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Abstract. We characterize the class of weights related to the boundedness of maximal op-

erators associated to a Young function η in the context of variable Lebesgue spaces. Fractional

versions of these results are also obtained by means of a weighted Hedberg type inequality. These

results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities

for the mentioned operators in the variable context. As applications of the strong type results for

the maximal operators, we derive weighted boundedness properties for a large class of operators

controlled by them.

1. Introduction and preliminaries

The variable exponent Lebesgue spaces arise when we deal with a great number
of applications in partial differential equations. In fact, they seem to be the natural
context in order to describe the behaviour of certain classes of fluids, called elec-
trorheological fluids, which have the ability to significantly modify its mechanical
properties when an electric field is applied (see for example [47]). Other applications
that find in these spaces an adequate development framework for their theory are the
processes of image restoration [6] and partial differential equations (see for instance
[1] and [24]).

The boundedness of many operators in harmonic analysis that appear in con-
nection with the study of regularity properties of the solutions of partial differential
equations were widely considered in the variable context by different authors, see for
instance [9], [11], [14], [15], [16], [30], [31], [32], [38], [39] and [40] for the Hardy–
Littlewood maximal function M , [5], [21], [22] and [28] for the fractional maximal
function Mα, [18] and [33] for Calderón–Zygmund operators and their commutators,
and [1], [10], [24] and [28] for potential type operators (see [13] for other classical
operators).
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It is well known that many of the operators mentioned above are controlled, in
some sense, by maximal operators. Sometimes this control is given in the norm of
the spaces where they act. A typical inequality that describes this fact on weighted
Lebesgue spaces is the following

(1.1)

ˆ

Rn

|T f(x)|pw(x) dx ≤ C

ˆ

Rn

|MT f(x)|
pw(x) dx, 0 < p <∞,

where w is a weight, T is certain integral operator and MT is the maximal operator
referred to above. Thus, it is clear that the operator T inherits the continuity prop-
erties of MT in the corresponding space. For example, if T is a Calderón–Zygmund
operator, (1.1) holds by taking MT =M . This result was proved by Coifman in [7]
in the unweighted context and by Coifman and Fefferman in [8] for w ∈ A∞. When
T is the fractional integral operator, then (1.1) holds with MT = Mα by taking
w ∈ A∞ (see [36]). On the other hand, when we deal with commutators of singu-
lar or fractional integrals in inequalities in the spirit of (1.1) the maximals involved
are iterations of the Hardy–Littlewood maximal function and compositions of them
with fractional maximals, respectively (see for example [2], [19], [42], [43]). It is
well known that this type of operators are equivalent to certain maximal operators
associated to a Young function of L logL type (see for example [2], [3], [42], [43]).
For more general Young functions, the maximal operators involved control operators
of convolution type with kernels satisfying certain Hörmander conditions associated
to the Young functions that define the maximals (see [34] and [35], and [4] for the
fractional case).

Inequalities of Fefferman–Stein type were also considered by many authors (see
[2], [3], [27], [34], [41], [44]).

In this article, we are interested in the study of the continuity properties of
the maximal operator mentioned above, that is, a maximal associated to a Young
function η, Mη, in the context of variable Lebesgue spaces with weights. We first
characterize the weights involved in the case that the Young function defining the
maximal operator is of L logL type and the weights obtained are of the type defined in
[9]. In that article, the authors succeed in giving the class of weights that characterizes

the boundedness ofM in L
p(·)
w (Rn) (see below for the definition of this space). When η

satisfies certain Dini type condition we obtain a sufficient result for the boundedness

of Mη in L
p(·)
w (Rn). As we said before, these results allow us to derive weighted

estimates in L
p(·)
w (Rn) for a large class of operators controlled by Mη. We show

that this class contains, for example, singular and fractional integral operators with
kernels satisfying certain Hörmander type condition and their commutators, which
have, as particular cases, Calderón–Zygmund and fractional integral operators.

Another type of inequality we shall deal with are generalizations of Wiener’s
inequality in the variable context. In this way, the main results were obtained by
Cruz-Uribe and Fiorenza in [11], where they proved that if B is any ball and ǫ > 0,
the inequality

(1.2)

ˆ

B

Mf(x) dx ≤ 2|B|+ C

ˆ

Rn

|f(x)|p(x) log(e+ |f(x)|)q(x) dx
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holds for every bounded exponent p : Rn → [1,∞), where q(x) = max{ǫ−1(ǫ + 1 −
p(x)), 0}. Note that when p = 1 then q = 1 and (1.2) is Wiener’s inequality. By re-
quiring additional properties on the exponent, they improved their local integrability
results.

Since the maximal operator Mη is greater than a constant times M , it seems to
be interesting to study the local integrability of this maximal operator. Thus, in this
direction we obtain Wiener’s type results by following the ideas in [11].

On the other hand, fractional versions of all of the results described above were
obtained. A useful tool in order to have the fractional case is a weighted pointwise
control inequality between the fractional maximal operator Mα,η andMψ where η and
ψ are certain Young functions. This type of inequality is an extension of Hedberg’s
inequality (see [25]). Another extensions can be found in [5], [21] and [22].

We now introduce some notation and preliminary results.
Let p : Rn → [1,∞) be a measurable function. Given a measurable set E ⊂ R

n,
we will write p−E = ess infx∈E p(x) and p+E = ess supx∈E p(x), and for simplicity,
p−
Rn = p− and p+

Rn = p+. By P(Rn) we will denote the set of measurable functions
p : Rn → [1,∞) and by P∗(Rn) the set of p ∈ P(Rn) such that p+ <∞.

Given p ∈ P∗(Rn), we say that a measurable function f belongs to Lp(·)(Rn) if
for some λ > 0

ˆ

Rn

(
|f(x)|

λ

)p(x)
dx <∞.

In this case, we define the Luxemburg norm in Lp(·)(Rn) by

‖f‖p(·) = inf

{
λ > 0:

ˆ

Rn

(
|f(x)|

λ

)p(x)
dx ≤ 1

}
.

For more information about Lp(·) spaces, see [12], [17] and [29].
It is well known that (Lp(·)(Rn), ‖ · ‖p(·)) is a Banach space. This space is a par-

ticular case of Musielak–Orlicz space by taking Φ(x, t) = tp(x) (for more information
about Musielak–Orlicz spaces, see [16] or [37]).

The following conditions on the exponent arise related with the boundedness of
the Hardy–Littlewood maximal operator (see, for example, [14] or [15]). We will say
that p ∈ P log(Rn) if p ∈ P∗(Rn) and if it satisfies the following inequalities

(1.3) |p(x)− p(y)| ≤
C

log(e+ 1/|x− y|)
∀ x, y ∈ R

n,

and

(1.4) |p(x)− p(y)| ≤
C

log(e+ |x|)
∀ |y| ≥ |x|.

Conditions (1.3) and (1.4) are usually called the local log-Hölder condition and
the decay log-Hölder condition, respectively. It is well known that for 1 < p− ≤ p+ <
∞, both conditions are sufficient for the Hardy–Littlewood maximal operator to be
bounded on variable Lebesgue spaces (see [14]). Moreover, in [45], Pick and Růžička
gave an example of a space Lp(·) with p /∈ P log(Rn) where M is not bounded.

Given two functions f and g, by . and & we will mean that there exists a positive
constant c such that f ≤ cg and cf ≥ g, respectively. When both inequalities hold,
that is, f . g . f , we will write it as f ≈ g.
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As we said in the introduction, we are interested in maximal operators associated
to Young functions. We will say that η : [0,∞) → [0,∞) is a Young function if
it is increasing, convex, η(0) = 0 and η(t) → ∞ when t → ∞. For simplicity,
we will consider normalized Young functions, that is, η(1) = 1. We also deal with
submultiplicative Young functions, which means that η(st) ≤ η(s)η(t) for every s, t >
0. If η is a submultiplicative Young function, it follows that η′(t) ≈ η(t)/t.

Given a Young function η, we define the Orlicz space Lη(Rn) as the set of all
measurable functions for which there exists a positive number λ such that

ˆ

Rn

η

(
|f(x)|

λ

)
dx ≤ 1.

