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Abstract. The main result states that in a large class of Banach spaces including all Lp spaces
with 1 < p <∞, quasihyperbolic geodesics of domains are smooth.

1. Introduction

1.1. Quasihyperbolic metric. Throughout the paper, E will denote a real Ba-
nach space with dimE ≥ 2, and G  E will be a domain (open connected nonempty
set). We recall that the quasihyperbolic length of a rectifiable arc γ ⊂ G or a path γ
in G is the number

lk(γ) =

ˆ
γ

|dx|
δ(x)

,

where δ(x) = δG(x) = d(x,E \ G) = d(x, ∂G). For a, b ∈ G, the quasihyperbolic
distance k(a, b) = kG(a, b) is defined by

k(a, b) = inf lk(γ)

over all rectifiable arcs γ joining a and b in G. An arc γ from a to b is a quasihyperbolic
geodesic in G or briefly a geodesic if lk(γ) = k(a, b). A geodesic between given points
a, b ∈ G need not exist (see [Vä1, 3.5]), but it exists if either dimE < ∞ [GO,
Lemma 1] or if G is a convex domain in a reflexive space [Vä2, 2.1].

The quasihyperbolic metric has turned out to be a useful tool, for example, in
the theory of quasiconformal and related maps.

In this paper we are interested in the smoothness properties of quasihyperbolic
geodesics. In the main result 4.7 we show that in a large class of Banach spaces,
including all Lp spaces with 1 < p <∞, quasihyperbolic geodesics in all domains are
smooth, that is, they have a continuous tangent.

2. Preliminaries

In this section we present preparatory material needed in later sections.

2.1. Notation. The norm of a Banach space E will be written as |·|, occasionally
as ‖·‖. For a ∈ E, r > 0 we let B(a, r) and B̄(a, r) denote the open and closed ball in
E with center a and radius r, and we write S(a, r) = ∂B(a, r) = {x ∈ E : |x−a| = r}.
The center a may be omitted if a = 0. In particular, S(1) is the unit sphere. For x, y ∈
E, x 6= y, the line segment with endpoints x, y is [x, y], the line through x, y is 〈x, y〉,
and the ray from x through y is [x, y〉. For half open and open segments and for open
rays we use the notations [a, b), (a, b) and (a, b〉. For x ∈ E, x 6= 0 we write x̂ = x/|x|.
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The distance between nonempty sets A,B ⊂ E is d(A,B) and the boundary of a set
A ⊂ E is ∂A. For real numbers r, s we set r ∨ s = max{r, s}, r ∧ s = min{r, s}.

2.2. Curves and arcs. A set C ⊂ E is a curve if it is homeomorphic to a
real interval, which may be open, half open or closed. We assume that all curves are
oriented, that is, equipped with one of the two natural orderings, written as x ≤ y. A
curve is an arc if it is homeomorphic to a closed interval. An arc has two endpoints.
If a < b are the endpoints, then a is the left and b the right endpoint. We write
γ : a y b if γ is an arc with endpoints a and b and with the orientation a < b. We
let l(γ) denote the length of γ in the norm metric.

2.3. Deviations. In a Hilbert space, the angle ang(x, y) between nonzero vectors
x, y ∈ E is well-defined. We define some numbers, called deviations, which act as
substitutes for the angle in normed spaces.

Let x, y ∈ E, x 6= 0 6= y. We write
dev(x, y) = |x̂− ŷ|,

dev1(x, y) = d(x̂, [0, y〉).
If E is a Hilbert space and ang(x, y) = α, then

(2.4) dev(x, y) = 2 sin(α/2), dev1(x, y) =

{
sinα if 0 ≤ α ≤ π/2,

1 if π/2 ≤ α ≤ π.

2.5. Lemma. Let x, y ∈ E be nonzero vectors. Then
dev1(x, y) ≤ dev(x, y) ≤ 2 dev1(x, y).

Proof. The first inequality is trivial. For the second inequality, we may assume
that |x| = |y| = 1. Set s = dev(x, y) = |x− y| and let u ∈ [0, y〉. We must show that
|x− u| ≥ s/2.

If |u| ≤ 1− s/2, then |x− u| ≥ |x| − |u| ≥ s/2. If ||u| − 1| ≤ s/2, then |x− u| ≥
|x− y| − |y − u| ≥ s/2. Finally, if |u| ≥ 1 + s/2, then |x− u| ≥ |u| − |x| ≥ s/2. �

2.6. Remark. Clearly dev(x, y) = dev(y, x), but dev1 is not symmetric. However,
Lemma 2.5 implies that dev1(x, y) ≤ 2 dev1(y, x).

2.7. Standard estimates. We recall some well-known estimates for the quasi-
hyperbolic metric. Let a, b ∈ G ⊂ E. The j-metric of a domain G is defined by

j(a, b) = log

(
1 +

|a− b|
δ(a) ∧ δ(b)

)
.

