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Abstract. The main goal of this paper is the study of quasi s-numbers of multilinear operators
among Banach spaces. The relationships among multilinear variants of approximation, Kolmogorov
and Gelfand numbers of operators and their generalized linear adjoint are shown. In the multilinear
case, analogous theorems which are well-known in the linear case, are stated and proved. The
estimates of measures of non-compactness of multilinear operators in terms of measures of the
adjoint operators are also proved.

1. Introduction

The theory of s-numbers of linear bounded operators among Banach spaces was
introduced and studied by Pietsch [10]. It plays a fundamental role in the theory of
operators and the local theory of Banach spaces and it is a powerful tool in the study
of eigenvalue distribution of Riesz operators in Banach spaces (see, e.g., [9, 13]).
In 1983 Pietsch [12] proposed and sketched a theory of ideals and s-numbers of
multilinear functionals. While the properties of s-numbers of linear operators have
been studied extensively, the theory of s-numbers of multilinear operators has not
been studied yet.

In this paper the theory of quasi s-number sequences of bounded multilinear
operators among Banach spaces is developed. We investigate the question of how
the fundamental properties of important s-numbers of linear operators are inherited
to the multilinear case. It should be noted that whereas the work is based on some
ideas from the theory of s-numbers of bounded linear operators, some proofs may
be extended from the linear case to the multilinear operators and other require new
ideas and methods. The difficulty comes from the fact that even in the bilinear case
the range or the kernel of a bilinear operator is not necessarily a linear subspace. In
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particular, as a consequence the well-known relations between the dimensions of the
kernel and the range in the linear case are not true in general in the multilinear case.

Throughout the paper the standard notation from the Banach space theory is
used. If X is a Banach space we denote by X∗ its dual Banach space and by UX ,

◦
UX

the closed and open unit balls of X, respectively. As usual κX denotes the canonical
embedding of X to the bidual X∗∗ of X. For each m ∈ N the product X1×· · ·×Xm

of Banach spaces is equipped with the norm ∥(x1, . . . , xm)∥ = max1≤j≤m ∥xj∥Xj
. We

shall denote by Lm(X1 × · · · × Xm, Y ) the Banach space of all m-linear bounded
operators defined on X1 × · · · ×Xm with values in a Banach space Y , equipped with
the norm

∥T∥ = sup{∥T (x1, . . . , xm)∥Y ; (x1, . . . , xm) ∈ UX1 × · · · × UXm}.

In the case when m = 1, we shall write L(X1, Y ) instead of L1(X1, Y ). In the case
when Y is the scalar field K (K = R or K = C), we denote the space of all m-linear
forms by Lm(X1 × · · · ×Xm). As usual, X1⊗̂π · · · ⊗̂πXm will denote the projective
tensor product of the Banach spaces X1, . . . , Xm.

For m ≥ 2 let X1,. . . ,Xm be Banach spaces. Following [6] the Banach space
X1×· · ·×Xm is said to have the multilinear extension property if, whenever Fi ⊂ Xi

(1 ≤ i ≤ m) are closed subspaces and T ∈ Lm(F1×···×Fm) is a continuous multilinear
form, then there exists a continuous multilinear form T̃ ∈ Lm(X1 × · · · ×Xm) such
that T̃ |F1×···×Fm = T . When m = 2, we will also say that X1 × X2 has the bilinear
extension property. It was proved in [6, Theorem 2.3] that X1 × · · · × Xm has the
multilinear extension property if, and only if, there exists a constant M > 0 such
that whenever Fi ⊂ Xi are closed subspaces, every T̃ ∈ Lm(F1 × · · · × Fm) has an
extension T̃ ∈ Lm(X1 × · · · ×Xm) with ∥T̃∥ ≤ M∥T∥. In this case we say that the
X1×· · ·×Xm has the multilinear extension property with constant M , and the least
constant is denoted by M(X1 × · · · ×Xm).

Following the theory of s-numbers presented in [11, 13] and [2, 1], we introduce
the notion of an m-quasi s-number sequence for m-multilinear bounded operators.
For each m ∈ N, a rule s = (sn) : Lm(X1 × · · · × Xm, Y ) → [0,∞)N assigning to
every operator T ∈ Lm(X1 × · · · ×Xm, Y ) a non-negative scalar sequence (sn(T )), it
is called an m-quasi s-number sequence if the following conditions are satisfied:

(S1) Monotonicity : For every T ∈ Lm(X1 × · · · ×Xm, Y ),

∥T∥ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0.

(S2) Additivity : For every S, T ∈ Lm(X1 × · · · ×Xm, Y ),

sk+n−1(S + T ) ≤ sk(S) + sn(T ).

(S3) Ideal-property : For every T ∈ Lm(X1 × · · · ×Xm, Y ), S ∈ L(Y, Z),

sn(ST ) ≤ ∥S∥ sn(T ).

(S4) Rank-property :
rank(T ) < n ⇒ sn(T ) = 0.

If (sn) is an m-quasi s-number sequence for each positive integer m, then (sn) is
called a quasi s-number sequence. A quasi s-number sequence is called an s-number
sequence provided it satisfies
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(S5) Norming property :

sn(I : ℓ
n
2 → ℓn2 ) = 1, n ∈ N,

where I denotes the identity operator on the n-dimensional Hilbert space ℓn2 .
For simplicity of notation and presentation, similarly as in the linear case, we

do not indicate the involved Banach spaces and we write for short sn(T ) instead of
sn(T : X1 × · · · ×Xm → Y ).

We also need the following notions:
(J) An m-quasi s-number sequence s = (sn) is called injective if, given any metric

injection j ∈ L(Y, Z), i.e., ∥j(y)∥ = ∥y∥ for all y ∈ Y , sn(T ) = sn(jT ) for all
T ∈ Lm(X1 × · · · ×Xm, Y ) and all m-tuples of Banach spaces (X1, . . . , Xm).

(S) An m-quasi s-number sequence s = (sn) is called surjective if, given any
metric surjections Qj ∈ L(Yj, Xj), 1 ≤ j ≤ m, i.e., Qj(

◦
UYj

) =
◦
UXj

for each
1 ≤ j ≤ m, sn(T ) = sn(T (Q1 × · · · ×Qm)) for all T ∈ Lm(X1 × · · · ×Xm, Y )
and all Banach spaces Y , where Q1 × · · · × Qm is the linear operator from
Y1 × · · · × Ym into X1 × · · · ×Xm defined by

Q1 × · · · ×Qm(y1, . . . , ym) = (Q1y1, . . . , Qmym), (y1, . . . , ym) ∈ Y1 × · · · · ×Ym.

(JS) An m-quasi s-number sequence is called injective and surjective, if it satisfies
(J) and (S).

(M) A quasi s-number sequence s = (sn) is called multiplicative if, for S ∈ L(Y, Z)
and T ∈ Lm(X1 × · · · ×Xm, Y ),

sk+n−1(ST ) ≤ sk(S)sn(T ), k, n ∈ N.

