then it would be enough to consider the above case in which Vi is eventually
contained in W . However, if Σ0 ̸= ∅, that is, if Σ contains a neutral periodic point
in J then this is not possible by the existence of Siegel compacta [11, Theorem 1].

Let us now consider the general case. Recall that V = B(Σ, r). Let W ⊂ V
be an arbitrary neighborhood of Σ. Certainly we can take i ≥ 1 sufficiently large
such that Vi ∩B(Σ+, r) ⊂ W . Increasing i if necessary, we can assume that for every
integer k ≥ i we have bk+1/bk ≤ eP̃ (φt)/3. For each x ∈ f−n(z) ∩ J \W one of the
following two cases can occur: Either a) x /∈ Vi or b) x ∈ Vi \W , and hence

Mt,p · |µt,W,p| ≤Mt,p · |µt,Vi,p|+
∞∑
n=1

∑
y∈f−n(z)∩J∩Vi\W

bne
−np|(fn)′(y)|−t.

In evaluating the latter term observe that to each point x ∈ f−n(z) \ Vi we may find
some branch of preimages determined by a point y ∈ f−ℓ(x) satisfying f j(y) ∈ Vi\W
and hence f j(y) ∈ B(Σ0, r) for every j ∈ {0, . . . , ℓ−1}. However, by Lemma 4, given
any x ∈ Vi the contribution of all such branches can be estimated by∑
y∈f−ℓ(x)

bn+ℓ e
−(n+ℓ)p|(fn+ℓ)′(y)|−t = bn e

−np|(fn)′(x)|−t · bn+ℓ
bn

e−ℓp
∑

y∈f−ℓ(x)

|(f ℓ)′(y)|−t

≤ bne
−np|(fn)′(x)|−t · e−ℓpmax

k≥i

bk+ℓ
bk

Aeℓλ,

where each sum is taken over all y so that f j(y) ∈ B(Σ0, r) for every j ∈ {0, . . . , ℓ−1}.
Thus, summing over all such branches that could occur, by our previous choice of i
and λ we can estimate

|µt,W,p| ≤ |µt,Vi,p|

(
1 +

∞∑
ℓ=1

(
e−ℓpmax

k≥i

(bk+1

bk

)ℓ
Aeℓλ

))

≤ |µt,Vi,p|

(
1 + A

∞∑
ℓ=1

e−ℓpe2ℓP̃ (φt)/3

)
≤ |µt,Vi,p|

(
1 + A

∞∑
ℓ=1

e−ℓP̃ (φt)/3

)
.

Note that P̃ (φt) > 0. Together with (17) this completes the proof of the lemma. �

Lemma 6. Given a neighborhood W of Σ contained in V , as p ↘ P̃ (φt) there
exists a non-zero finite measure that is a weak* accumulation point of the family
of measures {µt,W,p : p > P̃ (φt)}. Furthermore, each such measure is

(
eP̃ (φt)−φt

)
-

conformal outside the set W ∪ f−1(W ) ∪ Crit.

Proof. First observe that, by Lemma 5 the total mass of any of the measures in
{µt,Vi,p : p > P̃ (φt)} is uniformly bounded from above and below by some positive
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constant. Hence this family of measures is relatively compact in the weak* topology
and thus possesses a non-zero and finite accumulation point proving the first claim.

Following the construction in [5, Section 3], we have for every special set A
disjoint from W ∪ f−1(W ) ∪ Crit

µt,W,p(f(A)) =
1

Mt,p

∞∑
n=1

∑
y∈f(A)∩f−n(z)

bne
Snφt(y)−np

=
1

Mt,p

∞∑
n=1

∑
x∈A∩f−(n+1)(z)

bne
Snφt(f(x))−np

=
1

Mt,p

∞∑
n=1

∑
x∈A∩f−(n+1)(z)

bne
Sn+1φt(x)−(n+1)pep−φt(x).

(18)

Thus,

∆A(t,W, p)
def
=
∣∣∣µt,W,p(f(A))− ˆ

A

eP̃ (φt)−φt dµt,W,p

∣∣∣
=

1

Mt,p

∣∣∣ ∞∑
n=1

∑
x∈A∩f−(n+1)(z)

eSn+1φt(x)−(n+1)pe−φt(x)
[
bne

p − bn+1e
P̃ (φt)

]
− b1

∑
x∈A∩f−1(z)

eP̃ (φt)−p
∣∣∣

≤ 1

Mt,p

∞∑
n=1

∑
x∈A∩f−(n+1)(z)

bn+1

∣∣∣ bn
bn+1

− eP̃ (φt)−p
∣∣∣ep−φt(x)eSn+1φt(x)−(n+1)p

+
1

Mt,p

b1 deg f · eP̃ (φt)−p.

Recall that, by the choice of (bn)n≥1 in (13), we have limn→∞ bn/bn+1 = 1 and
limp↘P̃ (φt)

Mt,p = ∞. Hence, we obtain limp↘P̃ (φt)
∆A(t,W, p) = 0 uniformly in A.

