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Abstract. Let f : Rn → Rn be a quasiconformal mapping whose Jacobian is denoted by Jf
and let A∞ be the Muckenhoupt class of weights w satisfying(

−
ˆ
B

w dx

)(
exp−
ˆ
B

log
1

w
dx

)
≤ A,

for every ball B ⊂ Rn and for some positive constant A ≥ 1 independent of B. We consider two
characteristic constants Ã∞ (w) and G̃1 (w) which are simultaneously finite for every w ∈ A∞. We
study the behaviour of the Ã∞-constant under the operator already considered by Johnson and
Neugebauer [18]

w ∈ A∞ 7→ (w ◦ f)Jf ∈ A∞,

and establish the equivalence of the two constants G̃1 (Jf ) and Ã∞
(
Jf−1

)
. Our quantitative esti-

mates are sharp.

1. Introduction

Let Ω be an open subset of Rn with n ≥ 2. A homeomorphism f : Ω → Rn is a
K-quasiconformal mapping for a constant K ≥ 1 if f ∈ W 1,n

loc (Ω,Rn) and

(1.1) |Df(x)|n ≤ KJf (x) for a.e. x ∈ Ω.

Here Df(x) stands for the differential matrix of f and Jf (x) = detDf(x) denotes
the Jacobian determinant of f . The norm |Df(x)| of Df(x) in (1.1) is defined as
|Df(x)| = sup {|Df(x)ξ| : ξ ∈ Rn, |ξ| = 1} .

Let H ≥ 1 be a constant. A homeomorphism f : Ω → Rn is called weakly H-
quasisymmetric if for every x, y, z ∈ Ω we have

|x− y| ≤ |x− z| implies |f(x)− f(y)| ≤ H|f(x)− f(z)|.

As proved in [30] and [33] the notions of weak quasisymmetry and quasiconformality
are equivalent in dimension n ≥ 2 when Ω = Rn.

Let us recall the definition of the Muckenhoupt class A∞ (see [24]). Here and in
the rest of the paper, we say that a measurable function w : Rn → R is a weight if w
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is positive a.e. and locally integrable in Rn. A weight w belongs to the Muckenhoupt
class A∞ if

(1.2) A∞(w) = sup
B

(
−
ˆ
B

w dx

)(
exp−
ˆ
B

log
1

w
dx

)
<∞.

The supremum in (1.2) is taken over all balls B ⊂ Rn. We call A∞(w) the A∞-
constant of the weight w. The class A∞ may be characterized in several ways. We
mention here (see [5]) that w ∈ A∞ if and only if for every ball B ⊂ Rn and every
measurable set E ⊂ B it holds

(1.3)
|E|
|B|

≤M


ˆ
E

w(x) dx
ˆ
B

w(x) dx


α

,

for some 0 < α ≤ 1 ≤M independent of E and B.
Another characterization of A∞ is given in [25] where it is proved that

A∞ =
∪

1<p<∞

Ap.

For the definition of the Muckenhoupt class Ap for 1 ≤ p <∞, see Section 2.2 below.
One of the issues addressed in [18] by Johnson and Neugebauer concerns the

composition problem for Muckenhoupt weights. It is proved (see Theorem 3.4 in
[18]) that, if f : Rn → Rn is a quasiconformal mapping, then the condition

(1.4) w ∈ A∞ implies w ◦ f ∈ A∞,

holds if and only if the Jacobian of f satisfies

(1.5) Jf ∈
∩

1<p<∞

Ap.

It is easily seen by means of examples that not every quasiconformal mapping sat-
isfies (1.5). From a celebrated result of Gehring [13], suitably extended to quasiregular
maps in [15, 20, 22], one can only deduce that Jf ∈ Ap0 for some p0 > 1. Therefore,
(1.4) does not hold for an arbitrary quasiconformal mapping. In dimension n ≥ 2,
the equivalence of the notions of weak quasisymmetry and quasiconformality implies
that each weakly quasisymmetric homeomorphism belongs to W 1,s

loc (Ω,R
n) for some

s > n (see [13] and [1] for some sharp regularity result in the planar case).
We draw our attention to a similar issue started in [31]. Let f : Rn → Rn be a

given quasiconformal mapping. Then

(1.6) w ∈ A∞ implies (w ◦ f)Jf ∈ A∞.