This definition induces the Luxemburg norm for this space, defined by

‖f‖η = inf

{
λ > 0:

ˆ

Rn

η

(
|f(x)|

λ

)
dx ≤ 1

}
,

and (Lη(Rn), ‖ ·‖η) is a Banach space (see for instance [46]). Related with this norm,
the Luxemburg average of a function f over a ball B is defined by

(1.5) ‖f‖η,B = inf

{
λ > 0:

1

|B|

ˆ

B

η

(
|f(y)|

λ

)
dy ≤ 1

}
.

We will also need the following facts. Each Young function η has an associated
complementary Young function η̃ satisfying t ≤ η−1(t)η̃−1(t) ≤ 2t for every t > 0.
The following generalization of Hölder’s inequality

ˆ

Rn

|fg| ≤ ‖f‖η‖g‖η̃

holds and it is easy to check that we also have

1

|B|

ˆ

B

|fg| ≤ ‖f‖η,B‖g‖η̃,B.

Moreover, there is a further generalization of the inequality above. If η, φ and ψ are
Young functions satisfying ψ−1(t)φ−1(t) . η−1(t), then

‖fg‖η,B . ‖f‖φ,B‖g‖ψ,B.

Associated to the average in (1.5), we define the generalized maximal operator
Mη by

Mηf(x) = sup
B∋x

‖f‖η,B, x ∈ R
n.

When 0 ≤ α < n, the fractional version of the operator above is given by

Mα,ηf(x) = sup
B∋x

|B|α/n‖f‖η,B, x ∈ R
n.

Notice that when η(t) = t, Mη and Mα,η are the Hardy–Littlewood and the
fractional maximal operators, respectively.

In the following definition we introduce the class of weights related with the
boundedness of the fractional maximal operator in variable Lebesgue spaces. By a
weight we understand a non-negative and locally integrable function.
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1.6. Definition. Let 0 ≤ α < n and p, q ∈ P∗(Rn) such that 1/q(x) = 1/p(x)−
α/n, p+ < n/α. We say that a weight w ∈ Ap(·),q(·) if there exists a positive constant
C such that for every ball B, the inequality

‖wχB‖q(·)‖w
−1χB‖p′(·) ≤ C|B|1−

α
n

holds.

When α = 0, we obtain the Ap(·) class given by Cruz-Uribe, Diening and Hästö
in [9] that characterizes the boundedness of the Hardy–Littlewood maximal operator

on L
p(·)
w (Rn), that is, the measurable functions f such that fw ∈ Lp(·)(Rn).

2. Main results

In this section we state boundedness results for the maximal operators defined
in section §1 on weighted variable Lebesgue spaces. As far as we know, our results
are new even when p is a constant exponent. We first consider η to be a L logL type
function.

2.1. Theorem. Let w be a weight, p ∈ P log(Rn) with p− > 1, and let η be the
Young function defined by η(t) = tβ(1 + log+ t)γ with 1 ≤ β < p− and γ ≥ 0. Then,

Mη is bounded on L
p(·)
w (Rn) if and only if wβ ∈ A p(·)

β

.

Observe that when β = 1 and γ = k ∈ N, this is the expected result since it is
well known that Mη is equivalent to Mk+1 = M ◦ · · · ◦M iterated k + 1 times (see
[42]).

The following result gives the class of weights that characterizes the boundedness
of the fractional maximal operator Mα on weighted variable Lebesgue spaces and
extends the corresponding results given in [36] in the classical context. This result
allows us to prove the corresponding result for the generalized maximal operator Mα,η

(Theorem 2.3).

2.2. Theorem. Let 0 ≤ α < n, w a weight and p ∈ P log(Rn) with 1 < p− ≤
p+ < n/α. Let q be the function defined by 1/q(x) = 1/p(x) − α/n. Then, Mα is

bounded from L
p(·)
w (Rn) into L

q(·)
w (Rn) if and only if w ∈ Ap(·),q(·).

Thus, the fractional version of Theorem 2.1 is given in the next result.

2.3. Theorem. Let 0 ≤ α < n, w a weight, p ∈ P log(Rn) such that 1 < p− ≤
p+ < n/α and 1/q(x) = 1/p(x) − α/n. Let η(t) = tβ(1 + log+ t)γ with 1 ≤ β < p−

and γ ≥ 0. Then, Mα,η is bounded from L
p(·)
w (Rn) into L

q(·)
w (Rn) if and only if

wβ ∈ A p(·)
β
,
q(·)
β

.

The next theorems involve a wider class of maximal operators associated to Young
functions which satisfy certain Dini type condition, given in the following definition.

2.4. Definition. Let 1 < q < ∞. We say that a Young function η satisfies the
Bq condition if there exists a positive constant c such that

∞̂

c

η(t)

tq
dt

t
<∞.
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2.5. Theorem. Let w be a weight, p ∈ P log(Rn) and 1 ≤ β < p−. Let η be a
Young function such that η ∈ Bρ for every ρ > β. If wβ ∈ A p(·)

β

, then Mη is bounded

on L
p(·)
w (Rn).

2.6. Theorem. Let 0 ≤ α < n, w a weight, p ∈ P log(Rn) with 1 < p− ≤ p+ <
n/α, 1/q(x) = 1/p(x)− α/n and 1 ≤ β < p−. Let η be a Young function such that

η1+
ρα

n−α ∈ B ρn
n−α

for every ρ > β(n−α)/(n−αβ), and let φ be a Young function such

that φ−1(t)t
α
n . η−1(t) for every t > 0. If wβ ∈ A p(·)

β
,
q(·)
β

, then Mα,η is bounded from

L
p(·)
w (Rn) into L

q(·)
w (Rn).

2.7. Remark. Let us observe that Theorems 2.5 and 2.6 include the sufficiency
results of Theorems 2.1 and 2.3, respectively. In fact, if 0 ≤ α < n, then β(1 +

ρα/(n−α)) < ρn/(n−α) for every ρ > β(n−α)/(n−αβ) and thus, η1+
ρα

n−α ∈ B ρn
n−α

,

where η(t) = tβ(1 + log+ t)γ with 1 ≤ β < p− and γ ≥ 0.

As we said in the introduction, the maximal operators Mη are not of strong type
(1, 1) for a large class of Young functions η. Moreover, they are not of weak type (1, 1).
Nevertheless, for certain class of functions we can obtain local integrability properties
in the spirit of Wiener’s inequality. The remainder of this section is devoted to this
type of results in the context of Musielak–Orlicz spaces.

Given p ∈ P∗(Rn), a non-negative and bounded function q, and a Young function
η, we denote by η(Lp(·))(logL)q(·)(Rn) the Musielak–Orlicz space corresponding to
the function Φ(t, x) = η(tp(x)) log(e+ t)q(x), and we write

‖f‖η(Lp(·))(logL)q(·)(Rn) = ‖f‖Φ(L,·)(Rn) = inf

{
λ > 0:

ˆ

Rn

Φ

(
x,

|f(x)|

λ

)
dx ≤ 1

}
.

For a given Musielak–Orlicz function Φ and a non-negative function v we denote

‖f‖Φ(L,·)(Rn), v = inf

{
λ > 0:

ˆ

Rn

Φ

(
x,

|f(x)|

λ

)
v(x)dx ≤ 1

}
.

The next theorem is a generalization of Wiener’s result proved in [48], for the
case of the maximal operator Mη.

2.8. Theorem. Let p ∈ P∗(Rn), w a weight and η a Young function. Then, for
every ǫ > 0, there exists a positive constant C = C(ǫ, p) such that for each ball B

ˆ

B

Mηf(x)w(x) dx ≤ w(B) + C

ˆ

Rn

η
(
|f(x)|p(x)

)
log(e+ |f(x)|)q(x)Mw(x) dx,

where q(x) = max{ǫ−1(ǫ+ 1− p(x)), 0}.

Particularly, if we consider certain class of Young functions η, we improved the
result above in the following way.

2.9. Theorem. Let p ∈ P∗(Rn), w a weight and η a Young function such that
η ∈ Bq for each q > 1. Then, for every ǫ > 0, there exists a positive constant
C = C(ǫ, p) such that for each ball B
ˆ

B

Mηf(x)w(x) dx ≤ w(B)+C

ˆ

Rn

|f(x)|p(x) [η′(|f(x)|) log(e+ |f(x)|)]
q(x)

Mw(x) dx,

where q(x) = max{ǫ−1(ǫ+ 1− p(x)), 0}.
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2.10. Corollary. Let p ∈ P∗(Rn), w a weight and η a Young function. Then,
for every ǫ > 0, there exists a positive constant C = C(ǫ, p) such that for each ball
B with w(B) ≤ 1

‖Mηf‖L1(B),w ≤ C‖f‖η(Lp(·))(logL)q(·)(Rn),Mw

where q(x) = max{ǫ−1(ǫ+ 1− p(x)), 0}.

