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Abstract. We prove that ωu(δ) ≤ Cωf (δ), where u : Ω → Rn is the harmonic extension of
a continuous map f : ∂Ω → Rn, if u is a K-quasiregular map and Ω is bounded in Rn with C2

boundary. Here C is a constant depending only on n, ωf and K and ωh denotes the modulus of
continuity of h. We also prove a version of this result for Λω-extension domains with c-uniformly
perfect boundary and quasiconformal mappings.

1. Introduction

Let Ω ⊂ Rn be a domain (connected, non-empty, open set). Harmonic quasireg-
ular (briefly, hqr) mappings in the plane were studied first by Martio in [20], for a
review of this subject and further results see [22] and references cited there. Moduli
of continuity of harmonic quasiregular mappings in Bn were studied by several au-
thors, see [15, 11, 2]. In this paper, our main goal is to extended one of the main
results from [1] to more general domains in Rn. In fact, the following theorem was
proved in [1].

Theorem 1. If u : Bn → Rn is a continuous map which is K-quasiregular and
harmonic in Bn, then ωu(δ) ≤ Cωf (δ) for δ > 0, where f = u|Sn−1 and C is a constant
depending only on K, ωf and n.

We use two methods to extend this result. The first method is to use the following
theorem from [1].

Theorem 2. There is a constant q = q(K,n) ∈ (0, 1) such that |u|q is subhar-
monic in Ω ⊂ Rn whenever u : Ω → Rn is a K-quasiregular harmonic map.

The above theorem combined with Poisson integral representation gives Theo-
rem 1. The main point is that a similar argument can be carried out without using
explicit formula for the Poisson kernel. In fact suitable estimates are sufficient, and
these rely on pointwise estimates for the Poisson kernel which are available in the
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case of bounded domain Ω ⊂ Rn with C2 boundary, see [17, 18]. We prove a version
of Theorem 1 for domains Ω with C2 boundary, see Theorem 4 below.

The second method is essentially based on a capacity estimate of Martio and
Näkki [21]. Let us introduce needed terminology and notation.

Throughout this paper Ω ⊂ Rn is bounded domain, δ(x) = dist(x,Ωc) and
Bx = B(x, δ(x)/2) for x ∈ Ω. If Ω has C2 boundary, then PΩ denotes the Poisson
kernel for Ω.

Given a subset E of Cn or Rn; a function f : E → C (or, more generally, a
mapping f from E into Cm or Rm) is said to belong to the Lipschitz space Λω(E) if
there is a constant L = L(f) = L(f ;E) such that

(1) |f(x)− f(y)| ≤ Lω(|x− y|)
for all x, y ∈ E, or equivalently, ωf (|x − y|) ≤ Lω(|x − y|) for x, y ∈ E. Here
ω : [0,+∞) → [0,+∞) is a majorant in the sense of Hinkkanen, see [10], which
means ω is non-decreasing and ω(2t) ≤ 2ω(t). In that case we also say that f is
ω-Lipschitz function. We remark that ω need not be continuous, that we may have
ω(0) > 0 and that ω(At) ≤ Aω(t) for all t ≥ 0 and A ≥ 1. The most important
special case is ωα(t) = tα, 0 < α ≤ 1, when we get classical concept of Lipschitz or
Hölder continuity.

There has been much work on Lipschitz-type properties of quasiconformal map-
pings. This topic was treated, among many other papers, in [6].

Following [8] and [19], we say that a function f belongs to the local Lipschitz
space loc Λω(Ω, L) if (1) holds, with a fixed L ≥ 0, whenever x ∈ Ω and y ∈ Bx. We
set loc Λω(Ω) = ∪L≥0 loc Λω(Ω, L). If ω(t) = tα, 0 < α ≤ 1, we use notation Λα(Ω),
loc Λω(Ω) and loc Λα(Ω, L).

A domain Ω is a Λω-extension domain if Λω(Ω) = locΛω(Ω).
A compact set E in Rn is called c-uniformly perfect, 0 < c < 1, if E contains

at least two points and if for each x ∈ E and 0 < r < diam(E), the spherical ring
B(x, r) \B(x, cr) meets E.

If V is a subset of Rn and u : V → Rm, we define

oscV u = sup{|u(x)− u(y)| : x, y ∈ V }.
For Ω ⊂ Rn let OC1(Ω) denote the class of all f ∈ C1(Ω,Rn) such that

(2) δ(x)|f ′(x)| ≤ C oscBxf, x ∈ Ω.