We have always

(2.8) k(a, b) ≥ j(a, b) ≥ log

(
1 +
|a− b|
δ(a)

)
≥ log

δ(b)

δ(a)
;

see e.g. [GP, 2.1] or [Vä1, 3.7(1)].
Next, if 0 < t ≤ 1 and |a− b| ≤ tδ(a), we have

(2.9) k(a, b) ≤ lk[a, b] ≤
|a− b|

(1− t)δ(a)
.

Furthermore, if either |a− b| ≤ δ(a)/2 or k(a, b) ≤ 1, then

(2.10) k(a, b)/2 ≤ |a− b|
δ(a)

≤ 2k(a, b);
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see [Vä1, 3.9]. If k(a, b) = λ ≤ 1/4, then the first inequality of (2.10) can be improved
to

(2.11) λ(1− 2λ) ≤ |a− b|
δ(a)

.

Indeed, the second inequality of (2.10) gives |a− b| ≤ 2λδ(a), and (2.11) follows from
(2.9).

2.12. Strictly, uniformly and strongly convex spaces. We recall that a
space E is strictly convex if the unit sphere S(1) does not contain a line segment.
Equivalently, the equality |x + y| = |x| + |y| implies that x and y have the same
direction; see [FZ, 8.11].

A space E is uniformly convex if there is a continuous strictly increasing function
ψ : [0, 2]→ [0, 1] such that ψ(0) = 0 and such that

|x+ y|/2 ≤ 1− ψ(|x− y|)

for all x, y ∈ S(1). We also say that E is ψ-uniformly convex. A uniformly convex
space is always strictly convex. The converse holds if dimE <∞. A linear subspace
of a ψ-uniformly convex space is also ψ-uniformly convex.

The function δ : [0, 2]→ [0, 1], defined by

δ(t) = inf{1− |x+ y|/2: x, y ∈ S(1), |x− y| = t},

is the convexity modulus of a uniformly convex space E. It is easy to show that δ is
a homeomorphism of [0, 2] onto [0, 1], and thus

δ(t) = max{ψ(t) : E is ψ-uniformly convex}.

The inverse function ψ−1 is defined on [0, ψ(2)] but we extend it to the whole
[0, 1] by setting ψ−1(t) = 2 for ψ(2) < t ≤ 2. Then ψ(t) ≤ s implies t ≤ ψ−1(s) for
all 0 ≤ t ≤ 2, 0 ≤ s ≤ 1.

We say that E is ψ-strongly convex if E is ψ-uniformly convex and if the function
t 7→ ψ−1(t)/t is integrable on (0, 1].

2.13. Examples. 1. The convexity modulus of a Hilbert space is ψH(t) = 1 −√
1− t2/4 ≤ t2/4, and ψ(t) ≤ ψH(t) for every ψ-uniformly convex space; see [BL,

p. 409].
2. If s ≥ 2, m > 0 and if ψ(t) ≥ mts for all t, then the function ψ is said to be

of power type s, and a ψ-uniformly convex space is also said to be of power type s.
Then

ψ−1(t)/t ≤ m1/st1/s−1,

whence E is ψ-strongly convex. For 1 < p <∞, each Lp-space is of power type p∨ 2
and hence strongly convex; see [LZ, p. 63].

3. Suppose that s > 1, m > 0 and that E is ψ-uniformly convex with ψ(t) =
m exp(−t−1/s). Then ψ is not of power type. However, E is strongly convex, since
the function

ψ−1(t)

t
=

1

t(log m
t
)s

is integrable on (0, ψ(2)].
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4. On the other hand, if ψ(t) ≤ e−1/t, then

ψ−1(t)

t
≥ 1

t log 1
t

is not integrable, whence a ψ-uniformly convex space is not ψ-strongly convex.

From the definition we readily obtain:

2.14. Lemma. Suppose that E is ψ-uniformly convex and that a ∈ E, u, v ∈
S(a, r). Then

|a− (u+ v)/2| ≤ r − rψ(|u− v|/r). �

2.15. Lemma. Suppose that E is ψ-uniformly convex, that L ⊂ E is a line and
that a, b ∈ L, u ∈ E \ L. Set r = |u− a|, s = |u− b|. Then

d(u, L) ≤ (r ∨ s)ψ−1(1− |a− b|/(r + s)).

Proof. We may assume that a = 0 and that dimE = 2. Let H and H ′ be the
components of E \ L with u ∈ H. We first show that there is a point u′ ∈ H ′ such
that |u′ − a| = r, |u′ − b| = s. The points x = −rb̂ and y = rb̂ are the endpoints of
the semicircle γ′ = S(r) ∩ H̄ ′. It suffices to show that

(2.16) |x− b| ≥ s, |y − b| ≤ s,

because this will imply that there is a point u′ ∈ γ′ ∩ S(b, s).
We have

|x− b| = |b|+ r, |y − b| = ||b| − r|.
From the triangle 0bu we obtain the inequalities

|r − s| ≤ |b| ≤ r + s.