By requiring additional properties on the exponent p, we obtained more integra-
bility for the maximal operator Mη.

2.11. Theorem. Let p ∈ P log(Rn) and w a weight. Let η be a submultiplicative
Young function such that η ∈ Bp− if p− > 1, or η ∈ Bq for every 1 < q < ∞ if
p− = 1. Then, given 0 < ǫ < 1, there exist functions r, q ∈ P log(Rn) such that for
every ball B and every function f with

´

{|f |>1}
η(|f(x)|p(x)) dx ≤ 1

ˆ

B

Mηf(x)
r(x)w(x) dx ≤ w(B) + C

ˆ

Rn

η(|f(x)|p(x)) log(e+ |f(x)|)q(x)Mw(x) dx

and such that the following properties hold,

(i) r(x) = p(x) whenever p(·) takes values outside the range (1, 1 + ǫ), and
1 < r(x) < p(x) if p(·) takes values on (1, 1 + ǫ),

(ii) 0 ≤ q(x) ≤ 1, q(x) = 1 if p(x) = 1 and q(x) = 0 if p(x) ≥ 1 + ǫ.

As a consequence we obtain the following result.

2.12. Corollary. Let p and η be as in the hypothesis of Theorem 2.11. Given
a ball B, let w be a weight such that w(B) ≤ 1. Then, given 0 < ǫ < 1, there exist
functions r, q ∈ P log(Rn) having the properties (i) and (ii) of Theorem 2.11 such that

‖Mηf‖Lr(·)(B),w ≤ C‖f‖η(Lp(·))(logL)q(·)(Rn),Mw.

2.13. Remark. Note that by requiring η ∈ Bq for every q > 1 in Theorem 2.11
and Corollary 2.12, we can obtain better results by applying Theorem 2.9:

ˆ

B

Mηf(x)
r(x)w(x) dx

≤ w(B) + C

ˆ

B

|f(x)|p(x) [η′(|f(x)|) log(e+ |f(x)|)]
q(x)

Mw(x) dx

and

‖Mηf‖Lr(·)(B),w ≤ C‖f‖Lp(·)(η′(L) logL)q(·)(B),Mw.

For example, if η(t) = t(1 + log+ t)k, k ∈ N ∪ {0}, it is known that Mη ≈Mk+1. By
considering p− > 1 and w = 1, Theorem 2.9 contains the boundedness of Mk+1 in
Lp(·)(B) as a particular case.

2.14. Remark. The unweighted case for the Hardy–Littlewood maximal oper-
ator of Theorems 2.8 and 2.11 and Corollaries 2.10 and 2.12 were proved in [11].
These results are particular cases of our results when η(t) = t and w = 1.

The following estimates are the fractional versions of Theorem 2.8 and Corol-
lary 2.10. Since the fractional maximal operator Mα in not of strong type (1, n/(n−
α)) and from the fact that Mα,η & Mα it follows that the operator Mα,η is not of
strong type (1, n/(n− α)) either. In view of this, we were interested in studying the
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local integrability in L
n

n−α for the generalized fractional maximal operator Mα,η with
weights.

2.15. Theorem. Let 0 ≤ α < n and let w be a weight. Let p ∈ P∗(Rn), let η be
a Young function and let φ be another Young function satisfying φ−1(t)tα/n . η−1(t).
Then, for every ǫ > 0, there exists a positive constant C = C(ǫ, p) such that for every
ball B

(
ˆ

B

Mα,ηf(x)
n

n−αw(x) dx

)1−α/n

≤ C

(
w(B) +

ˆ

Rn

ψ
(
|f(x)|p(x)

)
log(e+ |f(x)|)r(x)Mw(x) dx

)
,

whenever f ∈ Lp(·)(Rn) with ‖f‖p(·) ≤ 1. Here r(x) = max{ǫ−1(ǫ+ 1− s(x)), 0} and

ψ(t) = φ(t1−α/n).

2.16. Corollary. Let 0 ≤ α < n. Let p, η and φ as in Theorem 2.15. Then, for
every ǫ > 0, there exists a positive constant C = C(ǫ, p) such that for every ball B
with w(B) ≤ 1

‖Mα,ηf‖L
n

n−α (B),w
≤ C‖f‖ψ(Lp(·))(logL)r(·)(Rn),Mw

whenever f ∈ Lp(·)(Rn) with ‖f‖p(·) ≤ 1. Here r(x) = max{ǫ−1(ǫ+ 1− s(x)), 0} and

ψ(t) = φ(t1−α/n).

3. Applications of weighted strong type inequalities

3.1. Singular integral operators. As we said before, the generalized maximal
operators Mη control a large class of operators such as singular integrals and their
commutators. In several cases this control is given by an inequality of the type

(3.1) M ♯
δ(Tf)(x) ≤ CδMηf(x),

where

M ♯f(x) = sup
B∋x

inf
a∈R

 

B

|f(y)− a| dy ≈ sup
B∋x

 

B

|f(y)−mBf | dy

and, for δ > 0, M ♯
δf =M ♯(|f |δ)

1
δ .

Let T be a singular integral operator of convolution type with kernel K, that is,
T is bounded on L2(Rn) and

Tf(x) = p. v.

ˆ

Rn

K(x− y)f(y) dy,

where K is a measurable function defined away from 0. In order to describe the
behaviour of T in the variable Lebesgue spaces we assume some smoothness condition
on K. We first consider the so-called Hörmander condition: we say that K satisfies
the L1-Hörmander condition if there exist c > 1 and C1 > 0 such that

ˆ

|x|>c|y|

|K(x− y)−K(x)| dx ≤ C1, y ∈ R
n.

This is the weakest condition we will be dealing with and we refer to it as H1 con-
dition. The classical Lipschitz condition is denoted by H∗

∞. We say that K ∈ H∗
∞ if
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there exist θ, C > 0 and c > 1 such that

|K(x− y)−K(x)| ≤ C
|y|θ

|x|θ+n
, |x| > c|y|.

It is easy to note that H∗
∞ ⊂ H1. Among these classes, we can consider the Lr-

Hörmander conditions, 1 ≤ r ≤ ∞ or, more generally, the LA- Hörmander condition
associated to a Young function A. Given a Young function A we write

‖f‖A,|x|∼s = ‖fχ{|x|∼s}‖A,B(0,2s)

where |x| ∼ s means s < |x| ≤ 2s. We say that the kernel K satisfies the LA-
Hörmander condition or simply K ∈ HA if there exist c ≥ 1 and CA > 0 such that
for any y ∈ R

n and R > c|y|,

∞∑

m=1

(2mR)n‖K(· − y)−K(·)‖A,|x|∼2mR ≤ CA.

When A(t) = tr, we obtain the Lr-Hörmander conditions and we denote K ∈ Hr.
All the conditions above satisfy the following relations

H∗
∞ ⊂ H∞ ⊂ HA ⊂ H1,

for any Young function A. Particularly, if 1 < r < s < ∞, then Hs ⊂ Hr (for more
information about this conditions, see [34]).

Related with the pointwise estimate (3.1), in [35] the authors proved the following
result.

3.2. Theorem. Let T be a singular integral operator with kernel K ∈ HA. Then
for any 0 < δ < 1, there exists a positive constant Cδ such that

M ♯
δ (Tf)(x) ≤ CδMÃf(x),

where Ã is the complementary Young function associated to A.

As a consequence of the theorem above and Theorem 2.5 we get the following

result related to the boundedness of the operator T in L
p(·)
w (Rn). By L∞

c (Rn) we will
denote the set of bounded functions with compact support.

3.3. Theorem. Let p ∈ P log(Rn), 1 ≤ β < p− and let A be a Young function

such that Ã ∈ Bρ, for every ρ > β. Let T be a singular integral operator with kernel
K ∈ HA. If wβ ∈ A p(·)

β

then

‖wTf‖p(·) . ‖wf‖p(·)

for every f ∈ L∞
c (Rn), whenever the left-hand side is finite.

In order to prove the result above, we will be using the following lemmas proved
in [29] and [26], respectively.

