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Abstract. For each 1 ≤ p < ∞, we formulate a necessary and sufficient condition for an
admissible metric to be extremal for the Fuglede p-modulus of a system of measures. When p = 2,
this characterization generalizes Beurling’s criterion, a sufficient condition for an admissible metric
to be extremal for the extremal length of a planar curve family. In addition, we prove that every
Borel function φ : Rn → [0,∞] satisfying 0 <

´
φp < ∞ is extremal for the p-modulus of some

curve family in Rn.

1. Introduction

In this note we take a close look at extremal metrics for systems of measures
and families of curves. Let us start by recalling Fuglede’s definition of modulus [6].
Fix once and for all a measure space (X,M,m). A collection of measures E is a
measure system (over M) if each measure µ ∈ E is defined on the σ-algebra M. A
Borel function φ : X → [0,∞] is called a metric and is said to be admissible for E if´
φdµ ≥ 1 for all µ ∈ E. (We do not identify two metrics which agree m-a.e.) For

each 0 < p <∞, the p-modulus of E is given by

modpE = inf

{ˆ
φp dm : φ is admissible for E

}
where modp E = ∞ if admissible metrics for E do not exist.

Example 1. To pick a concrete setting, take (X,M,m) = (Rn,Bn,mn) where
mn is the Lebesgue measure on the Borel subsets Bn of Rn. A (locally rectifiable)
curve γ in Rn is a concatenation (disjoint union) of countably many images of one-
to-one Lipschitz maps γi : [ai, bi] → Rn. Each image γi([ai, bi]) is called a piece of
γ; curves may have disjoint or overlapping pieces. (For an alternative definition of a
curve, see [17].) The trace of a curve γ is the set

∪
i γi([ai, bi]), i.e. the union of the

pieces of γ. For every curve γ in Rn there is a Borel measure γ̃ on Rn such that the
line integral ˆ

γ

f ds =
∑
i

ˆ bi

ai

f(γi(t))|γ′i(t)| dt

is given by integration against γ̃, i.e.
´
γ
f ds =

´
Rn f dγ̃ for every Borel function f .

(By the area formula γ̃ =
∑

i γ̃i where γ̃i = H1 γi([ai, bi]) is the 1-dimensional
Hausdorff measure restricted to the set γi([ai, bi]), e.g. see [5].) For all 1 ≤ p < ∞,
the p-modulus of a family of curves Γ in Rn is defined in terms of Fuglede modulus by
modp Γ = modp {γ̃ : γ ∈ Γ}. Therefore, modp Γ = infφ

´
Rn φ

p dmn where the infimum
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runs over all Borel functions φ ≥ 0 such that
´
γ
φds ≥ 1 for all γ ∈ Γ. (One could

similarly define modp Γ for 0 < p < 1, but this quantity is always zero.) In the plane,
the extremal length λ(Γ) = 1/mod2 Γ of a curve family Γ in R2 is often used instead
of its modulus.

An atom in a σ-algebra M is a nonempty set A ∈ M with the property B ( A,
B ∈ M ⇒ B = ∅. That is, the only proper measurable subset of an atom is the
empty set. If φ : X → [0,∞] is a Borel function on (X,M), then φ is constant on
each atom of M. Given an atom A ∈ M, the atomic measure δA is defined by the
rule δA(S) = 1 if A ⊂ S and δA(S) = 0 otherwise;

´
φdδA = φ(A) for all φ and A.

Example 2. Let K = {K1, . . . , Kℓ} be a finite set of pairwise disjoint compact
subsets of the Riemann sphere Ĉ, and let Ω ⊂ Ĉ be an open set. The transboundary
measure space (Ĉ,MK,mΩ,K) is defined as follows. Let B(Ĉ \K) denote the Borel
σ-algebra on the complement of K =

∪ℓ
i=1Ki. Then MK is the smallest σ-algebra

generated by B(Ĉ\K)∪K. The atoms of MK are the singletons {x} with x ∈ Ĉ\K
and the sets K1, . . . , Kℓ. We define the measure mΩ,K = H2 (Ω \ K) +

∑ℓ
i=1 δKi

where H2 (Ω \K) is 2-dimensional Hausdorff measure on Ω \K. Let γ : [a, b] → Ĉ
be a one-to-one continuous map, let Im γ = γ([a, b]) be its image, and assume that
Im γ ∩ (Ω \K) is locally rectifiable. Then we define a measure γ̂ on (Ĉ,MK) by

γ̂ = H1 Im γ ∩ (Ω \K) +
∑

i: Im γ∩Ki ̸=∅

δKi
.

Suppose that (X,M,m) = (Ĉ,MK,mΩ,K). The transboundary modulus modΩ,K Γ

of a collection Γ of one-to-one continuous maps γ : [a, b] → Ĉ is defined via Fuglede
modulus by modΩ,K Γ = mod2{γ̂ : γ ∈ Γ and Im γ ∩ (Ω \ K) is locally rectifiable}.
Thus, an admissible metric φ : Ĉ → [0,∞] satisfiesˆ

Im γ∩(Ω\K)

φds+
∑

i: Im γ∩Ki ̸=∅

φ(Ki) ≥ 1

for every γ ∈ Γ such that Im γ ∩ (Ω \K) is locally rectifiable, and

modΩ,K Γ = inf
φ

ˆ
Ω\K

φ2 dH2 +
ℓ∑

i=1

φ(Ki)
2

where the infimum runs over all admissible metrics φ : Ĉ → [0,∞]. The reciprocal
λΩ,K(Γ) = 1/modΩ,K Γ of transboundary modulus is transboundary extremal length.