Hence |x− b| ≥ |r − s|+ r ≥ s. If r ≥ |b|, then |y − b| = r − |b| ≤ r − (r − s) = s. If
r < |b|, then |y − b| = |b| − r ≤ s. We have proved (2.16).

For z = (u+ u′)/2 we obtain by 2.14

|a− z| ≤ r − rψ(|u− u′|/r), |b− z| ≤ s− sψ(|u− u′|/s),

whence

|a− b| ≤ |a− z|+ |b− z| < (r + s)

(
1− ψ

(
|u− u′|
r ∨ s

))
.

Since d(u, L) ≤ |u− u′|, this implies the lemma. �

Lemma 2.17. Let y ∈ G and z ∈ ∂G with |y−z| = δ(y). Then for each x ∈ (y, z),
[y, x] is a geodesic and

k(x, y) = log
δ(y)

δ(x)
= log

|y − z|
|x− z|

.

If E is strictly convex, then [y, x] is the only geodesic y y x.

Proof. For u ∈ [y, z] we have δ(u) = |u− z|, whence

k(x, y) ≤ lk[x, y] =

ˆ δ(y)

δ(x)

dt

t
= log

δ(y)

δ(x)
.

The converse inequality follows from (2.8).



Tangential properties of quasihyperbolic geodesics in Banach spaces 829

Assume that E is strictly convex and that γ : y y x is a geodesic. Let u ∈ γ. As
δ(u) ≤ δ(x) + |x− u| and δ(y) ≤ δ(u) + |u− y|, we get by (2.8)

k(x, u) ≥ log
δ(x) + |x− u|

δ(x)
≥ log

δ(u)

δ(x)
,

k(u, y) ≥ log
δ(u) + |u− y|

δ(u)
≥ log

δ(y)

δ(u)
.

(2.18)

Since γ is a geodesic, we have

k(x, y) = k(x, u) + k(u, y) ≥ log
δ(y)

δ(x)
= k(x, y).

Hence each inequality in (2.18) holds as an equality, whence

δ(u) = δ(x) + |x− u|, δ(y) = δ(u) + |u− y|.
As δ(y) − δ(x) = |x − y|, we obtain |x − y| = |x − u| + |u − y|, which implies that
u ∈ [y, x] by strict convexity. Hence γ = [y, x]. �

2.19. Remark on ball convexity. If E is a Hilbert space, then by the impor-
tant ball convexity theorem of Martin ([Ma, 2.2] or [Vä3, 2.4]), the quasihyperbolic
geodesics in a domain G ⊂ E are ball convex, that is, a geodesic γ : a y b lies in
a ball B ⊂ G whenever a, b ∈ B. The corresponding result is not true in arbitrary
Banach spaces; see Example 5.8. However, it seems to be an open problem, whether
quasihyperbolic geodesics are ball starlike, that is, a geodesic γ : a y b lies in a ball
B = B(a, tδ(a) whenever t ≤ 1 and |b− a| < tδ(a).

3. Approximative smoothness of geodesics

3.1. Smooth curves. Let C ⊂ E be a curve. Recall that we consider C as an
ordered set. Let z ∈ C and assume that z is not the right endpoint of C. A unit
vector v ∈ E is the right tangent vector of C at z if

v = lim
x→z

x∈C, x>z

x− z
|x− z|

,

or equivalently, if dev(x− z, v) → 0 as x → z and x > z on C. Similarly, if z is not
the left endpoint and if the left limit of (z − x)/|z − x| exists, it is the left tangent
vector of γ at z ∈ γ(a, b] (observe the sign). If both of these exist and are equal, their
common value is the tangent vector of γ at x.

We say that a curve C is smooth if it has a continuous tangent. More precisely,
(1) the tangent vector v(z) exists at each interior point z ∈ C,
(2) the right tangent vector v(a) exists at the possible left endpoint a of C,
(3) the left tangent vector v(b) exists at the possible right endpoint b of C,
(4) the function v : C → E is continuous.
Equivalently, a curve C is smooth if it has a smooth parametrization f : J → C

with f ′(x) 6= 0. The Hilbert case was proved in [Vä3, Appendix] and the Banach case
is rather similar.

3.2. Smoothness of geodesics. Martin [Ma, 4.8] proved in 1985 that quasi-
hyperbolic geodesics in a domain G in the Euclidean space Rn are smooth. Another
proof, valid in all Hilbert spaces, was given in [Vä3, 2.8]. These proofs were based on
Martin’s idea of the ball convexity of quasihyperbolic geodesics, which is no longer
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valid in arbitrary Banach spaces. In fact, a geodesic in a half plane of R2 with the
max norm need not have a tangent at all points; see 5.7. However, it is an open
problem whether quasihyperbolic geodesics in uniformly convex Banach spaces are
smooth.