We denote by OC2(Ω) the class of all f ∈ C2(Ω,Rn) such that for some constant
C we have

(3) sup
Bx

δ2(x)|∆f(x)| ≤ C oscBxf, x ∈ Ω.

We remind the reader that Bx denotes B(x, δ(x)/2). It was observed in [23] that
OC2(Ω) ⊂ OC1(Ω). Note that every harmonic mapping f : Ω → Rn is in OC2(Ω).

We also show that under some conditions a function f ∈ OC2(Ω) is ω-Lipschitz
function on Ω if and only if it satisfies Hardy–Littlewood (C, ω)-property:

δ(x)|f ′(x)| ≤ Cω(δ(x)), x ∈ Ω.

Relying on this characterization and a result from [3] (Lemma 2 below) we also
prove a version of Theorem 1 for Λω-extension domain with c-uniformly perfect
boundary and quasiconformal mappings, where ω is a majorant.
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Finally, we give a simple proof of Dyakonov’s result on relation between moduli
of continuity of |f | and f , see [6].

We follow the usual convention, letter C denotes a constant that can change its
value from one occurrence to the next.

2. Auxiliary results

Let Ω ⊂ Rn be a bounded domain with C2 boundary. Clearly, an explicit formula
for the Poisson kernel is available only in special cases, like the ball. However, it is
possible to obtain an asymptotic formula for the Poisson kernel on smoothly bounded
domains. The standard asymptotic formula, see [16] or [25], is

PΩ(x, y) ≍
δ(x)

|x− y|n

for x ∈ Ω and y ∈ ∂Ω. The following theorem was proved in [17].

Theorem 3. Let Ω ⊂ Rn be a bounded domain with C2 boundary. Let PΩ : Ω×
∂Ω → R+ be the Poisson kernel for Ω. Then there are constants C1, C2 > 0 such
that

(4) C1
δ(x)

|x− y|n
≤ PΩ(x, y) ≤ C2

δ(x)

|x− y|n
.

The following technical lemma is used in the next section when we consider
smoothly bounded domains.

Lemma 1. Assume Ω has C1 boundary. Then there is a constant C depending
only on Ω, such that

(5) area
(
∂Ω ∩B(z0, r)

)
≤ Crn−1

for all r > 0 and all z0 ∈ ∂Ω .

Proof. We have a local parametrization of ∂Ω:

x1 = x1(u1, u2, . . . , un−1), x2 = x2(u1, u2, . . . , un−1), . . . , xn = xn(u1, u2, . . . , un−1),

i.e., x = x(u), x = (x1, x2, . . . , xn), where xj ∈ C1(U), U ⊂ Rn−1.
Since ∂Ω is compact, it suffices to prove the estimate (5) for z0 ∈ x(K), where

K ⊂ U is compact. Now fix a compact K ⊂ U . We have, for any measurable S ⊂ K:

area
(
x(S)

)
=

ˆ
S

√
g du

where g = det(gij)
n−1
i,j=1, gij =

n∑
m=1

∂xm

∂ui

∂xm

∂uj
.

Note that gij ∈ C(U), so √
g is a strictly positive continuous function on U .

Therefore 0 < c ≤ √
g ≤ C < +∞ on K.

Let u1, u2 ∈ K and z1 = x(u1), z2 = x(u2). Since x = x(u) is a parametrization,
we have

(6) |z1 − z2| ≍ |u1 − u2| .
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Setting z0 = x(u0) and using (6), we see that there is a constant M such that

area
(
∂Ω ∩B(z0, r)

)
≤ area

(
x
(
B(u0,Mr)

))
=

ˆ
B(u0,Mr)

√
g du

≤ C

ˆ
B(u0,Mr)

du ≤ C Voln−1

(
B(u0,Mr)

)
= C(Mr)n−1 = Crn−1. �

3. The case of C2 boundary

In this section we follow the first method described in the introduction and obtain
the following generalization of Theorem 1.

Theorem 4. Let Ω ⊂ Rn be a bounded domain with C2 boundary, and assume
u : Ω → Rn is a continuous map which is K-quasiregular and harmonic in Ω, then
ωu(δ) ≤ Cωf (δ) for δ > 0, where f = u|∂Ω and C is a constant depending only on
K, ωf and n.

Proof. The proof is similar to the proof in [1], but with additional technical
difficulties due to the lack of an explicit formula for PΩ. Instead we rely on Lemma 1
and crucial estimates (4), using a dyadic decomposition of ∂Ω.