The assertion now follows like in [5, Section 3] (see also Section 12.1 or Lemma 12.5.5
and Remark 12.5.6 in [16]). This proves the lemma. �

We are now prepared to finish the proof of the proposition. Note that in (14) we
use the same normalization factor Mt,p for all measures µt,W,p for any neighborhood
W . Hence given p > P̃ (φt) for any pair of neighborhoods W and W ′ of Σ such
that W ′ ⊂ W ⊂ V we have

(19) µt,W ′,p|J\W = µt,W,p|J\W .

Using a diagonal argument we can conclude that, as p ↘ P̃ (φt) and ρ → 0, there
exists a weak* accumulation measure νt of the family

{µt,B(Σ,ε),p : t > P̃ (φt), ε ∈ (0, r)}

and that νt is
(
eP̃ (φt)−φt

)
-conformal outside Σ ∪ Crit. Replacing the measure νt by

the restricted measure νt|J\(Σ∪Crit), if necessary we can assume that νt does not give
weight to Σ ∪ Crit and hence that νt is conformal outside Crit.
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Lemma 5 and (19) together imply that then νt is finite outside each neighborhood
of Σ.

Finally, the fact that the support of νt is equal to J follows from the property
that f is locally eventually onto on J . This finishes the proof of Proposition 5. �

5. Proof of the main result

In this section we prove Theorem 1. In Section 5.1 we make use of the “bridges
construction” in [7] to prove the lower bound for dimension in (6) and (7), in the
statement of Theorem 1, that follows along the same lines as in [7, Sections 2.2, 2.3,
and 5]. We point out that, after a careful observation, in fact it applies without
any changes to our present more general setting. In Section 5.1 we also give another
application of the bridges construction (Lemma 8 and its Corollary 1), that is used
in Section 5.3. The upper bound in (6) and (7) is shown in Section 5.2, where in the
case t < 0 we use the σ-conformal measure given by Proposition 5. In Section 5.3 we
give the last ingredient of the proof of Theorem 1, that the upper Lyapunov exponent
of each point in J \ Σ is at most α̃+ (Proposition 10). The proof of Theorem 1 is
given at the end of Section 5.3.

5.1. Lower bound. We refer the reader to [7] for all the notation in this
subsection.

We call a point x ∈ J non-immediately postcritical if there exists some preimage
branch x0 = x = f(x1), x1 = f(x2), . . . that is dense in J and disjoint from Crit.
There are at most finitely many non-immediately postcritical points. On the other
hand, it is easy to see that each periodic point not in Σ is non-immediately postcrit-
ical. It follows that every forward invariant set disjoint from Σ contains at least one
non-immediately postcritical point.

A set Λ is called f -uniformly expanding Cantor repeller (ECR) if it is a uniformly
expanding repeller and limit set of a finite graph directed system (GDS) satisfying
the strong separation condition (SSC) with respect to f . To be more precise, a GDS
satisfying SSC has the following properties:

(i) There exists a finite family U = {Uk : k = 1, . . . , K} of open connected (not
necessarily simply connected) domains with pairwise disjoint closures;

(ii) There exists a family G = {gkℓ : k, ℓ ∈ {1, . . . , K}} of branches of f−1 mapping
Uℓ into Uk with bounded distortion (unlike in a general definition, here we
assume that there is at most one branch for each pair (k, ℓ));

(iii) If we put D def
=
∪K
k=1 Uk, then we have

Λ =
∞∩
n=1

∪
k1,...,kn

gk1k2 ◦ gk2k3 ◦ · · · ◦ gkn−1kn(D),

(in fact, by (ii), we can omit closure and replace D by D in this formula). We
assume that f(Λ) = Λ and hence that for each k there exists ℓ and for each ℓ
there exists k such that gkℓ ∈ G.

We can view k = 1, . . . , K (or the elements of U) as vertices and gkℓ as edges of
a directed graph Γ = Γ(U, G). By construction, f is uniformly expanding on the
limit set Λ. By condition (iii), the directed graph is transitive and hence f |Λ is
topologically transitive.
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The proof of the following lemma is based on a construction of “bridges” between
two ECR’s. For completeness, we will sketch its proof.

Lemma 7. [7, Lemma 2] For any two disjoint f -ECR sets Λ1, Λ2 ⊂ J that both
contain non-immediately postcritical points there exists an f -ECR set Λ ⊂ J \ Σ
containing the set Λ1 ∪ Λ2. If f is topologically transitive on each Λi, i = 1, 2, then
f is topologically transitive on Λ.

Sketch of Proof. Considering the GDS’s Ui with coverings Di =
∪Ki

k=1 Ui,k,
we choose two corresponding non-immediately postcritical points pi ∈ Λi, i = 1, 2.
A choice of backward trajectories yi,0 = pi, f(yi,1) = yi,0, . . . , yi,ti of pi satisfying
yi,t /∈ D1 ∪D2 for every t = 1, . . . , ti − 1, i = 1, 2, and y1,t1 ∈ D2, y2,t2 ∈ D1 defines
two “bridges” between Λ1 and Λ2. Further, we choose sufficiently small open discs
Vi ⊂ Di containing pi and having the property that their preimages along the bridge
yi,1, . . . , yi,ti−1 are all disjoint with D1 ∪D2, i = 1, 2, and their preimages at yi,ti are
in Dj for i ̸= j, i = 1, 2. Finally, we choose some sufficiently large integer N such
that the component of f−N

pi
(Di) which contains pi is contained in Vi.