In 3.4 we give a weaker result, which might be called approximative smoothness.
It shows that if γ is a geodesic in a domain of a uniformly convex space and if a ∈ γ,
then for small t > 0, the set γ ∩ B(a, tδ(a)) lies in a narrow neighborhood of a line,
which might be considered as an approximate tangent of γ. However, the direction
of this line is allowed to vary as t→ 0.

In Section 4 we show in 4.7 that in a strongly convex space, every quasihyperbolic
geodesic in a domain is smooth.

The proofs are based on the following key result:

3.3. Theorem. Suppose that E is ψ-uniformly convex and that γ : a y b is a
geodesic in G ⊂ E with k(a, b) = λ ≤ 1/4. Then

d(u, 〈a, b〉) < |a− b|ε(λ)

for all u ∈ γ, where ε(λ) = 3ψ−1(4λ)→ 0 as λ→ 0.

Proof. The proof is based on the following rough idea: Since a small quasi-
hyperbolic distance k(a, b) is close to the scaled norm distance |a − b|/δ(a), also
the quasihyperbolic geodesic γ : ay b is close to the norm geodesic [a, b].

For each z ∈ γ we have k(a, z) ≤ k(a, b) = λ. By (2.10) this yields |z − a| ≤
2δ(a)k(a, z) ≤ 2λδ(a). Hence δ(z) ≤ δ(a) + |z−a| ≤ (1 + 2λ)δ(a), which implies that

l(γ) ≤ λ(1 + 2λ)δ(a).

As |a− b| ≤ 2λδ(a), (2.11) gives

λδ(a) ≤ |a− b|
1− 2λ

.

Setting r = |a− u|, s = |u− b| we obtain

r + s ≤ l(γ) ≤ (1 + 2λ)|a− b|
1− 2λ

≤ 3|a− b|.

The theorem follows from this and from Lemma 2.15. �

3.4. Theorem. Suppose that E is ψ-uniformly convex and that a ∈ G ⊂
E, x, y ∈ B̄(a, tδ(a)), 0 < t < 1/9. Let γ : x y y be a geodesic containing a.
Then d(a, 〈x, y〉) ≤ tδ(a)ε(t), where ε(t) = 6ψ−1(9t)→ 0 as t→ 0.

Proof. By (2.9) we have

λ = k(x, y) ≤ |x− y|
(1− t)δ(a)

≤ 2t

1− t
.

As t ≤ 1/9, we get λ ≤ 9t/4 ≤ 1/4. Hence 3.3 gives

d(a, 〈x, y〉) ≤ 3|x− y|ψ−1(4λ) ≤ 6tδ(a)ψ−1(9t). �

We shall apply Theorem 3.4 in 3.7 to prove that in a uniformly convex space E,
a geodesic γ in G ⊂ E has a tangent at an interior point a ∈ γ whenever it has a
one-sided tangent at a. For this we need some elementary geometry in normed spaces.

3.5. Lemma. If x, y ∈ S(1) and |x+ y| ≥ 1, then d(0, [x, y]) ≥ 1/4.
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Proof. Set z = (x+y)/2 and let u ∈ [x, y]. We must show that |u| ≥ 1/4. We may
assume that u ∈ [x, z]. If |x−u| ≤ 3/4, then |u| ≥ |x|−|x−u| ≥ 1/4. If |x−u| ≥ 3/4,
then |u− z| = |x− z|− |x−u| ≤ 1− 3/4 = 1/4, whence |u| ≥ |z|− |u− z| ≥ 1/4. �

3.6. Lemma. Suppose that p, x, y ∈ S(1), |x− p| ≤ α, d(0, [x, y]) ≤ β, α+ β <
1/4. Then |y + p| ≤ 8(α + β).

Proof. Case 1. x = p. As β < 1/4, we have |x + y| < 1 by 3.5. The function
f : R → R, defined by f(t) = |y + tx|, is convex, and f(0) = 1 > f(1). Hence
f(t) ≥ 1 for t ≤ 0, which implies that dev1(y,−x) = |y − x| dev1(y − x,−x). By 2.5
this yields

|y + x| = dev(y,−x) ≤ 2 dev1(y,−x) = 2|y − x| dev1(y − x,−x)

≤ 4|y − x| dev1(−x, y − x) = 4|y − x|d(0, [x, y]) ≤ 8β.

Case 2. x is arbitrary. Let z ∈ [x, y] and z′ ∈ [y, p〉 be points such that

|z| = d(0, [x, y]), |z − z′| = d(z, [y, p〉).
Then |z| ≤ β and |z − z′| ≤ d(x, [y, p〉) ≤ |x− p| ≤ α, whence

d(0, [p, y]) ≤ |z′| ≤ |z′ − z|+ |z| ≤ α + β.

By Case 1 this gives |y + p| ≤ 8(α + β). �

3.7. Theorem. Suppose that E is uniformly convex and that a is an interior
point of a geodesic γ in a domain G ⊂ E. If γ has a left or a right tangent at a, it
has a tangent at a.