Actually (1.6) follows from a result in [31] of Uchiyama, where it is proved that if
µ is a A∞-measure then its pull back f ∗µ is A∞-measure as well. We recall that a
positive Borel measure µ on Rn belongs to A∞ if dµ = w dx for some w ∈ A∞ and
the pull back f ∗µ is the measure defined by

(f ∗µ)(E) = µ(f(E)) for every Borel set E ⊂ Rn.

Indeed, (1.6) follows from the change of variables formula for quasiconformal map-
pings (see Section 2.1 below) which gives that (w ◦ f)Jf is the Radon–Nikodym
derivative of the A∞-measure f ∗µ with respect to the Lebesgue measure and hence
belongs to A∞ by Uchiyama’s result.
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Our aim is to give a quantitative version of the statement in (1.6) and hence of
Uchiyama’s result by means of the auxiliary constant

(1.7) Ã∞(w) = inf

{
M

α
: 0 < α ≤ 1 ≤M and (1.3) holds

}
.

We briefly refer to Ã∞ (w) as the Ã∞-constant of w. The interest in studying the
behaviour of the constant Ã∞(w) goes back to Gotoh’s paper [16], where the compo-
sition problem for functions of bounded mean oscillation is taken into account (see
also the seminal paper [27] and [7, 8] for sharp estimates involving the distances to
L∞ introduced in [4, 10, 12]).

We are in a position to state our results. The weak quasisymmetry property of
a quasiconformal mapping will play a crucial role in the estimates we are going to
show, especially for what concerns the optimality of such estimates. For this reason,
we introduce the weakly quasisymmetric constant Hf of the quasiconformal mapping
f , namely

(1.8) Hf = sup

{
|f(x)− f(y)|
|f(x)− f(z)|

: x, y, z ∈ Ω, x ̸= z,
|x− y|
|x− z|

≤ 1

}
.

Our first result reads as follows.

Theorem 1.1. Let f : Rn → Rn be a quasiconformal mapping with n ≥ 2. Let
w ∈ A∞. Then the following estimates hold

(1.9)
1

Hn
f−1Ã∞ (Jf−1)

Ã∞ (w) ≤ Ã∞ [(w ◦ f) Jf ] ≤ Hn
f Ã∞ (Jf ) Ã∞ (w) .

Another important class of weights is furnished by the Gehring class G1. A
weight v belongs to the Gehring G1 class if

(1.10) G1(v) = sup
B

(
exp−
ˆ
B

v

vB
log

v

vB
dx

)
<∞.

The supremum in (1.10) is taken over all balls B ⊂ Rn. The link between Mucken-
houpt and Gehring classes is given in [9, 23] where it is proved that A∞ = G1. We
mention here (see again [5]) that v ∈ G1 if and only if for every ball B ⊂ Rn and
every measurable set F ⊂ B it holds

(1.11)

ˆ
F

v(x) dx
ˆ
B

v(x) dx
≤ L

(
|F |
|B|

)β

,

for some 0 < β ≤ 1 ≤ L independent of F and B.
As was done above related to Muckenhoupt classes, we define an auxiliary con-

stant for the Gehring classes

G̃1(v) = inf

{
L

β
: 0 < β ≤ 1 ≤ L and (1.11) holds

}
.

Let us recall here some results which are valid in dimension n = 1. Let h : R → R
be an increasing homeomorphism which is locally absolutely continuous with its
inverse. It is well known (see e.g. [5]) that the derivative h′ belongs to A∞ if and
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only if (h−1)′ belongs to A∞ and hence to G1. Quantitative versions of this result
may be found in [18] and [26], where the two identities

(1.12) A∞
(
(h−1)′

)
= G1(h

′),

and

(1.13) Ã∞
(
(h−1)′

)
= G̃1(h

′),

are respectively proved. Note that in general one has

(1.14) Ap

(
(h−1)′

)
= Gq(h

′),
1

p
+

1

q
= 1,

as proved in [18, Lemma 2.5]. Thus the identity (1.12) follows taking the limit as
p→ ∞ and using the relations

A∞(w) = lim
p→∞

Ap(w),(1.15)

G1(v) = lim
q→1+

Gq(v)(1.16)

proved in [29] and [23] respectively. Identities like (1.12), (1.13) and (1.14) are related
to the study of the one-dimensional Dirichlet energy

Dp : u ∈ W 1,p(a, b) 7→
ˆ b

a

|u′|p dt, p > 1.

