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Abstract. The aim of this note is to show that Poincaré inequalities imply corresponding
weighted versions in a quite general setting. Fractional Poincaré inequalities are considered, too.
The proof is short and does not involve covering arguments.

1. Introduction

Let (X, ρ) be a metric space with a positive σ-finite Borel measure dx, we will
write |E| =

´
E
dx for the measure of a Borel set E ⊂ X. We fix some point x0 ∈ X

and set Br = {x ∈ X : ρ(x, x0) < r}, Br = {x ∈ X : ρ(x, x0) ≤ r}. We call a
function ϕ : B1 → [0,∞) a radially decreasing weight, if ϕ is a radial function, i.e.
ϕ = Φ(ρ(·, x0)) and its profile Φ is nonincreasing and right-continuous with left-limits.
We assume that ϕ is not identically zero on B1 \ B1/2. For any such weight ϕ there
exists a positive, non-zero σ-finite Borel measure ν on (1

2
, 1], such that

(1) ϕ(x) =

ˆ 1

ρ(x,x0)∨1/2
ν(dt) =

ˆ 1

1/2

χBt(x) ν(dt), x ∈ B1 \B1/2.

Note that we put
´ b

a
f(t) ν(dt) =

´
(a,b]

f(t) ν(dt). For a function u we denote by

uE =
1

|E|

ˆ
E

u(x) dx

the mean of u over the set E, and by

uϕ
E =

´
E
u(x)ϕ(x) dx´
E
ϕ(x) dx

the mean of u over the set E ⊂ B1 with respect to the weight function ϕ.
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Our main result is the following:

Theorem 1. Let 1 ≤ p < ∞ and let ϕ be a radially decreasing weight with
ϕ = Φ(ρ(·, x0)). Let F : Lp(X)× (1

2
, 1] → [0,∞] be a functional satisfying

F (u+ a, r) = F (u, r), a ∈ R,(2) ˆ
Br

|u(x)− uBr |p dx ≤ F (u, r),(3)

for every r ∈ (1
2
, 1] and every u ∈ Lp(X). Then for M = 8p|B1|

|B1/2|
Φ(0)

Φ(1/2)

(4)
ˆ
B1

|u(x)− uϕ
B1
|pϕ(x) dx ≤ M

ˆ 1

1/2

F (u, t) ν(dt)

for every u ∈ Lp(B1), where ν is as in (1).

By choosing the functional F appropriately, (4) becomes a Poincaré inequality
with weight ϕ, see Section 3. Such inequalities have been studied extensively because
of their importance for the regularity theory of partial differential equations, see the
exposition in [5].

2. Proof

Lemma 2. Let Ω be a finite measure space and p ≥ 1. Assume f ∈ Lp(Ω) with´
Ω
f = 0. Then

∥f + a∥Lp(Ω) ≥ 1
2
∥f∥Lp(Ω)

for every a ∈ R.

Proof. We may assume a > 0. Thenˆ
Ω∩{f>0}

|f + a|p ≥
ˆ
Ω∩{f>0}

|f |p and
ˆ
Ω∩{f<−2a}

|f + a|p ≥ 2−p

ˆ
Ω∩{f<−2a}

|f |p.

Furthermore, since
´
Ω∩{f≤0} |f | =

´
Ω∩{f>0} |f |, we obtain

ˆ
Ω∩{−2a≤f≤0}

|f |p ≤ (2a)p−1

ˆ
Ω∩{−2a≤f≤0}

|f |

≤ (2a)p−1

ˆ
Ω∩{f>0}

|f | ≤ 2p−1

ˆ
Ω∩{f>0}

|f + a|p,

where we use ap−1b ≤ (b+a)p−1(b+a) for positive a, b. Combining these observations
we obtain the result. �

Proof of Theorem 1. First we observe that it is enough to prove that

(5)
ˆ
B1

|u(x)− uϕ̃
B1
|pϕ̃(x) dx ≤ 22p|B1|

|B1/2|

ˆ 1

1/2

F (u, t) ν(dt),

where ϕ̃(x) = ϕ(x) ∧ Φ(1
2
). Indeed, we have

Φ(1
2
)

Φ(0)
ϕ(x) ≤ ϕ(x) ∧ Φ(1

2
) ≤ ϕ(x).
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Hence if (5) holds, then
ˆ
B1

|u(x)− uϕ̃
B1
|pϕ̃(x) dx ≥

Φ(1
2
)

Φ(0)

ˆ
B1

|u(x)− uϕ̃
B1
|pϕ(x) dx

≥
Φ(1

2
)

Φ(0)
2−p

ˆ
B1

|u(x)− uϕ
B1
|pϕ(x) dx,

where in the last line we have used Lemma 2. Now we prove (5). To simplify the
notation, we assume that ϕ(x) = Φ(1

2
) for x ∈ B1/2, so that ϕ̃ = ϕ. Because of (2),

by subtracting a constant from u, we may and do assume that uϕ
B1

= 0, which means
that

(6) 0 =

ˆ
B1

u(x)ϕ(x) dx =

ˆ 1

1/2

ˆ
Bt

u(x) dx ν(dt) =

ˆ 1

1/2

uBt|Bt| ν(dt).