The definition of extremal length is due to Beurling and has roots in the classical
length-area principle for conformal maps; see Jenkins [12] for a historical overview.
Since the introduction of extremal length by Ahlfors and Beurling [2], the modulus of
a curve family has become a widely-used tool, employed in geometric function theory
[1, 7, 15], quasiconformal and quasiregular mappings [17, 18], dynamical systems
[8, 13], and analysis on metric spaces [10, 11]. The transboundary extremal length of
a curve family was introduced by Schramm [16] to study uniformization on countably-
connected domains. Recently Bonk [4] used transboundary modulus in a crucial way
to obtain uniformization results on Sierpiński carpets in the plane. For applications
of modulus of measures, see Fuglede’s original applications in [6], Hakobyan’s work
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on the conformal dimension of sets [9], and Bishop and Hakobyan’s recent paper on
the frequency of dimension distortion by quasisymmetric maps [3].

A few nice properties of modulus are apparent from the definition. First if E ⊂ F
then modp E ≤ modp F. Second modp

∪∞
i=1Ei ≤

∑∞
i=1modpEi for any sequence of

measure systems. Since modp ∅ = 0, this says that modulus is an outer measure on
measure systems. A third useful property is that every admissible metric gives an
upper bound on modulus, i.e. modpE ≤

´
φp dm for all admissible metrics φ.

If the infimum in the definition of the modulus of a measure system E is obtained
by an admissible metric φ, i.e. if modp E =

´
φp dm, then the metric φ is said to be

extremal for the p-modulus of E. Naturally one may ask whether an extremal metric
always exists, and if so, to what extent is an extremal metric uniquely determined.
Unfortunately simple examples (see Example 5 below) show that the existence and
uniqueness of extremal metrics fails for general measure systems. Nevertheless, Fu-
glede [6] proved that when 1 < p <∞, a measure system always admits an extremal
metric, after removing an exceptional system of measures.

Fuglede’s Lemma. Let 1 < p < ∞. Let E be a measure system. If modpE <
∞, then there exists a measure system N ⊂ E such that modp N = 0 and E \ N
admits an extremal metric φ.

The uniqueness of an extremal metric for the p-modulus of a measure system also
holds when 1 < p < ∞, up to redefinition of the metric on a set of m-measure zero.
This can be seen as follows. Suppose that φ, ψ ∈ Lp(m) are two extremal metrics
for the p-modulus of a measure system E. Then the averaged metric χ = 1

2
φ + 1

2
ψ

is still admissible for E and (modpE)
1/p ≤ ∥χ∥p ≤ 1

2
∥φ∥p + 1

2
∥ψ∥p = (modp E)

1/p.
Thus, ∥1

2
φ + 1

2
ψ∥p = 1

2
∥φ∥p + 1

2
∥ψ∥p. By the condition for equality in Minkowski’s

inequality and the assumption that ∥φ∥p = ∥ψ∥p <∞, one obtains φ = ψ m-a.e., as
desired.

A fundamental problem working with modulus is to identify an extremal metric
for a given measure system or curve family if one exists. Beurling found a general
sufficient condition which guarantees that an admissible metric for a curve family in
the plane is extremal for its extremal length.

Beurling’s Criterion. [1, Theorem 4.4] Let Γ be a curve family in R2 and let
φ be an admissible metric for Γ such that 0 <

´
R2 φ

2 <∞. Suppose that there exists
a curve family Γ0 in R2 such that

(1) Γ0 ⊂ Γ,
(2)
´
γ
φds = 1 for every γ ∈ Γ0, and

(3) for all f ∈ L2(R2) taking values in [−∞,∞]: if
´
γ
f ds ≥ 0 for all γ ∈ Γ0,

then
´
R2 fφ ≥ 0.

Then φ is an extremal metric for the extremal length of Γ, i.e. λ(Γ) =
(´

R2 φ
2
)−1.

Let us see Beurling’s criterion in action, in a standard example.

Example 3. Let R be a rectangle with side lengths a ≤ b. Let Γ be the family
of all curves in R with connected trace which join opposite edges in R (see Figure 1).
We claim that φ = 1

a
χR is an extremal metric for Γ, and thus,

λ(Γ) =

(ˆ
R

1

a2

)−1

= a/b.
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First φ is admissible for Γ, because every curve connecting opposite edges in R
travels at least Euclidean distance a (the distance between the edges of length b).
Beurling’s criterion holds with Γ0 = {γ(t) : t ∈ [0, b]} equal to the family of straight
line segments connecting (and orthogonal to) a pair of opposite sides of length b.
Conditions (1) and (2) hold by definition. And (3) follows from Fubini’s theorem:
if
´
γ(t)

f ds ≥ 0 for all γ(t) ∈ Γ0, then
´
R2 fφ = 1

a

´
R
f = 1

a

´ b

0

´
γ(t)

f ds dt ≥ 0.