The paper is organized as follows. In Section 2 we investigate the measure of
non-compactness of multilinear operators among Banach spaces. The main results of
this section states that, up to universal constants, the measure of non-compactness of
every multilinear operator T is equivalent to the measure of non-compactness of its
generalized adjoint (adjoint for short) operator T× of T . As a consequence we obtain
a variant of Schauder’s theorem for multilinear operators, which was first proved for
the bilinear case by Ramanujan and Schock [15].

In Section 3 an s-sequence of approximation numbers of multilinear operators
is studied. This sequence is used to provide a multilinear variant of a remarkable
Carl’s mixing property for any quasi s-number sequence of multilinear operators.
The relationships between approximation numbers of multilinear operator and its
generalized linear adjoint operator are also obtained. In particular we show that for
every compact multilinear operator T , an(T ) = an(T

×) for each positive integer n.
Section 4 is devoted to an s-sequence (dn) of Kolmogorov numbers of multilinear

operators. We show the fundamental properties of these numbers. Among others,
we show that, as in the linear case, (dn) is the largest surjective multiplicative quasi
s-number sequence.

In Section 5 we define variants of Gelfand’s numbers (cn) of multilinear oper-
ators. It is proved that the Gelfand numbers is the largest injective multiplicative
quasi s-number sequence and also that, in the multilinear case, variants of important
relations between Gelfand and Kolmogorov numbers of an operator and its adjoint
are true. Namely, we prove that cn(T

×) ≤ dn(T ) and cn(T ) = dn(T
×) are true for

every multilinear operator T and each positive integer n. In the last part of Section
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5 we investigate the relationships between variants of Gelfand’s numbers. The main
key here is the multilinear extension property of multilinear forms. Using famous
Maurey’s extension theorem for the bilinear forms, we show applications to the bilin-
ear operators T : X × Y → Z, where X and Y are finite dimensional Banach spaces
of type 2.

2. Measures of non-compactness of multilinear operators

The present section is devoted to the relationships among the corresponding
measure of non-compactness of multilinear operator and its adjoint. Let us recall
that Schauder’s well-known result states that an operator T between Banach spaces
is compact if, and only if, its adjoint, T ∗, is compact. A slightly more general result
says that the Kuratowski–Hausdorff measure of non-compactness of an operator T is
equivalent to the measure of non-compactness of its adjoint. Ramanujan and Schock
studied in [15] ideals of bilinear operators between Banach spaces, including the
ideal of bilinear compact operators, i.e., T ∈ L2(X × Y, Z) such that T (UX × UY ) is
relatively compact in Z. Given T ∈ L2(X × Y, Z), they defined the adjoint linear
map T× : Z∗ → L2(X × Y ) by

T×z∗(x, y) = z∗(T (x, y)), (x, y) ∈ X × Y.

Clearly T× is bounded operator, and ∥T∥ = ∥T×∥. Ramanujan and Schock [15,
Theorem 2.6] proved the analogues of Schauder’s theorem which states that if T ∈
L2(X × Y, Z), then T is compact if, and only if T× is compact.

The mentioned results give rise to a question: whether the measures of non-
compactness of a multilinear operator and its adjoint are equivalent? In the present
section, we discuss this problem. We extend the classical well-known results for the
linear operators to the case of multilinear operators.

Let us recall that if A is a bounded subset of a metric space X , the Kuratowski
measure of non-compactness is defined by

α(A) = inf{ε > 0; A may be covered by finitely many sets of diameter ≤ ε};

the Hausdorff ball measure of non-compactness of A is defined by

β(A) = inf{ε > 0; A can be covered by finitely many balls of radius ≤ ε}.

It is easy to check that β(A) ≤ α(A) ≤ 2β(A) for every bounded set.
Recall that in a Banach space X, a set S is called an ε-net of A if A ⊂ S + εUX .

Thus the definition of β-measure in a Banach space is equivalent to the following:

β(A) = inf{ε > 0; A has a finite ε-net}.

Let X1, . . . , Xm and Y be Banach spaces. The Kuratowski, and the Hausdorff
measure of non-compactness of T ∈ Lm(X1 × · · · ×Xm, Y ) are defined by

γ(T ) = α(T (UX1×···×Xm))

and respectively,
γ̃(T ) = β(T (UX1×···×Xm)).

Since T (UX1×···×UXm
) ⊂ ∥T∥UY , γ(T ) ≤ ∥T∥. It is clear that T is compact if,

and only if, γ(T ) = 0.
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Throughout the paper the map J : X1 × · · · × Xm → Lm(X1 × · · · × Xm)
∗ is

defined by

Jx(B) = Bx, x ∈ X1 × · · · ×Xm, B ∈ Lm(X1 × · · · ×Xm).

Clearly J is a bounded m-linear operator. Given T ∈ Lm(X1×···×Xm, Y ), we define
the generalized adjoint (adjoint for short) operator T× : Y ∗ → Lm(X1 × · · · × Xm)
by

(T×y∗)x = y∗(Tx), y∗ ∈ Y ∗, x ∈ X1 × · · · ×Xm.

For B ∈ Lm(X1 × · · · ×Xm) and y ∈ Y , by B ⊗ y we denote the m-linear operator

B ⊗ y = B(x) · y, x ∈ X1 × · · · ×Xm.

Obviously Im(B ⊗ y) is a linear subspace of Y and rank(B ⊗ y) = 1 provided B ̸= 0
and y ̸= 0. We also have

(B ⊗ y)× = κY (y)⊗B.

We will need the following observation.

Lemma 2.1. Let m ≥ 2 and let X1,. . . ,Xm, Y be Banach spaces. Then for
every operator T ∈ Lm(X1 × · · · ×Xm, Y ),

(T×)∗J = κY T.

Proof. Let x ∈ X1 × · · · ×Xm and y∗ ∈ Y ∗. Then we have

⟨y∗, (T×)∗J(x)⟩ = ⟨T×y∗, J(x)⟩ = (y∗ ◦ T )(x) = ⟨Tx, y∗⟩ = ⟨y∗, κY T (x)⟩,

and this yields the required equality. �
A well-known result about linear operators states that for every operator T : X →

Y between Banach spaces X and Y , we have ([4, Theorem 2.9])

γ(T ) ≤ γ̃(T ∗) and γ(T ∗) ≤ γ̃(T ).

We will now prove analogous results in the multilinear case.

Theorem 2.1. Let m ≥ 2 and let X1,. . . ,Xm, Y be Banach spaces. Then the
following estimates hold for every T ∈ Lm(X1 × · · · ×Xm, Y ):

γ(T ) ≤ γ̃(T×) and γ(T×) ≤ γ̃(T ).

Proof. We claim that γ(T ) ≤ γ̃(T×). Applying the mentioned above result about
linear operators, we have

γ((T×)∗) ≤ γ̃(T×).

