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Abstract. Properties of first-order Sobolev-type spaces on abstract metric measure spaces,
so-called Newtonian spaces, based on quasi-Banach function lattices are investigated. The set of
all weak upper gradients of a Newtonian function is of particular interest. Existence of minimal
weak upper gradients in this general setting is proven and corresponding representation formulae
are given. Furthermore, the connection between pointwise convergence of a sequence of Newtonian
functions and its convergence in norm is studied.

1. Introduction

Generalizations of first-order Sobolev spaces in abstract metric measure spaces
have been intensively studied in the past two decades. Such theories lead to new and
interesting results, which can be readily used when studying functions defined on
(not necessarily open) subsets of Rn. Shanmugalingam [21] pioneered the theory of
Newtonian spaces, corresponding to the Sobolev spaces W 1,p for p ∈ (1,∞). There,
the distributional gradients, which heavily rely on the linear structure of Rn, are
substituted by the so-called upper gradients. These were originally introduced by
Heinonen and Koskela [12, 13]. The upper gradients are defined as Borel functions
that can be used for certain pointwise estimates of differences of function values. The
upper gradient of a given function is hence not determined uniquely. Therefore, the
Newtonian norm is defined via a minimization process, namely,

∥u∥N1X
..= ∥u∥X + inf

g
∥g∥X ,

where X is the underlying function space, e.g., X = Lp corresponds to the Sobolev
space W 1,p, and the infimum is taken over all upper gradients g of the function u.

It is only natural to ask whether this infimum is attained for some upper gradi-
ent. Since the set of upper gradients corresponding to a given function is not closed
in general, one cannot really expect to obtain an affirmative answer. Indeed, the
infimum need not be attained as can be seen, e.g., in Björn and Björn [3, Exam-
ple 1.31] and in Malý [17, Example 2.6]. On the other hand, the same Newtonian
theory can be built using weak upper gradients, which were introduced by Koskela
and MacManus [15] as a relaxation of upper gradients. The weak upper gradients
are more flexible and it might seem feasible that the infimum is attained for some
weak upper gradient.
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The question of existence of a unique minimal weak upper gradient has been of
great interest. Shanmugalingam showed in [22] that a minimal weak upper gradient
exists in the Lp setting for p ∈ (1,∞). Tuominen [24] extended this result and proved
the existence in the setting of reflexive Orlicz spaces. Mocanu [19] followed up the
same method to show that minimal weak upper gradients exist in strictly convex
reflexive Banach function spaces (see Bennett and Sharpley [1, Definition I.1.3] for
the definition of Banach function spaces). In these papers, it is shown that the set of
weak upper gradients of a given function is convex and closed. Then, the existence of
a minimal element of this set is established using the James characteristic of reflexive
spaces (see Blatter [5], cf. James [14]). Even though reflexivity of the underlying
function space is crucial for this method, it is not assumed, nor mentioned in [19]. In
the present paper, we also study the properties of the sets of (weak) upper gradients
in our setting. Nevertheless, we use a different approach, which does not depend on
reflexivity, to find minimal weak upper gradients.

Hajłasz [8] proved the existence of a minimal weak upper gradient in the Lp set-
ting for p ∈ [1,∞). He constructed a convergent sequence of weak upper gradients
that minimizes a certain energy functional. The limit function was shown to be a
weak upper gradient as well. Costea and Miranda [6] applied an analogous construc-
tion in the setting of the Lorentz Lp,q spaces for p ∈ (1,∞) and q ∈ [1,∞). We will
use a similar method to prove the main theorem of the paper, i.e., that minimal weak
upper gradients exist in our very general setting of quasi-Banach function lattices.
Our result applies, in particular, to the N1,∞ ..= N1L∞ spaces, where the question
of existence of minimal weak upper gradients was still open. Minimal weak upper
gradients are determined uniquely pointwise up to sets of measure zero among all
weak upper gradients of finite norm.

Having established the existence, we find various representation formulae for
minimal weak upper gradients. Unfortunately, these do not hold in full generality
(unlike the rest of the paper) since they rely on Lebesgue’s differentiation theorem,
which requires additional assumptions on the measure with respect to the metric,
e.g., the doubling property of the measure is sufficient. The idea of representation
formulae originates in Björn [4].

Various historical notes on the problem of minimal weak upper gradients can be
found in Björn and Björn [3, Section 2.11].

The structure of the paper is the following. In Section 2, we give the definition
of quasi-Banach function lattices, which are the underlying function spaces for this
paper. We also define the Newtonian spaces and the Sobolev capacity. Section 3
provides us with an overview of the weak upper gradients and their properties that
have been established in Malý [17] and will be used in the following text. Section 4
is devoted to minimal weak upper gradients. Auxiliary claims as well as the main
theorem are proven there. Furthermore, we find a family of representation formulae
for the minimal weak upper gradients. In Section 5, we study the sets of (weak)
upper gradients and investigate convergence properties of sequences of Newtonian
functions.

2. Preliminaries

We assume throughout the paper that P = (P , d, µ) is a metric measure space
equipped with a metric d and a σ-finite Borel regular measure µ. In our context, Borel
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regularity means that all Borel sets in P are µ-measurable and for each µ-measurable
set A there is a Borel set D ⊃ A such that µ(D) = µ(A). The connection between
d and µ is given by the condition that every ball in P has finite positive measure.
Let M(P , µ) denote the set of all extended real-valued µ-measurable functions on P .
The set of extended real numbers, i.e., R∪{±∞}, will be denoted by R. The symbol
N will denote the set of positive integers, i.e., {1, 2, . . .}. The open ball centered at
x ∈ P with radius r > 0 will be denoted by B(x, r). We define the integral mean of
a measurable function u over a measurable set E of finite positive measure as

 
E

u dµ ..=
1

µ(E)

ˆ
E

u dµ,

whenever the integral on the right-hand side exists, not necessarily finite though.
A linear space X = X(P , µ) of equivalence classes of functions in M(P , µ) is

said to be a quasi-Banach function lattice over (P, µ) equipped with the quasi-norm
∥ · ∥X if the following axioms hold:

(P0) ∥ · ∥X determines the set X, i.e., X = {u ∈ M(P , µ) : ∥u∥X <∞};
(P1) ∥ · ∥X is a quasi-norm, i.e.,

• ∥u∥X = 0 if and only if u = 0 a.e.,
• ∥au∥X = |a| ∥u∥X for every a ∈ R and u ∈ M(P, µ),
• there is a constant c ≥ 1, the so-called modulus of concavity, such that
∥u+ v∥X ≤ c(∥u∥X + ∥v∥X) for all u, v ∈ M(P , µ);

(P2) ∥ · ∥X satisfies the lattice property, i.e., if |u| ≤ |v| a.e., then ∥u∥X ≤ ∥v∥X ;
(RF) ∥ · ∥X satisfies the Riesz–Fischer property, i.e., if un ≥ 0 a.e. for all n ∈ N,

then
∥∥∑∞

n=1 un
∥∥
X
≤

∑∞
n=1 c

n∥un∥X , where c ≥ 1 is the modulus of concavity.
Note that the function

∑∞
n=1 un needs be understood as a pointwise (a.e.)

sum.