We start from the integral on the right hand side of (4) and use (3)

R :=

ˆ 1

1/2

F (u, t) ν(dt) ≥
ˆ 1

1/2

ˆ
Bt

|u(x)− uBt |p dx ν(dt)

=
1

2

ˆ 1

1/2

ˆ
Bt

|u(x)− uBt|p dx ν(dt) +
1

2

ˆ
B1

ˆ 1

1/2

|u(x)− uBt |pχBt(x) ν(dt) dx

=: I1 + I2

(In fact I1 = I2, but we treat them differently.) We now deal with the inner integral
in I2. For x ∈ B1/2 we have

ˆ 1

1/2

|u(x)− uBt|pχBt(x) ν(dt) ≥
1

|B1|

ˆ 1

1/2

|u(x)− uBt |p|Bt| ν(dt).

Since
´ 1

1/2
uBt |Bt| ν(dt) = 0, by Lemma 2 we obtain

ˆ 1

1/2

|u(x)− uBt|p|Bt| ν(dt) ≥ 2−p

ˆ 1

1/2

|uBt |p|Bt| ν(dt).

Therefore

I2 ≥
2−p

2|B1|

ˆ
B1/2

ˆ 1

1/2

|uBt |p|Bt| ν(dt) dx =
2−p|B1/2|
2|B1|

ˆ 1

1/2

|uBt |p|Bt| ν(dt).

Using the inequality |a|p + |b|p ≥ 21−p|a+ b|p we obtain

I1 + I2 ≥
1

2

ˆ 1

1/2

ˆ
Bt

(
|u(x)− uBt |p +

2−p|B1/2|
|B1|

|uBt |p
)
dx ν(dt)

≥
2−p|B1/2|
2|B1|

21−p

ˆ 1

1/2

ˆ
Bt

|u(x)|p dx ν(dt)

=
|B1/2|
|B1|

2−2p

ˆ
B1

|u(x)|pϕ(x) dx

and the proof is finished. �
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3. Applications

Let us discuss some corollaries. Corollary 3 is well-known [5]. However, our ap-
proach allows for very general weights. Proposition 4 allows to deduce a weighted
Poincaré inequality for fractional Sobolev norms from an unweighted version. Corol-
laries 5 and 6 give a more concrete result for fractional Sobolev norms. The first
allows for more general kernels and exponents p. Corollary 6 improves [2, Theorem
5.1] because the result is robust for s → 1− and allows for general weights and
exponents p.

Corollary 3. Let p ≥ 1 and ϕ be a radially decreasing weight. Consider X =
Rd equipped with the Lebesgue measure and the Euclidean metric. There exists a
positive constant C depending on p, d and ϕ such that

(7)
ˆ
B1

|u(x)− uϕ
B1
|pϕ(x) dx ≤ C

ˆ
B1

|∇u(x)|pϕ(x) dx,

for every u ∈ W 1,p(B1).

Proposition 4. Let p ≥ 1 and let ϕ be a radially decreasing weight of the form
ϕ = Φ(ρ(·, x0)). Assume that for some kernel k : B1×B1 → [0,∞) and some positive
constant C the following inequality holds

(8)
ˆ
Br

|u(x)− uBr |p dx ≤ C

ˆ
Br

ˆ
Br

|u(x)− u(y)|pk(x, y) dy dx,

whenever r ∈ (1
2
, 1] and u ∈ Lp(X). Then with M = 8p|B1|

|B1/2|
Φ(0)

Φ(1/2)

(9)
ˆ
B1

|u(x)− uϕ
B1
|pϕ(x) dx ≤ CM

ˆ
B1

ˆ
B1

|u(x)− u(y)|pk(x, y)(ϕ(y) ∧ ϕ(x)) dy dx

for u ∈ Lp(X).

Corollary 5. Let ϕ be a radially decreasing weight of the form ϕ = Φ(ρ(·, x0))
and p ≥ 1. Let k : B1 × B1 → [0,∞) be a kernel satisfying k ≥ c for some constant
c > 0. There is a positive constant M depending on d, p and Φ such that for
u ∈ Lp(X)

(10)
ˆ
B1

|u(x)− uϕ
B1
|pϕ(x) dx ≤ M

c

ˆ
B1

ˆ
B1

|u(x)− u(y)|pk(x, y)(ϕ(y) ∧ ϕ(x)) dy dx

for u ∈ Lp(X).