3.4. Lemma. If h ∈ Lr(·)(Rn) and r+ <∞, the following inequalities hold

1

2
‖h‖r(·) ≤ sup

‖g‖r′(·)≤1

ˆ

Rn

|hg| dx ≤ 2‖h‖r(·).
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3.5. Lemma. There exists a positive constant C such that for every weight w
and every non-negative measurable function f such that |{x : f(x) > λ}| < ∞ for
every λ > 0, the following inequality holds

ˆ

Rn

fw dx ≤ C

ˆ

Rn

M ♯fMw dx.

Proof of Theorem 3.3. Let 0 < δ < 1 and f ∈ L∞
c (Rn). Let us observe that wβ ∈

A p(·)
β

implies f ∈ L
p(·)
w (Rn) because w ∈ L

p(·)
loc

(Rn), that is, wp(·) is a locally integrable

function. Now, if r(·) = p(·)/δ, by Lemma 3.4 and the fact that |Tf |δ ∈ L
r(·)

wδ (R
n),

we have

‖wTf‖p(·) = ‖wδ|Tf |δ‖
1/δ
r(·) . sup

‖w−δg‖r′(·)≤1

(
ˆ

Rn

|Tf |δ|g|dx

)1/δ

By the hypothesis on T we have that |{x ∈ R
n : |Tf(x)| > λ}| < ∞ for every

λ > 0. Then by applying Lemma (3.5) with f and w replaced by |Tf |δ ≥ 0 and |g|
respectively, and the generalized Hölder inequality we obtain that

‖wTf‖p(·) . sup
‖w−δg‖r′(·)≤1

(
ˆ

Rn

M ♯(|Tf |δ)Mg dx

)1/δ

. sup
‖w−δg‖r′(·)≤1

‖wδM ♯(|Tf |δ)‖
1/δ
r(·)‖w

−δMg‖
1/δ
r′(·)

= sup
‖w−δg‖r′(·)≤1

‖wM ♯
δ(|Tf |)‖p(·)‖w

−δMg‖
1/δ
r′(·).

Since wβ ∈ A p(·)
β

for some 1 ≤ β < p− implies that wδ ∈ Ar(·) (see (4.4)), which

is equivalent to w−δ ∈ Ar′(·), by Theorems 2.5 and 3.2 we obtain that

‖wTf‖p(·) . sup
‖w−δg‖r′(·)≤1

‖wM ♯
δ(|Tf |)‖p(·)‖w

−δg‖
1/δ
r′(·) . ‖wMÃf‖p(·) . ‖wf‖p(·). �

3.6. Remark. Notice that if K ∈ H∗
∞ then we can take w ∈ Ap(·) in Theorem 3.3

since it is well known that (3.1) holds with Mη = M . When K ∈ Hr, for some

(p−)′ < r ≤ ∞ then Ã = tr
′

and we can take wr
′

∈ A p(·)

r′
in the same theorem in order

to get the boundedness result for the operator T . In [34] the authors present several
examples of singular integral operators with kernels satisfying the LA-Hörmander
conditions described above for certain Young functions A, including, for example,
homogeneous singular integrals and Fourier multipliers.

The higher order commutators with BMO symbols of the singular integral oper-
ators of the type described above were also considered in [34]. Given T and b ∈ BMO
we define the k-th order commutator, k ∈ N ∪ {0}, by

T kb f(x) =

ˆ

Rn

(b(x)− b(y))kK(x− y)f(y) dy.

In order to study these operators the authors define the corresponding smoothness
condition depending on a Young function A and the order of the commutators.

Let A be a Young function and k ∈ N. We say that the kernel K satisfies
the LA,k-Hörmander condition or that K ∈ HA,k if there exist c ≥ 1 and C > 0,
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depending on A and k such that for every y ∈ R
n and R > c|y|

∞∑

m=1

(2mR)nmk‖K(· − y)−K(·)‖A,|x|∼2mR ≤ C.

In [34] the authors also proved the following result.

3.7. Theorem. Let A and B be Young functions such that Ã−1(t)B−1(t)(log t)k

≤ t for t ≥ t0 > 1. If T is a singular integral operator with kernel K ∈ HB ∩HA,k,
for any b ∈ BMO, 0 < δ < ǫ < 1 and k ∈ N, there exists C = Cδ,ǫ such that

M ♯
δ(T

k
b f)(x) ≤ C

k−1∑

j=0

‖b‖k−jBMOMǫ(T
j
b f)(x) + C‖b‖kBMOMÃf(x)

Then, we have the following result for T kb .

3.8. Theorem. Let p ∈ P log(Rn), 1 ≤ β < p−. Let A and B be Young functions

such that Ã−1(t)B−1(t)(log t)k ≤ t for t ≥ t0 > 1, k ∈ N and Ã ∈ Bρ, for every ρ > β.
Let b ∈ BMO and T kb be the k-th order commutator of the singular integral operator
T with kernel K ∈ HB ∩HA,k. If wβ ∈ A p(·)

β
, then

‖wT kb f‖p(·) . ‖b‖kBMO‖wf‖p(·)

for every f ∈ L∞
c (Rn), whenever the left-hand side is finite.

3.9. Remark. When k = 0, Theorems 3.7 and 3.8 are Theorems 3.2 and 3.3.

Proof. We use an induction argument. The result holds for the case k = 0
which is nothing but Theorem 3.3, and suppose it is true for every 0 ≤ j ≤ k − 1.
Without loss of generality we can consider ‖b‖BMO = 1. Let f ∈ L∞

c (Rn), 0 < δ < 1
and r(·) = p(·)/δ. Thus, proceeding as in the proof of Theorem 3.3 and applying
Theorem 3.7 we obtain

‖wT kb f‖p(·) . sup
‖w−δg‖r′(·)≤1

(
ˆ

Rn

M ♯(|T kb f |
δ)Mg dx

)1/δ

= sup
‖w−δg‖r′(·)≤1

‖wM ♯
δ(|T

k
b f |)‖p(·)‖w

−δg‖
1/δ
r′(·).

.

k−1∑

j=0

‖wMǫ(T
j
b f)‖p(·) + ‖wMÃf‖p(·)

From the hypothesis on w we have that wǫ ∈ A p(·)
ǫ

for 0 < ǫ < 1 and thus, by

applying the boundedness result for the Hardy–Littlewood maximal operator proved
in [9], the inductive hypothesis and Theorem 2.5 we obtain that

‖wT kb f‖p(·) .
k−1∑

j=0

‖wT jb f‖p(·) + ‖wMÃf‖p(·) . ‖wf‖p(·). �

3.2. Fractional integral operators. In [4] the authors consider fractional
operators of the type

Tαf(x) =

ˆ

Rn

Kα(x− y)f(y) dy, 0 ≤ α < n,
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where the kernel Kα satisfies a size type condition and a fractional Hörmander con-
dition. The size condition is called Sα: we say that Kα ∈ Sα if there exists C > 0
such that

ˆ

|x|∼s

|Kα(x)| dx ≤ Csα.

The smoothness condition is defined as follows. We say that Kα ∈ Hα,A if there
exist c ≥ 1 and C > 0 such that for every y ∈ R

n and R > c|y|

∞∑

m=1

(2mR)n−α‖Kα(· − y)−Kα(·)‖A,|x|∼2mR ≤ C.

The following result was proved in [4].

3.10. Theorem. Let Tα be a fractional operator with kernel Kα ∈ Sα ∩ Hα,A.
Then, for any 0 < δ < 1, there exists a positive constant Cδ such that

(3.11) M ♯
δ(Tαf)(x) ≤ CδMα,Ãf(x).

Then, the corresponding boundedness result for Tα in weighted variable Lebesgue
spaces is the following.

3.12. Theorem. Let 0 ≤ α < n, p ∈ P log(Rn) with 1 < p− ≤ p+ < n/α,
1/q(x) = 1/p(x) − α/n and 1 ≤ β < p−. Let A be a Young function satisfying

Ã 1+ ρα
n−α ∈ B ρn

n−α
for every ρ > β(n−α)/(n−αβ) and let φ be a Young function such

that φ−1(t)t
α
n . Ã−1(t) for every t > 0. Let Tα be a fractional operator with kernel

K ∈ Sα ∩Hα,A. If wβ ∈ A p(·)
β
, q(·)

β
, then

‖wTαf‖q(·) . ‖wf‖p(·)

for every f ∈ L∞
c (Rn) such that |{x ∈ R

n : |Tαf(x)| > λ}| < ∞ for each λ > 0 and
whenever the left-hand side is finite.