Consider the directed graph Γ composed of the vertices numbering the domains
of the family GN

i (Ui) for N large enough so that the component V̂i ∈ GN
i (Ui,k)

containing pi is contained in Vi, and of the family of the f t-preimages of V̂i, t =
1, . . . , ti+N−1, along the corresponding bridges to Λj prolonged by Gj’s, j ̸= i, i =
1, 2, and of the edges in (ii) being the branches of f−1 involved in this construction.
This defines a GDS satisfying the SSC (after a minor modification of the domains to
“telescope").

If f is topologically transitive on each Λi, then the corresponding directed graphs
Γi are strongly connected (i.e. each two vertices are joined by a path of directed
edges). Then, by construction, Γ is also strongly connected. Hence f is topologically
transitive on Λ. �

The following proposition generalizes [7, Proposition 1].

Proposition 6. There exists a sequence (am)m≥1 of positive integers and a se-
quence (Λm)m≥1 of subsets of J \Σ, such that for each m the set Λm is fam-invariant
and uniformly expanding topologically transitive set, in such a way that for every
t ∈ R we have

P̃ (φt) = lim
m→∞

1

am
Pfam |Λm(Samφt) = sup

m≥1

1

am
Pfam |Λm(Samφt).

Proof. Recall the definition of the hidden hyperbolic pressure P̃hyp(φt) in (8). By
Propositions 2 and 4 this pressure coincides with P̃ (φt) and is obtained by taking a
supremum over uniformly expanding repellers. Note that, given t ∈ R and ε > 0 and
a uniformly expanding repeller Λ, by [7, Lemma 3] there exists a positive integer n
and an fn-ECR Λ′ ⊂ Λ such that

1

n
Pfn|Λ′(Snφt) ≥ Pf |Λ(φt)− ε.

Note that in this case Λ′∩Σ = ∅ since Λ∩Σ = ∅. Hence Λ′ contains non-immediately
postcritical points. Note further that, given any two f -ECR’s Λ1 and Λ2 that both
contain non-immediately postcritical points, by Lemma 7 there exists an f -ECR
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Λ ⊂ J \Σ containing Λ1 ∪Λ2 and thus with pressure at least equal to the maximum
of pressures of Λ1 and Λ2.

Based on these arguments, we can conclude that for any N > 0 and ε > 0 we
can find an integer n ≥ 1 and a topologically transitive fn-ECR Λ ⊂ J so that

1

n
Pfn|Λ(φt) ≥ P̃ (φt)− ε

for all t ∈ (−N,N). This proves the proposition. �
The existence of such an approximating sequence of repellers and [7, Theorem 3]

together imply the following estimate, that is part of Theorem 1.

Proposition 7. For α− ≤ α ≤ β ≤ α̃+ we have

dimH L(α, β) ≥ min{F̃ (α), F̃ (β)}.
Proof. Consider now a sequence (Λm)m≥1 of fam-ECRs as provided by Propo-

sition 6 and assume that the spectrum of Lyapunov exponents of Λm eventually
contains any exponent in (α−, α̃+). Given α, β ∈ [α−, α̃+] we can choose a sequence
(γm)m≥1 so that lim infm→∞ γm = α and lim supm→∞ γm = β and that each γm is a
Lyapunov exponent of fam |Λm . Thus, for each m ≥ 1 there exist a unique number
tm = tm(γm) ∈ R so that am γm = − d

ds
Pfam |Λm(Samφs)|s=tm . Moreover, there ex-

ists an equilibrium state µm for the potential Samφtm with respect to fam|Λm with
Lyapunov exponent (with respect to fam) equal to amγm and satisfying

dimH µm =
hµm(f

am)

amχ(µm)
=
Pfam |Λm(φtm) + tm amγm

amγm

≥ 1

amγm
inf
t∈R

(
Pfam |Λm(φt) + t amγm

) def
= Ffam |Λm(γm).

By Proposition 6 and (5), we can conclude that Ffamk |Λmk
(γmk

) → F̃ (α) if γmk
→ α

and Ffamk |Λmk
(γmk

) → F̃ (β) if γmk
→ β. Together with [7, Theorem 3], this proves

the proposition. �
There is one more useful application of the bridges construction.

Lemma 8. Given a repelling periodic point p /∈ Σ and ε > 0, there exist a
uniformly expanding repeller Λ disjoint with Σ of positive Hausdorff dimension, con-
taining p, and an ergodic nonatomic measure µ supported on Λ such that

|χ(µ)− χ(p)| < ε.

Proof. We start from the orbit P of the periodic point p. As p /∈ Σ, p is non-
immediately postcritical. Hence, we can find a bridge from P going back to P and
construct Λ as in Lemma 7. We can then distribute a Gibbs measure on Λ choosing
potential in such a way that probability of the backward branch going through the
bridge is very small. �

Corollary 1. In the definition of α̃+, instead of nonatomic ergodic measures one
can use ergodic measures with support outside Σ or ergodic measures giving measure
zero to Σ.