Proof. Assume, for example, that γ has a left tangent vector v at a. Let 0 < t <
1/9 and suppose that γ meets S(a, tδ(a)) on both sides of a. Write

s = tδ(a), p = a− sv, q = a+ sv.

Let x, y ∈ γ∩S(a, s) be points such that x < a < y on γ. Then |x−p| ≤ sε(s) where
ε(s)→ 0 as s→ 0. We must find an estimate |y − q| ≤ sε∗(s) with ε∗(s)→ 0.

As |z − a| > s for z ∈ 〈x, y〉 \ [x, y], Theorem 3.4 gives d(a, [x, y]) ≤ sε1(s) with
ε1(s) → 0. Assume that s is so small that ε1(s) + ε(s) < 1/4. Using an auxiliary
homothety carrying S(a, s) onto S(1) and Lemma 3.6 we obtain

|y − q| ≤ 8s(ε1(s) + ε(s)) = sε∗(s). �

4. Strongly convex spaces

Recall from 2.12 that a ψ-uniformly convex space is ψ-strongly convex if ψ−1(t)/t
is integrable on the interval 0 < t ≤ ψ(2).

In this section we show in 4.7 that in a ψ-strongly convex space, every quasi-
hyperbolic geodesic γ in a domain G ⊂ E is smooth. Moreover, the tangent vector
v : γ → S(1) is uniformly continuous in the quasihyperbolic metric with a continuity
modulus depending only on ψ.

We first give some auxiliary elementary results on real functions and on the
geometry of normed spaces.

4.1. Lemma. Let f : (0, λ] → R be a positive increasing function. Then the
following conditions are equivalent:

(1)
´ λ
0
f(t)
t
dt <∞,
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(2) the series
∑∞

j=0 f(2−jλ) is convergent.
If these conditions hold, then

(4.2)
1

2

∞∑
j=1

f(2−jλ) ≤
ˆ λ

0

f(t)

t
dt ≤

∞∑
j=0

f(2−jλ).

Proof. For t ∈ Ij = [2−j−1λ, 2−jλ] we have

f(2−j−1λ) ≤ f(t) ≤ f(2−jλ), 2j/λ ≤ 1/t ≤ 2j+1/λ.

Multiplying, integrating over t ∈ Ij and summing over j ≥ 0 we obtain the lemma.
�

4.3. Lemma. Suppose that L,L0 ⊂ E are parallel lines with 0 ∈ L0 and
d(L,L0) < 1. Let x0 ∈ L0∩S(1) and let [b′, b] = L∩ B̄(1), where b− b′ = λx0, λ > 0.
Then d(b, L0) = d(b, [0, x0〉).

Proof. Let y ∈ L be a point with |y| = d(0, L). Then y = (1− t)b + tb′ for some
t ∈ [0, 1]. Define an affine isometry A : E → E by Ax = b−x. Then AL = L0, A(0) =
b, Ay = tλx0 ∈ [0, x0〉, whence d(b, L0) = d(0, L) = |y| = |Ay − b| ≥ d(b, [0, x0〉). �

4.4 Lemma. Suppose that L0 ⊂ E is a line through the origin and that x0 ∈
L0 ∩ S(1). Let 0 < r < 1 and let Z be the tube {x ∈ E : d(x, L0) ≤ r}. Then
Z \ B(1) has two components V and V ′ where x0 ∈ V , and for each y ∈ V we have
d(y, L0) = d(y, [0, x0〉), and hence dev1(y, x0) = d(y, L0)/|y|.

Proof. The tube Z is the union of all lines L parallel to L0 with d(L,L0) ≤ r.
For such L, the set L \ B(1) is the union of two rays R′L, RL with endpoints b′L, bL
such that bL − b′L has the same direction as x0. Then V is the union of all rays RL.
By 4.3 we have d(bL, L0) = d(bL, [0, x0〉), and the lemma follows. �

4.5. Notation. Suppose that E is ψ-uniformly convex. We set

τψ = ψ(1/12)/8, fψ(t) = 12ψ−1(8t) for 0 ≤ t ≤ τψ.

Then fψ(τψ) = 1. Clearly τψ ≤ 1/8, but in fact, τψ is much smaller. As ψ(t) ≤
ψH(t) ≤ t2/4 by 2.12, we have τψ ≤ 1/4608.

The next result is a version of Theorem 3.3. Instead of the distance between a
point and a line we now estimate the deviation between two vectors.

4.6. Theorem. Suppose that E is ψ-uniformly convex and that 0 < t ≤ τψ. Let
a ∈ G ⊂ E, let γ : ay x0 ∈ S(a, tδ(a)) be a geodesic, and let x1 be the last point of
γ in S(tδ(a)/2). Then

dev(y − a, x0 − a) ≤ fψ(t)

for all y ∈ γ[x1, x0].