Proof. Let r(·) = q(·)/δ, 0 < δ < 1. By the hypothesis over Tα, we can proceed
as before, by applying Lemma 3.5 and Theorem 3.10. Moreover, since wβ ∈ A p(·)

β
,
q(·)
β

is equivalent to wγ ∈ A q(·)
γ

for γ = βn
n−αβ

, we have that wδ ∈ A q(·)
δ

(see (4.2) and

(4.4)). Thus, by the boundedness results obtained in [9] for M we have

‖wTαf‖q(·) . sup
‖w−δg‖r′(·)≤1

(
ˆ

Rn

M ♯(|Tαf |
δ)Mg dx

)1/δ

. sup
‖w−δg‖r′(·)≤1

‖wδM ♯(|Tαf |
δ)‖

1/δ
r(·)‖w

−δMg‖
1/δ
r′(·)

. ‖wM ♯
δ(|Tαf |)‖q(·) . ‖wMα,Ãf‖q(·).

Finally, by the properties on A, Theorem 2.6 gives the desired result. �

Given b ∈ BMO, the k-th order commutator of Tα for k ∈ N∪ {0} is defined by

T kα,bf(x) =

ˆ

Rn

(b(x)− b(y))kKα(x− y)f(y) dy, 0 ≤ α < n.

When k = 0, T kα,b = Tα. We will now suppose that the kernel Kα satisfies the
condition Hα,A,k, which means that there exist c ≥ 1 and C > 0 such that for every
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y ∈ R
n and R > c|y|

∞∑

m=1

(2mR)n−αmk‖Kα(· − y)−Kα(·)‖A,|x|∼2mR ≤ C.

In [4] the authors also proved an estimate in the spirit of (3.11) for T kα,b, which is
given in the following result.

3.13. Theorem. Let A and B be Young functions such that Ã−1(t)B−1(t) ≤
t/(1 + log+ t)k. If Tα is a fractional integral operator with kernel K ∈ Sα ∩ Hα,B ∩
Hα,A,k, for any b ∈ BMO, 0 < δ < ǫ < 1 and k ∈ N, there exists C = Cδ,ǫ such that

M ♯
δ(T

k
α,bf)(x) ≤ C

k−1∑

j=0

‖b‖k−jBMOMǫ(T
j
α,bf)(x) + C‖b‖kBMOMα,Ãf(x).

Then, with the same arguments used in this section, we obtain the next bound-
edness result for T kα,b. We omit the details of the proof.

3.14. Theorem. Let 0 ≤ α < n, p ∈ P log(Rn) with 1 < p− ≤ p+ < n/α,
1/q(x) = 1/p(x)− α/n and 1 ≤ β < p−. Let A and B be Young functions such that

Ã−1(t)B−1(t) ≤ t/(1+ log+ t)k and Ã 1+ ρα
n−α ∈ B ρn

n−α
for every ρ > β(n−α)/(n−αβ)

and let φ be a Young function such that φ−1(t)t
α
n . Ã−1(t) for every t > 0. Let

b ∈ BMO and T kα,b be the k-th order commutator of the fractional integral operator

Tα with kernel K ∈ Sα ∩Hα,B ∩Hα,A,k. If wβ ∈ A p(·)
β
, q(·)

β

, then

‖wT kα,bf‖q(·) . ‖b‖kBMO‖wf‖p(·)

for every f ∈ L∞
c (Rn) such that |{x ∈ R

n : |T kα,bf(x)| > λ}| <∞ for each λ > 0 and
whenever the left-hand side is finite.

4. Auxiliary results

In this section we give the basic tools in order to get our main results. The next
lemma gives some relations between the Ap(·) and the Ap(·),q(·) classes.

4.1. Lemma. Let 0 ≤ α < n, 0 < δ < 1, and let w be a weight. Let p, q, s ∈
P∗(Rn) such that 1/q(x) = 1/p(x)− α/n and s(x) = (1 − α/n)q(x) with 1 < p− ≤
p+ < n/α.

(4.2) For every 1 ≤ β ≤ p−, wβ ∈ A p(·)
β
, q(·)

β
if and only if w

βn
n−αβ ∈ Aq(·)( 1

β
−α

n)
.

Particularly, when β = 1, w ∈ Ap(·),q(·) if and only if w
n

n−α ∈ As(·).
(4.3) If w ∈ Ap(·),q(·), then wδ ∈ A q(·)

δ

.

(4.4) Let 1 ≤ r ≤ q−. If wr ∈ A q(·)
r

, then wδ ∈ A q(·)
δ

.

4.5. Remark. Noticing that q(·)/s(·) = n/(n − α), it follows that (4.2) is an
extension of the results proved in [36].

Proof of Lemma 4.1. Let us prove (4.2). Notice that 0 < n−αβ
n

≤ q−
(
n−αβ
nβ

)

since β ≤ p− ≤ q−. Then

(4.6) ‖w
nβ

n−αβχB‖q(·)( 1
β
−α

n)
= ‖wβχB‖

n
n−αβ

q(·)(n−αβ
nβ )( n

n−αβ )
= ‖wβχB‖

n
n−αβ

q(·)
β

.
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On the other hand, since q(·)n/(q(·)(n− αβ)− nβ) = (p(·)/β)′ we obtain that

(4.7) ‖w
−nβ
n−αβχB‖ q(·)(n−αβ)

q(·)(n−αβ)−nβ

= ‖w−βχB‖
n

n−αβ

q(·)n
q(·)(n−αβ)−nβ

= ‖w−βχB‖
n

n−αβ

(p(·)
β )

′ .

Let us first suppose that wβ ∈ A p(·)
β
, q(·)

β
. Hence, from (4.6) and (4.7),

‖w
nβ

n−αβχB‖q(·)( 1
β
−α

n)
‖w

−nβ
n−αβχB‖ q(·)(n−αβ)

q(·)(n−αβ)−nβ

= ‖wβχB‖
n

n−αβ

q(·)
β

‖w−βχB‖
n

n−αβ

( p(·)
β )

′

. |B|(1−
αβ
n )

n
n−αβ = |B|.

Conversely, let us now suppose w
βn

n−αβ ∈ Aq(·)( 1
β
−α

n)
. Using again (4.6) and (4.7),

we obtain that

‖wβχB‖ q(·)
β
‖w−βχB‖ p(·)

p(·)−β
= ‖w

nβ
n−αβχB‖

1−αβ
n

q(·)( 1
β
−α

n)
‖w

−nβ
n−αβχB‖

1−αβ
n

q(·)(n−αβ)
q(·)(n−αβ)−nβ

= ‖w
nβ

n−αβχB‖
1−αβ

n

q(·)( 1
β
−α

n)
‖w

−nβ
n−αβχB‖

1−αβ
n

(q(·)( 1
β
−α

n))
′ . |B|1−

αβ
n .

We proceed now with the proof of (4.3). Since 0 < δ < 1 < q−, we have that

‖wδχB‖ q(·)
δ

‖w−δχB‖ q(·)
q(·)−δ

= ‖wχB‖
δ
q(·)‖w

−δχB‖ q(·)
q(·)−δ

.

If u(·) = q(·)/(q(·) − δ), from the relation between p(·) and q(·) we have that
1/u(·) = (n − nδ + αδ)/n + δ/p′(·). Thus, by the generalized Hölder inequality
and the hypothesis on w we obtain that

‖wδχB‖ q(·)
δ

‖w−δχB‖ q(·)
q(·)−δ

≤ ‖wχB‖
δ
q(·)‖w

−1χB‖
δ
p′(·)‖χB‖ n

n−nδ+αδ

. |B|δ(1−
α
n
)|B|1−δ(1−

α
n
) = |B|.

In order to prove (4.4), take r and δ as in the hypothesis. Since 0 < δ < 1 ≤ r ≤
q−, we have that

(4.8) ‖wδχB‖ q(·)
δ

‖w−δχB‖ q(·)
q(·)−δ

= ‖wrχB‖
δ
r
q(·)
r

‖w−δχB‖ q(·)
q(·)−δ

.