It follows from (P1) and (P2) that X contains only functions that are finite a.e. In
other words, if ∥u∥X < ∞, then |u| < ∞ a.e. A quasi-Banach function lattice is
normed, and thus called a Banach function lattice if the modulus of concavity is
equal to 1.

In the further text, we will slightly deviate from this rather usual definition of
quasi-Banach function lattices. Namely, we will consider X to be a linear space of
functions defined everywhere instead of equivalence classes defined a.e. Then, the
functional ∥ · ∥X is really only a quasi-seminorm.

Throughout the paper, we also assume that the quasi-norm ∥ · ∥X is continuous,
i.e., if ∥un − u∥X → 0 as n → ∞, then ∥un∥X → ∥u∥X . The continuity of ∥ · ∥X
in normed spaces follows from the triangle inequality. On the other hand, if the
space X is merely quasi-normed, then there is an equivalent continuous quasi-norm
satisfying the lattice property due to the Aoki–Rolewicz theorem, cf. Benyamini and
Lindenstrauss [2, Proposition H.2].

The Riesz–Fischer property is equivalent to the completeness of the function
lattice X, given that the quasi-norm is continuous and the conditions (P0)–(P2) are
satisfied, cf. Zaanen [25, Lemma 101.1] or Halperin and Luxemburg [10].

Example 2.1. All Lp(P , µ) spaces for p ∈ [1,∞] are Banach function lattices.
On the other hand, if p ∈ (0, 1), then they are only quasi-Banach function lattices.
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The Lorentz spaces Lp,r(P , µ) for p ∈ (1,∞] and r ∈ [1,∞] are Banach function
lattices, where a suitable equivalent norm needs to be chosen for p < r. However,
L1,r(P, µ) for r ∈ (1,∞] are only quasi-Banach function lattices.

The variable exponent spaces Lp(·)(P, µ), where p : P → [1,∞], as well as Orlicz
spaces are Banach function lattices.

Spaces of continuous, differentiable, or Sobolev functions fail to comply with the
lattice property, and hence are not Banach function lattices.

A more detailed discussion on function spaces covered by this general setting can
be found in Malý [17, Example 2.1]. For a thorough treatise on partially ordered
linear spaces, we refer the reader to Luxemburg and Zaanen [16] and Zaanen [25].

Definition 2.2. A sequence of measurable functions {fn}∞n=1 is said to converge
in measure to a measurable function f on a set M if for every ε > 0,

µ({x ∈M : |f(x)− fn(x)| ≥ ε}) → 0 as n→ ∞.

Lemma 2.3. Let {fn}∞n=1 be a sequence which converges in X, i.e., there is a
function f ∈ X such that ∥fn − f∥X → 0 as n → ∞. Then, there is a subsequence
{fnk

}∞k=1 such that fnk
→ f in measure on sets of finite measure as k → ∞.

Proof. Let ε > 0 and let M ⊂ P be a measurable set with µ(M) < ∞. Then
define En = {x ∈M : |f(x)−fn(x)| ≥ ε}. We can estimate χEn(x) ≤ |f(x)−fn(x)|/ε
for every x ∈ P . Hence, ∥χEn∥X ≤ ∥(f − fn)/ε∥X , and consequently ∥χEn∥X → 0 as
n→ ∞. We want to prove that µ(Enk

) → 0 as k → ∞ for some subsequence, which
is chosen independently of ε and M .

Let us choose a subsequence {fnk
}∞k=1 such that ∥f−fnk

∥X < (2c)−k, where c ≥ 1
is the modulus of concavity of X. Consequently, we have ∥χEnk

∥ ≤ (2c)−k/ε. Let
Fj =

∪∞
k=j Enk

. Then, we have µ(Fj) ≤ µ(M) < ∞ for all j ∈ N. The sets Fj form
a decreasing sequence. Letting F =

∩∞
j=1 Fj, we obtain µ(F ) = limj→∞ µ(Fj). The

Riesz–Fischer property gives that

∥χFj
∥X ≤

∥∥∥∥ ∞∑
k=j

χEnk

∥∥∥∥
X

≤
∞∑
k=j

ck+1−j∥χEnk
∥X ≤

∞∑
k=j

ck+1−j 1

(2c)kε
=

1

(2c)j−1ε

for every j ∈ N. On the other hand, the functions χFj
decrease to χF as j → ∞.

The lattice property yields ∥χF∥X ≤ ∥χFj
∥X → 0 as j → ∞. Therefore, χF = 0

a.e., whence µ(F ) = 0. Now, µ(Enk
) ≤ µ(Fk) → µ(F ) = 0 as k → 0. Thus, the

subsequence {fnk
}∞k=1 satisfies µ({x ∈ M : |f(x) − fnk

(x)| ≥ ε}) → 0 as k → ∞ for
every ε > 0 and every M ⊂ P of finite measure, i.e., it converges to f in measure on
sets of finite measure. �

Lemma 2.4. Let {fn}∞n=1 be a sequence of measurable functions which are finite
a.e. Suppose fn → f in measure on sets of finite measure as n → ∞. Then, there
is a subsequence {fnk

}∞k=1 such that fnk
→ f a.e. in P . In particular, the conclusion

holds if fn → f in X as n→ ∞.

Proof. If µ(P) < ∞, then the claim follows from a classical result of measure
theory, see Halmos [9, Section 22]. Therefore, suppose µ(P) = ∞. Since µ is σ-finite,
we have P =

∪∞
n=1Pn, where µ(Pn) < ∞ for every n ∈ N. Existence of the wanted

subsequence can be established by a diagonalization argument. First we choose a
subsequence {f1,k}∞k=1 of {fn}∞n=1 such that f1,k → f a.e. on P1 as k → ∞. We
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continue inductively, i.e., having a sequence {fj,k}∞k=1 for some j ∈ N we choose a
subsequence {fj+1,k}∞k=1 such that fj+1,k → f a.e. on Pj+1 as k → ∞. Finally, we let
fnk

= fk,k for all k ∈ N. Hence fnk
→ f a.e. on Pj for every j ∈ N, and therefore

a.e. on P , as k → ∞.
Suppose now that fn → f in X as n→ ∞. Then, there is a subsequence {fnj

}∞j=1

such that fnj
→ f in measure on sets of finite measure as j → ∞ by Lemma 2.3.

Now, we may choose a subsequence converging a.e. in P as in the previous part of
the proof. �

By a curve in P we will mean a rectifiable non-constant continuous mapping from
a compact interval. Thus, a curve can be (and we will always assume that all curves
are) parameterized by arc length ds, see e.g. Heinonen [11, Section 7.1]. Note that
every curve is Lipschitz continuous with respect to its arc length parametrization.

Now, we shall introduce the upper gradients, which are used as a substitute for
the modulus of the usual weak gradient in the definition of our Sobolev-type norm.
The upper gradients, under the name very weak gradients, were first studied by
Heinonen and Koskela in [12, 13].

Definition 2.5. Let u : P → R. A Borel function g : P → [0,∞] is called an
upper gradient of u if

(2.1) |u(γ(0))− u(γ(lγ))| ≤
ˆ
γ

g ds

for all curves γ : [0, lγ] → P . To make the notation easier, we are using the convention
that |(±∞)− (±∞)| = ∞.