Therefore, φ is extremal for λ(Γ).

a

b

a

b

Figure 1. Curve families Γ and Γ0 in Examples 3 and 4.

The converse to Beurling’s criterion fails for the simple reason that Γ may not
contain any curves γ such that

´
γ
φds = 1.

Example 4. Once again let R be a rectangle with side lengths a ≤ b, and let Γ
and Γ0 be the curve families from Example 3. We claim that φ = 1

a
χR is an extremal

metric for Γ∗ = Γ \ Γ0. However, since Γ∗ does not contain any curves γ such that´
γ
φds = 1, we cannot use Beurling’s criterion to show that φ is extremal for Γ∗.

Let ψ be an admissible metric for Γ∗. Fix γ(t) ∈ Γ0. Then one can find a sequence
of curves γk(t) ∈ Γ∗ such that

´
γk(t)

ψ ds →
´
γ(t)

ψ ds. (For example, if γ(t) = [0, a],
then take γk(t) = [1/k, 0] ⊔ [0, a] where ⊔ denotes concatenation.) In particular, it
follows that

´
γ(t)

ψ ds ≥ 1 for all γ(t) ∈ Γ0. Integrating across all γ(t) ∈ Γ0, invoking
Fubini’s theorem and applying the Cauchy–Schwarz inequality gives

b ≤
ˆ b

0

ˆ
γ(t)

ψ ds dt =

ˆ
R

ψ ≤
(ˆ

R

ψ2

)1/2

(ab)1/2 ≤
(ˆ

R2

ψ2

)1/2

(ab)1/2.

Thus,
(´

R2 ψ
2
)−1 ≤ a/b for every metric ψ that is admissible for Γ∗. Since this upper

bound is obtained by φ, we conclude that φ is extremal for λ(Γ∗).

A partial converse to Beurling’s criterion is presented in Ohtsuka [14, §2.3] in the
special case Γ = Γ0: if φ is extremal for Γ, then (3) holds for all f ∈ L2(R2). Wolf
and Zwiebach [19, p. 38] have also established “a partial local converse to Beurling’s
criterion” for certain classes of metrics on Riemann surfaces.

2. Statement of results

The main goal of this note is to show that Beurling’s criterion can be modified
to become a necessary and sufficient test for extremal metrics. In fact, we establish a
characterization of extremal metrics in the general setting of Fuglede modulus, when
1 < p <∞ and when p = 1.

Theorem 1. (Extremal metrics in Lp) Let 1 < p < ∞. Let E be a measure
system and let φ be an admissible metric for E such that φ ∈ Lp(m). Then φ is
extremal for the p-modulus of E if and only if
(Bp) there exists a measure system F such that
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(a) modp E ∪ F = modp E,
(b)
´
φdν = 1 for every ν ∈ F, and

(c) for all f ∈ Lp(m) taking values in [−∞,∞]: if
´
f dν ≥ 0 for all ν ∈ F,

then
´
fφp−1dm ≥ 0.

Theorem 2. (Extremal metrics in L1) Let E be a measure system and let φ
be an admissible metric for E such that φ ∈ L1(m). Then φ is extremal for the
1-modulus of E if and only if
(B1) there exists a measure system F such that

(a) mod1 E ∪ F = mod1E,
(b)
´
φdν = 1 for every ν ∈ F, and

(c) for all f ∈ L1(m) taking values in [−∞,∞] such that φ(x) = 0 implies
f(x) ≥ 0: if

´
f dν ≥ 0 for all ν ∈ F, then

´
f dm ≥ 0.

Remark 1. We label the conditions (Bp) in Theorems 1 and 2 in honor of
Beurling. When p = 2 and F ⊂ E, (a) holds vacuously and (B2) is Beurling’s
criterion.

Remark 2. In Theorems 1 and 2, if φ is extremal for modp E, then there exists
F satisfying (Bp) such that for every ν ∈ F there exist µ ∈ E and 0 < c ≤ 1 such
that ν = cµ.

Remark 3. In Theorems 1 and 2 the case F = ∅ is allowed. Note condition (Bp)
holds with F = ∅ if and only if φ = 0 m-almost everywhere.

The proofs of Theorems 1 and 2 will be given in sections 3 and 4, respectively.
(A curious reader may jump to the proofs immediately.) We now demonstrate the
use of the theorems in a simple, yet enlightening example, which shows the varied
behavior of the p-modulus for different values of p.

Example 5. Assume that A ∈ M and 0 < m(A) < ∞. Let EA = {m A}
where m A denotes the measure m restricted to the set A. Then

modp EA =

{
inf{m(B)1−p : B ⊂ A, m(B) > 0}, if 0 < p ≤ 1,

m(A)1−p, if 1 ≤ p <∞.