Let u(·) be as in (4.3). From the fact that 1/u(·) = 1/((r/δ)( q(·)
r
)′) + (r− δ)/r, (4.8)

and the hypothesis on the weight, we obtain that

‖wδχB‖ q(·)
δ

‖w−δχB‖ q(·)
q(·)−δ

≤ ‖wrχB‖
δ
r
q(·)
r

‖w−rχB‖
δ
r

(
q(·)
r

)′
‖χB‖ r

r−δ

≤ |B|
δ
r |B|1−

δ
r = |B|. �

The following pointwise estimate is an important tool in order to prove Theo-
rems 2.3, 2.6 and 2.15.

4.9. Theorem. Let 0 ≤ α < n and let p ∈ P∗(Rn) such that p+ < n/α. Let q(·)
and s(·) be the functions defined by 1/q(x) = 1/p(x)−α/n and s(x) = 1+q(x)/p′(x),
respectively. Let η and φ be Young functions such that φ−1(t)tα/n . η−1(t). Then
for every measurable function f and every weight w, the following inequality

Mα,η(f/w)(x) .
(
Mψ

(
|f |p(·)/s(·)w−q(·)/s(·)

)
(x)
)1−α/n

(
ˆ

Rn

|f(y)|p(y) dy

)α/n

holds, where ψ(t) = φ(t1−α/n).
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4.10. Remark. For the fractional maximal operator, that is, when η(t) = t, the
theorem above was proved in [21].

Proof of Theorem 4.9. Let g(x) = |f(x)|p(x)/s(x)w(x)−q(x)/s(x) and B = B(x,R),
R > 0, x ∈ R

n. Then

|f(x)|/w(x) = gs(x)/p(x)−1+α/nw(x)q(x)/p(x)−1g(x)1−α/n.

Let x ∈ R
n and a fixed ball B ∋ x. By the generalized Hölder inequality and the

fact that

g(s(x)/p(x)−1+α/n)n/αw(x)(q(x)/p(x)−1)n/α = |f(x)|p(x),

we get

|B|α/n ‖f/w‖η,B ≤ C|B|α/n‖g1−α/n‖φ,B ‖gs(·)/p(·)+α/n−1wq(·)/p(·)−1‖n/α,B

= C‖g‖
1−α/n
ψ,B |B|α/n

(
1

|B|

ˆ

B

|f(x)|p(x)
)α/n

. [Mψ(g)(x)]
1−α/n

(
ˆ

Rn

|f(x)|p(x)
)α/n

. �

Particularly, when η(t) = tβ(1 + log+ t)γ, with 1 ≤ β < n/α and γ ≥ 0, The-

orem 4.9 holds with ψ(t) ≈ t
β(n−α)
n−αβ (1 + log+ t)

nγ
n−αβ . In fact, if φ(t) = t

nβ
n−αβ (1 +

log+ t)
nγ

n−αβ then

φ−1(t)t
α
n ≈

t1/β−α/n

(1 + log+ t)γ/β
t
α
n ≈ η−1(t),

and thus ψ(t) = φ(t1−α/n) = t
nβ

n−αβ
n−α
n (1 + log+(t1−α/n))γn/(n−αβ) ≈ t

β(n−α)
n−αβ (1 +

log+ t)
nγ

n−αβ .
We now prove a pointwise inequality which is crucial in the proof of Theorem 2.11,

in the spirit of the results obtained for the Hardy–Littlewood maximal operator by
Diening in [15] for certain exponents p, and by Capone, Cruz-Uribe and Fiorenza in
[5] for more general exponents. In order to prove it, we will use the following lemma
which is an extension of Lemma 2.5 of [5] involving Young averages.

4.11. Lemma. Given a set A ⊂ R
n with 0 < |A| < ∞ and two non-negative

functions r(·) and s(·), suppose that for each y ∈ A,

0 ≤ s(y)− r(y) ≤
C

log(e+ |z(y)|)

where z : A → R
n. Then, for every measurable set D and every t > 0 there exists a

positive constant Ct such that for every function f ,

‖|f(·)|r(·)χD‖η,A ≤ 2Ct‖|f(·)|
s(·)χD‖η,A + 2‖St(z(·))

r−AχD‖η,A,

where St(x) = (e+ |x|)−tn.

Proof. Let λ = 2Ct‖f
sχD‖η,A+2‖St(z)

r−AχD‖η,A > 0. Without loss of generality,
we will suppose that |D∩A| > 0 and f(x) 6= 0 in almost every x ∈ D∩A; otherwise,
there is nothing to prove.
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Let us define D1 = {x ∈ A ∩ D : |f(x)| ≥ St(z(x))}. Notice first that from the
hypothesis over s(·) and r(·) we have that for every x ∈ D1

|f(x)|r(x) = |f(x)|s(x)|f(x)|r(x)−s(x) ≤ |f(x)|s(x)(St(z(x)))
r(x)−s(x)

≤ |f(x)|s(x)(e+ |z(x)|)tnC/ log(e+|z(x)|) = Ct|f(x)|
s(x).(4.12)

On the other hand, for x ∈ (A ∩D) \D1, since St(z(x)) ≤ 1, we have that

(4.13) |f(x)|r(x) ≤ (St(z(x)))
r(x) ≤ (St(z(x)))

r−A .

Then, using both (4.12) and (4.13) we obtain

1

|A|

ˆ

A

η

(
|f(x)|r(x)χD(x)

λ

)
dx

≤
1

|A|

ˆ

D1

η

(
|f(x)|r(x)

2Ct‖f sχD‖η,A

)
dx+

1

|A|

ˆ

(A∩D)\D1

η

(
|f(x)|r(x)

2‖St(z(·))r
−

AχD‖η,A

)
dx

≤
1

|A|

ˆ

D1

η

(
|f(x)|s(x)

2‖f sχD‖η,A

)
dx+

1

|A|

ˆ

(A∩D)\D1

η

(
(St(z(x)))

r−A

2‖St(z(·))r
−

AχD‖η,A

)
dx

≤
1

2

1

|A|

ˆ

A

η

(
|f(x)|s(x)χD(x)

‖f sχD‖η,A

)
dx+

1

2

1

|A|

ˆ

A

η

(
(St(z(x)))

r−AχD(x)

‖St(z(·))r
−

AχD‖η,A

)
dx

≤
1

2
+

1

2
= 1,

and thus,

‖|f(·)|r(·)χD‖η,A ≤ 2Ct‖|f(·)|
s(·)χD‖η,A + 2‖St(z(·))

r−AχD‖η,A. �

4.14. Remark. Particularly, under the same hypothesis on the functions r(·)
and s(·) and by taking η(t) = t we obtain the following inequality, proved in [5].

(4.15)
1

|A|

ˆ

A∩D

|f(x)|r(x) dx ≤
2Ct
|A|

ˆ

A∩D

|f(x)|s(x) dx+
2

|A|

ˆ

A∩D

St(z(x))
r−A dx.

We also give the next useful lemma proved by Diening in [15]. The result relates
the local log-Hölder condition and the size of the balls.

4.16. Lemma. An exponent p ∈ P∗(Rn) satisfies condition (1.3) if and only if

there exists a positive constant C such that, for every ball B, |B|p
−

B−p+B ≤ C.

We are now in position to give the pointwise estimate. It should be mentioned
that a different proof of (4.18) is given in [23].

4.17. Theorem. Let p ∈ P log(Rn) and η a Young function. Let S : Rn → R be
the function defined by S(x) = (e + |x|)−n.

(4.18) If p− > 1 and η ∈ Bp−, then the inequality

(Mηf(x))
p(x) . M(|f(·)|p(·))(x) + S(x)p

−

holds for every function f such that ‖fχ{|f |>1}‖p(·) ≤ 1;
(4.19) If p− = 1 and η ∈ Bq for every q > 1, then the inequality

(Mηf(x))
p(x) .Mη(|f(·)|

p(·))(x) + S(x)

holds for every function f such that
´

{|f |≥1}
η(|f(x)|p(x)) dx ≤ 1.
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Proof. In order to prove (4.18) let us first consider p− > 1 and η ∈ Bp−. Then,

it is enough to show that ‖f‖
p(x)
η,B . M(|f(·)|p(·))(x) + S(x)p

−

for every ball B =

B(x0, R) ∋ x. From the facts that p−B ≥ p− > 1 and the Bp classes are increasing we
obtain that η ∈ Bp−B

. Thus, an easy consequence of the definition of the Bp−B
class is

that η(t) . tp
−

B for t > t0. Particularly, this implies that ‖f1‖η,B . ‖f1‖p−B,B.

Fix B ∋ x and let f1 = fχ{|f |>1} and f2 = f − f1. Let us first estimate ‖f1‖
p(x)
η,B .