Let us recall some properties of ωf :

ωf (δ1 + δ2) ≤ C
(
ωf (δ1) + ωf (δ2)

)
, ωf (λδ) ≤ Cλωf (δ)

are valid for δ, δ1, δ2 > 0 and λ ≥ 1. First, fix an exponent q = q(K,n) < 1 from
Theorem 2. Fix w ∈ ∂Ω and z ∈ Ω. Then φ(ξ) = |u(w)− u(ξ)|q is subharmonic in
Ω and therefore we have

φ(z) ≤
ˆ
∂Ω

PΩ(z, ξ)φ(ξ) dσ(ξ).

But, for ξ ∈ ∂Ω we have

φ(ξ) = |u(w)− u(ξ)|q ≤ ωf (|w − ξ|)q ≤ ωf (|w − z|+ |z − ξ|)q

≤ C[ωf (|w − z|)q + ωf (|z − ξ|)q],

and integration against Poisson kernel gives

φ(z) ≤ C
[
ωf (|w − z|)q +

ˆ
∂Ω

PΩ(z, ξ)ωf (|z − ξ|)q dσ(ξ)
]
.

Let z0 ∈ ∂Ω be the closest point on the boundary to z ∈ Ω . Then

|z − ξ| ≍ δ(z) + |z0 − ξ|

for ξ ∈ ∂Ω. Therefore

ωf (|z − ξ|) ≤ Cωf

(
δ(z) + |z0 − ξ|

)
≤ C

δ(z) + |z0 − ξ|
δ(z)

ωf

(
δ(z)

)
.

By Theorem 3 we get

φ(z) ≤ Cωf (|w − z|)q + C

ˆ
∂Ω

(δ(z))1−q

(
δ(z) + |z0 − ξ|

)q
|z − ξ|n

dσ(ξ)ωf

(
δ(z)

)q
.
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Next we prove that the integral appearing above is bounded as a function of
z ∈ Ω. Set δ(z) = δ. Since |z − ξ| ≥ C

(
δ(z) + |z0 − ξ|

)
, we get

ˆ
∂Ω

(δ(z))1−q

(
δ(z) + |z0 − ξ|

)q
|z − ξ|n

dσ(ξ) ≤ Cδ1−q

ˆ
∂Ω

(
δ + |z0 − ξ|

)q−n
dσ(ξ).

Now, we use the following decomposition of ∂Ω: ∂Ω =
∞∪
k=0

Mk where

Mk = {ξ ∈ ∂Ω: 2k−1δ ≤ d(ξ, z0) < 2kδ}, k ≥ 1,

and

M0 = {ξ ∈ ∂Ω: d(ξ, z0) < δ}.

Using Lemma 1 we obtain:
ˆ
∂Ω

(δ(z))1−q

(
δ(z) + |z0 − ξ|

)q
|z − ξ|n

dσ(ξ) ≤ Cδ1−q

∞∑
k=0

ˆ
Mk

(
δ + |z0 − ξ|

)q−n
dσ(ξ)

≤ Cδ1−q

∞∑
k=0

ˆ
Mk

(2kδ)q−n dσ(ξ) ≤ C

∞∑
k=0

2k(q−n)δ1−narea (Mk)

≤ C
∞∑
k=0

2k(q−n)δ1−n(2kδ)n−1 ≤ C
∞∑
k=0

2k(q−1) < +∞.

Note that here we used q ∈ (0, 1). Hence we get

φ(z) ≤ C[ωf (|w − z|)q + ωf (δ(z))
q] ≤ Cωf (|w − z|)q,

and therefore we proved

|u(w)− u(z)| ≤ Cωf (|w − z|) for w ∈ ∂Ω, z ∈ Ω.

In view of Lemma A.1. from [5] this estimate suffices to complete the proof. �
If we assume that f is quasiconformal, then we can significantly relax the C2-

assumption on the boundary, see Theorem 5 below.

4. The case of uniformly perfect boundary

In this section we work with much more general domains, but here we consider
only quasiconformal harmonic (or more general OC2) mappings.

Proposition 1. Let f ∈ C1(Ω,Rn) and let ω be a continuous majorant such
that ω∗(t) = ω(t)/t is non-increasing for t > 0. Assume f satisfies the following
property:

δ(x)|f ′(x)| ≤ Cω(δ(x)), x ∈ Ω, (HL(ω,C)),

which we call Hardy–Littlewood (C, ω)-property. Then

f ∈ loc Λω(L; Ω), (loc Λω).