This will be checked in four steps.
Let 1 < p < ∞. We will show that φA = m(A)−1χA is extremal for modpEA,

and hence, modpEA =
´
A
m(A)−p dm = m(A)1−p. Clearly φA ∈ Lp(m) and φA is

admissible for EA. Let us check that (Bp) holds with F = EA. Conditions (a) and (b)
hold immediately. For condition (c),

´
fφp−1

A dm = m(A)1−p
´
A
f dm ≥ 0 whenever´

f d(m A) ≥ 0. Thus, φA is extremal for modpEA, by Theorem 1.
The case p = 1 is similar, except that there is no longer a unique extremal

metric. Let B ⊂ A be any subset such that m(B) > 0 and let φB = m(B)−1χB.
Then φB ∈ L1(m) and φB is admissible for EA. We will check that (B1) holds with
F = EA. Conditions (a) and (b) are immediate. To verify condition (c) of (B1),
assume that f ∈ L1(m) takes values in [−∞,∞], f(x) ≥ 0 whenever φB(x) = 0 and´
f d(m A) ≥ 0. Then

´
f dm =

´
Ac f dm +

´
A
f dm ≥ 0, where the first term is

non-negative since φB(x) = 0 on Ac. Thus, φB is extremal for mod1 EA, by Theorem
2, so that mod1 EA =

´
φB dm = 1 for every B ⊂ A with m(B) > 0.

Next let 0 < p < 1 and suppose that A has subsets of arbitrarily small positive
measure. Then we can find a sequence of subsets Bk ⊂ A with m(Bk) > 0 such
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that limk→∞m(Bk) = 0. The normalized characteristic functions φk = m(Bk)
−1χBk

are admissible for EA. Hence modpEA ≤
´
φp
k dm = m(Bk)

1−p → 0 as k → ∞,
since 0 < p < 1. Therefore, modp EA = 0 = inf{m(B)1−p : B ⊂ A, m(B) > 0}.
However, there is no extremal metric for modpEA, because no function ψ ≥ 0 satisfies´
ψ d(m A) ≥ 1 and

´
ψp dm = 0 simultaneously.

Finally, let 0 < p < 1, but suppose that A does not possess subsets of arbitrarily
small positive measure. Then m A = c1δA1 + · · · + ckδAk

is a linear combination
of atomic measures, where each atom Ai ∈ M and Ai ∩ Aj = ∅ whenever i ̸= j.
By relabeling, we may assume that 0 < c1 ≤ cj for all 2 ≤ j ≤ k. Let ρ ≥ 0
be an admissible metric for EA such that

´
ρ d(m A) = 1. (Here we can ask for

equality, because EA consists of one element.) Define ηj = ρ(Aj)cj for all j. Then∑k
j=1 ηj =

∑k
j=1(ηj/cj)cj =

´
ρ d(m A) = 1. Thus, 0 ≤ ηj ≤ 1 for all j, and

ˆ
ρp dm ≥

k∑
j=1

(ηj/cj)
pcj =

k∑
j=1

ηpj c
1−p
j ≥

k∑
j=1

ηjc
1−p
1 = c1−p

1 .

Since the lower bound
´
ρp dm ≥ c1−p

1 is obtained by the metric ρ = m(A1)
−1χA1 , we

conclude that modp EA = m(A1)
1−p = inf{m(B)1−p : B ⊂ A, m(B) > 0}.

Remark 4. With the same notation as in the previous example, φA = m(A)−1χA

also satisfies condition (Bp) with F = EA for 0 < p < 1. But modpEA ̸=
´
φp
A dm

when 0 < p < 1 unless m A = cδA. Thus, Example 5 shows that condition (Bp)
from Theorem 1 is not a sufficient test for extremal metrics when 0 < p < 1.

The characterizations of extremal metrics for the p-modulus of measure systems
in Theorems 1 and 2 also hold for curve families in Rn. In particular, assuming that
an extremal metric for E = {γ̃ : γ ∈ Γ} exists, one can find a measure system F
satisfying condition (Bp), where F is also associated to a family of curves in Rn.

Corollary 1. (Extremal metrics in Lp for curves) Let 1 < p < ∞. Let Γ be a
curve family in Rn and let φ be an admissible metric for Γ such that φ ∈ Lp(Rn).
Then φ is extremal for the p-modulus of Γ if and only if
(B′

p) there exists a curve family Γ′ in Rn such that
(a) modp Γ ∪ Γ′ = modp Γ,
(b)
´
γ
φds = 1 for every γ ∈ Γ′, and

(c) for all f ∈ Lp(Rn) taking values in [−∞,∞]: if
´
γ
f ds ≥ 0 for all γ ∈ Γ′,

then
´
Rn fφ

p−1 ≥ 0.

Corollary 2. (Extremal metrics in L1 for curves) Let Γ be a curve family in Rn

and let φ be an admissible metric for Γ such that φ ∈ L1(Rn). Then φ is extremal
for the 1-modulus of Γ if and only if
(B′

1) there exists a curve family Γ′ in Rn such that
(a) mod1 Γ ∪ Γ′ = mod1 Γ,
(b)
´
γ
φds = 1 for every γ ∈ Γ′, and

(c) for all f ∈ L1(Rn) taking values in [−∞,∞] such that φ(x) = 0 implies
f(x) ≥ 0: if

´
γ
f ds ≥ 0 for all γ ∈ Γ′, then

´
Rn f ≥ 0.

Remark 5. In Corollaries 1 and 2, if φ is extremal for modp Γ, then there exists
Γ′ satisfying (B′

p) such that every curve γ′ ∈ Γ′ is a subcurve of some curve γ ∈ Γ.
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Remark 6. In Corollaries 1 and 2 the case Γ′ = ∅ is allowed. Note condition
(B′

p) holds with Γ′ = ∅ if and only if φ = 0 Lebesgue almost everywhere.