Definition 2.6. A measurable function belongs to the Dirichlet space DX if it
has an upper gradient in X.

Definition 2.7. The Newtonian space based on X is the space N1X = X ∩DX
endowed with the quasi-seminorm

(2.2) ∥u∥N1X = ∥u∥X + inf
g
∥g∥X ,

where the infimum is taken over all upper gradients g of u. Note that the functional
∥ · ∥N1X can be defined by (2.2) for every measurable function u /∈ N1X as well, in
which case ∥u∥N1X = ∞. Let us point out that we assume that functions are defined
everywhere, and not just up to equivalence classes a.e.

Remark 2.8. We also define the space of natural equivalence classes Ñ1X =
N1X/∼ , where the equivalence relation u ∼ v is determined by ∥u − v∥N1X = 0.
Then, Ñ1X is a complete (quasi)normed linear space (see Malý [17, Theorem 7.1]).

Note that we follow the notation of Björn and Björn [3] so that the symbol N1X

denotes the space of functions defined everywhere while Ñ1X denotes the space of
equivalence classes. Some authors, e.g., Shanmugalingam [21, 22], Tuominen [24],
and Mocanu [19], use the corresponding symbols the other way around.

Definition 2.9. The (Sobolev) X-capacity of a set E ⊂ P is defined as

CX(E) = inf{∥u∥N1X : u ≥ 1 on E}.
We say that a property of points in P holds CX-quasi-everywhere (CX-q.e.) if the
set of exceptional points has X-capacity zero. Despite the dependence on X, we will
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often write simply capacity and q.e. whenever there is no risk of confusion of the
underlying function space.

Remark 2.10. The capacity provides a finer distinction of sets of zero measure
since µ(E) = 0 whenever CX(E) = 0.

Moreover, ∥u∥N1X = 0 if and only if u = 0 q.e. Thus, the natural equivalence
classes in N1X are given by equality up to sets of capacity zero (see [17, Corol-
lary 6.14]).

3. Weak upper gradients

This section summarizes fundamental properties of the moduli of curve families
and the weak upper gradients that have been established in the setting of Newtonian
spaces based on quasi-Banach function lattices in Malý [17].

The family of all curves in P will be denoted by Γ(P). For an arbitrary set
E ⊂ P , we define

ΓE = {γ ∈ Γ(P) : γ−1(E) ̸= ∅} and Γ+
E = {γ ∈ Γ(P) : λ1(γ−1(E)) > 0},

where λ1 denotes the (outer) 1-dimensional Lebesgue measure. If the set γ−1(E) ⊂ R
is not λ1-measurable, then λ1(γ−1(E)) > 0. Observe also that ΓP = Γ(P).

We introduce a (σ-quasi-additive) outer measure on the system of families of
curves, the so-called X-modulus. For Γ ⊂ Γ(P), it is defined by

ModX(Γ) := inf ∥ρ∥X ,
where the infimum is taken over all non-negative Borel functions ρ that satisfy´
γ
ρ ds ≥ 1 for all γ ∈ Γ.
An assertion is said to hold for ModX-almost every curve (abbreviated ModX-

a.e. curve) if the family of exceptional curves has zero X-modulus. We will often use
the following characterization of such negligibility of a family of curves.

Proposition 3.1. Let Γ ⊂ Γ(P). Then, ModX(Γ) = 0 if and only if there is a
non-negative Borel function ρ ∈ X such that

´
γ
ρ ds = ∞ for all curves γ ∈ Γ.

Another interesting property of the modulus is, roughly speaking, that the longer
the curves in Γ are, the smaller ModX(Γ) is. More precisely, if Γ1,Γ2 ⊂ Γ(P) and if for
every curve γ1 ∈ Γ1 there is a subcurve γ2 ∈ Γ2 of γ1, then ModX(Γ1) ≤ ModX(Γ2).
Here, a curve γ′ is called a subcurve of a curve γ if γ′ is equal to a restriction of γ
after reparametrization and perhaps reversion.

The set of upper gradients of a given function lacks many useful properties, which
makes the upper gradients difficult to work with. For example, upper gradients are
required to be Borel, and the set of upper gradients is closed neither under taking
pointwise minimum of two upper gradients (see Example 4.3), nor under convergence
in X. All these drawbacks can be resolved if we relax the conditions and introduce
weak upper gradients inspired by the original idea of Koskela and MacManus [15].

Definition 3.2. A non-negative measurable function g on P is an X-weak upper
gradient of an extended real-valued function u on P if inequality (2.1), i.e.,

|u(γ(0))− u(γ(lγ))| ≤
ˆ
γ

g ds,

holds for ModX-a.e. curve γ : [0, lγ] → P .



Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices 733

The function g is called an upper gradient of u along a curve γ if it satisfies
inequality (2.1) for every subcurve γ′ of γ.

Note that given an arbitrary non-negative measurable function g, the path inte-
grals in inequality (2.1) are well defined for ModX-a.e. curve. Moreover, an X-weak
upper gradient g of a function u is actually an upper gradient of u along a curve γ
for ModX-a.e. curve γ.

The definition of an upper gradient uses the convention |(±∞) − (±∞)| = ∞,
which can make some calculations somewhat obscure. However, this convention
is unnecessary when working with X-weak upper gradients as can be seen by the
following characterization.

Proposition 3.3. Let u : P → R be a function which is finite a.e. and assume
that g ≥ 0 is such that for ModX-a.e. curve γ : [0, lγ] → P it is true that either

|u(γ(0))| = |u(γ(lγ))| = ∞ or |u(γ(0))− u(γ(lγ))| ≤
ˆ
γ

g ds.

Then, g is an X-weak upper gradient of u.

We may approximate any X-weak upper gradient by an upper gradient to any
desired accuracy in the X-norm. In fact, given an X-weak upper gradient g of u,
there is a function ρ ∈ X such that the functions g + ρ/k are upper gradients of u
for all k > 0. Therefore, the Newtonian norm (2.2) can be equivalently defined using
weak upper gradients.

Moreover, we may modify a function on a set of measure zero without changing
the value of the corresponding path integrals over a significant number of curves.
Hence, modifying an X-weak upper gradient of a function u on a set of measure zero
will produce another X-weak upper gradient of u. In the proofs below, we may thus
assume without loss of generality that X-weak upper gradients are Borel functions.

Note also that all functions that are equal q.e. have the same set of X-weak
upper gradients. A pair of functions in DX, see Definition 2.6, related by a pointwise
(in)equality a.e. is actually related on a larger set, namely, quasi-everywhere.

4. Minimal weak upper gradients

In this section, we will find a distinctive X-weak upper gradient of a given func-
tion, which is minimal both pointwise a.e. and normwise among all X-weak upper
gradients. The following lemmata provide us with tools that will be used in the min-
imization process. The method we pursue is inspired by the one used by Hajłasz [8].
First, we shall prove that a pointwise minimum of two X-weak upper gradients is
again an X-weak upper gradient.