If, in addition, f is harmonic in Ω or, more generally, f ∈ OC2(Ω), then (HL(ω,C))
is equivalent with (loc Λω).
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Proof. Let us prove that (HL(ω,C)) implies (loc Λω). If y ∈ Bx, then

|f(y)− f(x)| ≤
ˆ
[x,y]

|f ′(z)|ds(z) ≤ |y − x| max
z∈[x,y]

|f ′(z)| ≤ C|y − x| max
z∈[x,y]

ω(δ(z))

δ(z)
.

Now, for every z ∈ [x, y] ⊂ Bx we have |x − y| ≤ δ(x)/2 ≤ δ(z), and since ω⋆ is
non-increasing we get ω(δ(z))/δ(z) ≤ ω(|x − y|)/|x − y|. This, combined with the
above estimate, gives |f(y)− f(x)| ≤ Cω(|y − x|).

Next we assume f : Ω → Rn is a harmonic mapping in loc Λω(Ω, L). We set
Mx(r) = max{|f(y)| : |y − x| = r} for x ∈ Ω, 0 ≤ r < δ(x). Since f is harmonic we
have r|f ′(x)| ≤ CnMx(r) and f ∈ loc Λω(Ω, L) implies Mx(r) ≤ Lω(r). Therefore
r|f ′(x)| ≤ CnLω(r) for 0 < r < δ(x). Letting r → δ(x) we deduce (HL(ω,C)) with
C = CnL.

Now we give a proof for the more general case of f ∈ OC2(Ω). We assume
f ∈ loc Λω(L,Ω). Let us choose x ∈ Ω. Since diamBx = δ(x), we have

sup
Bx

δ2(y)|∆f(y)| ≤ oscBxf ≤ Lω(δ(x)).

Since δ(y) ≍ δ(x) for y ∈ Bx the above estimate gives

|∆f(y)| ≤ CL
ω(δ(x))

δ2(x)
, y ∈ Bx.

Next we use gradient estimates for Poisson equation in the ball Bx, see Theorem 3.9
from [9], and obtain

|f ′(x)| ≤ C

[
1

δ(x)
sup
∂Bx

|f |+ δ(x) sup
Bx

|∆f |
]
.

Since both f ′ and ∆f do not change if we replace f with f − f(x) we see that

|f ′(x)| ≤ C

[
1

δ(x)
osc∂Bx |f |+ δ(x) sup

Bx

|∆f |
]
≤ CL

ω(δ(x))

δ(x)
.

Note that a similar argument appeared in [23], it was used to prove inclusion OC2(Ω) ⊂
OC1(Ω). �

An immediate consequence of the above proposition is the following corollary.

Corollary 1. Let ω be a continuous majorant such that ω⋆(t) = ω(t)/t is non-
increasing for t > 0 and let Ω ⊂ Rn be a domain which has Λω-extension property.
Then an OC2 mapping (in particular, a harmonic mapping) f : Ω → Rn belongs to
Λω(Ω) if and only if it has Hardy–Littlewood (C, ω)-property.

Remark 1. If the mapping f in the Proposition 1 and Corollary 1 extends
continuously to Ω, then the assumption of continuity of ω can be omitted.

Theorem 4 can be restated: Let Ω ⊂ Rn be a bounded domain with C2 boundary.
Assume u : Ω → Rn is a continuous map which is K-quasiregular map and harmonic
in Ω, and f ∈ Λω(∂Ω;L) where f = u|∂Ω. Then

(7) u ∈ Λω(Ω;CL), C = C(K,ωf , n,Ω).

If Ω is a Λω-extension domain, then (7) is equivalent to Hardy–Littlewood (ω,C1)-
property: δ(x)|f ′(x)| ≤ C1ω(δ(x)) for all x ∈ Ω.
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Special cases of this result, for the disk and unit ball and holomorphic func-
tions are well know as Privalov theorem. Hardy–Littlewood theorem is concerned by
characterization of Lipschitz spaces in terms of growth of derivative.

The following result is contained in Theorem 3.2 from [3].

Lemma 2. Let the boundary of a bounded domain Ω in Rn be c-uniformly
perfect. If f is a continuous mapping of Ω into Rn which is quasiconformal in Ω and
if

(8) |f(x)− f(y)| ≤ ω(|x− y|)

for all x, y ∈ ∂Ω and for some majorant ω, then

(9) |f(x)− f(y)| ≤ Cω(|x− y|)

for all y ∈ ∂Ω and x ∈ Ω, where C depends only on c, n,K(f) and diam(Ω).

Using Lemma 2 we prove the following generalization of Theorem 1.