The auxiliary curve family Γ′ that is required to test condition (B′
p) is not unique.

In the next example, we exhibit disjoint curve families Γ0 and Γ1 such that condition
(B′

2) holds with the auxiliary curve family Γ′ = Γi, i = 0, 1.

Example 6. Let R be a rectangle with side lengths a ≤ b, and let Γ and Γ0 be the
curve families from Example 3. Above we showed that condition (B′

2) (i.e. Beurling’s
criterion) holds for Γ and φ = 1

a
χR using the auxiliary curve family Γ′ = Γ0 ⊂ Γ.

Thus, mod2 Γ =
´
R
(1/a)2 = b/a by Corollary 1. Alternatively let Γ1 be the curve

family described as follows (see Figure 2). For each γ(t) ∈ Γ0, there correspond
exactly two curves γ′(t) and γ′′(t) in Γ1. If the curve γ(t) = [P,Q], then the curves
γ′(t) and γ′′(t) are given by

γ′(t) =

[
P,
P +Q

2

]
⊔
[
P +Q

2
, P

]
and γ′′(t) =

[
Q,

P +Q

2

]
⊔
[
P +Q

2
, Q

]
where ⊔ denotes concatenation.

a

b b

a1
2

a1
2

Figure 2. Curve families Γ0 and Γ1 in Example 6.

In other words, each curve in Γ1 travels along a straight path starting at and
perpendicular to an edge of side length b; half-way across to the other side, the
curve reverses direction and returns to its starting point. We now check that (B′

2)
holds for Γ and φ with Γ′ = Γ1. A quick computation shows that

´
γ
φds = 1 for

all γ ∈ Γ1. Hence condition (b) holds. For (a), we have mod2 Γ ≤ mod2 Γ ∪ Γ1 ≤´
R2 φ

2 = mod2 Γ, since φ is admissible for Γ ∪ Γ1 and since (we already know that)
φ is extremal for Γ. It remains to check (c). If f ∈ L2(R2) and

´
γ
f ds ≥ 0 for all

γ ∈ Γ1, then

2

ˆ
R2

fφ =
2

a

ˆ
R

f =
2

a

ˆ b

0

ˆ
γ(t)

f ds dt =
1

a

ˆ b

0

ˆ
γ(t)⊔γ(t)

f ds dt

=
1

a

ˆ b

0

ˆ
γ′(t)⊔γ′′(t)

f ds dt =
1

a

ˆ b

0

ˆ
γ′(t)

f ds dt+
1

a

ˆ b

0

ˆ
γ′′(t)

f ds dt ≥ 0.

Thus, condition (c) holds too, and we have reached the end of the example.

It is of course possible to specialize Theorems 1 and 2 to other settings. For
instance, a reader familiar with analysis on metric spaces will have no difficulty
adapting Corollaries 1 and 2 to the metric space setting. In [4, §11], Bonk notes
that Beurling’s criterion can be adapted to produce a sufficient test for extremal
metrics for the transboundary modulus of a curve family in the Riemann sphere.
Using Theorem 1 and the proof of Corollary 1, one can also formulate a necessary
and sufficient test for extremal metrics for transboundary modulus.
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So far we have found a characterization of extremal metrics for the p-modulus of
a measure system or curve family when 1 ≤ p <∞. A related problem is to identify
those metrics which are extremal for the p-modulus of some measure system or curve
family. The next result gives a solution to this problem for measure systems.

Theorem 3. If φ : X → [0,∞] is a metric and φ <∞ m-a.e., then φ is extremal
for the p-modulus of Eφ = {µ defined on M :

´
φdµ ≥ 1} for all 0 < p <∞.

Proof. Let A be the collection of atoms in M. Note that the scaled atomic
measure µA = φ(A)−1δA ∈ Eφ for all A ∈ A such that 0 < φ(A) < ∞. Let ψ be
an admissible metric for Eφ. Then ψ(A)/φ(A) =

´
ψ dµA ≥ 1 when 0 < φ(A) <∞.

Also, ψ(A) ≥ φ(A) when φ(A) = 0. Thus, if φ < ∞ m-a.e., then ψ ≥ φ m-a.e.,
and
´
ψp dm ≥

´
φp dm for all 0 < p < ∞. Therefore, modp Eφ =

´
φp dm for all

0 < p <∞. �
We can establish a similar result for curve families in Rn. The basic philosophy,

suggested by the proof of Theorem 3, is that one needs to approximate the measures
δx at points where φ(x) > 0 by sequences of curves. See section 6 for details.

Theorem 4. If φ : Rn → [0,∞] is Borel, then φ is extremal for the p-modulus
of Γφ = {curve γ in Rn :

´
γ
φds ≥ 1} for all 1 ≤ p <∞ such that 0 <

´
Rn φ

p <∞.

The plan for the remainder of the note is as follows. In the next two sections,
we prove the characterizations of extremal metrics for the p-modulus of a measure
system from above, in the cases 1 < p < ∞ (section 3) and p = 1 (section 4). Then
we turn our attention to extremal metrics for families of curves in Rn. In section 5,
we show how the proofs of Theorems 1 and 2 must be modified to obtain Corollaries 1
and 2. Finally, we give the proof of Theorem 4 in section 6.