5.2. Upper bound. Recall that a point x is called conical if there exists
a number r(x) > 0, a sequence of numbers nℓ = nℓ(x) ↗ ∞, and a sequence
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Uℓ = Uℓ(x) of neighborhoods of x such that fnℓ(Uℓ) = B(fnℓ(x), r), the map fnℓ is
univalent on Uℓ and that distortion Dist fnℓ |Uℓ

is bounded uniformly in ℓ and x by
a constant K > 1 (the latter condition follows from the former one from Koebe’s
distortion lemma by replacing r by say r/2).

The following proposition will allow us to restrict our considerations concerning
dimension to conical points with positive exponents.

Proposition 8. [7, Proposition 3] The set of points x ∈ J that are not conical
and satisfy χ(x) > 0 has Hausdorff dimension zero.

We are now ready to prove an upper bound for the dimension.

Proposition 9. Let 0 < α ≤ β ≤ α̃+. We have

dimH

( ∪
α′,β′ : α≤α′≤β′≤β

L(α′, β′)

)
≤ max

{
0, max

α≤q≤β
F̃ (q)

}
.

Proof. The proof will follow the same ideas as the proof of [7, Proposition 2]. The
only difference is that in the case f has a phase transition in the negative spectrum
and t < t−, we will use a σ-finite conformal measure constructed in Section 4 instead
of a conformal probability measure.

By Proposition 8 it is sufficient to study the subset Lc(α, β) ⊂ L(α, β) of points
that are conical. Recall that, by the Frostman Lemma, see for example [16, Theo-
rem 8.6.3], if there exist a finite Borel measure µ and a number θ such that for every
x ∈ Lc(α, β) we have

dµ(x)
def
= lim inf

δ→0

log µ(B(x, δ))

log δ
≤ θ

then dimH Lc(α, β) ≤ θ, see also [12, Theorem 7.2].
Given a point x in Lc(α, β) \Σ, there exist numbers q(x) ∈ [α, β], r(x) > 0, and

K(x) > 1, and a sequence of numbers nℓ = nℓ(x) such that

(20) lim
ℓ→∞

1

nℓ
log |(fnℓ)′(x)| = q(x)

and that

(21) r |(fnℓ)′(x)|−1K(x)−1 ≤ diam f−nℓ
x

(
B(fnℓ(x), r)

)
≤ r |(fnℓ)′(x)|−1K(x)

for all ℓ and all r ∈ (0, r(x)) (compare, for example, [7, Lemma 7]). By omitting
finitely many nℓ we can assume that the right hand side of (21) is not greater than
r. Replacing nℓ by nℓ − 1 and r(x) by r(x)/ sup |f ′| if necessary, we can also freely
assume that B(fnℓ(x), r(x)) ∩ Crit = ∅.

Given x ∈ Lc(α, β), let us fix r > 0 satisfying

r =
1

2
min {r(x), dist(x,Crit∪Σ)} .

Denote
Uℓ

def
= f−nℓ

x (B(fnℓ(x), r)).

Observe that B(fnℓ(x), 2 r) does not intersect Σ∪Crit. Indeed, by assumption it does
not intersect Crit. Further, if it intersected Σ then either fn(f−nℓ

x (B(fnℓ(x), 2 r)))
would intersect Crit for some 0 ≤ n < nℓ or f−nℓ

x (B(fnℓ(x), 2 r)) would inter-
sect Σ. The former is impossible because the map would not be univalent there
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(we remind that 2 r < r(x)), the latter is impossible because dist(x,Σ) > 2 r >
diam f−nℓ

x (B(fnℓ(x), 2 r)).
Given t ∈ R let µt be the σ-finite measure that is

(
eP̃ (φt)−φt

)
-conformal out-

side Crit as provided by Proposition 5 and if t ≥ 0 then let µt be the finite
(
eP̃ (φt)−φt

)
-

conformal measure provided by Proposition 1. Since in all cases µt is finite outside
every neighborhood of Σ, if we put κ = µt(J \B(Σ, r)) then κ is finite and for every ℓ
we have,

(22) µt(Uℓ) ≤ κKte−nℓP̃ (φt) |(fnℓ)′(x)|−t.
As x is conical, we have

Uℓ ⊃ B
(
x,K−1r |(fnℓ)′(x)|−1

)
.

Together with (22) and (20) this yields

dµt(x) = lim inf
δ→0

log µt(B(x, δ))

log δ

≤ lim inf
ℓ→0

log µt
(
B(x,K−1r |(fnℓ)′(x)|−1

)
log (K−1r |(fnℓ)′(x)|−1)

≤ P̃ (φt) + t q(x)

q(x)
.

Recall that this is true for every x ∈ Lc(α, β) and t ∈ R. Now concluding as in the
proof of [7, Proposition 2], using the Frostman lemma, we obtain that dimH Lc(α, β) ≤
max

{
0,maxα≤q≤β F̃ (q)

}
, as wanted. �

5.3. Completeness of the spectrum. The purpose of this section is to
establish the following gap in the spectrum of upper exponents, which is the last
ingredient in the proof of Theorem 1. The proof of Theorem 1 is given at the end of
this section.

Proposition 10. If f is exceptional then χ(x) ≤ α̃+ for every x ∈ J \ Σ.

We give two proofs of this proposition, one in this section and the other one in
Appendix A.