Theorem 5. Let the boundary of a bounded domain Ω in Rn be c-uniformly
perfect. Assume f is a continuous mapping of Ω into Rn which is quasiconformal in
Ω and

(10) |f(x)− f(y)| ≤ ω(|x− y|), x, y ∈ ∂Ω,

for some majorant ω. Assume one of the following two conditions is satisfied:
a) f is harmonic in Ω.
b) f ∈ OC2(Ω), ω(t)/t is non increasing for t > 0 and Ω is an Λω-extension

domain.
Then the following estimate holds:

(11) |f(x)− f(y)| ≤ Cω(|x− y|), x, y ∈ Ω.

Proof. Let us assume f is harmonic. By Lemma 2, estimate (11) holds for all
x ∈ ∂Ω and all y ∈ Ω. Using Lemma A.1. from [5] we deduce that the same estimate
is valid for all x, y ∈ Ω.

Now we consider condition b). Fix a point x ∈ Ω. Choose a point ξ ∈ ∂Ω such
that |x − ξ| = δ(x) and set f0(z) = f(z) − f(ξ), z ∈ Ω. We employ again gradient
estimates for the Poisson equation, as in the proof of Proposition 1. Since f ′ = f ′

0

and ∆f = ∆f0 we obtain

(12) |f ′(x)| ≤ Cn

[
1

δ(x)
sup
∂Bx

|f0|+ δ(x) sup
Bx

|∆f |
]
.

However, since Bx ⊂ B(ξ, 3δ(x)/2), Lemma 2 gives

sup
∂Bx

|f0(z)| ≤ sup
∂Bx

|f(z)− f(ξ)| ≤ Cω(3δ(x)/2) ≤ Cω(δ(x)).

Also, OC2 condition gives supBx
|∆f | ≤ Cδ−2(x). These estimates, combined with

(12) give |f ′(x)| ≤ Cω(δ(x))/δ(x). Hence we proved that f has Hardy–Littlewood
(C, ω) property. Now the result follows from Corollary 1. �

4.1. Dyakonov’s result. Now we give a simple proof of a Dyakonov’s re-
sult from [6] which relates moduli of continuity of f and |f | in the special case of
quasiconformal f .
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Our proof is based on distortion property of quasiconformal mappings (see [7,
p. 383], [26, p. 63]):

(13) B(f(x), c∗δ∗(x)) ⊂ f(Bx) ⊂ B(f(x), C∗δ∗(x)), x ∈ Ω,

for a K-quasiconformal mapping f : Ω → f(Ω) = Ω′, where δ∗(x) = dist(f(x), ∂Ω′).
The constants C∗ and c∗ depend on n and K only.

Theorem 6. Suppose f : Ω → f(Ω) = Ω′ is quasiconformal in domain Ω ⊂ Rn.
Let 0 < α ≤ 1. If |f | ∈ loc Λα(Ω, L), then f ∈ loc Λα(Ω, CL).

If, in addition, Ω is a Λα-extension domain, then f ∈ Λα(Ω).

Proof. Let us choose x ∈ Ω and set R(x) = c∗δ∗(x). We first prove the following:

(14) ∃ x1, x2 ∈ Bx : |f(x1)| − |f(x2)| ≥ R(x).

Let l be the line passing through 0 and f(x), it intersects the sphere ∂B(f(x), R(x))
at points y1 and y2. By the first inclusion in (13) these two points lie in f(Bx), hence
xk = f−1(yk) ∈ Bx, k = 1, 2. We consider two cases:

a) If 0 /∈ B(f(x), R(x)) and |y2| ≥ |y1|, then |y2| − |y1| = 2R(x).
b) If 0 ∈ B(f(x), R(x)), then for example 0 ∈ [y1, f(x)] and if we choose x1 = x,

we find |y2| − |f(x)| = R(x) and this yields (14).
Now we obtain, using (14), that

c∗δ∗(x) = R(x) ≤ |f(x1)| − |f(x2)| ≤ L|x1 − x2|α ≤ Lδ(x)α.

Using the second inclusion in (13) we obtain

|f(z1)− f(z2)| ≤ 2C∗δ∗(x) ≤ 2
C∗

c∗
Lδ(x)α,

and this completes the proof. �
Hence, as an immediate corollary we get Dyakonov results for quasiconformal

mappings:

Theorem Dy. Suppose Ω is a Λα-extension domain, 0 < α ≤ 1, and f is a
K-quasiconformal mapping of Ω onto f(Ω) ⊂ Rn. The following two conditions are
equivalent:

a) f ∈ Λα(Ω),
b) |f | ∈ Λα(Ω).

If, in addition, Ω is a uniform domain and if α ≤ K1/(1−n), then these conditions are
equivalent to

c) |f | ∈ loc Λα(Ω).
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