3. Proof of Theorem 1 (Extremal metrics in Lp)

Let 1 < p < ∞. Let E be a measure system and let φ be an admissible metric
for E such that φ ∈ Lp(m). If φ = 0 m-a.e., then φ is extremal for the p-modulus of
E and condition (Bp) holds with F = ∅. Thus, we assume that 0 <

´
φp dm <∞.

We shall start with the proof that condition (Bp) implies that φ is extremal, by
mimicking the proof of Beurling’s criterion in Ahlfors [1]. Suppose that (Bp) holds for
some measure system F satisfying (a), (b) and (c). Since the metric φ is admissible
for E, φ is also admissible for E∪F, by (b). Let ψ be a competing admissible metric
for modp E ∪ F, so that

´
ψp dm ≤

´
φp dm < ∞. Then

´
ψ dν ≥ 1 =

´
φdν for all

ν ∈ F, by (b). Hence f = ψ − φ ∈ Lp(m) and
´
f dν ≥ 0 for all ν ∈ F. By (c), we

conclude that
´
(ψ − φ)φp−1 ≥ 0. Then

(1)
ˆ
φp dm ≤

ˆ
ψφp−1 dm ≤

(ˆ
ψp dm

)1/p(ˆ
φp dm

)(p−1)/p

where the second inequality is Hölder’s inequality. Since 0 <
´
φp dm < ∞, we get

that
´
φp dm ≤

´
ψp dm. Thus, φ is extremal for the p-modulus of E ∪ F. Finally,

modp E ≤
´
φp dm = modp E∪F = modpE, by (a). Therefore, φ is extremal for the

p-modulus of E.
For the reverse direction, we require a short lemma.
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Lemma 1. Let 1 < p <∞. If φ, f ∈ Lp(m) take values in [−∞,∞] and φ ≥ 0,
then ˆ [

(φ+ εf)+
]p
dm =

ˆ
{φ+εf>0}

[
φp + p εfφp−1

]
dm+ o(ε) · ε

where o(ε) → 0 as ε→ 0.

Proof. Let 1 < p <∞ and let φ, f ∈ Lp(m) be given. Assume that the functions
φ and f take values in [−∞,∞] and φ ≥ 0. Fix ε ̸= 0 and set P = {φ + εf > 0}.
By the mean value theorem, for all x ∈ P such that φ(x) and f(x) are both finite,
there exists δ = δ(x) between 0 and ε such that (φ+ εf)p − φp = [p(φ+ δf)p−1f ] ε.
In particular, this holds at m-a.e. x ∈ P , because φ, f ∈ Lp(m), and the function
δ : P → R is measurable, because φ and f are measurable. Henceˆ

P

(φ+ εf)p dm =

ˆ
P

[
φp + p εfφp−1

]
dm+ ε

ˆ
P

pf
[
(φ+ δf)p−1 − φp−1

]
dm.

The lemma follows, because the second integral in the displayed equation vanishes
as ε→ 0 by the dominated convergence theorem. �

Now suppose that φ is extremal for the p-modulus of E. Break E = E0 ∪ E∞
into a union of two measure systems where E0 = {µ ∈ E : 1 ≤

´
φdµ < ∞} and

E∞ = {µ ∈ E :
´
φdµ = ∞}. Since φ ∈ Lp(m), we have modpE∞ = 0, because εφ

is admissible for E∞ for all ε > 0. It follows that modpE0 = modpE =
´
φp dm;

that is, φ is extremal for the p-modulus of E0, as well. Moreover, E0 is nonempty,
since modp E0 > 0. Recall that we want to show that condition (Bp) holds. Assign
F to be the family of all measures ν defined on M such that

´
φdν = 1. Thus, (b)

is satisfied by the definition of F. To verify (a), simply note that

modp E ≤ modp E ∪ F ≤
ˆ
φp dm = modpE,

since φ is admissible for E∪F and φ is extremal for the p-modulus of E. It remains
to establish (c). Assume that f ∈ Lp(m) takes values in [−∞,∞] and

´
f dν ≥ 0 for

every ν ∈ F. Then for all ε > 0 the metric φε = (φ+ εf)+ ≥ 0 belongs to Lp(m) and´
φε dν ≥

´
(φ + εf) dν ≥

´
φdν = 1 for every ν ∈ F. If µ ∈ E0, then there exists

0 < c ≤ 1 such that cµ ∈ F so that
´
φε dµ ≥ c

´
φε dµ =

´
φε d(cµ) ≥ 1. Hence the

metric φε is also admissible for E0. Thus,ˆ
φp dm = modp E0 ≤

ˆ
φp
ε dm =

ˆ [
(φ+ εf)+

]p
dm.

Then, Lemma 1 gives
´
φp dm ≤

´
Pε
[φp + p εfφp−1] dm + o(ε) · ε, where the set

Pε = {φ+ εf > 0} and o(ε) → 0 as ε→ 0. It follows that

p ε

ˆ
Pε

fφp−1 dm ≥
ˆ
X\Pε

φp dm− o(ε) · ε ≥ −o(ε) · ε.