Proof. Setting λ = k(a, x0) we have t/2 ≤ λ ≤ 2t by (2.10). Write L0 = 〈a, x0〉
and Z = {x ∈ E : d(x, L0) ≤ tδ(a)/4}. As t ≤ τψ, Theorem 3.3 gives

d(y, L0) < 3tδ(a)ψ−1(8t) ≤ tδ(a)/4.

From 4.4 it follows that γ[x1, x0] lies in a component V of Z \B(a, tδ(a)/2) with
the property that dev1(y−a, x0−a) = d(y, L0)/|y−a| for all y ∈ V . For y ∈ γ[x1, x0]
we have |y − a| ≥ tδ(a)/2, whence dev1(y − a, x0 − a) ≤ 6ψ−1(8t) = fψ(t)/2. As
dev ≤ 2 dev1 by 2.5, this yields the theorem. �
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We next iterate Theorem 4.6 to obtain our main result:

4.7. Theorem. Suppose that E is ψ-strongly convex and that γ : a0 y b0 is a
quasihyperbolic geodesic in G ⊂ E. Then γ is smooth.

Proof. We first show that γ has a tangent at every point (one-sided at the end-
points a0, b0). By Theorem 3.7 and by symmetry, it suffices to show that the right
tangent vector v(a) exists at an arbitrary point a ∈ γ[a0, b0). Using the notation of
4.5 we fix a number t ∈ (0, τψ] such that there is a point x0 ∈ γ(a, b0] ∩ S(a, tδ(a)).

For each positive integer j let xj be the last point of γ in S(a, 2−jtδ(a)). Let
y ∈ γ[xj+1, xj]. Applying Theorem 4.6 with the substitution x0, x1, t 7→ xj, xj+1, 2

−jt
we obtain

(4.8) dev(y − a, xj − a) ≤ fψ(2−jt).

In particular, setting wj = xj − a we have

|ŵj+1 − ŵj| = dev(wj+1, wj) ≤ fψ(2−jt).

The function fψ(t)/t is integrable on (0, τψ] by strong convexity. As the series∑
j fψ(2−jt) is convergent by 4.1, the sequence (ŵj) is a Cauchy sequence in S(1) and

hence converges to a limit v(a) ∈ S(1). Moreover, (4.8) implies that dev(y−a, v(a))→
0 as y → a on γ(a, b0], whence v(a) is the right tangent vector of γ at a.

The continuity of v : γ → S(1) follows from Theorem 4.12 below. �

By Example 2.13.2 we get:

Corollary 4.9. If E is a uniformly convex space of power type (see 2.13.2), then
every geodesic in a domain G ⊂ E is smooth. In particular, this is true in the spaces
Lp(µ) for some measure space (Ω, µ), 1 < p <∞. �

4.10. Remark. Corollary 4.9 has been independently and by different methods
obtained by [RT2].

4.11. Notation. Suppose that E is ψ-strongly convex. Let τψ and fψ be as in
4.5. We define hψ : [0, τψ]→ R by

hψ(t) = fψ(t) + 2

ˆ t

0

fψ(s)

s
ds.

The function hψ is continuous, strictly increasing, and h(0) = 0.

4.12. Theorem. Let E and γ be as in 4.7 and let x, y ∈ γ be points with
k(x, y) ≤ τψ/2. Then

|v(x)− v(y)| ≤ 2hψ(2k(x, y)).

Proof. Assume, for example, that x < y on γ. Set λ = k(x, y) and t = |x−y|/δ(x).
By (2.10) we have t ≤ 2λ ≤ τψ. In view of (4.2), the proof of Theorem 4.7 shows that

dev(v(x), y − x) ≤
∞∑
j=0

fψ(2−jt) ≤ hψ(t) ≤ hψ(2λ).

Changing the roles of x and y we obtain

dev(v(y), y − x) = dev(−v(y), x− y) ≤ hψ(2λ),

and the theorem follows. �
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4.13. Uniform continuity. From Theorem 4.12 it easily follows that the tangent
vector v is in fact uniformly continuous in the quasihyperbolic metric of γ. Moreover,
the continuity modulus depends only on ψ. See e.g. [Vä1, 2.5].

4.14. Theorem. Suppose that E is ψ-strongly convex. Then there is an increas-
ing continuous function ϕψ : [0,∞) → R, depending only on ψ, with ϕψ(0) = 0 and
with the following property:

Let γ be a quasihyperbolic geodesic in a domain G ⊂ E. Then the tangent vector
v of γ satisfies the inequality

|v(x)− v(y)| ≤ ϕψ(k(x, y))

for all x, y ∈ γ. �

In a Hilbert space the inequality of 4.14 holds as a Lipschitz condition:

4.15. Theorem. Let E be a Hilbert space and let γ be a quasihyperbolic geodesic
in a domain G ⊂ E. Then the tangent vector v of γ satisfies the condition

|v(x)− v(y)| ≤ k(x, y)

for each pair x, y ∈ γ.
Proof. This was proved in [Vä4, 2.16] in the stronger form ang(v(x), v(y)) ≤

k(x, y) for E = Rn, and the proof is valid in every Hilbert space. �

4.16. Correction. The proof of Theorem 2.16 of [Vä4] was based on Theo-
rem 2.15, in which one should replace the condition s < d/2 by s < d/3. We give a
corrected and more detailed proof for the first part of Theorem 2.15.