Recall that we denote the spherical distance on C by dist, and that for a rational
map g and a critical point c ∈ C of g we denote by degg(c) the local degree of g
at z = c.

By Corollary 1 we have α̃+ < α+ if and only if there is a periodic point in Σ
whose exponent is strictly larger than α̃+. Hence, to prove Proposition 10 we need
to control the exponent of any point x ∈ J \ Σ whose orbit stays most of the time
close to Σ. Any orbit piece that shadows some (periodic) orbit in Σ for a long time
inherits its exponent, however right before it must have passed close to some critical
point which results in a drop of the exponent.

Let us make this more precise. For c ∈ f−1(Σ) \ Σ ⊂ Crit let k ≥ 1 be the
minimal integer such that fk(c) is a periodic point, put

χess(c)
def
=

χ(p)

degfk(c)
.

and if f is exceptional then we put

χ+
ess

def
= max

c∈f−1(Σ)\Σ
χess(c).
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We remark that there are examples where there is a point c ∈ Crit so that
fk(c) ∈ Σ for some minimal number k > 1. If fk(c) ∈ Σ0 then χess(c) = 0. If
fk(c) ∈ Σ+ then c′ = fk−1(c) is a critical point in f−1(Σ) and χess(c) < χess(c

′).
Thus, in none of these cases the “essential exponent” of c and hence of an orbit
piece that would shadow some periodic orbit {f j(c), j ≥ k} in Σ would have large
exponent. Hence, in what follows we can restrict ourselves to the case that k = 1.

We have the following result.

Lemma 9. Suppose f is exceptional. Let c ∈ f−1(Σ+) \ Σ+ and let k ≥ 1 be
the minimal integer such that fk(c) ∈ Σ+ is periodic. Then there exist constants δ >
0 and C > 0 such that for every x ∈ J near c, but different from c, and every
integer n ≥ k such that for every j ∈ {k, k + 1, . . . , n− 1} we have f j(x) ∈ B(Σ, δ),
the following estimate holds

log |(fn)′(x)| ≤ nχess(c) + C.

Proof. Put d def
= degfk(c). To prove the lemma, it suffices to notice that if δ is

sufficiently small then for any orbit piece y, f(y), . . ., fm(y) that stays δ-close to the
periodic orbit of p = fk(c) we have |(fm)′(y)| ∼ emχ(p) = emdχess(c). Thus

dist(fk(x), fk(c)) = O
(
|(fn−k)′(p)|−1

)
= O

(
e−ndχess(c)

)
.

On the other hand, dist(x, c) ∼ dist(fk(x), fk(c))1/d, so

|(fk)′(x)| ∼ dist(fk(x), fk(c))(d−1)/d = O
(
e−n(d−1)χess(c)

)
,

and |(fn)′(x)| = O
(
enχess(c)

)
. �

Given a subset V of C, let

(23) χ+(J \ V )
def
= lim sup

n→∞
sup
x∈J\V

1

n
log |(fn)′(x)|.

Lemma 10. If f is non-exceptional then there is an ergodic measure µ supported
on J and such that χ(µ) = χ+(J). If f is exceptional and V is a neighborhood of Σ,
then one of the following cases holds:

1. Either there exists an invariant ergodic measure µ such that

µ(Σ) = 0 and χ(µ) ≥ χ+(J \ V );

2. Or
χ+(J \ V ) ≤ χ+

ess.

Proof. Let V be empty if f is not exceptional and let V be a neighborhood of Σ
otherwise. Without loss of generality in the latter case we can assume that V is open.
Let δ > 0 be given by Lemma 9. For each n ≥ 1 let xn ∈ J \ V be a point satisfying

1

n
log |(fn)′(xn)| = sup

x∈J\V

1

n
log |(fn)′(x)|

and consider the probability measure

µn
def
=

1

n

n−1∑
k=0

δfk(xn).

Consider a measure µ that is accumulated by the sequence of measures (µn)n≥1 in
the weak* topology. Notice that µ is f -invariant and satisfies χ(µ) ≥ χ+(J \ V ). It
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follows that there is a f -invariant an ergodic measure µ′ such that χ(µ′) ≥ χ+(J \V ).
If f is not exceptional or if f is exceptional and µ′(Σ) = 0, then we are done.

To prove the remaining case, assume that f is exceptional and suppµ′ ⊂ Σ.
Fix ε > 0 and let δ > 0 and C > 0 be given by Lemma 9. Augmenting C > 0 and
reducing δ if necessary we can assume that B(Σ, δ) ⊂ V and that for each x ∈ J and
each integer ℓ ≥ 1 so that f j(x) ∈ B(Σ0, δ) for every j ∈ {0, . . . , ℓ− 1}, we have

|(f ℓ)′(x)| ≤ eℓε+C .

Let V+ be a neighborhood of Σ+ that is contained in B(Σ+, δ) and such that all
preimages of a point in V+ are either contained in V+ or close to f−1(Σ+) \ Σ+. For
an integer n ≥ 1 put

Nn
def
=
{
j ∈ {0, . . . , n− 1} : f j(xn) ∈ B(Σ0, δ)

}
and

Mn
def
=
{
j ∈ {0, . . . , n− 1} : f j(xn) ∈ V+

}
.