Corollary 6. Let p ≥ 1, R ≥ 1 and 0 < s0 ≤ s < 1. Consider X = Rd equipped
with the Lebesgue measure and the Euclidean metric. Let ϕ be a radially decreasing
weight of the form ϕ = Φ(| · |). Then there exists a positive constant C depending
on p, d, s0 and Φ such thatˆ

B1

|u(x)− uϕ
B1
|pϕ(x) dx

≤ C(1− s) Rp(1−s)

ˆ
B1

ˆ
B1

|u(x)− u(y)|p

|x− y|d+ps
χ{|x−y|≤ 1

R
}(ϕ(y) ∧ ϕ(x)) dy dx

(11)

for all u ∈ Lp(B1).
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Proof of Corollary 3. It is well-known that the following Poincaré inequality
holds

(12)
ˆ
Br

|u(x)− uBr |p dx ≤ c rp
ˆ
Br

|∇u(x)|p dx

for every u ∈ W 1,p(Br) and r > 0 where c > 0 depends on p and d. Set

F (u, r) = c rp
ˆ
Br

|∇u(x)|p dx,

for u ∈ W 1,p(B1) and F (u, r) = ∞ otherwise. Then for u ∈ W 1,p(B1)ˆ 1

1/2

F (u, t) ν(dt) = c

ˆ 1

1/2

tp
ˆ
B1

|∇u(x)|pχBt(x) dx ν(dt)

≤ c

ˆ
B1

|∇u(x)|p
ˆ 1

1/2

χBt(x) ν(dt) dx = c

ˆ
B1

|∇u(x)|pϕ(x) dx.

By Theorem 1 the assertion follows with C = 23p+d Φ(0)
Φ(1/2)

c. �
Proof of Proposition 4. Let

F (u, r) = C

ˆ
Br

ˆ
Br

|u(x)− u(y)|pk(x, y) dy dx.

Thenˆ 1

1/2

F (u, t) ν(dt) = C

ˆ 1

1/2

ˆ
B1

ˆ
B1

|u(x)− u(y)|pk(x, y)χBt(y)χBt(x) dy dx ν(dt)

= C

ˆ
B1

ˆ
B1

|u(x)− u(y)|pk(x, y)
ˆ 1

1/2

χBt(y)χBt(x) ν(dt) dy dx

= C

ˆ
B1

ˆ
B1

|u(x)− u(y)|pk(x, y)(ϕ(y) ∧ ϕ(x)) dy dx.

The assertion now follows from Theorem 1. �
Proof of Corollary 5. First we use a well-known argument to obtain a non-

weighted Poincaré inequality. By calculus and convexity of the function x 7→ |x|p we
conclude that |a+ b|p ≥ |a|p + bp|a|p−1 sgn(a). Thusˆ

Br

ˆ
Br

|u(x)− u(y)|pk(x, y) dy dx ≥ c

ˆ
Br

ˆ
Br

|(u(x)− uBr) + (uBr − u(y))|p dy dx

≥ c|Br|
ˆ
Br

|u(x)− uBr |p dx

≥ c|B1/2|
ˆ
Br

|u(x)− uBr |p dx,

whenever u ∈ Lp(Br) and 1
2
< r ≤ 1. The assertion follows now from Proposition 4.

�
In the proof of Corollary 6 we use the following auxiliary result.

Lemma 7. Let R ≥ 1, p ≥ 1 and 0 < s < 1. Then

(13)
ˆ
B1

ˆ
B1

|u(x)− u(y)|p

|x− y|d+ps
dy dx ≤ (3R)p(1−s)

ˆ
B1

ˆ
B1

|u(x)− u(y)|p

|x− y|d+ps
χ{|x−y|≤ 1

R
} dy dx
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for all u ∈ Lp(B1).

Proof. Let n be a natural number such that n ≥ 2R > n− 1. We introduce
Ak = Ak(x, y) =

k
n
y + n−k

n
x, k = 0, 1, . . . n.

Then

I =

ˆ
B1

ˆ
B1

|u(x)− u(y)|p

|x− y|d+ps
dy dx =

ˆ
B1

ˆ
B1

|
∑n

k=1(u(Ak−1)− u(Ak))|p

|x− y|d+ps
dy dx

≤ np−1

n∑
k=1

ˆ
B1

ˆ
B1

|u(Ak−1)− u(Ak)|p

|x− y|d+ps
dy dx.

Note that |Ak−1 − Ak| = 1
n
|x− y|. If we substitute x̃ = Ak−1, ỹ = Ak, then dỹ dx̃ =

n−d dy dx (which follows by an elementary calculation, see also [3, p. 570]). Moreover,
x̃, ỹ ∈ B1 with |x̃− ỹ| ≤ 2

n
≤ 1

R
. Hence

I ≤ np−ps

ˆ
B1

ˆ
B1

|u(x̃)− u(ỹ)|p

|x̃− ỹ|d+ps
χ{|x̃−ỹ|≤ 1

R
} dỹ dx̃.

Since n < 2R + 1 ≤ 3R, the assertion follows. �
Proof of Corollary 6. From [4] and [1, p. 80] we know that there exists a constant

C = C(p, d, s0), such that for s0 ≤ s < 1

(14)
ˆ
Br

|u(x)− uBr |p dx ≤ C(1− s)rps
ˆ
Br

ˆ
Br

|u(x)− u(y)|p

|x− y|d+ps
dy dx,

for all u ∈ Lp(B1). The assertion now follows from (14), Proposition 4 and Lemma 7.
�
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