In [21] it is proved that the inverse of a quasiminimizer of Dp is a quasiminimizer of
Ds for suitable values of s and the optimal range of such exponents s is explicitely
computed using (1.14) among other facts.

Inspired by these one-dimensional results, our next goal is to establish the equiv-
alence of the two constants Ã∞ (Jf−1) and G̃1 (Jf ) whenever f : Rn → Rn is a qua-
siconformal mapping in higher dimension n ≥ 2.

Our second result reads as follows.

Theorem 1.2. Let f : Rn → Rn be a quasiconformal mapping with n ≥ 2.
Then

(1.17)
1

Hn
f−1

Ã∞(Jf−1) ≤ G̃1(Jf ) ≤ Hn
f Ã∞(Jf−1).

We point out that the estimates above are sharp. Indeed, equalities hold in (1.9)
and in (1.17) if we let f be the identity map Id(x) = x; this follows by observing
that Ã∞(u) = 1 if and only if u is a constant weight (see Proposition 2.1 in [26]) and
that HId = 1.

It is worth pointing out that condition (1.5) is also equivalent to requiring that
if 1 < p0 < ∞ then w ∈ Ap0 implies (w ◦ f)Jλ

f ∈ Ap0 for each λ ∈ [0, 1] (see
Theorem 2.10 in [18]). One may wonder if the condition

w ∈ A∞ implies (w ◦ f)Jλ
f ∈ A∞ for each λ ∈ [0, 1),

holds without the further assumption (1.5). In Section 4 we will prove that this is
not the case, by means of some counterexample (see Proposition 1 below).



Change of variables for A∞ weights by means of quasiconformal mappings: sharp results 789

2. Preliminaries

2.1. Quasiconformal and quasisymmetric mappings. We need to recall
here some well known facts about quasiconformal mappings and quasisymmetric
mappings. Our main sources here will be [2, 32].

Let η : [0,∞) → [0,∞) be an increasing homeomorphism. A homeomorphism
f : Ω → Rn is called η-quasisymmetric if for every x, y, z ∈ Ω we have

|f(x)− f(y)|
|f(x)− f(z)|

≤ η

(
|x− y|
|x− z|

)
.

The notions of quasiconformality, quasisymmetry and weak quasisymmetry co-
incide for mappings in dimension n ≥ 2 (see e.g. [30] and [33]).

We recall that the change of variables formula holds for a quasiconformal mapping
f : Ω → Ω′. More precisely, if φ ∈ L1

loc(Ω
′) then (φ ◦ f) Jf ∈ L1

loc(Ω) andˆ
E

φ(f(x))Jf (x) dx =

ˆ
f(E)

φ(y) dy,

for every E ⊂⊂ Ω.

2.2. Ap and Gq classes. We recall here the definition of the Muckenhoupt
class Ap (see [24]) for 1 ≤ p <∞. A weight w belongs to the Muckenhoupt class Ap

for 1 < p <∞ if

(2.1) Ap(w) = sup
B

(
−
ˆ
B

w dx

)(
−
ˆ
B

w− 1
p−1 dx

)p−1

<∞.

As a natural extention of the above definition, one can consider the Muckenhoupt
classes A1 which cover the limit case p = 1. A weight w belongs to the Muckenhoupt
class A1 if

(2.2) A1(w) = sup
B

−
ˆ
B

w dx

ess inf
x∈B

w(x)
<∞.

The suprema in (2.1) and (2.2) are taken over all balls B ⊂ Rn. For each 1 ≤ p <∞
we call Ap(w) the Ap-constant of the weight w.

We recall here the definition of the Gehring class Gq for 1 < q ≤ ∞. A weight v
belongs to the Gehring class Gq for 1 < q <∞ if

(2.3) Gq(v) = sup
B


(
−
ˆ
B

vq dx

) 1
q

−
ˆ
B

v dx


q

q−1

<∞.