Dividing through by p ε and letting ε→ 0+, we obtainˆ
fφp−1 dm = lim

ε→0+

ˆ
Pε

fφp−1 dm ≥ 0,

by the dominated convergence theorem. Therefore, condition (Bp) holds if φ is
extremal for the p-modulus of E.
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4. Proof of Theorem 2 (Extremal metrics in L1)

Let E be a measure system and let φ be an admissible metric for E such that
φ ∈ L1(m). If φ = 0 m-a.e., then φ is extremal for the 1-modulus of E and condition
(B1) holds with F = ∅. Thus, we assume that 0 <

´
φdm <∞.

Suppose that condition (B1) holds. Let ψ be an admissible metric for E∪F with
ψ ∈ L1(m). Then

´
ψ dν ≥ 1 =

´
φdν for every ν ∈ F, by (b). Hence the function

f = ψ − φ ∈ L1(m) takes values in [−∞,∞],
´
f dν ≥ 0 for all ν ∈ F and f(x) ≥ 0

whenever φ(x) = 0. Since f satisfies the hypothesis of (c), we obtain
´
(ψ−φ) dm ≥ 0.

That is,
´
φdm ≤

´
ψ dm, for every admissible metric ψ. Thus, φ is extremal for

the 1-modulus of E ∪ F. It follows that mod1E ≤
´
φdm = mod1E ∪ F = mod1 E,

by (a). Therefore, φ is extremal for the 1-modulus of E.
Conversely, suppose that φ is extremal for the 1-modulus of E. Then φ is also

extremal for the 1-modulus of E0 = {µ ∈ E : 1 ≤
´
φdµ < ∞}. We want to check

that condition (B1) holds. Assign F to be the family of all measures ν defined on
M such that

´
φdν = 1. Then (b) is satisfied automatically. For (a), mod1E ≤

mod1 E ∪ F ≤
´
φdm = mod1 E, since φ is admissible for E ∪ F and φ is extremal

for the 1-modulus of E. It remains to verify (c). Assume that f ∈ L1(m) takes
values in [−∞,∞],

´
f dν ≥ 0 for all ν ∈ F and f(x) ≥ 0 whenever φ(x) = 0. For

all ε > 0 the metric φε = (φ + εf)+ ≥ 0 belongs to L1(m), and moreover, satisfies´
φε dν ≥

´
(φ + εf) dν ≥

´
φdν = 1 for every ν ∈ F. Now, for all µ ∈ E0, there

exists 0 < c ≤ 1 such that cµ ∈ F. Thus,
´
φε dµ ≥ c

´
φε dµ =

´
φε d(cµ) ≥ 1 for

all µ ∈ E0. This shows that the metric φε is also admissible for E0, and hence,ˆ
φdm = mod1 E0 ≤

ˆ
φε dm =

ˆ
(φ+ εf)+ dm =

ˆ
Pε

(φ+ εf) dm,

where Pε = {φ + εf > 0}. This yields
´
Pε
f dm ≥ ε−1

´
X\Pε

φdm ≥ 0 for all ε > 0.
As ε→ 0+, the characteristic functions χPε converge m-a.e. to the function χP where
P = {φ > 0}∪{φ = 0, f > 0} (convergence at x ∈ X fails if f(x) = −∞). Therefore,´
P
f dm ≥ 0, and because we assumed that f(x) ≥ 0 whenever φ(x) = 0, we obtain´
f dm =

´
P
f dm +

´
{φ=0,f=0} f dm ≥ 0, as well. This completes the proof that

condition (B1) holds whenever φ is extremal for the 1-modulus of E.

5. Modification for curve families in Rn

The conditions (B′
p) of Corollaries 1 and 2 are sufficient tests for metrics to be

extremal for modp Γ by Theorems 1 and 2. To verify that the conditions (B′
p) are

also necessary, the proofs of Theorems 1 and 2 can be modified, as follows.
Let 1 ≤ p < ∞. Let Γ be a curve family in Rn and let φ be an extremal

metric for the p-modulus of Γ such that 0 <
´
Rn φ

p < ∞. Then the metric φ is
also extremal for the p-modulus of Γ0 = {γ ∈ Γ: 1 ≤

´
γ
φds < ∞}. We want to

check that condition (B′
p) holds. Assign Γ′ to be the family of all curves γ in Rn

such that
´
γ
φds = 1. Then (b) holds by definition. To show (a), simply note that

modp Γ ≤ modp Γ∪Γ′ ≤
´
Rn φ

p = modp Γ, because φ is admissible for Γ∪Γ′ and φ is
extremal for the p-modulus of Γ. It remains to verify (c). Assume that f ∈ Lp(Rn)
takes values in [−∞,∞] and

´
γ
f ds ≥ 0 for all γ ∈ Γ′. In the case p = 1, also assume

that f(x) ≥ 0 whenever φ(x) = 0. For all ε > 0, the metric φε = (φ + εf)+ ≥ 0
belongs to Lp(Rn). Moreover,

´
γ
φε ds ≥

´
γ
(φ + εf) ds ≥

´
γ
φds = 1 for all γ ∈ Γ′.
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If γ ∈ Γ0, then

1 ≤
ˆ
γ

φds =
∑
i

ˆ bi

ai

φ(γi(t))|γ′i(t)| dt <∞.