Since κY is an isometry and ∥J∥ = 1, the above inequality in combination with
Lemma 2.1 yields

γ(T ) = α(T (UX1×···×Xm)) = α(κY T (UX1×···×Xm))

= α((T×)∗J(UX1×···×Xm)) ≤ γ((T×)∗)α(J(UX1×···×Xm))

≤ γ̃(T×)α(∥J∥UZ∗) ≤ γ̃(T×),

where Z := Lm(X1 × · · · ×Xm), and this completes the proof of the claim.
Put k := γ(T ), and let S ⊂ Y ∗ be any set with diam(S) ≤ d, d > 0. To prove

the second inequality we only need to show that T×(S) can be covered by finitely
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many sets with diameter less or equal than kd. To do this fix ε > 0. Then there
exist y1, . . . , yn ∈ Y , such that

T (UX1×···×Xm) ⊂
n∪

j=1

(yj + r UY ),

where r = γ(T ) + ε/2d.
For each 1 ≤ j ≤ n, we define the set

{y∗(yj); y∗ ∈ S} ⊂ K.

Since S is bounded, the sets are relatively compact. Without loss of generality, we
may assume that K = R. Thus, for each 1 ≤ j ≤ n, the above set may be covered
by closed intervals Ij,1, . . . , Ij,m(j) with length less or equal than ε/2.

Let p = (p1, . . . , pn), where pj ∈ {1, 2, . . . ,m(j)}, and let us set

Ep := {y∗ ∈ S; ⟨y, y∗⟩ ∈ Ij,pj , 1 ≤ j ≤ n}.

Clearly T×(S) ⊂
∪

p T×(Ep) with a finite union. We shall show that diam(T×(Ep)) <

γ(T )d+ ε for all p. To show this fix p and take y∗1, y∗2 ∈ Ep. Then

∥T×y∗1 − T×y∗2∥ = sup{|⟨Tx, y∗1 − y∗2⟩|; x ∈ UX1×···×Xm}
= sup{|⟨y, y∗1 − y∗2⟩|; y ∈ T (UX1×···×Xm)}.

Now, observe that for every y ∈ T (UX1×···×Xm) there exists 1 ≤ j ≤ n such that
y ∈ yj + rUY . Since y∗1, y∗2 ∈ Ep, |⟨yj, y∗1 − y∗2⟩| < ε/2. This implies, by ∥y∗1 − y∗2∥ ≤ d
and ∥y − yj∥ ≤ γ(T ) + ε/2d,

|⟨y − yj, y
∗
1 − y∗2⟩| ≤ ∥y∗1 − y∗2∥ ∥y − yj∥ ≤ γ(T )d+ ε/2.

Hence
|⟨y, y∗1 − y∗2⟩| ≤ |⟨y − yj, y

∗
1 − y∗2⟩|+ |⟨yj, y∗1 − y∗2⟩| < γ(T )d+ ε.

The combination of the above estimates yields

|(T×y∗1 − T×y∗2)x| < γ(T )d+ ε

for all x ∈ UX1×···×Xm . Since ε > 0 was arbitrary,

∥T×y∗1 − T×y∗2∥ ≤ γ(T )d

and this completes the proof. �

Corollary 2.1. Let m ≥ 2 and let X1, . . . , Xm, Y be Banach spaces. Then the
following estimates hold for every operator T ∈ Lm(X1 × · · · ×Xm, Y ):

1

2
γ(T ) ≤ γ(T×) ≤ 2γ(T ) and

1

2
γ̃(T ) ≤ γ̃(T×) ≤ 2γ̃(T ).

As a consequence, we obtain Schauder’s theorem for multilinear operators, proved
for the bilinear case by Ramanujan and Schock [15, Theorem 2.6].

Corollary 2.2. Let m ≥ 2 and let X1, . . . , Xm, Y be Banach spaces. Then
T ∈ Lm(X1 × · · · ×Xm, Y ) is compact if, and only if, T× is compact.
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3. Approximation numbers of multilinear operators

One of the most important examples of an s-number sequence is the sequence
(an) of approximation numbers. Let us recall that for any operator T ∈ L(X,Y ) and
n ∈ N the n-th approximation number an(T ) is given by

an(T ) := inf{∥T − A∥; A ∈ L(X, Y ), rank(A) < n}
(cf. [11, 13]).

Let X1, . . . , Xm and Y be Banach spaces and let T ∈ Lm(X1 × · · · × Xm, Y ).
We denote the image of T by Im(T ). Since it is not generally the case that Im(T )
is a linear subspace of Y , we define rank(T ) as the dimension of [Im(T )], where [E]
denotes the linear span of a subset E in a vector space V .

We define the n-th approximation number an(T ) of any multilinear operator
T ∈ Lm(X1 × · · · ×Xm, Y ) by

an(T ) := inf{∥T − A∥; A ∈ Lm(X1 × · · · ×Xm, Y ), rank(A) < n}.
It is easy to check that (an) is an s-number sequence.

We will state below some fundamental properties of approximation numbers of
multilinear maps, and for the sake of completeness we include proofs. It should be
pointed out that Carl [1] was among the first to discover the mixing multiplicativity
property of bounded linear operators and used it to study s-numbers of bounded
linear operators among Banach spaces.

Proposition 3.1. Assume (sn) : Lm(X1× · · ·×Xm, Y ) → [0,∞)N is a sequence
which satisfies the monotonicity (S1), the additivity (S2) and the rank property
(S4).

(i) An approximation sequence (an) is the largest (sn) sequence which satisfies

sn(T ) ≤ an(T ), n ∈ N.

(ii) If (sn) is a quasi s-number sequence, then it has the mixing multiplicativity
property, i.e., for all S ∈ L(Y, Z), T ∈ Lm(X1×· · ·×Xm, Y ) and all k, n ∈ N
we have

sk+n−1(ST ) ≤ sk(S)an(T ) and sk+n−1(ST ) ≤ ak(S)sn(T ).

Proof. (i) Let T ∈ Lm(X1×···×Xm, Y ). Then for any A ∈ Lm(X1×···×Xm, Y )
with rank(A) < n, we have

sn(T ) ≤ ∥T − A∥+ sn(A) = ∥T − A∥
and this yields sn(T ) ≤ an(T ).

(ii) Let A ∈ L(X1 × · · · × Xm, Y ) be an operator with rank(A) < n. Since
rank(SA) < n, it follows, by properties (S1), (S2) and (S4), that

sk+n−1(ST ) ≤ sk+n−1((S(T − A) + SA) ≤ sk(S(T − A)) + sn(SA)

= sk(S(T − A)) ≤ sk(S)∥T − A∥
and this completes the proof of the first inequality. The proof of the second inequality
is very similar to the first one and so it will be omitted. �

Below we state and prove certain relationships between approximation numbers
of an m-linear bounded operator T and its generalized adjoint operator T×. We need
the following.
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Lemma 3.1. Let m ≥ 2 and X1, . . . , Xm, Y be Banach spaces. If T ∈ Lm(X1 ×
· · · ×Xm, Y ) has finite rank, then

rank(T ) = rank(T×).

Proof. Let n := rank(T ). Then dim(V ) = n, where V = [Im(T )] ⊂ Y . We use
Auerbach’s lemma which states, that there are unit vectors v1, . . . , vn ∈ V and unit
vectors v∗1, . . . , v

∗
n ∈ V ∗, such that

⟨vi, v∗j ⟩ = δij, 1 ≤ i, j ≤ n.