As a natural extention of the above definition, one can consider the G∞ which cover
the limit case q = ∞. A weight v belongs to the Gehring class G∞ if

(2.4) G∞(v) = sup
B

ess sup
x∈B

v(x)

−
ˆ
B

v dx

<∞.
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The suprema in (2.3) and (2.4) are taken over all balls B ⊂ Rn. For each 1 < q ≤ ∞
we call Gq(v) the Gq-constant of the weight v.

Each weight in the Gq class satisfies a reverse Hölder inequality. This is a key fact
in order to study the regularity of the Jacobian of quasiconformal mappings (see [13]).
More generally, we refer for instance to [14, 17] for the study of the self-improving
property and the regularity of the Jacobian of a mapping of finite distortion.

For more details related to the Muckenhoupt and Gehring classes we refer to
[3, 6, 11, 19, 23, 28, 29].

3. Proofs

Proof of Theorem 1.1. Let H = Hf where Hf is given by (1.8). We fix some
ε > 0. We appeal to the definition (1.7) of the Ã∞-constant of w and we find some
constants M,α with

0 < α ≤ 1 ≤M,

and

(3.1)
M

α
< Ã∞ (w) + ε,

such that, for every ball B′ ⊂ Rn and for every measurable E ′ ⊂ B′ we have

(3.2)
|E ′|
|B′|

≤M


ˆ
E′
w(y) dy

ˆ
B′
w(y) dy


α

.

We recall that Jf ∈ A∞. Therefore, appealing to the definition of the Ã∞–constant
of Jf , we find some constants M ′, γ with

0 < γ ≤ 1 ≤M ′,

and

(3.3)
M ′

γ
< Ã∞ (Jf ) + ε,

such that, for every ball B ⊂ Rn and for every measurable set E ⊂ B we have

(3.4)
|E|
|B|

≤M ′
(
|f(E)|
|f(B)|

)γ

.

Let B = Br(x0) and let E ⊂ B be measurable. Define

(3.5) R = max{|f(x′)− f(x0)| : |x′ − x0| = r}.

The following inclusions hold

(3.6) BR
H
(f(x0)) ⊂ f(B) ⊂ BR (f(x0)) .

Indeed, the second inclusion in (3.6) follows directly from the definition of R in (3.5);
on the other hand, the quasisymmetry of f shows that

H|f(x)− f(x0)| < |f(x′)− f(x0)| implies |x− x0| < |x′ − x0|,
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and this proves the first inclusion in (3.6). We deduce from (3.4) and (3.6) that

|E|
|B|

≤M ′

 |f(E)|∣∣∣BR
H
(f(x0))

∣∣∣
γ

= HnγM ′
(

|f(E)|
|BR(f(x0))|

)γ

.

Let us remark that H ≥ 1 and 0 < γ ≤ 1 implies

Hnγ ≤ Hn.

Therefore
|E|
|B|

≤ HnM ′
(

|f(E)|
|BR(f(x0))|

)γ

.(3.7)

It follows from (3.6) that f(E) ⊂ BR(f(x0)). Hence, in (3.7) we apply (3.2) with
E ′ = f(E) and B′ = BR(f(x0)) and from (3.6) we deduce

|E|
|B|

≤ HnM ′

[
M

( ´
f(E)

w(y) dy´
BR(f(x0))

w(y) dy

)α]γ

= HnM ′Mγ

( ´
f(E)

w(y) dy´
BR(f(x0))

w(y) dy

)γα

≤ HnM ′Mγ

(´
f(E)

w(y) dy´
f(B)

w(y) dy

)γα

.

(3.8)

Let us remark that M ≥ 1 and 0 < γ ≤ 1 implies

(3.9) Mγ ≤M.

Hence, (3.8), (3.9) and the change of variable formula imply

|E|
|B|

≤ HnM ′M

(´
E
(w ◦ f)Jf dx´

B
(w ◦ f)Jf dx

)γα

.

It follows that

Ã∞ [(w ◦ f)Jf ] ≤ HnM
′

γ

M

α
.

We use (3.1) and (3.3) and we have

Ã∞ [(w ◦ f)Jf ] ≤ Hn
[
Ã∞ (Jf ) + ε

] [
Ã∞ (w) + ε

]
.

Therefore, taking the limit as ε→ 0 we obtain

(3.10) Ã∞ [(w ◦ f)Jf ] ≤ Hn
f Ã∞ (Jf ) Ã∞ (w) .