Lemma 4.1. Let g1, g2 ∈ X be X-weak upper gradients of u ∈ DX. Then, their
pointwise minimum g ..= min{g1, g2} ∈ X is an X-weak upper gradient of u, as well.

Proof. We may assume that g1 and g2 are Borel functions. By Proposition 3.1,
they are upper gradients of u along γ and

´
γ
(g1 + g2) ds <∞ for ModX-a.e. curve γ.

Let now γ : [0, lγ] → P be one such curve and let E = γ−1({x ∈ P : g1(x) ≤ g2(x)}).
Then, E ⊂ [0, lγ] is a Borel set and there is a sequence of relatively open sets U1 ⊃
U2 ⊃ · · · ⊃ E such that λ1(Un \E) → 0 as n→ ∞ due to the outer regularity of the
Lebesgue measure λ1 on [0, lγ]. For a fixed n ∈ N, write Un as an at most countable
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union of pairwise disjoint relatively open intervals Ii with endpoints ai < bi, i.e.,
Un =

∪
i Ii. Then,

|u(γ(0))− u(γ(lγ))| ≤ |u(γ(0))− u(γ(a1))|+ |u(γ(a1))− u(γ(b1))|

+ |u(γ(b1))− u(γ(lγ))| ≤
ˆ
γ|I1

g1 ds+

ˆ
γ−γ|I1

g2 ds.

Splitting the interval [0, lγ] further with respect to the intervals Ii, we obtain

|u(γ(0))− u(γ(lγ))| ≤
ˆ
γ|∪j

i=1
Ii

g1 ds+

ˆ
γ−γ|∪j

i=1
Ii

g2 ds, whenever j ∈ N.

Therefore,

|u(γ(0))− u(γ(lγ))| ≤
ˆ
γ|Un

g1 ds+

ˆ
γ−γ|Un

g2 ds,

where the potential passing to a limit as j → ∞ is justified by the monotone and
dominated convergence theorems, respectively. Applying these theorems again and
letting n→ ∞ yield

|u(γ(0))− u(γ(lγ))| ≤
ˆ
γ|E

g1 ds+

ˆ
γ−γ|E

g2 ds =

ˆ
γ

g ds.

The lattice property (P2) ensures that g ∈ X. �

Remark 4.2. The assumption g1, g2 ∈ X in the previous lemma is used when
applying Proposition 3.1 to obtain

´
γ
(g1 + g2) ds < ∞ which allows us to use the

dominated convergence theorem later on. This assumption cannot be omitted as can
be seen from the following example.

Example 4.3. Let A ⊂ [0, 1] be a Borel set such that 0 < λ1(A∩ I) < λ1(I) for
every non-trivial interval I ⊂ [0, 1]. For construction of such a set A, see remarks on
Problem V.3.34 in Torchinsky [23, p. 376]. Then, both g1 = ∞χA and g2 = ∞χ[0,1]\A
are upper gradients of any measurable function on [0, 1], however, their pointwise
minimum is identically zero.

Next, we show how a limit of a decreasing sequence of functions translates into
a limit of path integrals.

Lemma 4.4. Let {gk}∞k=1 be a decreasing sequence of non-negative functions in
X. Let g(x) = limk→∞ gk(x) for every x ∈ P . Then, g ∈ X andˆ

γ

gk ds→
ˆ
γ

g ds

for ModX-a.e. curve γ as k → ∞.

Proof. The lattice property (P2) immediately implies that g ∈ X. The integral´
γ
g ds is well defined and has a value in [0,∞) for ModX-a.e. curve γ by Propo-

sition 3.1. Let Γ∞ denote the exceptional family of curves for which the integral´
γ
g ds does not have a real value. Similarly,

´
γ
gk ds is well defined and has a value

in [0,∞) for all curves γ outside of a curve family Γk whose modulus is 0 for each
k ∈ N. Considering an arbitrary curve γ ∈ Γ(P) \ (Γ∞ ∪

∪∞
k=1 Γk), we obtain the

expected convergence of integrals by the dominated convergence theorem. Note that
ModX(Γ∞ ∪

∪∞
k=1 Γk) = 0 since the X-modulus is an outer measure. �
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The following proposition shows that the set of X-weak upper gradients is stable
under taking pointwise limits of decreasing sequences of X-weak upper gradients of a
given function from the Dirichlet space DX. Recall that DX consists of measurable
functions that have an upper gradient in X.

Proposition 4.5. Let u ∈ DX and let {gk}∞k=1 be a decreasing sequence of
functions in X all of which are X-weak upper gradients of u. For x ∈ P , we define
the function g(x) = limk→∞ gk(x). Then, g ∈ X is an X-weak upper gradient of u.

Proof. Let Γk ⊂ Γ(P) be the family of exceptional curves γ along which gk does
not satisfy (2.1), k ∈ N. Let Γ̃ ⊂ Γ(P) be the family of curves for whichˆ

γ

gk ds9
ˆ
γ

g ds as k → ∞.

Lemma 4.4 implies that ModX(Γ̃) = 0 and hence ModX(Γ̃ ∪
∪∞
k=1 Γk) = 0 as ModX

is an outer measure. If we now consider a curve γ ∈ Γ(P) \ (Γ̃ ∪
∪∞
k=1 Γk), then

|u(γ(0))− u(γ(lγ))| ≤ lim
k→∞

ˆ
γ

gk ds =

ˆ
γ

g ds,

whence g is an X-weak upper gradient of u. The lattice property (P2) of X imme-
diately yields g ∈ X. �

Next, we state and prove the main theorem of the paper. We shall find an
X-weak upper gradient which minimizes the energy functional infg ∥g∥X from (2.2),
i.e., from the definition of ∥ · ∥N1X . We will actually find an X-weak upper gradient
which is minimal pointwise a.e. among all X-weak upper gradients in X and the
lattice property (P2) then implies that it has the minimal norm in X. Note that the
following theorem is considerably more general than Mocanu’s result [19, Theorem 1]
as we do not require X to be either reflexive, or strictly convex.

Theorem 4.6. Let u ∈ DX. Then, there is a minimal X-weak upper gradient
gu ∈ X of u, i.e., gu ≤ g a.e. for all X-weak upper gradients g ∈ X of u. Moreover,
gu is unique up to sets of measure zero.

Proof. Since µ is σ-finite, we can find sets Pn ⊂ P such that P =
∪∞
n=1 Pn and

µ(Pn) ∈ (0,∞) for each n ∈ N. Therefore, we can define a quasi-additive functional
J : X → [0,∞) by

Jf = ∥f∥X +
∞∑
n=1

2−n
 
Pn

|f |
1 + |f |

dµ.

Then, ∥f∥X ≤ Jf ≤ ∥f∥X + 1 for all functions f ∈ X. Moreover, the functional is
monotone, i.e., if f ≤ h a.e., then Jf ≤ Jh. Let u ∈ DX be given and let

I = inf{Jg : g ∈ X is an X-weak upper gradient of u}.