Obviously, {v1, . . . , vn} forms a basis for V , and {v∗1, . . . , v∗n} is a dual basis for V ∗.
By the Hahn–Banach theorem, there exists y∗j ∈ Y ∗, such that y∗j is v∗j on V .

Since Tx ∈ V for all x ∈ X1 × · · · ×Xm,

Tx =
n∑

j=1

v∗j (Tx)vj =
n∑

j=1

(T×y∗j )(x)vj =
n∑

j=1

(T×y∗j ⊗ vj)(x);

that is, T =
∑n

j=1 T
×y∗j ⊗ vj. Consequently,

T× =
n∑

j=1

κY (vj)⊗Bj,

where Bj := T×y∗j ⊗ vj for each 1 ≤ j ≤ n. Since κY (vj) ∈ Y ∗∗ ̸= 0 and Bj ∈
Lm(X1×· · ·×Xm) with rank(Bj) = 1, rank(T×) ≤ n. We claim that rank(T×) = n.
To see this we only need to show that {B1, . . . , Bn} is a linearly independent set in
Lm(X1 × · · · ×Xm). Let λ1, . . . , λn ∈ K be such that

n∑
j=1

λjBj = 0;

that is,
∑n

j=1 λj(T
×y∗j ⊗ vj)(x) =

∑n
j=1 λjv

∗
j (Tx)vj = 0, for all x ∈ X1 × · · · ×Xm.

This implies that for all v ∈ V we get
n∑

j=1

λjv
∗
j (v)vj = 0.

Since v∗i (vj) = δij for all 1 ≤ i, j ≤ n, it follows that λj = 0 for each 1 ≤ j ≤ n. This
completes the proof of the claim. �

Below we will state and prove certain relationships between approximation num-
bers of an m-linear bounded operator T and its generalized adjoint operator T×.

Proposition 3.2. For every operator Lm(X1 × · · · ×Xm, Y ) we have

an(T
×) ≤ an(T ), n ∈ N.

Proof. Given ε > 0, there exists A ∈ Lm(X1 × · · · ×Xm, Y ) with rank(A) < n,
such that

∥T − A∥ ≤ (1 + ε) an(T ).

An application of Lemma 3.1 ensures that rank(A×) < n. Thus combining with

∥T× − A×∥ = ∥T − A∥ ≤ (1 + ε) an(T ),

we conclude that
an(T

×) ≤ (1 + ε) an(T ).
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Since ε > 0 is arbitrary, the result follows. �

Proposition 3.3. Let Y be a Banach space such that there exists a linear projec-
tion P of unit norm from Y ∗∗ onto κY (Y ). Then for every T ∈ Lm(X1×· · ·×Xm, Y )

an(T
×) = an(T ), n ∈ N.

Proof. Fix ε > 0. Then, there exists a linear operator S : Lm(X1×···×Xm, Y )∗ →
Y ∗∗ with rank(S) < n, such that

∥(T×)∗ − S∥ < an((T
×)∗) + ε.

Let A = PSJ , where J : X1×···×Xm → Lm(X1×···×Xm)
∗ is given by Jx(B) = B(x)

for all x ∈ X1×···×Xm and B ∈ Lm(X1×···×Xm). Then A ∈ Lm(X1×···×Xm, Y )
with rank(A) < n. Our hypothesis ∥P∥ = 1 in combination with ∥J∥ = 1 yields

∥T − S∥ = ∥P (T×)∗J − PSJ∥ ≤ ∥(T×)∗ − S∥ < an((T
×)∗) + ε.

Since ε is arbitrary, we conclude that

an(T ) ≤ an((T
×)∗) ≤ an(T

×).

This completes the proof by Proposition 3.2. �
Applications of above results will be shown. Note that Edmunds and Tylli [5]

proved that, for any operator T ∈ L(E,F ) between Banach spaces E and F , the
following estimate holds

an(T ) ≤ an(T
∗∗) + 2γ(T ), n ∈ N.

In the multilinear case, we have the following result.

Theorem 3.1. For every operator T ∈ Lm(X1 × · · · ×Xm, Y ) we have

an(T ) ≤ an((T
×)∗) + 2 γ̃(T ), n ∈ N.

Proof. Let ε > 0 and λ > γ̃(T ). Then there exists a linear operator A : Lm(X1 ×
· · · ×Xm)

∗ → Y ∗∗ with rank(A) < n such that

∥(T×)∗ − A∥ < an((T
×)∗) + ε.

Let y1, . . . , yk ∈ Y with T (UX1×···×Xm) ⊂ {y1, . . . , yk} + λUY . Let M be the linear
span of Im(A) ∪ {κY (zj); 1 ≤ j ≤ k}. By the principle of local reflexivity, there
exists R : M → Y such that ∥R∥ ≤ 1 + ε and RκY (yj) = yj, for each 1 ≤ j ≤ k.

Define S := RAJ ∈ Lm(X1 × · · · × Xm, Y ). Then rank(S) ≤ n. For every
x ∈ UX1×···×Xm , we choose yj with ∥Tx − yj∥ ≤ λ for some 1 ≤ j ≤ k. Since
(T×)∗J = κY T ,

∥Tx− Sx∥ ≤ ∥Tx− yj∥+ ∥yj − Sx∥ ≤ λ+ ∥RκY yj −RAJx∥
≤ λ+ (1 + ε)

(
∥κY yj − κY Tx∥+ ∥(T×)∗Jx− AJx∥)

≤ λ+ (1 + ε)(λ+ an((T
×)∗) + ε

)
.

Since ε > 0 and λ > γ̃(T ) are arbitrary, we obtain the required estimate. �
As an application of the above results, we obtain the following multilinear variants

of the well-known results in the linear case (see [5]).

Corollary 3.1. If T ∈ Lm(X1 × · · · ×Xm, Y ) is a compact operator, then

an(T ) = an(T
×), n ∈ N.
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Proof. Since T× is a linear operator among Banach spaces, an((T×)∗) ≤ an(T
×).

If T is compact, then γ̃(T ) = 0 and so

an(T ) ≤ an((T
×)∗) ≤ an(T

×) ≤ an(T ),

by Theorem 3.1 and Proposition 3.2. �

Corollary 3.2. For every operator T ∈ Lm(X1 × · · · ×Xm, Y ) we have,

an(T ) ≤ 5 an(T
×), n ∈ N.

Proof. Fix n ∈ N. Let Sn : Y
∗ → Lm(X1 × · · · × Xm) be an arbitrary linear

operator with rank(Sn) < n. Then

γ̃(T×) = γ̃(T× − Sn) ≤ ∥T× − Sn∥.

This shows that γ̃(T×) ≤ an(T
×) and so

an(T ) ≤ an((T
×)∗) + 2 γ̃(T ) ≤ an(T

×) + 4 γ̃(T×) ≤ 5 an(T
×),

and this completes the proof. �

4. Kolmogorov numbers of multilinear operators

Since for every multilinear operator T ∈ Lm(X1 × · · · × Xm, Y ) and any m-
quasi s-sequence (sn), the sequence (sn(T )) is non-increasing and bounded below
by 0, so it has a limit. In particular the measure of non-approximability, a(T ) :=
limn→∞ an(T ) exists. If a(T ) = 0, then clearly T is approximable (i.e., there exists
a sequence (An) of finite dimensional operators An ∈ Lm(X1 × · · · × Xm, Y ), such
that limn→∞ ∥T − An∥ = 0) and so it is compact. It is well-known that in general
the converse is false. Roughly speaking, the quantity a(T ) is not a useful measure of
the deviation of an operator T from compactness.