Since each term in the line integral is non-negative and finite, the function

c 7→
ˆ c

ai

φ(γi(t))|γ′i(t)| dt

on [ai, bi] is continuous for each i. Hence we can pick ci ∈ [ai, bi] for all i in such a
way that the subcurve γ1 =

⊔
i γ([ai, ci]) of γ satisfies

´
γ1
φds = 1. This means that

γ1 ∈ Γ′. Thus,
´
γ
φε ds ≥

´
γ1
φε ds ≥ 1. This shows that φε is also admissible for Γ0.

Hence ˆ
Rn

φp = modp Γ0 ≤
ˆ
Rn

φp
ε =

ˆ
Rn

[
(φ+ εf)+

]p
.

To finish checking (c), one can now proceed as above. Follow the argument from
section 3, when 1 < p <∞, and follow the argument from section 4, when p = 1.

6. Proof of Theorem 4

Suppose that φ : Rn → [0,∞] is a Borel function and let Γφ be the family of all
curves γ in Rn such that

´
γ
φds ≥ 1. Fix any 1 ≤ p <∞ such that 0 <

´
Rn φ

p <∞.
We want to show that φ is extremal for the p-modulus of Γφ. For each y ∈ Rn let
ℓy = y+Re1 ∼= R denote the line through y parallel to the direction e1 = (1, 0, . . . , 0).
By Fubini’s theorem, φ ∈ Lp(ℓy), y = (0, ȳ) for Hn−1-a.e. ȳ ∈ Rn−1. In particular,
we also have φ ∈ L1

loc(ℓy), y = (0, ȳ) for Hn−1-a.e. ȳ ∈ Rn−1. Here, as above and as
below, Hs denotes s-dimensional Hausdorff measure. Below |I| denotes the diameter
of an interval I.

Lemma 2. Suppose that φ ∈ L1
loc(ℓy). Then, for H1-a.e. x ∈ ℓy such that

φ(x) > 0, there exist a sequence of positive integers nk = nk(x) → ∞ and a sequence
intervals Ik = Ik(x) ⊂ ℓy centered at x with |Ik| → 0 such that

´
Ik
φdt = 1/nk for

all k.

Proof. Define the function gx(r) =
´ r

−r
φ(x + te1) dt for all x ∈ ℓy and r ≥ 0.

Then limr→0+ gx(r)/2r = φ(x) for H1-a.e. x ∈ ℓy, by the Lebesgue differentiation
theorem. Hence for H1-a.e. x ∈ ℓy such that φ(x) > 0, there exists r0 = r0(x) > 0
such that 0 < gx(r) <∞ for all 0 < r ≤ r0. Since gx|[0,r0] is continuous and gx(0) = 0,
we can find a sequence of integers nk = nk(x) and a sequence of radii rk = rk(x) → 0
such that gx(rk) = 1/nk. Then Ik = Ik(x) = x + [−rk, rk]e1 ⊂ ℓy is a sequence of
intervals with the desired property. �

Let E ⊂ Rn be the set of points x ∈ Rn where the conclusion of Lemma 2 holds,
i.e. x ∈ E if and only if there exist a sequence of positive integers nk = nk(x) → ∞
and a sequence of intervals Ik = Ik(x) ⊂ ℓx centered at x with |Ik| → 0 such that´
Ik
φdt = 1/nk. By Fubini’s theorem and Lemma 2, we have x ∈ E for a.e. x ∈ Rn

such that φ(x) > 0. We define a curve family Γ′ ⊂ Γφ as follows. Choose one pair
of sequences (nk(x))

∞
k=1 and (Ik(x))

∞
k=1 for each x ∈ E. Then, for each x ∈ E and

k ≥ 1, define a curve γk(x) =
⊔nk

i=1 Ik(x), i.e. let γk(x) be a curve which covers the
interval Ik(x) exactly nk(x)-times. Set Γ′ = {γk(x) : x ∈ E and k ≥ 1}.
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To prove that φ is extremal for the p-modulus of Γφ, it is enough by either
Corollary 1 or Corollary 2 (according to whether 1 < p < ∞ or p = 1) to show that
(B′

p) holds for Γ′. To start note
´
γk(x)

φds = nk(x)
´
Ik(x)

φdt = nk(x)/nk(x) = 1 for
all γk(x) ∈ Γ′. This shows that (b) holds. And, since Γ′ ⊂ Γφ, (a) is true too. To
verify (c), assume that f ∈ Lp(Rn) takes values in [−∞,∞] and

´
γk(x)

f ds ≥ 0 for
all γk(x) ∈ Γ′. Moreover, if p = 1, assume that f(x) ≥ 0 whenever φ(x) = 0. By
Fubini’s theorem and the Lebesgue differentiation theorem,

f(x) = lim
k→∞

1

|Ik(x)|

ˆ
Ik(x)

f dt

for a.e. x ∈ E, and in particular, for a.e. x ∈ Rn such that φ(x) > 0. By assumption,ˆ
Ik(x)

f dt =
1

nk(x)

ˆ
γk(x)

f ds ≥ 0 for all x ∈ E and k ≥ 1.

Thus, combining the two displayed equations, f(x) ≥ 0 at a.e. x ∈ Rn such that
φ(x) > 0. It follows that

´
Rn fφ

p−1 ≥ 0, if 1 < p < ∞, and
´
Rn f ≥ 0, if p = 1.

Hence (c) holds. Therefore, (B′
p) holds and φ is extremal for the p-modulus of Γφ.
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