Then, I < ∞ and there is a sequence {gk}∞k=1 ⊂ X of X-weak upper gradients of
u such that Jgk → I as k → ∞. Now, we can define hm = min{gk : 1 ≤ k ≤ m}
pointwise for all m ∈ N. All functions hm ∈ X, m ∈ N, are X-weak upper gradients
of u by applying Lemma 4.1 repeatedly, therefore, I ≤ Jhm. On the other hand, hm ≤
gm everywhere in P . Thus, Jhm ≤ Jgm, whence Jhm → I as m→ ∞. We can define
h(x) = limm→∞ hm(x) for x ∈ P . Proposition 4.5 yields that h ∈ X is an X-weak
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upper gradient of u, as well, and thus Jh ≥ I. However, Jh ≤ limm→∞ Jhm = I,
whence Jh = I.

It remains to prove that h is the minimal X-weak upper gradient of u. Suppose
there is h′ ∈ X such that h′ < h on a set A ⊂ Pa of positive measure for some a ∈ N
(among possibly others). Let g = min{h, h′}. Then, g ∈ X is also an X-weak upper
gradient of u by Lemma 4.1. Moreover, g < h on A while g ≤ h on P. Consequently,
I ≤ Jg ≤ Jh = I.

Since
´
A
g/(1 + g) dµ <

´
A
h/(1 + h) dµ, we obtain

I = Jg = ∥g∥X + 2−a
 
Pa

g

1 + g
+

∑
n∈N
n ̸=a

2−n
 
Pn

g

1 + g
< Jh = I

which is a contradiction. Therefore, the inequality h′ < h holds on a set of zero
measure. In other words, h′ ≥ h a.e. on P . �

Remark 4.7. In the further text, gu will denote the minimal X-weak upper
gradient of u ∈ DX. We will consider gu to be defined everywhere in P even though
there is some freedom in choosing its representative. As already mentioned, the
minimal X-weak upper gradient gu ∈ X of u ∈ DX satisfies ∥gu∥X ≤ ∥g∥X for all
X-weak upper gradients g ∈ M(P , µ) of u. Observe however that the pointwise
inequality holds only for X-weak upper gradients g ∈ X of u. The following example
shows that it might fail otherwise.

Example 4.8. Suppose X ⊂ L1([0, 1]). Similarly as in Example 4.3, let A ⊂
[0, 1] be a Borel set which satisfies 0 < λ1(A ∩ I) < λ1(I) for all non-degenerate
intervals I ⊂ [0, 1]. Then, g = ∞χA is an upper gradient of any function on [0, 1].
Let u(x) = x for x ∈ [0, 1]. Thus, gu = 1 a.e. as proven in Lemma 5.8 below.
Nevertheless, gu > g on [0, 1] \ A, i.e., on a set of positive measure.

Existence of a minimal X-weak upper gradient guarantees that we may replace
the infimum in the definition of the Newtonian quasi-seminorm by the X-norm of
the minimal X-weak upper gradient.

Corollary 4.9. If u ∈ N1X, then ∥u∥N1X = ∥u∥X + ∥gu∥X .

Proof. We can find a sequence of upper gradients {gj}∞j=1 of u such that gj → gu
in X as j → ∞. Therefore,

∥u∥N1X ≤ ∥u∥X + lim
j→∞

∥gj∥X = ∥u∥X + ∥gu∥X .

On the other hand, ∥gu∥X ≤ ∥g∥X for every upper gradient g of u. Hence,

∥u∥N1X = ∥u∥X + inf
g
∥g∥X ≥ ∥u∥X + ∥gu∥X ,

where the infimum is taken over all upper gradients g of u. �
We shall see that it is possible to find some representation formulae for mini-

mal X-weak upper gradients. The proof relies heavily on Lebesgue’s differentiation
theorem, which reads

lim
r→0

 
B(x,r)

f dµ = f(x) for a.e. x ∈ P
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whenever f ∈ L1
loc(P). Lebesgue’s differentiation theorem is known to hold when µ

is a doubling measure, i.e., when there is C ≥ 1 such that µ(2B) ≤ Cµ(B) for every
ball B ⊂ P , or more generally when the Vitali covering theorem holds. For further
details on Lebesgue’s differentiation theorem, see Björn and Björn [3, Section 2.10].

Theorem 4.10. Suppose that Lebesgue’s differentiation theorem holds for (P , µ).
Let φ ∈ C([0,∞]) be a strictly increasing function with φ(0) = 0 such that φ ◦ |f | ∈
L1
loc(P) whenever f ∈ X. Suppose further that one of the following two conditions

is fulfilled:

(a) φ is subadditive, i.e., φ(x+ y) ≤ φ(x) + φ(y) for any x, y ∈ [0,∞];
(b) φ supports a Minkowski-type inequality, i.e., the inequality

φ−1
( 

E

φ ◦ (f + h) dµ
)
≤ φ−1

( 
E

φ ◦ f dµ
)
+ φ−1

( 
E

φ ◦ h dµ
)

holds for any measurable E ⊂ P of finite measure, and any measurable func-
tions f, h ≥ 0.

Let u ∈ DX and define

g1(x) = inf
g
lim sup
r→0+

φ−1
( 

B(x,r)

φ ◦ g dµ
)
, x ∈ P ,

where the infimum is taken over all X-weak upper gradients g ∈ X of u. Let further
g2 be defined similarly but taking the infimum only over all upper gradients g ∈ X
of u. Then, g1 = g2 = gu a.e., and thus both g1 and g2 are minimal X-weak upper
gradients of u.

Proof. Note that φ−1 is a continuous function because φ is assumed continuous
on the compactified interval [0,∞]. The function φ ◦ g is locally integrable for every
non-negative g ∈ X. Thus, Lebesgue’s differentiation theorem applies. Let

g∗u(x) = lim sup
r→0+

φ−1
( 

B(x,r)

φ ◦ gu dµ
)
, x ∈ P .

Then, φ ◦ g∗u = φ ◦ gu a.e. On the other hand, we have φ ◦ gu ≤ φ ◦ g a.e. for
every X-weak upper gradient g ∈ X of u, and hence the integral means of φ ◦ gu are
dominated by the integral means of φ ◦ g. Thus, g∗u ≤ g1 ≤ g2 a.e. As mentioned
in Section 3, there is a non-negative Borel function ρ ∈ X such that all functions
gu + ρ/j, j ∈ N, are upper gradients of u. Let

M = {x ∈ P : ρ(x) <∞} ∩
∞∩
j=1

{
x ∈ P : x is a Lebesgue point of φ

(
ρ(·)
j

) }
.

Then, µ(P \M) = 0 as ρ ∈ X is finite a.e. and Lebesgue’s differentiation theorem
applies to all functions φ

(
ρ(·)
j

)
, j ∈ N, since they are locally integrable.
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Suppose first that φ is subadditive, which gives for x ∈M that

φ(g2(x)) ≤ lim sup
r→0+

 
B(x,r)

φ

(
gu(y) +

ρ(y)

j

)
dµ(y)

≤ lim sup
r→0+

 
B(x,r)

φ(gu(y)) dµ(y) + lim sup
r→0+

 
B(x,r)

φ

(
ρ(y)

j

)
dµ(y)

= φ(g∗u(x)) + φ

(
ρ(x)

j

)
.