We have limn→+∞(Mn + Nn)/n = 1. Fix n and let k ≥ 1 and let j1, . . ., jk be all
the integers j ∈ {1, . . . , n− 1} such that f j−1(xn) /∈ V+ and f j(xn) ∈ V+. Similarly,
let k′ be the number of blocks of the trajectory of x contained in B(Σ0, δ). For
each i ∈ {1, . . . , k} let j′i be the largest integer j ∈ {ji, . . . , n − 1} such that for
each s ∈ {ji, . . . , j} we have f s(xn) ∈ B(Σ, δ). Then

k∑
i=1

(j′i − ji + 1) =Mn and max{k, k′} ≤ n− (Mn +Nn).

Furthermore, for each i ∈ {1, . . . , k} so that f ji(xn) ∈ V+ the point f ji−1(xn) is close
to f−1(Σ) and we thus have

log |(f j′i−ji+1)′(f ji−1(xn))| ≤ (j′i − ji + 2)χ+
ess + C.

Hence, for C ′ = 2C + log supJ |f ′| we have

log |(fn)′(xn)| ≤ (Mn + k)χ+
ess + kC +Nnε+ k′C + (n−Mn −Nn − k) log sup

J
|f ′|

≤ nmax{χ+
ess, ε}+ (n−Mn −Nn)C

′.

Since ε > 0 is arbitrary, this implies

χ+(J \ V ) = lim sup
n→+∞

1

n
log |(fn)′(xn)| ≤ χ+

ess

finishing the proof of the lemma. �

Lemma 11. Suppose f is exceptional. Then for each c ∈ f−1(Σ+)\Σ+ and ε > 0
there is a periodic point q close to c such that

χ(q) ≥ χess(c)− ε.

In particular, α̃+ ≥ χ+
ess.

Proof. Let k ≥ 1 be the least integer such that p = fk(c) ∈ Σ is periodic,
put d def

= degfk(c) and let ℓ ≥ 1 be the period of p. Let δ > 0 be sufficiently small
so that there is a local inverse ϕ of f ℓ fixing z = p defined on B(p, δ), in such a
way that ϕ(B(p, δ)) is compactly contained in B(p, δ) and for some constant γ0 > 0
and every n ≥ 1 and x ∈ ϕn(B(p, δ)) we have |(fnℓ)′(x)| ≥ γ0e

nℓχ(p). Since c ̸∈
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Σ there is a point x ∈ B(p, δ) and an integer m ≥ 1 such that fm(x) = c and
such that (fm)′(x) ̸= 0. Let ρ > 0 be sufficiently small so that the connected
component W of f−m(B(c, ρ)) containing x is such that W ⊂ B(p, δ) \ {p} and γ1 =
infz∈W |(fm)′(z)| > 0. Then for every sufficiently large integer n ≥ 1 there is a
connected component Wn of f−k(ϕn(W )) compactly contained in B(c, ρ). It follows
thatWn contains a periodic point qn of f of period k+nℓ+m. We will now estimate its
Lyapunov exponent. Since dist(ϕn(W ), p) ∼ e−nℓχ(p) we have dist(Wn, c) ∼ e−nℓχ(p),
so there is a constant γ2 > 0 such that for every z ∈ Wn we have

|(fk)′(z)| ≥ γ2e
−nℓχ(p)(d−1)/d.

Therefore
|(fk+nℓ+m)′(qn)| ≥ γ0γ1γ2e

−nℓχ(p)/d = γ0γ1γ2e
−nℓχess(c),

and lim infn→∞ χ(qn) ≥ χess(c). �
Proof of Proposition 10. In view of Lemma 10 and Corollary 1, the proposition

is a direct consequence of the Lemma 11. �
We finally state the following immediate corollary.

Corollary 2. Let
D

def
= maxdegfk(c)(c),

where the maximum is taken over all critical points c ∈ f−1(Σ) \ Σ and where k(c)
denotes the minimal integer such that fk(c)(c) is a periodic point. We have

α+ ≤ D α̃+.

Proof of Theorem 1. The fact for every α ∈ [α−, α̃+] \ {0} and every β ∈ [α, α̃+]
we have (6) and (7) is a direct consequence of Propositions 7 and 9. When α− > 0,
Proposition 9 implies that

dimH

{
x ∈ J : χ(x) > 0, χ(x) < α−} = 0.

On the other hand, in this case we also have F̃ (0) = −∞, so dimHL(0) ≥ F (0)
is trivially satisfied. When α− = 0, this last inequality is given by Proposition 7
with α = β = 0.

The fact that for every x in J for which χ(x) exists we have either χ(x) = −∞
or χ(x) ≥ α− is given by [7, Lemma 9], and the fact that for every x in J \ Σ
we have χ(x) ≤ α̃+ is given by Proposition 10. This completes the proof of the
theorem. �

Appendix A. An alternative proof of the completeness of the
spectrum. Specification property

The purpose of this section is to give an alternative proof of Proposition 10. We
will obtain this proposition as an easy consequence of Lemma 12 below. We shall
conclude the Appendix with a more precise version of this lemma, corresponding to
Bowen’s periodic specification property, [4].