It remains to prove the validity of the first inequality in (1.9). In (3.10) we may
always replace f by f−1 and w by (w ◦ f)Jf . We let

v = (w ◦ f) Jf .
It is clear from the first part of our proof that v ∈ A∞. We recall (see e.g. [32]) that
the Jacobians Jf and Jf−1 are both positive a.e. and they are related by

Jf−1(y) =
1

Jf (f−1(y))
,
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so we have (
v ◦ f−1

)
Jf−1 = w(Jf ◦ f−1)Jf−1 = w.

Therefore
Ã∞ (w) = Ã

[(
v ◦ f−1

)
Jf−1

]
≤ Hn

f−1Ã∞ (Jf−1) Ã∞ (v)

= Hn
f−1Ã∞ (Jf−1) Ã [(w ◦ f) Jf ] .

This completes the proof. �
Proof of Theorem 1.2. Let H = Hf where Hf is given by (1.8). We start

by observing that, since both f and f−1 are quasiconformal, the following identities
follow directly by the change of variable formula

|f(F )| =
ˆ
F

Jf (x) dx for every measurable set F ⊂ Rn,

|f−1(E)| =
ˆ
E

Jf−1(y) dy for every measurable set E ⊂ Rn.

Hence, the constant Ã∞(Jf−1) is the infimum of all quotients M/α where 0 < α ≤
1 ≤M and the following estimate holds

(3.11)
|E|
|B|

≤M

(
|f−1(E)|
|f−1(B)|

)α

,

for every ball B ⊂ Rn and for every measurable E ⊂ B. Similarly, the constant
G̃1(Jf ) is the infimum of all quotients L/β where 0 < β ≤ 1 ≤ L and the following
estimate holds

(3.12)
|f(F )|
|f(B)|

≤ L

(
|F |
|B|

)β

,

for every ball B ⊂ Rn and for every measurable F ⊂ B.
Our aim is to prove that

(3.13) G̃1(Jf ) ≤ HnÃ∞(Jf−1).

Let B = Br(x0) be a ball of Rn and let F ⊂ B be a measurable set. We fix ε > 0
and we find some constants M,α with 0 < α ≤ 1 ≤M for which (3.11) holds and

(3.14)
M

α
< Ã∞(Jf−1) + ε.

Arguing as in the proof of Theorem 1.1 we find a radius R > 0 for which the following
inclusions holds

(3.15) BR
H
(f(x0)) ⊂ f(B) ⊂ BR (f(x0)) .

In particular, we see that

(3.16) B ⊂ f−1 (BR (f(x0))) .

We set
E := f(F ).

From (3.15) we deduce that
|f(F )|
|f(B)|

≤ |E|∣∣∣BR
H
(f(x0))

∣∣∣ = Hn |E|
|BR(f(x0))|

.
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Appealing to (3.11) and (3.16)

|f(F )|
|f(B)|

≤ HnM

(
|f−1(E)|

|f−1(BR(f(x0)))|

)α

≤ HnM

(
|F |
|B|

)α

.

It follows directly from the definition of G̃1(Jf ) and from (3.14) that

G̃1(Jf ) ≤ HnM

α
< Hn

(
Ã∞(Jf−1) + ε

)
.

We take the limit as ε→ 0 and we obtain (3.13).
It remains to prove the validity of the first inequality in (1.17). We set

(3.17) H ′ = Hf−1 .

If we replace f by f−1 in the argument which proves the validity of (3.15) we see
that, if B ⊂ Rn is a ball, then

(3.18) BR′
H′

(
f−1(y0)

)
⊂ f−1(B) ⊂ BR′

(
f−1(y0)

)
,

where
R′ = max{|f−1(y)− f−1(y0)| : |y − y0| = r′}.

We fix θ > 0 and we find some constants L, β with 0 < β ≤ 1 ≤ L for which (3.12)
holds and

(3.19)
L

β
< G̃1(Jf ) + θ.

We fix E ⊂ B and we set
F := f−1(E).

From (3.12) and (3.18) we deduce that

|E|
|B|

=
|f(F )|

|f(f−1(B)|
≤ L

(
|F |

|f−1(B)|

)β

≤ L

 |F |∣∣∣BR′
H′
(f−1(y0))

∣∣∣
β

.(3.20)

Therefore we have
|E|
|B|

≤ (H ′)nβL

(
|F |

|BR′(f−1(y0))|

)β

.