Similarly to the linear case, if the target space Y has the approximation property,
that is, given any compact subset K of Y and every ε > 0, there is a finite dimensional
linear map S : Y → Y , such that ∥Sy − y∥ < ε for all y ∈ K, then, it is easy to see
that any compact m-linear operator T : X1 × · · · × Xm → Y can be approximated
arbitrarily and closely by finite-dimensional m-linear operators. In consequence,
T ∈ Lm(X1 × · · · ×Xm, Y ) is compact if, and only if, a(T ) = 0. We will use below
this simple fact without any further references.

The quantity which is a useful measure of the deviation of change linear operator
from compactness is connected with the Kolmogorov numbers.

Following the linear case, we define the n-th Kolgomorov number dn(T ) of an
operator T ∈ Lm(X1 × · · · ×Xm, Y ) by

dn(T ) = inf{ε > 0; T (UX1×···×Xm) ⊂ Nε + εUY , Nε ⊂ Y, dim(Nε) < n}.

Clearly that T ∈ Lm(X1 × · · · ×Xm, Y ) is a compact operator if and only if

d(T ) := lim
n→∞

dn(T ) = 0.

It is also obvious that dn(T ) = 0 provided rank(T ) < n.
Since in the above definition of dn(T ) we may replace closed unit balls UX1×···×Xm

or UY by the corresponding open unit balls
◦
UX1×···×Xm or

◦
UY , it may be shown,
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similarly as in the linear case, that the following multilinear variant of Pietsch’s
formula holds (see [12, 1])

dn(T ) = inf{∥QY
NT∥; N ⊂ Y, dim(N) < n}.

This formula easily gives (dn) is an s-number sequence, and so Proposition 3.1 implies
that

dn(T ) ≤ an(T ), n ∈ N.

Note also that (dn) is a surjective quasi s-number sequence. We next present prop-
erties of Kolmogorov numbers similar to the linear case. To do this we need some
further definition.

For a given m ∈ N and i = 1, . . . ,m, let Xi be a Banach space. We say that the
Banach space X1 × · · · ×Xm has the multilinear metric lifting property if, for every
ε > 0 and every bounded m-linear operator T from X1 × · · · ×Xm to any quotient
space Y/N , there is T̃ ∈ Lm(X1 × · · · ×Xm, Y ), such that

T = QY
N T̃ and ∥T̃∥ ≤ (1 + ε)∥T∥.

Proposition 4.1. Let X1, . . . , Xm and Y be Banach spaces. If X1 × · · · ×Xm

has the multilinear metric lifting property, then for every T ∈ Lm(X1×· · ·×Xm, Y ),

dn(T ) = an(T ), n ∈ N.

Proof. Since dn(T ) ≤ an(T ) for each n, we need to show the reverse inequality.
Fix ε > 0. Then there exists a subspace N ⊂ Y , such that dim(N) < n and
∥QY

NT∥ < dn(T )+ε. Our hypothesis yields that there exists T̃ ∈ Lm(X1×···×Xm, Y ),
such that

QY
NT = QY

N T̃ and ∥T̃∥ ≤ (1 + ε)∥QY
NT∥.

For A := T − T̃ , we have QY
NA = 0. This implies [Im(T )] ⊂ N , and so rank(S) ≤

dim(N) < n. In consequence

an(T ) ≤ ∥T − A∥ = ∥T̃∥ ≤ (1 + ε)∥QY
NT∥ < (1 + ε)(dn(T ) + ε).

Since ε > 0 is arbitrary, an(T ) ≤ dn(T ) and so the proof is complete. �
By the similar proof as in the linear case, one can see that ℓ1(Γ1)× · · · × ℓ1(Γm)

has the multilinear metric lifting property for each m ≥ 2. Here, as usual, ℓ1(Γ) is
the Banach space of summable number families {λγ}γ∈Γ over an arbitrary index set.

It is well-known (see [11]) that in the linear case the Kolmogorov numbers (dn(T ))
of every operator T : X → Y between Banach spaces X and Y may be characterized
by the approximation numbers as follows

dn(T ) = an(TQ1)

for each n ∈ N, where Q1 is the canonical metric surjection from ℓ1(UX) onto X,
defined by

Q1({λx}) =
∑
x∈UX

λxx, {λx} ∈ ℓ1(UX).

In the multilinear case, we have the following analogous result.

Theorem 4.1. Let T ∈ Lm(X1 × · · · ×Xm, Y ) be an m-linear operator between
Banach spaces, and let Q := Q1×···×Qj where Qj is the canonical metric surjection
from ℓ1(UXj

) onto Xj for each 1 ≤ j ≤ m. Then

dn(T ) = an(TQ), n ∈ N.
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Proof. Since ℓ1(UX1)× · · · × ℓ1(UXm) has the multilinear metric lifting property,
it follows from Proposition 4.1 that for each n ∈ N,

dn(TQ) = an(TQ).

As noted, (dn) is a surjective s-number sequence, and this gives the required equality.
�

Note that for any surjective quasi s-number sequence the following estimate holds
for all S ∈ L(Y, Z) and all T ∈ Lm(X1 × · · · ×Xm, Y ),

sk+n−1(ST ) ≤ sk(S)dn(T ), k, n ∈ N.

The proof is similar to the linear case proof (see [1]). In fact, let Qj be the metric
surjection from ℓ1(UXj

) onto Xj for each 1 ≤ j ≤ m. Then combining Theorem 4.1
with the multilinear multiplicativity property (M), yields

sk+n−1(ST ) = sk+n−1(STQ) ≤ sk(S)sn(TQ) ≤ sk(S)an(TQ) = sk(S)dn(T ).

An immediate consequence of the above fact is a multilinear variant of the well-
known result for the linear case, that the sequence (dn) of the Kolmogorov numbers
is the largest surjective quasi s-number sequence which satisfies the multiplicativity
property (M):

dk+n−1(ST ) ≤ dk(S)dn(T ), S ∈ L(Y, Z), T ∈ Lm(X1 × · · · ×Xm, Y ).

5. Gelfand numbers of mulitilinear operators

In the theory of s-numbers of linear operators, the Gelfand numbers play an
important role. There are many equivalent definitions of Gelfand numbers; recall that
the usual n-th Gelfand number cn(T ) of an operator T ∈ L(X,Y ) acting between
arbitrary Banach spaces X and Y is defined to be the infimum of all ε > 0, such that
there are functionals x∗

i ∈ X∗, 1 ≤ i ≤ k < n, which admit an estimate

∥Tx∥ ≤ sup
1≤i≤k

|⟨x, x∗
i ⟩|+ ε ∥x∥, x ∈ X.