Lemma 12. Given a neighborhood V ⊃ Σ, for every ε > 0 there exists a periodic
point p ∈ J \ Σ, so that χ(p) ≥ χ+(J \ V )− ε.
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Proof. We first collect some preliminary definitions and results.
Recall that n ≥ 1 is said to be a Pliss hyperbolic time for x with exponent χ if

(24) log |(fn−m)′(fm(x))| ≥ (n−m)χ for every m = 0, . . . , n− 1.

Given ε > 0, by the telescope lemma, see for example [7, Lemma 9], there exist
positive constants K1, R1 so that for every r ∈ (0, R1), every Pliss hyperbolic time n
for a point x with exponent χ > 0, and every m = 0, . . ., n− 1 we have

(25) diamBm ≤ rK1e
−(n−m)(χ−ε),

where

(26) Bm
def
= f

−(n−m)
fm(x)

(
B(fn(x), r)

)
.

Now let r ∈ (0,min{R1, dist(Σ, ∂V }).
Let us briefly write χ+ = χ+(J \ V ). By definition of χ+ there exists Ñ ≥ 1 so

that for every n ≥ Ñ we have

(27) sup
x∈J\V

a(x, n)

n
≤ χ+ + ε, where a(x, n) def

= log |(fn)′(x)|.

On the other hand, for every large enough integer n we can choose a point
x = x(n) ∈ J \ V so that a(x, n) > n(χ+ − ε/2). Notice that we can assume that n
is a Pliss hyperbolic time for x(n) with exponent χ+ − ε and satisfies n ≥ Ñ .

More precisely for the original n let n′ ∈ {1, . . . , n} be an integer such that at
m = n′ the expression

A(m)
def
= a(x,m)−m(χ+ − ε)

attains its maximum. Clearly n′ is a Pliss hyperbolic time for x. Moreover, since
A(n) ≥ nε/2, A(0) = 0, and the function log |f ′| is upper bounded, we obtain n′ → ∞
as n → ∞. So we can replace n by n′, thus assuming we have a sequence of pairs(
(xj, nj)

)
j

so that xj ∈ J \ V , nj is a Pliss hyperbolic time for xj with exponent

χ+ − ε, nj ≥ Ñ , and nj → ∞ as j → ∞. In the sequel we shall omit the index j.
We can assume that, possibly after slightly increasing ε, additionally we have

fn(x) /∈ V . Indeed, let m− ∈ {0, . . . , n − 1} be the largest integer such that y =
fm−(x) /∈ V . Since we assume that n is a Pliss hyperbolic time for x and since y
is close to a critical point, |f ′(y)| is small and hence the number n − m− must be
large by (24). In particular, n−m− ≥ cardΣ. Recall that Σ contains periodic points
together with their non-critical preimages. Let the forward trajectory of y follow a
periodic trajectory of a point q ∈ Σ. Denote by Nq the least period of q. Then,
by (24) we have

a(fn−Nq(x), Nq) ≥ Nq(χ
+ − ε),

which yields χ(q) ≥ χ+ − 2ε provided V is small enough, where the factor 2 takes
in account the distortion in a neighborhood of the trajectory of q. So in the case
that n is a Pliss hyperbolic time and fn(x) ∈ V we can consider the smallest integer
m+ > n for which fm+(x) /∈ V . Then there exists an integer m′

+ between m+ and
m+ + Nq which is a Pliss hyperbolic time for x with exponent χ+ − 3ε. Note that
m+ and m′

+ exist, provided χ+ − 3ε > 0 and V is small enough.
By (27) for any point y = fm(x) with m < n− Ñ and f(y) /∈ V we have

a(f(y), n−m− 1) ≤ (n−m− 1)(χ+ + ε).
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Thus, together with (24) with χ = χ+ − ε, for any such y we conclude

(n−m)(χ+ − ε) ≤ a(y, n−m) = log |f ′(y)|+ a(f(y), n−m− 1)

≤ log |f ′(y)|+ (n−m− 1)(χ+ + ε)

and hence

log |f ′(y)| ≥ (n−m)(χ+ − ε)− (n−m− 1)(χ+ + ε) > −(n−m)2ε.

Therefore, such y must be in some distance to critical points and satisfy

(28) dist(y,Crit) ≥ C · e−(n−m)2ε,

where C is some positive constant.
As concluded before, B def

= B(fn(x), r) and Σ are disjoint. Now we pull back
B and show that for r small enough no pullback Bm defined in (26) contains a
critical point. To show this let us assume that the initially chosen r also satisfies
r < C/K1e

χ+−4ε and that χ+ − 4ε > 0.
First, if m satisfies 0 ≤ m < n− Ñ we consider two cases:

1) fm+1(x) /∈ V : Then (28) and (25) for χ = χ+ − ε imply Bm ∩ Crit = ∅.

2) fm+1(x) ∈ V : Then (25) implies that Bm is very small. So, if there were a
critical point c ∈ Bm then we would have f(c) ∈ Σ. Since Σ is forward invariant, this
would imply Σ ∩B(fn(x), r) ̸= ∅ which is a contradiction. Hence Bm ∩ Crit = ∅.