Letting j → ∞ shows that φ ◦ g2 ≤ φ ◦ g∗u on M , and hence g2 ≤ g∗u a.e. on P .
Suppose now that φ supports the Minkowski-type inequality. For x ∈ M , we

have

g2(x) ≤ lim sup
r→0+

φ−1

( 
B(x,r)

φ

(
gu(y) +

ρ(y)

j

)
dµ(y)

)
≤ lim sup

r→0+
φ−1

( 
B(x,r)

φ(gu(y)) dµ(y)

)
+ lim sup

r→0+
φ−1

( 
B(x,r)

φ

(
ρ(y)

j

)
dµ(y)

)
= g∗u(x) +

ρ(x)

j
.

Letting j → ∞ shows that g2 ≤ g∗u on M , i.e., almost everywhere on P . �

Example 4.11. Let us find several examples of functions φ, which satisfy the
hypotheses of the previous theorem.

(a) The representation formula based on either φ(t) = t/(1+t) or φ(t) = arctan t,
where t ∈ [0,∞), may be used for any (quasi)Banach function lattice X as
both functions are bounded. Therefore, φ ◦ |g| ∈ L∞(P) ⊂ L1

loc(P) for any
measurable function g. These functions φ are concave, and hence subadditive.

(b) Given p ∈ (0, 1], the function φ(t) = tp for t ∈ [0,∞) is concave (and hence
subadditive), but unbounded, which somewhat restricts the choice of the func-
tion spaceX. For example, letX = Lq(P). If q ∈ [p,∞], then the assumptions
are satisfied. On the other hand, if q ∈ (0, p), then φ ◦ |g| in general fails to
be locally integrable for some g ∈ X.

(c) Given p ∈ [1,∞), the function φ(t) = tp, t ∈ [0,∞), obeys the Minkowski-
type inequality, which in this case is actually just the triangle inequality for
the Lp norm. Similarly as in (b), the theorem’s hypotheses are not fulfilled in
the case of X = Lq(P) with q ∈ (0, p).

(d) Mulholland [20] has shown that a function φ satisfies the Minkowski-type
inequality if log(φ′(et)) is an increasing and concave function for t ∈ R.
This condition can be equivalently written as φ(t) =

´ t
0
eψ(log τ) dτ , where

ψ : R → R is increasing and concave. Consequently, one can show that the
function φ(t) = tp(log(1+t))q satisfies condition (b) in the theorem’s hypothe-
ses whenever p, q ∈ [1,∞).

(e) Matkowski [18] has proven that the Minkowski-type inequality in our setting
holds if and only if the function F (s, t) = φ(φ−1(s) +φ−1(t)), s, t ≥ 0, is con-
cave on [0,∞)× [0,∞). He also generalized Mulholland’s sufficient condition.
If φ ∈ C2((0,∞)) is strictly convex and the function φ′/φ′′ is superadditive
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in (0,∞), then F (s, t) is indeed concave, and thus the Minkowski-type in-
equality holds. Based on this condition, one can prove that the functions
φ(t) = t2/(t + 1) and φ(t) = te−1/t, t > 0, may be used for suitable function
spaces X.

5. The set of weak upper gradients

In this section, we will study convergence properties of sequences of X-weak
upper gradients. A fundamental result has been established by Fuglede [7] in the
setting of Lebesgue spaces on Rn. Later it was generalized by Shanmugalingam [21]
to Lebesgue spaces on metric measure spaces, and it turns out that the lemma holds
true even if we choose quasi-Banach function lattices to be the underlying function
spaces.

Lemma 5.1. (Fuglede’s lemma) Assume that gk → g in X as k → ∞. Then,
there is a subsequence (again denoted by {gk}∞k=1) such thatˆ

γ

gk ds→
ˆ
γ

g ds as k → ∞

for ModX-a.e. curve γ, while all the integrals are well defined and real-valued. Fur-
thermore, for ModX-a.e. curve γ,ˆ

γ

|gk − g| ds→ 0 as k → ∞.

Remark 5.2. A similar claim has been proven in Lemma 4.4. The hypothesis of
convergence of the sequence {gk}∞k=1 in X is replaced there by its monotone pointwise
convergence. Note that these lemmata are not corollaries of each other, as can be
seen from the following examples.

(a) Suppose X = L∞([0, 1]) and let gk = χ(0,1/k) for k ∈ N. Then, gk decreases
to zero function as k → ∞. However, neither this sequence nor any of its
subsequences converges in L∞([0, 1]) as it is not a Cauchy sequence, which is
a key property that will be used in the proof below.

(b) Suppose X = L1([0, 1]) and let gk = kχ(0,1/k)/ log k for k > 1. Then, gk → 0
in L1([0, 1]) as k → ∞. However, the pointwise convergence is not mono-
tone. Moreover, the argument in the proof of Lemma 4.4 was based on the
dominated convergence theorem, which would fail here since no dominating
function would be integrable.

In the following proof, the symbols g+ and g− are used to denote the positive
and the negative part of a function g, respectively, i.e.,

g+ = max{0, g} and g− = (−g)+ = max{0,−g}.

Proof of Lemma 5.1. By passing to a subsequence if necessary, we may as-
sume that ∥gk − g∥X < (2c)−k, where c ≥ 1 is the modulus of concavity of X. By
Proposition 3.1,

´
γ
g+ ds is well defined with a value in [0,∞) for ModX-a.e. curve

γ. Similarly,
´
γ
g− ds is well defined and real-valued for ModX-a.e. curve γ. Conse-

quently,
´
γ
g ds is well defined and real-valued for ModX-a.e. curve γ. Let the family

of the exceptional curves be denoted by Γ∞. Arguing similarly for each k ∈ N, we
obtain families Γk with ModX(Γk) = 0, outside of which

´
γ
gk ds is well defined and
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real-valued. Let Γ = Γ∞ ∪
∪∞
k=1 Γk. Then, all the integrals are well defined and

real-valued for γ ∈ Γ(P) \ Γ, while ModX(Γ) = 0 since ModX is an outer measure.
Let next

Γ̂ =
{
γ ∈ Γ(P) \ Γ:

ˆ
γ

gk ds ̸→
ˆ
γ

g ds, as k → ∞
}
,

Γ̃ =
{
γ ∈ Γ(P) \ Γ:

ˆ
γ

|gk − g| ds ̸→ 0, as k → ∞
}
,

Γ̃j =
{
γ ∈ Γ(P) \ Γ: lim sup

k→∞

ˆ
γ

|gk − g| ds > 1

j

}
, j ∈ N.

Then, Γ̂ ⊂ Γ̃ =
∪∞
j=1 Γ̃j. Let ρm,j = j

∑∞
k=m+1 |gk − g|. Then,

ˆ
γ

ρm,j ds > 1 for all γ ∈ Γ̃j and m ∈ N.

Hence,

ModX(Γ̃j) ≤ ∥ρm,j∥X ≤ j
∞∑

k=m+1

ck−m(2c)−k = j(2c)−m → 0 as m→ ∞,

which yields ModX(Γ ∪ Γ̂) = ModX(Γ ∪ Γ̃) ≤ c(ModX(Γ) + ModX(Γ̃)) = 0. Finally,
for every curve γ ∈ Γ(P) \ (Γ ∪ Γ̂) we have

´
γ
gk ds →

´
γ
g ds as k → ∞. Moreover,´

γ
|gk − g| ds→ 0 for every curve γ ∈ Γ(P) \ (Γ ∪ Γ̃) as k → ∞. �
Considering a function in the Dirichlet space DX, which consists of those mea-

surable functions that have an upper gradient in X, we might come across one of
the fundamental disadvantages of its set of upper gradients. Namely, it is not closed
under convergence in X as can be seen by the following example.