Set r = d − s, and let z ∈ Rn be a point with |z − a| = |z − b| = r. Let x0
be the unique point in S(z, r) for which (a + b)/2 ∈ [z, x0]. Setting d0 = δ(x0) and
t = |x0 − a| = |x0 − b| we have |d0 − d| ≤ t < s < d/3, whence r < d0 and d0 ≤
d+s < d+d−2s = 2r. Hence we may apply the cap convexity theorem 2.13 of [Vä4]
with the substitution d 7→ d0, which gives γ ⊂ B̄(z, r), and therefore γ ⊂ Ȳ (a, b, r).

In the proof of [Vä4, 2.16] one should also replace the condition s < d/2 by
s < d/3.

5. An example: The max norm in the plane

5.1. Introduction. In this section we consider in some detail the plane R2 with
the max norm (or l∞-norm)

(5.2) ‖x‖ = |x1| ∨ |x2|.

We consider the half plane

H = {x ∈ R2 : x2 > 0}

and determine the quasihyperbolic geodesics in H. Some routine calculations are
omitted.

This space has been recently considered by Rasila and Talponen [RT1, Sec. 5].
Moreover, the l1-norm |x1| + |x2| is in dimension 2 isometric to the max norm, and
it has been considered in [TV] and in [Vä2, 5.1].
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5.3. Notation. In this section, we use ‖x‖ to denote the max norm (5.2). The
plane (R2, ‖ · ‖) will also be written as E or l2∞. For distinct points a, b ∈ E we set

M(a, b) =
|b2 − a2|
|b1 − a1|

.

If a1 = b1, then M(a, b) = ∞. If L ⊂ E is a line, we set ML = M(a, b) for arbitrary
points a, b ∈ L.

The quasihyperbolic geodesics of H ⊂ l2∞ are described in the following theorem
and in Figure 1.

5.4. Theorem. Let a, b ∈ H, a 6= b.
(1) If M(a, b) ≥ 1, then

(5.5) k(a, b) =

∣∣∣∣ log
b2
a2

∣∣∣∣.
An arc γ : ay b is a geodesic iff

(5.6) M(x, y) ≥ 1 for all x, y ∈ γ, x 6= y.

In particular, the segment [a, b] is a geodesic.
(2) If M(a, b) = 1, then (5.5) is true, and [a, b] is the only geodesic ay b.
(3) If M(a, b) < 1, then the geodesic γ : ay b is unique, and it is the broken line

[a, z]∪ [z, b] where z is the unique point for which M(a, z) = M(b, z) = 1 and
z2 > a2 ∨ b2. Moreover,

k(a, b) = log
z22

4a2b2
.

Explicitly, if a1 < b1, then

2z1 = a1 + b1 − a2 + b2, 2z2 = −a1 + b1 + a2 + b2,

k(a, b) = log
(−a1 + b1 + a2 + b2)

2

4a2b2
.

H
a a a

b

b

b

(1) (2)
(3)

Figure 1. Geodesics in H.

Proof. We first prove some facts. From (2.8) we readily obtain:

Fact 1. Always k(a, b) ≥ | log b2
a2
|.
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Fact 2. M(a, b) ≥ 1 iff k(a, b) = | log b2
a2
|.

Assume, for example, that b2 > a2 and that k(a, b) = log b2
a2
. Then (2.8) implies

that j(a, b) = log b2
a2
, which is true iff M(a, b) ≥ 1. Conversely, if M(a, b) ≥ 1, then

the line element ds on [a, b] is dx2, whence

k(a, b) ≤ lk[a, b] =

ˆ b2

a2

dt

t
= log

b2
a2
.

Fact 3. If M(a, b) ≥ 1, then an arc γ : a y b is a geodesic iff γ satisfies the
condition (5.6).

We may assume that a2 < b2. First, if (5.6) holds, then the second projection
p2 : γ → R, p2x = x2, is an isometry, Hence its inverse g = (p2|γ)−1 : [a2, b2] → γ is
a length parametrization of γ. By Fact 2 we get

lk(γ) =

ˆ b2

a2

dt

t
= log

b2
a2

= k(a, b).