It is well-known that in the linear case (cn) is an s-number sequence. For the basic
facts about these numbers, which are given below, we refer to the books of Pietsch
[11, 13].

In the multilinear case we make the following definition of Gelfand numbers; the
n-th Gelfand number cn(T ) of an operator T ∈ Lm(X1 × · · · ×Xm, Y ) is defined by

cn(T ) = an(κY T ).

This definition is motivated by the fact that the above formula holds in the case of
linear operators, and many interesting applications may be found. Obviously (cn)
is an s-number sequence by the fact that (an) is an s-number sequence. Clearly we
have cn(T ) ≤ an(T ) for each n ∈ N. In the case when Y is a Banach space with
the metric extension property (i.e., every operator S ∈ L(X,Y ) from every Banach
space X to Y can be extended to any Banach space X̃ containing X as a subspace,
where the extension T̃ ∈ L(X̃, Y ) with ∥T̃∥ = ∥T∥), then cn(T ) = an(T ).

We collect some properties of the Gelfand numbers (cn) for the multilinear case.
The following result may be easily verified: If Y is a Banach space with the metric
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extension property, X1, . . . , Xm arbitrary Banach spaces and T ∈ Lm(X1 × · · · ×
Xm, Y ), then

cn(T ) = an(T ), n ∈ N.

Since any ℓ∞(Γ)-space has the metric extension property, the above result imme-
diately implies that (cn) is an injective s-number sequence.

The sequence (cn) of Gelfand numbers is the largest injective quasi s-number
sequence, which satisfies the multiplicativity property (M):

ck+n−1(ST ) ≤ ck(S)cn(T ), S ∈ L(Y, Z), T ∈ Lm(X1 × · · · ×Xm, Y ).

The proof of this property is similar to the linear case proof. One should first observe
that a multilinear variant of Carl’s mixing multiplicativity of an injective s-number
sequence (sn) states that, for all S ∈ L(Y, Z) and T ∈ Lm(X1 × · · · ×Xm, Y ),

sk+n−1(ST ) ≤ ck(T )sn(S), k, n ∈ N.

In fact, the mixing multiplicativity property (MI) implies

sk+n−1(ST ) = sk+n−1(κZTS) ≤ ak(κZT )sn(S) = ck(T )sn(S), k, n ∈ N.

For each m ∈ N, we define the function c : Lm(X1 × · · · ×Xm) → [0,∞) by

c(T ) = lim
n→∞

cn(T ).

The following proposition gives characterization of compactness of multilinear oper-
ators in terms of the quantity c.

Proposition 5.1. Let m ≥ 2 and let X1,. . . ,Xm, Y be Banach spaces. Then the
following statements about an operator T ∈ Lm(X1 × · · · ×Xm, Y ) are equivalent:

(i) T is compact.
(ii) c(T ) = 0.
(iii) c(T×) = 0.

Proof. Obviously T is compact if, and only if, κY T : X1 × · · · ×Xm → ℓ∞(UY ∗)
is compact. Since ℓ∞(UY ∗) has an approximation property, κY T is an approximable
operator and, we may conclude that T is compact if, and only if,

c(T ) = lim
n→∞

an(κY T ) = 0.

This shows that (i) and (iii) are equivalent. To complete the proof, it is enough to
recall that T is compact if, and only if, T× is compact. �

Our next result shows the relation between Gelfand and Kolmogorov numbers of
a multilinear operator T and its adjoint T×.

Theorem 5.1. Let m ≥ 2 and let X1,. . . ,Xm, Y be Banach spaces. Then, for
every operator T ∈ Lm(X1 × · · · ×Xm, Y ) and for each n ∈ N, we have

(i) cn(T
×) ≤ dn(T ),

(ii) cn(T ) = dn(T
×),

(iii) cn(T ) ≤ 2
√
n cn(T

×).

Proof. (i) For each 1 ≤ j ≤ m let Qj be the canonical metric surjection from
ℓ1(UXj

) onto Xj. For abbreviation, let Q stand for the operator

Q1 × · · · ×Qm : ℓ1(UX1)× · · · × ℓ1(UXm) → X1 × · · · ×Xm
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defined by for every (λ1, . . . , λm) ∈ ℓ1(UX1)× · · · × ℓ1(UXm) by

Q(λ1, . . . , λm) = (Q1λ1, . . . , Qmλm).

It is easy to verify that (TQ)× : Y ∗ → Lm(ℓ1(UX1)×·· ·×ℓ1(UXm)) factorizes through
Lm(X1 × · · · ×Xm) as follows

(TQ)× : Y ∗ T×
−→ Lm(X1 × · · · ×Xm)

Φ−→ Lm(ℓ1(UX1)× · · · × ℓ1(UXm)),

where Φ is given by

Φ(S) = SQ, S ∈ Lm(X1 × · · · ×Xm).

Since Qj is a metric surjection for each 1 ≤ j ≤ m, Φ is a metric injection from
Lm(X1 × · · · × Xm) into Lm(ℓ1(UX1) × · · · × ℓ1(UXm)). Combining these with the
injectivity of the Gelfand numbers, Proposition 3.2 and Theorem 4.1, one has

cn(T
×) = cn(ΦT

×) = cn((TQ)×) ≤ an((TQ)×) ≤ an(TQ) = dn(T ).

(ii) Since κY : Y → ℓ∞(UY ∗) is a metric injection, (κY )
∗ : ℓ∞(UY ∗)∗ → Y ∗ is

a metric surjection. Thus the surjectivity of the Kolgomorov numbers in combination
with Proposition 3.2 yields (by (κY T )

× = T×(κY )
∗)

dn(T
×) = dn(T

×(κY )
∗) ≤ an(T

×(κY )
∗) = an((κY T )

×) ≤ an(κY T ) = cn(T ).

To prove the reverse inequality, we use the well-known fact that, for every operator
S ∈ L(E,F ) between Banach spaces E and F (see [11, Proposition 11.7.6]),

cn(S
∗) ≤ dn(S), n ∈ N.

To estimate cn(T ) from the above, we apply the equality κY T = T×J from Lemma 2.1
and the injectivity of the Gelfand numbers, namely,

cn(T ) = cn(κY T ) = cn(T
×J) ≤ cn((T

×)∗) ≤ dn(T
×)

and so this gives the required estimate.
(iii) It is well-known (see, e.g., [4, Proposition 3.8, p. 75]) that for any operator

S : E → F between Banach spaces and all n ∈ N,

an(S) ≤ 2
√
n cn(S).

Since dn(T
×) ≤ an(T

×), the required estimate follows by (ii). �
In the case of any m-linear operator T : X1 × · · · × Xm → Y acting between

Banach spaces, we also define sequences (ĉn(T )) and (c̃n(T )) as follows: ĉn(T ) is to
be the infimum of all ε > 0, such that there are functionals Bi ∈ Lm(X1×· · ·×Xm),
1 ≤ i ≤ k < n, which admit an estimate for all (x1, . . . , xm) ∈ (X1, . . . , Xm),

∥T (x1, . . . , xm)∥ ≤ sup
1≤i≤k

|Bi(x1, . . . , xm)|+ ε∥x1∥ · · · ∥xm∥,

and, respectively, c̃n(T ) is defined to be the infimum of all ∥S∥, with S ∈ Lm(X1×· ·
· ×Xm, Z) for some Banach space Z, such that, there are Bi ∈ Lm(X1 × · · · ×Xm),
1 ≤ i ≤ k < n, which satisfy

∥Tx∥Y ≤ sup
1≤i≤k

|Bix|+ ∥Sx∥Z , x ∈ X1 × · · · ×Xm.