Since H ′ ≥ 1, from 0 < β ≤ 1 immediately follows (H ′)nβ ≤ (H ′)n; moreover, again
from (3.18), we get

|E|
|B|

≤ (H ′)nL

(
|f−1(E)|
|f−1(B)|

)β

.

It follows directly from the definition of Ã∞(Jf−1) and from (3.19) that

Ã∞(Jf−1) ≤ (H ′)n
L

β
< (H ′)n

(
G̃1(Jf ) + θ

)
.

Recalling the definition of H ′ as in (3.17), we take the limit as θ → 0 and we obtain

Ã∞(Jf−1) ≤ Hn
f−1G̃1(Jf ).

This completes the proof. �
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4. Final remarks

In this section we prove a result announced in the Introduction. We recall that
the Jacobian of the radial stretching

f(x) = ρ(|x|) x
|x|
,

satisfies

Jf (x) ∼ ρ̇(|x|)
(
ρ(|x|)
|x|

)n−1

.

Here ρ(·) is a smooth increasing function such that ρ(0) = 0 and ρ̇(·) is its derivative.
Moreover, we use the notation

φ(x) ∼ ψ(x),

to mean that the couple of weights φ and ψ satisfies

φ(x) = cψ(x),

for some constant c > 0.

Proposition 1. For each λ ∈ [0, 1) there exists a weight w ∈ A∞ and a quasi-
conformal mapping f : Rn → Rn such that

(w ◦ f)Jλ
f ̸∈ A∞.

Proof. Before we start the proof of the claimed result, we recall that

(4.1) |x|θ ∈ A∞ if and only if − n < θ <∞.

We consider quasiconformal mapping f : Rn → Rn given by

f(x) = |x|γ x
|x|
,

and the weight
w(x) = |x|θ,

with the special choices

− n < θ < −nλ,
n(λ− 1)

θ + nλ
≤ γ <∞.

Thus w ∈ A∞ (observe that −n < θ ≤ 0 in this case) and γ > 1. We compute the
Jacobian of f and we get

Jf (x) ∼ |x|n(γ−1).

The function
u(x) = w(f(x))Jf (x)

λ,

satisfies the property
u(x) ∼ |x|θγ+nλ(γ−1).

Observing that
θγ + nλ(γ − 1) ≤ −n,

from (4.1) we conclude that u ̸∈ A∞ as desired. �
Acnowledgements. The research of the first author was supported by the 2008

ERC Advanced Grant 226234 “Analytic Techniques for Geometric and Functional
Inequalities”.



Change of variables for A∞ weights by means of quasiconformal mappings: sharp results 795

References

[1] Astala, K.: Area distortion of quasiconformal mappings. - Acta Math. 173:1, 1994, 37–60.

[2] Astala, K., T. Iwaniec, and G. Martin: Elliptic partial differential equations and quasi-
conformal mappings in the plane. - Princeton Math. Ser. 48, Princeton Univ. Press, Princeton,
NJ, 2009.

[3] Bojarski, B., C. Sbordone, and I. Wik: The Muckenhoupt class A1(R). - Studia Math.
101:2, 1992, 155–163.

[4] Carozza, M., and C. Sbordone: The distance to L∞ in some function spaces and applica-
tions. - Differential Integral Equations 10:4, 1997, 599–607.

[5] Coifman, R.R., and C. Fefferman: Weighted norm inequalities for maximal functions and
singular integrals. - Studia Math. 51, 1974, 241–250.

[6] D’Apuzzo, L., and C. Sbordone: Reverse Hölder inequalities: a sharp result. - Rend. Mat.
Appl. (7) 10:2, 1990, 357–366.

[7] Farroni, F., and R. Giova: Quasiconformal mappings and exponentially integrable functions.
- Studia Math. 203:2, 2011, 195–203.

[8] Farroni, F., and R. Giova: Quasiconformal mappings and sharp estimates for the distance
to L∞ in some function spaces. - J. Math. Anal. Appl. 395:2, 2012, 694–704.

[9] Fefferman, R.: A criterion for the absolute continuity of the harmonic measure associated
with an elliptic operator. - J. Amer. Math. Soc. 2, 1989, 127–135.