Second, in the remaining finite number of cases if m satisfies n − Ñ ≤ m < n
we can assure, possibly after decreasing r, not depending of (x, n) (possible since
n are Pliss hyperbolic times with common χ), that Bm ∩ Crit = ∅. Thus, we can
conclude that none of the pullbacks Bm captures a critical point and therefore fn−m
is univalent on Bm for every m = 0, . . ., n− 1.

Given r, by Lemma 3 there exists δ > 0 and positive integers N , M , i, and j

with N ≤ M and 0 ≤ i, j ≤ M , and a point z ∈ f−j(f i(x)) such that A def
= f−N(z)

is r/2-dense in J and satisfies dist(fk(A),Crit) ≥ δ for every k = 0, . . ., N + j − 1.
Now we can choose δ′ ∈ (0, δ) independent of x so that for this point we have

z ∈ f−j(f i(x)) and every k = 0, . . ., N + j − 1 we have

fk
(
f−N(Compz f

−j(B(f i(x), δ′))
))

∩ Crit = ∅,

yielding that fN+j is univalent on B(w) defined by

B(w)
def
= f−(N+j)

w

(
B(f i(x), δ′)

)
for every w ∈ A as well as

diamB(w) ≤ r/3.

Thus, if n is large enough so that rK1e
−(n−i)(χ+−2ε) < δ′ then with y def

= f i(x) and
using (25) with χ = χ+ − ε we obtain

f−(n−i)
y

(
B(fn(x), r)

)
⊂ B(y, δ′).

and hence for some choice of w ∈ A (that will in general depend on fn(x)) we have

B̃(w)
def
= f−(n−i+N+j)

(
B(fn(x), r)

)
⊂ B(fn(x), 5r/6)
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and fn−i+N+j is univalent on B̃(w). Hence the latter set contains a periodic point p.
Using (24) and distortion estimates, it can be achieved that χ(p) ≥ χ+ − 3ε, if n is
large enough. This proves the lemma. �

Remark. The idea of the proof of Lemma 12 is taken from an unpublished
note [13], where the supremum in (23) was taken over all x ∈ J but allowing the
periodic point p to belong to Σ. The proof was simpler in that case as it did not
rely on the telescope result (25). The result in [13] has been applied and referred to
in [8].

Another proof of the weaker statement, that is, allowing p ∈ Σ, can be given
by constructing a measure µ that is an accumulation of the sequence of measures
1
n

∑n−1
k=0 δfk(x) as n → ∞, where δy denotes the Dirac measure supported at y. Here

x and n should be chosen to give an approximation of χ+ by a(x, n)/n. One finds p
using Katok’s method, see [16, Chapter 11.6]. This easy ‘ergodic’ proof is in fact a
part of the proof in Section 5.3.

Notice that the proof in Section 5.3 does not yield the periodic specification
property below because it bases on a specification of, maybe short, special sub-blocks
of a given piece of a trajectory.

Proof of Proposition 10. By Lemma 12 for every x /∈ Σ we have

χ(x) ≤ sup{χ(p) : p ∈ J \ Σ periodic repelling }.
By Corollary 1 this bound is less than or equal to α̃+. This proves the proposition. �

Proposition 11. For every V and ε as in Lemma 12 there exist an integer N > 0
and ε1 > 0 such that for every point x ∈ J \V and n ≥ N with fn(x) /∈ V satisfying
a(x, n) ≥ χ+(J \V )−ε1, there exists an integer m ∈ {n(1−ε), . . . , n} and a periodic
point p ∈ J of period at most n+N , such that:

1. χ(p) ≥ χ+(J \ V )− ε;

2. dist(f j(x), f j(p)) ≤ e−(m−j)(χ+(J\V )−ε) for all j = 4, 5, . . . ,m.

Proof. We just look more carefully at the proof of Lemma 12. Consider an
arbitrary small t > 0. Assume that x and n satisfy a(x, n) ≥ n(χ+ − tε).

By definition of χ+ = χ+(J\V ) we can also assume, compare (27), that a(x,m) ≤
m(χ+ + tε) for all m ∈ {N(tε), . . . , n− 1}, for some constant N(tε) depending only
on tε.

Then we find a number n′ ≤ n that is a Pliss hyperbolic time for x with exponent
χ+ − ε, as in the proof of Lemma 12. To estimate n′, notice that

A(n) = a(x, n)− n(χ+ − ε) ≥ nε(1− t),

whereas

A(m) = a(x,m)−m(χ+ − ε) ≤ m(χ+ + tε)−m(χ+ − ε) = mε(1 + t).

Hence, for m < n1−t
1+t

, we obtain A(m) < A(n). Notice also that for m ≤ N(tε) we
have A(m) < nε(1−t) ≤ A(n) for n large enough since sup |f ′| <∞. In consequence,
the positive integer n′ = m maximizing A(m) is bigger or equal to n1−t

1+t
. Finally we

choose t so that 1−t
1+t

> 1− ε.
Next in the proof of Lemma 12 we have increased n′ to achieve fn′

(x) /∈ V . Here
the increase is not beyond n since we have already assumed fn(x) /∈ V .
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The rest of the proof is the same. The mysterious indices j = 4, 5, . . . in the
assertion comes from Lemma 1 implying that at most fourth iteration of any point
has a backward branch omitting critical points, hence i ≤ 4. �
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