Since ‖f1‖p(·) ≤ 1 we have that

‖f1‖
p(x)
η,B .

(
1

|B|

ˆ

B

|f1(y)|
p−B dy

)p(x)

p−
B ≤

(
1

|B|

ˆ

B

|f1(y)|
p(y) dy

) p(x)

p−
B

=

(
1

|B|

ˆ

B

|f1(y)|
p(y) dy

)p(x)

p−
B

−1(
1

|B|

ˆ

B

|f(y)|p(y) dy

)

≤ |B|

p−
B

−p(x)

p−
B M(|f(·)|p(·))(x).

If |B| > 1, since the exponent (p−B − p(x))/p−B ≤ 0, we have |B|(p
−

B−p(x))/p−B ≤ 1. On
the other hand, if |B| ≤ 1, from the hypothesis on p and by applying Lemma 4.16 we

have that |B|(p
−

B−p(x))/p−B ≤ |B|p
−

B−p+B ≤ C. In both cases, ‖f1‖
p(x)
η,B .M(|f(·)|p(·))(x).

Let us now estimate ‖f2‖
p(x)
η,B . Consider the sets E = B ∩ B(0, |x|) and F = B \

B(0, |x|). We split f2 = fE2 +fF2 = f2χE+f2χF . Then, ‖f2‖
p(x)
η,B . ‖fE2 ‖

p(x)
η,B +‖fF2 ‖

p(x)
η,B .

In order to estimate ‖fE2 ‖
p(x)
η,B , we will use again the fact that η ∈ Bp−B

. From the

decay log-Hölder condition over p we have that for every y ∈ E

0 ≤ p(y)− p−B ≤
C

log(e+ |y|)
.

Thus, we can apply (4.15) with r(·) and s(·) replaced by p−B and p(·) respectively,
z(y) = y and t = 1 to obtain

‖fE2 ‖
p(x)
η,B .

(
1

|B|

ˆ

B

|fE2 (y)|
p−B dy

)p(x)

p
−

B ≤
1

|B|

ˆ

B

|fE2 (y)|
p−B dy

.
1

|B|

ˆ

B

|fE2 (y)|
p(y) dy +

1

|B|

ˆ

E

(e + |y|)−np
−

B dy

≤
1

|B|

ˆ

B

|f(y)|p(y) dy +
1

|B|

ˆ

E

(e+ |y|)−np
−

B dy

≤ M(|f(·)|p(·))(x) +
1

|B|

ˆ

E

(e + |y|)−np
−

B dy.

If R < |x|/4, it is easy to see that |y| ≈ |x| for every y ∈ E so

(4.18)
1

|B|

ˆ

E

(e + |y|)−np
−

B dy .
1

|B|

ˆ

E

(e + |x|)−np
−

B ≤ (e + |x|)−np
−

B ≤ S(x)p
−

.

If R ≥ |x|/4 and |x| < 1, we have that e+ |x| . e+ |y| so we proceed as in (4.18).
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Finally, if R ≥ |x|/4 and |x| ≥ 1, then 4n|B| ≥ |B(0, |x|)| and thus

1

|B|

ˆ

E

(e+ |y|)−np
−

B dy .
1

|B(0, |x|)|

ˆ

B(0,|x|)

(e+ |y|)−np
−

B dy

. |x|−n
ˆ

B(0,|x|)

(e+ |y|)−np
−

B dy . (e+ |x|)−n
ˆ

B(0,|x|)

(e+ |y|)−np
−

B dy.

Since
ˆ

B(0,|x|)

(e + |y|)−np
−

B dy ≤

ˆ e+|x|

e

ρn−1−np−B dρ ≤ (e+ |x|)n−np
−

B

we get
1

|B|

ˆ

E

(e + |y|)−np
−

B dy . (e + |x|)−np
−

B ≤ S(x)p
−

.

Thus, we conclude the estimate for fE2 .
By noticing that |y| ≥ |x| for all y ∈ F , we can use Lemma 4.11 with p−B, p(·),

z(y) = x and t = 1 to obtain

‖fF2 ‖
p(x)
η,B .

(
1

|B|

ˆ

B

|fF2 (y)|
p−B dy

)p(x)

p−
B ≤

1

|B|

ˆ

B

|fF2 (y)|
p−B dy

.
1

|B|

ˆ

B

|f(y)|p(y) dy +
1

|B|

ˆ

F

(e+ |x|)−np
−

dy

≤M(|f(·)|p(·))(x) + S(x)p
−

.

Therefore, combining all the cases we get ‖f‖
p(x)
η,B .M(|f(·)|p(·))(x)+S(x)p

−

for every
ball B ∋ x.

In order to prove (4.19), let us consider p− = 1 and η ∈ Bq for all q > 1. Then,

it is enough to show that ‖f‖
p(x)
η,B . Mη(|f(·)|

p(·))(x) + S(x) for every ball B ∋ x.

Given a ball B ∋ x, if p−B > 1, we proceed as in (4.18) because the hypothesis over
f implies ‖f1‖p(·) ≤ 1. Suppose that p−B = 1. We split f = f1 + f2 as before so

‖f‖
p(x)
η,B . ‖f1‖

p(x)
η,B + ‖f2‖

p(x)
η,B .

First, we will estimate ‖f1‖
p(x)
η,B . If |B| ≤ 1, by the convexity of η we have that

1

|B|

ˆ

B

η
(
|B‖f1(y)|

p(y)
)
dy ≤

ˆ

{|f |>1}

η
(
|f(y)|p(y)

)
dy ≤ 1

and thus ‖|B‖f1|
p‖η,B ≤ 1. Then, by Lemma 4.16 we obtain that

‖f1‖
p(x)
η,B ≤ |B|−p(x)‖|B‖f1|

p‖
p(x)
η,B ≤ |B|1−p(x)‖|f1|

p‖η,B = |B|p
−

B−p(x)‖|f1|
p‖η,B

≤ |B|p
−

B−p+B‖|f |p‖η,B ≤ CMη(|f(·)|
p(·))(x).

If |B| > 1, from the hypothesis over f we get

1

|B|

ˆ

B

η (|f1(y)|) dy ≤

ˆ

{|f |>1}

η
(
|f(y)|p(y)

)
dy ≤ 1.

Hence,

‖f1‖
p(x)
η,B ≤ ‖f1‖η,B ≤ ‖f p‖η,B ≤Mη(|f(·)|

p(·))(x).
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Now, we estimate ‖f2‖
p(x)
η,B , spliting it as before into fE2 and fF2 . Using Lemma 4.11

with p(·), p−B = 1 and t = 1, we obtain

‖fE2 ‖
p(x)
η,B ≤ ‖fE2 ‖η,B=‖f2χE‖η,B . ‖f p2χE‖η,B+‖SχE‖η,B ≤Mη(|f(·)|

p(·))+‖SχE‖η,B,

We will show that ‖SχE‖η,B ≤ S(x).
Recall that if R < |x|/4 or if R ≥ |x|/4 and |x| ≤ 1, we had that S(y) . S(x).

Thus, in both cases, ‖SχE‖η,B ≈ ‖S(x)χE‖η,B ≤ S(x).
Now, if R ≥ |x|/4 and |x| > 1 we know that 4n|B| ≥ |B(0, |x|)|, |x|−n . S(x) <

S(y). Fix q > 1 so η ∈ Bq. Let c > 1 be a constant to be determined. Then,

1

|B|

ˆ

B

η

(
S(y)χE(y)

cS(x)

)
dy ≤

1

|B|

ˆ

E

1

c
η

(
S(y)

S(x)

)
dy ≤

1

|B|

ˆ

E

1

c

(
S(y)

S(x)

)q
dy

≤
C

c

1

|x|n
(e + |x|)nq

ˆ

B(0,|x|)

1

(e+ |y|)nq
dy

≤
C

c

(e+ |x|)nq

|x|n
(e+ |x|)n−nq ≤ 1

by taking c conveniently. Therefore, ‖SχE‖η,B . S(x).
Finally, since |y| ≥ |x| for all y ∈ F , we use Lemma 4.11 with p−B, p(·), z(y) = x

and t = 1 to get

‖fF2 ‖
p(x)
η,B . ‖f p2χF‖η,B + ‖SχE‖η,B ≤Mη(|f(·)|

p(·)) + ‖S(x)χE‖η,B

=Mη(|f(·)|
p(·)) + S(x). �

In the following examples we give some Young functions satisfying the conditions
of Theorem 4.17 and the corresponding pointwise inequalities.

i) If p− > 1, 1 ≤ β < p− and γ ≥ 0 it is easy to see that the functions η(t) =
tβ(1 + log+ t)γ and ξ(t) = tβ(1 + log(1 + log+ t))γ belong to the Bp− class. Then, by
Theorem 4.17 we obtain the following inequalities

(MLβ(logL)γf(x))
p(x) .M(|f(·)|p(·)) + S(x)p

−

,

and
(MLβ(log(logL))γf(x))

p(x) .M(|f(·)|p(·)) + S(x)p
−

.

ii) If β = 1 and γ ≥ 0, both functions η(t) = t(1 + log+ t)γ and ξ(t) = t(1 +
log(1 + log+ t))γ satisfy the Bq condition for every q > 1. Thus, if p− = 1 we obtain
that

(ML(log(logL))γf(x))
p(x) . ML(log(logL))γ (|f(·)|

p(·)) + S(x), if p− = 1,

and
(ML(log(logL))γf(x))

p(x) .M(|f(·)|p(·)) + S(x)p
−

, if p− > 1.