[10] Fusco, N., P. L. Lions, and C. Sbordone: Sobolev imbedding theorems in borderline cases.
- Proc. Amer. Math. Soc. 124:2, 1996, 561–565.

[11] García-Cuerva, J., and J. L. Rubio de Francia: Weighted norm inequalities and related
topics. - North-Holland Mathematics Studies 116, North-Holland Publishing Co., Amsterdam,
1985.

[12] Garnett, J. B., and P.W. Jones: The distance in BMO to L∞. - Ann. of Math. (2) 108:2,
1978, 373–393.

[13] Gehring, F.W.: The Lp-integrability of the partial derivatives of a quasiconformal mapping.
- Acta Math. 130, 1973, 265–277.

[14] Giannetti, F., L. Greco, and A. Passarelli di Napoli: The self-improving property of
the Jacobian determinant in Orlicz spaces. - Indiana Univ. Math. J. 59:1, 2010, 91–114.

[15] Giaquinta, M. and G. Modica: Regularity results for some classes of higher order nonlinear
elliptic systems. - J. Reine Angew. Math. 311/312, 1979, 145–169.

[16] Gotoh, Y.: On composition operators which preserve BMO. - Pacific J. Math. 201, 2001,
289–307.

[17] Hencl, S., P. Koskela, and X. Zhong: Mappings of finite distortion: reverse inequalities
for the Jacobian. - J. Geom. Anal. 17:2, 2007, 253–273.

[18] Johnson, R., and C. J. Neugebauer: Homeomorphisms preserving Ap. - Rev. Mat.
Iberoamericana 3:2, 1987, 249–273.

[19] Korey, M.B.: Ideal weights: asymptotically optimal versions of doubling, absolute continuity,
and bounded mean oscillation. - J. Fourier Anal. Appl. 4:4-5, 1998, 491–519.

[20] Martio, O.: On the integrability of the derivative of a quasiregular mapping. - Math. Scand.
35, 1974, 43–48.

[21] Martio, O., and C. Sbordone: Quasiminimizers in one dimension: integrability of the
derivative, inverse function and obstacle problems. - Ann. Mat. Pura Appl. (4) 186:4, 2007,
579–590.



796 Fernando Farroni and Raffaella Giova

[22] Meyers, N.G., and A. Elcrat: Some results on regularity for solutions of non-linear elliptic
systems and quasi-regular functions. - Duke Math. J. 42, 1975, 121–136.

[23] Moscariello, G., and C. Sbordone: A∞ as a limit case of reverse-Hölder inequalities when
the exponent tends to 1. - Ricerche Mat. 44:1, 1995, 131–144.

[24] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. - Trans.
Amer. Math. Soc. 165, 1972, 207–226.

[25] Muckenhoupt, B.: The equivalence of two conditions for weight functions. - Studia Math.
49, 1973/74, 101–106.

[26] Radice, T.: New bounds for A∞ weights. - Ann. Acad. Sci. Fenn. Math. 33:1, 2008, 111–119.

[27] Reimann, H.M.: Functions of bounded mean oscillation and quasiconformal mappings. -
Comment. Math. Helv. 49, 1974, 260–276.

[28] Sbordone, C.: Sharp embeddings for classes of weights and applications. - Rend. Accad. Naz.
Sci. XL Mem. Mat. Appl. (5) 29:1, 2005, 339–354.

[29] Sbordone, C., and I. Wik: Maximal functions and related weight classes. - Publ. Mat. 38:1,
1994, 127–155.

[30] Tukia, P., and J. Väisälä: Quasisymmetric embeddings of metric spaces. - Ann. Acad. Sci.
Fenn. Ser. A I Math. 5:1, 1980, 97–114.

[31] Uchiyama, A.: Weight functions of the class (A∞) and quasi-conformal mappings. - Proc.
Japan Acad. 51, suppl., 1975, 811–814.

[32] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. - Lecture Notes in Math.
229, Springer-Verlag, Berlin-New York, 1971.

[33] Väisälä, J.: Quasisymmetric embeddings in Euclidean spaces. - Trans. Amer. Math. Soc.
264:1, 1981, 191–204.

Received 23 November 2012 • Accepted 6 May 2013