Example 5.3. Let u = χ{0} ∈ DX, where X = L1(R2). Then, gk(x) =
χB(x)/k|x|, where B = {|x| < 1}, is an upper gradient of u in X for every k > 0.
Obviously, gk → 0 in X as k → ∞. However, the zero function is not an upper
gradient of u.

The following proposition shows that, on the contrary, the set of X-weak upper
gradients is closed in X.

Proposition 5.4. Let u ∈ DX, and {gk}∞k=1 ⊂ X be a sequence of X-weak
upper gradients of u. Suppose that gk → g ≥ 0 in X as k → ∞. Then, g is an
X-weak upper gradient of u.

Proof. Let Γk ⊂ Γ(P) be the set of those curves for which gk does not satisfy
(2.1), k ∈ N. Then, ModX(Γk) = 0 by the definition of X-weak upper gradients. Let
Γ be the family of curves for which

´
γ
gk ds ̸→

´
γ
g ds, or some of the integrals are

not well defined. Fuglede’s lemma shows that ModX(Γ) = 0. Consider now a curve
γ ∈ Γ(P) \ (Γ ∪

∪∞
k=1 Γk). Then,

|u(γ(0))− u(γ(lγ))| ≤ lim
k→∞

ˆ
γ

gk ds =

ˆ
γ

g ds.

Hence, g is an X-weak upper gradient of u as ModX(Γ ∪
∪∞
k=1 Γk) = 0. �
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The following proposition further studies the closedness of the set of X-weak
upper gradients of a given function.

Proposition 5.5. For u ∈ DX, letM be the set of all upper gradients of u which
belong to X. Then, the closure M of M in X+ consists precisely of those X-weak
upper gradients of u, which are in X. Moreover, M = {g ∈ X+ : g ≥ gu a.e.}.

In the proposition, we use the symbol X+, which denotes the convex cone of non-
negative functions (not equivalence classes) in X, equipped with the (quasi)seminorm
inherited from X.

Proof. Let g ∈ X be an X-weak upper gradient of u. As noted in Section 3, it
can be approximated with arbitrary precision in X by upper gradients of u. Hence,
g ∈M .

Conversely, let g ∈ M . Then, there exists a sequence {gj}∞j=1 ⊂ X+ of upper
gradients of u such that gj → g in X as j → ∞. Proposition 5.4 shows that g is an
X-weak upper gradient of u.

Let M ′ = {g ∈ X+ : g ≥ gu a.e.}. Then, M ⊂M ′ since gu is minimal a.e. among
all X-weak upper gradients g ∈ X+ by Theorem 4.6. On the other hand, let g ∈M ′.
Then, g ≥ min{g, gu} everywhere in P while min{g, gu} = gu a.e. in P . The function
min{g, gu} is an X-weak upper gradient of u, and hence so is g. �

Fuglede’s lemma (Lemma 5.1) has an interesting consequence about convergence
of sequences of Newtonian functions.

Proposition 5.6. Let {fk}∞k=1 be a sequence of functions in the Newtonian space
N1X with gk ∈ X as respective X-weak upper gradients. Assume further that fk → f
in X and gk → g ≥ 0 in X as k → ∞. Then, there is a function f̃ = f a.e. such
that g is an X-weak upper gradient of f̃ , and thus f̃ ∈ N1X. Furthermore, there is
a subsequence {fkj}∞j=1 such that fkj → f̃ q.e. as k → ∞.

If either f ∈ N1X or there is a subsequence {fkj}∞j=1 such that fkj → f q.e. as
k → ∞, then we may choose f̃ = f .

Remark 5.7. Observe that we will not prove that fk → f̃ in N1X as k → ∞.
Such a conclusion need not be true, as can be seen from Example 5.9. This is a
fundamental difference between the Newtonian spaces N1Lp(Rn), p ≥ 1, and the
classical Sobolev spaces W 1,p(Rn), where it would hold that fk → f in W 1,p(Rn) as
k → ∞.

Moreover, weaker hypotheses would suffice in the Sobolev setting to obtain an
analogous conclusion. Namely, if fk → f weakly in Lp(Rn) and ∇fk → g weakly in
Lp(Rn;Rn) as k → ∞, then f ∈ W 1,p(Rn) and g = ∇f a.e. in Rn.

Proof of Proposition 5.6. We may assume that fk → f a.e., passing to a
subsequence if necessary. If the assumption on existence of a subsequence converging
q.e. is fulfilled, then that one is the subsequence we pass to. Otherwise, we use
Lemma 2.4 to justify this step. By Fuglede’s lemma there is a family of curves Γ
with ModX(Γ) = 0 such that

´
γ
gk ds→

´
γ
g ds ∈ R as k → ∞ whenever γ ∈ Γ(P)\Γ.

Let us define f̃ pointwise everywhere in P by f̃ = lim supk→∞ fk. Then, f̃ = f a.e.
in P .

It follows that gk is an upper gradient of fk for all k ∈ N along ModX-a.e. curve
γ, while neither γ, nor any of its subcurves belong to Γ. Let us now consider one
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such curve γ : [0, lγ] → P . Then, either |f̃(γ(0))| = |f̃(γ(lγ))| = ∞, or

|f̃(γ(0))− f̃(γ(lγ))| ≤ lim sup
k→∞

|fk(γ(0))− fk(γ(lγ))| ≤ lim sup
k→∞

ˆ
γ

gk ds =

ˆ
γ

g ds.

As f̃ is finite a.e., Proposition 3.3 shows that g is an X-weak upper gradient of f̃ .
Let now f̂ = lim infk→∞ fk. Then, f̂ = f = f̃ a.e. in P . An analogous argument

as above yields that g is an X-weak upper gradient of f̂ ∈ N1X, as well. Since
Newtonian functions that are equal a.e. are actually equal q.e., we obtain that f̂ = f̃
q.e., and hence fk → f̃ q.e. as k → ∞.

If f ∈ N1X, then f = f̃ q.e. Since functions that are equal q.e. have the same
weak upper gradients, g is an X-weak upper gradient of f as well. Moreover, fk → f
q.e. as k → ∞.

Finally, if fkj → f q.e. as j → ∞, then again f = f̃ q.e., and g is an X-weak
upper gradient of f . �

The following lemma provides us with an explicit description of the minimal
X-weak upper gradient of a locally Lipschitz function defined on an interval on the
real line endowed with the Lebesgue measure, given that all functions in X are locally
integrable. We will use the formula in Example 5.9 below. We also see in the proof
that in such a setting, allX-weak upper gradients of an arbitrary measurable function
are actually its upper gradients.