To show some properties of the above introduced sequences, we need a charac-
terization of multilinear compact operators in terms of factorization. We will use
a characterization of compact linear operators due to Terzioglou [17] (see also [16];
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in a more precise form, see [8]), which states: If X, Y are Banach spaces, ε > 0 is
given and T ∈ L(X, Y ) is compact, then there exists a closed subspace Z of c0, such
that, T admits a factorization through Z:

T : X
B−→ Z

A−→ Y,

where B : X → Z and A : Z → Y are compact operators with ∥A∥ ≤ 1 and ∥B∥ ≤
(1 + ε) ∥T∥.

In the multilinear case, we have the following variant.

Theorem 5.2. Let m ∈ N and let X1,. . . ,Xm, Y be Banach spaces. Given ε > 0
and an operator T ∈ Lm(X1 × · · · ×Xm, Y ), then there exists a closed subspace Z
of c0, such that, T admits a factorization through Z:

T : X1 × · · · ×Xm
B−→ Z

A−→ Y,

where B ∈ Lm(X1 × · · · × Xm, Z) and A ∈ L(Z, Y ) are compact operators with
∥A∥ ≤ 1 and ∥B∥ ≤ (1 + ε) ∥T∥.

Proof. It follows from the theory of the projective tensor product analysis that
there exist bounded linear operators

⊗
: X1 × · · · × Xm → X1⊗̂π · · · ⊗̂πXm and

T̃ : X1⊗̂π · · · ⊗̂πXm → Y , such that,⊗
(x1, . . . , xm) = x1 ⊗ · · · ⊗ xm, (x1, . . . , xm) ∈ X1 × · · · ×Xm,

and
T = T̃ ◦

⊗
with ∥

⊗
∥ ≤ 1, ∥T̃∥ ≤ ∥T∥.

Using the representation of the projective tensor norm, we deduce that

T̃ (UX1⊗̂π ··· ⊗̂πXm
) ⊂ conv (T (UX1×···×Xm)).

Our hypothesis that T is compact in combination with the well-known Mazur theorem
yields that T̃ is a compact operator. To conclude, it is enough to apply the above
shown factorization result to T̃ . �

Lemma 5.1. Both (ĉn) and (c̃n) are injective s-number sequences which satisfy
the following estimates:

ĉn(T ) ≤ c̃n(T ) ≤ cn(T ), n ∈ N.

Proof. It is easy to check that the properties (S1)–(S3) are satisfied for both
sequences (ĉn) and (c̃n). We claim that the rank property (S3) holds for (c̃n). To see
this, fix T ∈ Lm(X1 × · · · ×Xm, Y ) with rank(T ) < n. Since

T : X1 × · · · ×Xm → [Im(T )]

is compact, it follows by Theorem 5.2 that there exists a closed subspace Z of c0 such
that T admits a factorization through Z,

T : X1 × · · · ×Xm
B−→ Z

A−→ [Im(T )]

with ∥A∥ ≤ 1 and ∥B∥ ≤ (1 + ε) ∥T∥.
Since rank(T ) = dim([Im(T )]) < n, rank(A) < n and so cn(A) = 0. Thus for

every ε > 0 there are functionals z∗i ∈ Z∗, 1 ≤ k < n, which admit an estimate

∥Az∥Y ≤ sup
1≤i≤k

|⟨z, z∗i ⟩|+ ε∥z∥Z , z ∈ Z.
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This implies that for Bi := z∗i ◦ B ∈ Lm(X1 × · · · × Xm), 1 ≤ i ≤ k < n, and
S := εB ∈ Lm(X1 × · · · ×Xm, Z) we have

∥Tx∥Y = ∥A(Bx)∥Y ≤ sup
1≤i≤k

|Bix|+ ∥Sx∥Z , x ∈ X1 × · · · ×Xm.

Consequently we obtain

c̃n(T ) ≤ ∥S∥ = ε∥B∥ ≤ ε (1 + ε)∥T∥.

Since ε > 0 is arbitrary, c̃n(T ) = 0 and so the claim is proved.
Obviously both (ĉn) and (c̃n) are injective s-number sequences, which satisfy

ĉn(T ) ≤ c̃n(T ) for all T ∈ Lm(X1 × · · · ×Xm, Y ) and n ∈ N. Since the sequence of
Gelfand numbers is the largest injective s-number sequence, the proof is complete. �

Pietsch in [11, p. 149] proved that the n-th Gelfand number cn(T ) of an operator
between Banach spaces X and Y allows the representation

cn(T ) = inf{∥TIF∥; F ⊂ X, codim(F ) < n},

where IF is the inclusion map from F into X.
Fix a positive integer m ≥ 2. Let X1,. . . ,Xm and Y be arbitrary Banach spaces.

Motivated by Pietsch’s result, for any bounded m-linear operator T : X1×···×Xm →
Y and (n1, . . . , nm) ∈ Nm, we define a sequence (c(n1,...,nm)(T )) by

c(n1,...,nm)(T ) = inf{∥TIF1×···×Fm∥; Fi ⊂ Xi, 1 ≤ i ≤ m, codim(Fi) < ni},

where Fi is closed subspaces of Xi for each 1 ≤ j ≤ m.
Unfortunately in the multilinear case, the relations between the sequence (cn(T ))

of Gelfand numbers and the sequence (c(n1,...,nm)(T )) seems to be generally compli-
cated.

We show some relationships between mentioned sequences for m-linear operators
defined on the product of finite dimensional spaces. We need some definitions and
preliminary results.

Suppose m ≥ 2 and F1,. . . ,Fm are closed subspaces, respectively, of the Banach
spaces X1,. . . ,Xm. Throughout the rest of the paper we put

(F1 × · · · × Fm)
◦ := {T ∈ Lm(X1 × · · · ×Xm); Tx = 0 for all x ∈ F1 × · · · × Fm}.

Obviously (F1 × · · · × Fm)
◦ is a closed subspace of Lm(X1 × · · · × Xm). For every

operator T ∈ Lm(X1 × · · · ×Xm), T := T + (F1 × · · · × Fm)
◦ denotes an element of

the quotient space Lm(X1 × · · · × Xm)/(F1 × · · · × Fm)
◦. The quotient map from

Lm(X1 × · · · ×Xm) onto Lm(X1 × · · · ×Xm)/(F1 × · · · × Fm)
◦ will be denoted by

Q(F1×···×Fm)◦ .