Conversely, assume that γ : a y b is a geodesic. If (5.6) is not true, there are
x, y ∈ γ such that a ≤ x < y ≤ b and such that M(x, y) < 1. By Fact 2 this gives
the contradiction

k(a, b) = k(a, x) + k(x, y) + k(y, b) > log
x2
a2

+ log
y2
x2

+ log
b2
y2

= log
b2
a2

= k(a, b),

and Fact 3 is proved.
Part (1) of the theorem follows now from Facts 2 and 3, and part (2) is a corollary

of (1). To prove (3) we need the following

Fact 4. Let L ⊂ E be a line with ML = 1, and let q : E → L be the vertical
projection defined by (qx)1 = x1. Let K be the half plane {x ∈ E : x2 < (qx)2}
with ∂K = L, and suppose that g : [t0, t1] → K̄ ∩ H is a rectifiable path. Then
lk(q ◦ g) ≤ lk(g), with equality iff im g ⊂ L.

The map q is 1-Lipschitz in the norm metric, and δ(qx) ≥ δ(x) for all x ∈ K̄.
Hence lk(q ◦ g) ≤ lk(g). If g(u) /∈ L for some u ∈ [t0, t1], then δ(qg(t)) > δ(g(t)) in a
neighborhood of u, whence lk(q ◦ g) < lk(g), and Fact 4 follows.

To prove (3) set γ0 = [a, z] ∪ [z, b] and suppose that γ : a y b is a geodesic. We
may assume that a1 < b1. Let y be the first point of γ with y1 = z1. If y2 = z2,
then γ = γ0 by (2). If y2 > z2, then lk(γ) > lk(γ0) by (1). If y2 < z2, then it
follows from (2) that no subarc of γ[a, y] lies above the line 〈a, z〉. By Fact 4 we have
lk(γ[a, y]) > lk[a, z]. Similarly lk(γ[y′, b]) > lk[z, b] where y′ is the last point of γ with
y′1 = z1. Hence lk(γ) > lk(γ0), and (3) is proved. �

5.7. Remark. Case (1) of Theorem 5.4 shows that a quasihyperbolic geodesic
need not have one-sided tangents at all points.

5.8. Example. Let 0 < r < 1/2 and let x = (0, 2), a = (−1 + r, 3 − r), b =
(1 − r, 3 − r). Then a, b ∈ B(x, 1) ⊂ H but a geodesic γ : a y b contains the point
(0, 4−2r) /∈ B(x, 1). Hence the ball convexity theorem [Ma, 2.2] does not hold in l2∞.

5.9. Question. For 1 ≤ p ≤ ∞ let l2p be the plane R2 with the lp-norm. Let γ be
a subarc of the semicircle {x ∈ l2p : |x| = 1, x2 > 0}. Is γ a quasihyperbolic geodesic
in the half plane H ⊂ l2q where 1/p+ 1/q = 1?
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The case q = ∞ follows from Theorem 5.4 and the case q = 1 from [Vä2, 5.1].
For p = q = 2 we have the classical Poincaré half plane.

References

[BL] Benyamini, Y., and J. Lindenstrauss: Geometric nonlinear functional analysis I. - Amer.
Math. Soc. Colloq. Publ. 48, 2000.

[Fe] Federer, H.: Geometric measure theory. - Springer, 1969.

[FZ] Fabian, M., P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, and V.
Zizler: Functional analysis and infinite-dimensional geometry. - Springer, 2001.

[GO] Gehring, F.W., and B.G. Osgood: Uniform domains and the quasi-hyperbolic metric. -
J. Anal. Math. 36, 1979, 50–74.

[GP] Gehring, F.W., and B.P. Palka: Quasiconformally homogeneous domains. - J. Anal.
Math. 30, 1976, 172–199.

[LZ] Lindenstrauss, J., and L. Tzafriri: Classical Banach spaces II. - Springer, 1977.

[Ma] Martin, G. J.: Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the
quasihyperbolic metric. - Trans. Amer. Math. Soc. 292, 1985, 169–191.

[RT1] Rasila, A., and J. Talponen: Convexity properties of quasihyperbolic balls on Banach
spaces. - Ann. Acad. Sci. Fenn. Math. 37, 2012, 215–228.

[RT2] Rasila, A., and J. Talponen: On quasihyperbolic geodesics in Banach spaces. - Preprint.

[TV] Trotsenko, D., and J. Väisälä: Upper sets and quasisymmetric maps. - Ann. Acad. Sci.
Fenn. Math. 24, 1999, 465–488.

[Vä1] Väisälä, J.: The free quasiworld. Freely quasiconformal and related maps in Banach spaces.
- In: Quasiconformal geometry and dynamics (Lublin, 1996), Banach Center Publ. 48, Polish
Acad. Sci., Warsaw, 1999, 55–118.

[Vä2] Väisälä, J.: Quasihyperbolic geodesics in convex domains. - Results Math. 48, 2005, 184–
195.

[Vä3] Väisälä, J.: Quasihyperbolic geometry of domains in Hilbert spaces. - Ann. Acad. Sci. Fenn.
Math. 32, 2007, 559–578.

[Vä4] Väisälä, J.: Quasihyperbolic geometry of planar domains. - Ann. Acad. Sci. Fenn. Math.
34, 2009, 447–473.

Received 1 February 2013 • Accepted 21 February 2013