Lemma 5.8. Assume that X ⊂ L1
loc(I), where I ⊂ R is an interval. Let u be a

locally Lipschitz function. Then, the (lower) pointwise dilation

lipu(x) = lim inf
r→0

sup
y∈B(x,r)∩I

|u(y)− u(x)|
r

, x ∈ I,

is an upper gradient of u and it is also its minimal X-weak upper gradient.

Proof. Since u is locally Lipschitz, it is locally absolutely continuous. A classical
result of Lebesgue yields that u is differentiable a.e. in I and |u′(x)| = lipu(x) for
a.e. x ∈ I. By the triangle inequality for integration, it follows that lipu is an upper
gradient of u.

It remains to prove that it is a minimal X-weak upper gradient. Let g ∈ X be
an arbitrary X-weak upper gradient of u. Then,

|u(a)− u(b)| ≤
ˆ b

a

g(x) dx for all bounded intervals [a, b] ⊂ I.

Indeed, the singleton curve family Γ = {γa,b}, where γa,b(t) = a+t for t ∈ [0, b−a], has
a positive L1-modulus, and hence its X-modulus is also positive by Proposition 3.1.
Let z ∈ I be a Lebesgue point of g and suppose that u is differentiable at z. Then,

|u′(z)| = lim
h→0

|u(z + h)− u(z)|
h

≤ lim
h→0

 z+h

z

g(x) dx = g(z).

Consequently, lipu = |u′| ≤ g a.e. on I whence lipu is a minimal X-weak upper
gradient of u. �

Example 5.9. Suppose that X ⊂ L1([−1, 1]) contains non-zero constant func-
tions. Consider the triangle wave functions fk(x) = arccos(cos kx)/k with upper
gradients gk ≡ 1, where x ∈ [−1, 1] and k ∈ N. Then, fk → f ≡ 0 everywhere in
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[−1, 1], while gk → g ≡ 1 both in X and pointwise everywhere as k → ∞. Obviously,
f ∈ N1X. However, fk ̸→ f in N1X as k → ∞. Indeed, by Lemma 5.8, gk is a
minimal X-weak upper gradient of fk, and hence

∥f − fk∥N1X = ∥fk∥N1X = ∥fk∥X + ∥gk∥X ≥ ∥g∥X > 0 for all k ∈ N.

The following proposition resembles Proposition 5.6; however, we relax the as-
sumption that fk ∈ N1X, but we will assume that all functions fk have an upper
gradient in X, and that the convergence of the sequence {fk}∞k=1 is pointwise quasi-
everywhere.

Proposition 5.10. Let fk ∈ DX and suppose that gk ∈ X is an X-weak upper
gradient of fk, k ∈ N. Assume further that fk → f q.e. and gk → g ≥ 0 in X as
k → ∞, where f is real-valued almost everywhere. Then, g is an X-weak upper
gradient of f .

Observe that the assumption that f is real-valued a.e. is crucial for the claim.
For example, if we let fk ≡ k with gk ≡ 0 for all k ≥ 1, then g ≡ 0 is not an X-weak
upper gradient of f ≡ ∞, given that the space N1X is a proper subspace of X.

Proof. By passing to a subsequence if necessary we may assume by Fuglede’s
lemma that

´
γ
gk ds →

´
γ
g ds ∈ R as k → ∞ whenever γ ∈ Γ(P) \ Γ, where

ModX(Γ) = 0. Let f̃ = lim supk→∞ fk. Then, f̃ = f q.e.
In the same way as in the proof of Proposition 5.6, we can use Proposition 3.3

to show that g is an X-weak upper gradient of f̃ and hence of f . �

Remark 5.11. In Example 5.9, the limit function g was an upper gradient of f ,
however it was not its minimal X-weak upper gradient. Marola has therefore posed
a question, see Björn and Björn [3, Open problem 2.13], whether it is sufficient to
assume that fk → f in Lp(P) and gk → g in Lp(P) as k → ∞, where p ∈ [1,∞) and
where gk and g are minimal Lp-weak upper gradients of fk and f , respectively, for all
k, in order to obtain that fk → f in N1,p(P) ..= N1Lp(P) as k → ∞. If we study the
same question in the setting of quasi-Banach function lattices, then such hypotheses
certainly do not suffice in the following cases:

(a) The (quasi)norm of X is not absolutely continuous, i.e., there exist a function
u ∈ X and a decreasing sequence of sets En → N , where µ(N) = 0, such that
∥uχEn∥X ̸→ 0 = ∥uχN∥X as n → ∞. Typical examples of such spaces are
L∞, the weak Lp spaces, and the Marcinkiewicz spaces. Example 5.12 below
shows what kind of problems may arise in this setting.

(b) The space P has infinite measure and the (quasi)norm of X measures only
the size of the peaks of a function whereas the “rate of decay at infinity” does
not affect the value of the norm, e.g., X = L∞ + Z, where Z is an arbitrary
(quasi)Banach function lattice, i.e., ∥u∥X = inf{∥v∥L∞ + ∥w∥Z : u = v + w}.
In fact, these spaces may have an absolutely continuous norm. Example 5.13
illustrates the situation for these function spaces.

Example 5.12. Let X = L∞([0, 1]). For k ∈ N, define

uk(x) =


2

k
− x for 0 ≤ x <

1

k
,

x for
1

k
≤ x ≤ 1.
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Then, uk → u in L∞([0, 1]) as k → ∞, where u(x) = x. All functions uk as well
as u are 1-Lipschitz with constant pointwise dilation, hence guk(x) = gu(x) = 1
for a.e. x ∈ [0, 1]. Thus, guk → gu in L∞([0, 1]) as k → ∞. On the other hand,
uk(x)− u(x) = 2(1/k − x)+, and hence guk−u(x) = 2χ[0,1/k)(x), x ∈ [0, 1]. Therefore,
∥uk − u∥N1,∞([0,1]) = 2/k + 2 ̸→ 0 as k → ∞.

Example 5.13. LetX = L1+L∞(R), where the function norm can be expressed
by

∥f∥L1+L∞(R) = sup
{ˆ

E

|f | : E ⊆ R and λ1(E) ≤ 1
}

for f ∈ M(R, λ1)

(see Bennett and Sharpley [1, Theorem II.6.4 and Proposition II.3.3]).
Let φ be the 2-periodic extension of the function x 7→ 1−|x−1|, where x ∈ [0, 2).

For k ∈ N, define

uk(x) =

{
2−jφ(2jx) for j − 1 ≤ |x| < j, where j ∈ N, j ̸= k,

−2−kφ(2kx) for k − 1 ≤ |x| < k.

Then, uk → u in L∞(R), and hence in X, as k → ∞, where u(x) = 2−jφ(2jx)
for j − 1 ≤ |x| < j, j ∈ N. We might also observe that u = |uk| for any k ∈ N.
All functions uk as well as u are 1-Lipschitz with constant pointwise dilation, hence
guk(x) = gu(x) = 1 for a.e. x ∈ R. Thus, guk → gu in X as k → ∞. For x ∈ R, we
have

u(x)− uk(x) = 21−kφ(2kx)χ[k−1,k)(|x|),
whence gu−uk(x) = 2χ[k−1,k)(|x|). Thus, ∥u−uk∥N1X ≥ ∥gu−uk∥X = 2 ̸→ 0 as k → ∞.
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