Lemma 5.2. Let m ≥ 2 and let F1,. . . ,Fm be closed subspaces respectively of
the Banach spaces X1,. . . ,Xm, such that for every T ∈ Lm(F1×·· ·×Fm) there exists
T̃ ∈ Lm(X1 × · · · ×Xm) with T̃ |F1×···×Fm = T and ∥T̃∥ ≤ M∥T∥ for some numerical
constant M ≥ 1. Then the operator Ψ: Lm(X1 × · · · × Xm)/(F1 × · · · × Fm)

◦ →
Lm(F1 × · · · × Fm) given by

Ψ(T ) := T |F1×···×Fm , T ∈ Lm(X1 × · · · ×Xm)/(F1 × · · · × Fm)
◦

is a linear isomorphism such that M−1 ≤ ∥Ψ∥ ≤ 1.
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Proof. It is clear that Ψ is linear and one-to-one. Let T ∈ Lm(X1 × · · · ×Xm).
Then for all S ∈ (F1 × · · · × Fm)

◦, we have∥∥Ψ(T )
∥∥ =

∥∥T |F1×···×Fm

∥∥ =
∥∥(T + S)|F1×···×Fm

∥∥ ≤ ∥T + S∥.

In consequence ∥Ψ∥ ≤ 1.
To complete the proof, for a given B ∈ Lm(F1×· · ·×Fm), our hypothesis implies

that there exists T ∈ Lm(X1 × · · · ×Xm) with ∥T∥ ≤ M∥B∥, such that, T is B on
F1 × · · · × Fm. In particular this implies that

Ψ(T ) = T |F1×···×Fm = B

and so Ψ is onto. We also have

M−1
∥∥T∥∥ ≤ M−1∥T∥ ≤ ∥B∥ =

∥∥Ψ(T )
∥∥,

which gives M−1 ≤ ∥Ψ∥. �

Theorem 5.3. Let m ≥ 2, X1, . . . , Xm, Y be Banach spaces, and let F1,. . . ,Fm

be closed subspaces of the Banach spaces X1,. . . ,Xm, respectively, which satisfy hy-
potheses of Lemma 5.2. Then for any operator T ∈ Lm(X1 × · · · ×Xm, Y ),∥∥Q(F1×···×Fm)◦T

×∥∥ ≤ M
∥∥TIF1×···×Fm

∥∥,
where IF1×···×Fm is the inclusion map from F1 × · · · × Fm into X1 × · · · ×Xm.

Proof. Let R : Lm(X1 × · · · ×Xm) → Lm(F1 × · · · × Fm) be the restriction map
defined by

R(S) := S|F1×···×Fm , S ∈ Lm(X1 × · · · ×Xm).

For any T ∈ Lm(X1 × · · · ×Xm), we have

RT× : Y ∗ → Lm(F1 × · · · × Fm).

Since for all y∗ ∈ Y ∗,

RT×(y∗) = R(T×y∗) = R(y∗ ◦ T ) = (y∗ ◦ T )|F1×···×Fm = y∗ ◦ (TIF1×···×Fm),

it follows that
∥RT×∥ =

∥∥TIF1×···×Fm

∥∥.
To conclude observe that R = ΨQ(F1×···×Fm)◦ where

Ψ: Lm(X1 × · · · ×Xm)/(F1 × · · · × Fm)
◦ → Lm(F1 × · · · × Fm)

is an operator defined as in Lemma 5.2 and apply 5.2. �

Theorem 5.4. Let m ≥ 2 and let X1,. . . ,Xm, Y be Banach spaces such that
Ni = dim(Xi) < ∞ for each 1 ≤ i ≤ m. Assume X1 × · · · ×Xm has the multilinear
extension property with M . Then for all T ∈ Lm(X1 × · · · ×Xm, Y ),

cn(T ) ≤ M c(k1,...,km)(T ), 1 ≤ ki < Ni, 1 ≤ i ≤ m,

where n ≥ N1 · · ·Nm − (N1 − k1) · · · (Nm − km).

Proof. Fix ε > 0. Then for each 1 ≤ i ≤ m there exists a closed subspace Fi of
Xi, such that codim(Fi) < ki and

(∗) ∥TIF1×···×Fm∥ ≤ c(k1,...,km)(T ) + ε/M.
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It follows from Lemma 5.2 that codim((F1×···×Fm)
◦) = dim(Lm(F1×···×Fm)) < ∞.

Since dim(Fi) > Ni − ki for each 1 ≤ i ≤ m,

N := dim((F1 × · · · × Fm)
◦) = dim(Lm(X1 × · · · ×Xm))− dim(Lm(F1 × · · · × Fm))

= dim(X1) · · · dim(Xm)− dim(F1) · · · dim(Fm)

< N1 · · ·Nm − (N1 − k1) · · · (Nm − km).

Combining Theorems 5.1 and 5.3 and with (∗) yields

cn(T ) = dn(T
×) ≤ dN(T

×) ≤
∥∥Q(F1×···×Fm)◦T

×∥∥
≤ M

∥∥TIF1×···×Fm

∥∥ ≤ Mc(k1,...,km)(T ) + ε.

Since ε > 0 is arbitrary the proof, the required estimate follows. �
It is clear that if H1, . . . , Hm are Hilbert spaces, then H1 × · · · × Hm has the

multilinear extension property. Let us remark that Hayden’s extension theorem [7,
Theorem 7] gives more precise result that M(H1 × · · · ×Hm) = 1. In consequence,
we obtain the following.

Corollary 5.1. Let m ≥ 2 and H1,. . . ,Hm be Hilbert spaces and let Y be
a Banach space such that Ni = dim(Hi) < ∞ for each 1 ≤ i ≤ m. Then for all
T ∈ Lm(H1 × · · · ×Hm, Y ),

cn(T ) ≤ c(k1,...,km)(T ), 1 ≤ ki < Ni, 1 ≤ i ≤ m,

where n ≥ N1 · · ·Nm − (N1 − k1) · · · (Nm − km).

To show applications to bilinear operators we recall that a Banach X has type
p, 1 < p ≤ 2, provided there exists a constant C > 0, such that, for every choice of
finitely many elements x1, . . . , xn ∈ X(ˆ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥2

dt

)1/2

≤ C

( n∑
k=1

∥xk∥p
)1/p

,

where (rn) is the sequence of the Rademacher functions. The least constant C in the
above inequality is called the type constant of X and is denoted by Tp(X).

Maurey’s celebrated extension theorem (see [3, pp. 246–248]) implies that X1×X2

has the bilinear extension property with M for arbitrary Banach spaces X1 and
X2 of type 2, where M depends type constants T2(X1) and T2(X2) of X1 and X2,
respectively. Examples of Banach spaces with type 2 are Lp-spaces for 2 ≤ p < ∞.

We conclude with the following corollary.

Corollary 5.2. Let X1, X2 and Y be Banach spaces. If X1 and X2 are finite
dimensional spaces of type 2 with dim(X1) = N1 and dim(X2) = N2, then there exists
a constant C > 0, such that, for every bounded bilinear operator T : X1 ×X2 → Y ,

cn(T ) ≤ C c(k1,k2)(T ), 1 ≤ ki < Ni, 1 ≤ i ≤ 2,

where n ≥ N1N2 − (N1 − k1)(N2 − k2).
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