The following weak-type inequality was established in [27] and it allows us to
prove Theorem 2.11.

4.19. Lemma. Let η be a Young function and w a weight. Then, the following
estimate holds

w({x ∈ R
n : Mηf(x) > 2λ}) .

ˆ

{|f |>λ}

η

(
|f(x)|

λ

)
Mw(x) dx

for every λ > 0.
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5. Proofs of the main results

We shall first introduce some notation and definitions needed in the next proof.
Given p ∈ P∗(Rn) and a weight w, let φp(·),w(x, t) = (tw(x))p(x). The authors in [9]
defined the following classes of functions over cubes instead of balls, but it is easy to
see that we can make such a change and all the results still hold.

5.1. Definition. Given p ∈ P∗(Rn) and a weight w, the function φp(·),w ∈ A if
the inequality ∥∥∥∥w

∑

B∈B

χB
1

|B|

ˆ

B

|f |

∥∥∥∥
p(·)

. ‖wf‖p(·)

holds for every family B of disjoint balls B and every f ∈ L
p(·)
w (Rn).

It is easy to see that φp(·),w ∈ A implies w ∈ Ap(·). Moreover, the authors in [17]
showed that the converse also holds, by additionally assuming that p ∈ P log(Rn).

Proof of Theorem 2.1. Let us first suppose that wβ ∈ A p(·)
β

. Since p ∈ P log(Rn),

so is p/β. Then, as we recently observe, we have that ϕ p(·)
β
,wβ ∈ A. From the fact

that the class A is left open (see Corollary 5.4.15 of [17]), there exists 0 < ǫ < p−−β
such that ϕ p(·)

β+ǫ
,wβ+ǫ ∈ A. This implies that wβ+ǫ ∈ A p(·)

β+ǫ

.

Now, for this ǫ, we have that Mη(f) . Mβ+ǫ(f) = M(fβ+ǫ)
1

β+ǫ . Then, given

f ∈ L
p(·)
w (Rn),

‖wMηf‖p(·) . ‖wMβ+ǫf‖p(·) = ‖wβ+ǫM(fβ+ǫ)‖
1

β+ǫ

p(·)
β+ǫ

.

From the hypothesis on f we have that fβ+ǫ ∈ L
p(·)
β+ǫ

wβ+ǫ(R
n), and thus, from the fact

that M is bounded on L
p(·)
β+ǫ

wβ+ǫ(R
n) for wβ+ǫ ∈ A p(·)

β+ǫ
, we get the desired result.

Conversely, if Mη is bounded on L
p(·)
w (Rn), since Mβ(f) .Mη, we have that

‖wβM(fβ)‖
1
β

p(·)
β

= ‖wMβ(f)‖p(·) . ‖wMηf‖p(·) . ‖wf‖p(·) = ‖wβfβ‖
1
β

p(·)
β

.

The condition wβ ∈ A p(·)
β

follows immediately from the boundedness properties of

M . �

Proof of Theorem 2.2. We will only prove that w ∈ Ap(·),q(·) is a necessary
condition for the boundedness of Mα. The sufficient condition will be proved in
Theorem 2.6 in a more general way.

Let us suppose that Mα is bounded from L
p(·)
w (Rn) into L

q(·)
w (Rn), for p and q as

in the hypothesis. By applying Lemma 3.4, we obtain

‖wχB‖q(·)‖w
−1χB‖p′(·) ≤ 2‖wχB‖q(·) sup

‖g‖p(·)≤1

ˆ

B

|g(x)|w−1(x) dx

= 2 sup
‖g‖p(·)≤1

∥∥∥∥wχB
ˆ

B

|g|w−1

∥∥∥∥
q(·)

= 2|B|1−
α
n sup

‖g‖p(·)≤1

∥∥∥∥wχB
1

|B|1−
α
n

ˆ

B

|g|w−1

∥∥∥∥
q(·)
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≤ 2|B|1−
α
n sup

‖g‖p(·)≤1

∥∥wMα(gw
−1)
∥∥
q(·)

. |B|1−
α
n sup

‖g‖p(·)≤1

∥∥g
∥∥
p(·)

≤ |B|1−
α
n

which implies that w ∈ Ap(·),q(·). �

Proof of Theorem 2.3. Let us first consider wβ ∈ A p(·)
β
, q(·)

β
. We want to show

that the inequality ‖wMα,η(f)‖q(·) . ‖wf‖p(·) holds for every f ∈ L
p(·)
w (Rn), which

is equivalent to prove that the inequality ‖wMα,η(f/w)‖q(·) . ‖f‖p(·) holds for every

f ∈ Lp(·)(Rn).
Let us take f ∈ Lp(·)(Rn). By homogeneity, we can suppose ‖f‖p(·) = 1.

Since η−1(t) ≈ t
1
β
−

α
n

(1+log+ t)
γ
β
t
α
n , from Theorem 4.9, we have that

Mα,η(f/w) . (Mψ(g))
1−α

n ,

where g(x) = |f(x)|p(x)/s(x)w−q(x)/s(x), s(x) = q(x)(1− α/n) and

ψ(t) ≈ tβ(n−α)/(n−αβ)(1 + log+ t)γn/(n−αβ).

Let τ = β(n−α)
n−αβ

. Since 1 ≤ β < p− we obtain that 1 ≤ τ < p−(n−α)
n−αp−

= s−,

where s(·) is the exponent defined above. From (4.2), wβ ∈ A p(·)
β
, q(·)

β

is equivalent to

(w
n

n−α )τ ∈ A s(·)
τ

. Also, from the fact that

ˆ

Rn

g(x)s(x)w(x)
s(x)n
n−α dx =

ˆ

Rn

|f(x)|p(x)w(x)−q(x)w(x)q(x) dx ≤ 1,

we have that g ∈ L
s(·)

w
n

n−α
(Rn) and ‖gw

n
n−α ‖s(·) ≤ 1. Then, we can apply Theorem 2.1

to ψ and g to get

‖wMα,η(f/w)‖q(·) . ‖w(Mψg)
1−α

n ‖q(·) = ‖w
n

n−αMψg‖
1−α

n

s(·)

. ‖w
n

n−αg‖
1−α

n

s(·) ≤ 1 = ‖f‖p(·).

Observe that, particularly, when β = 1 and γ = 0, the proof above gives the
sufficiency of Theorem 2.2.

Let us now suppose that for every f ∈ L
p(·)
w (Rn), we have that

‖wMα,η(f)‖q(·) . ‖wf‖p(·).

Since tβ ≤ η(t) for every t > 0, then Mα,tβ ≤Mα,η, and thus

‖wβfβ‖
1
β

p(·)
β

= ‖wf‖p(·) & ‖wMα,tβ(f)‖q(·) = ‖wβMαβ(f
β)‖

1
β

q(·)
β

.

From the boundedness results of the fractional maximal operator (Theorem 2.2), we
can conclude that wβ ∈ A p(·)

β
,
q(·)
β

. �

Proof of Theorem 2.5. As in the proof of Theorem 2.1, we know that there exists
β < r < p− such that wr ∈ A p(·)

r

. Since η ∈ Bρ for all ρ > β, by taking ρ = r we
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know that Mη .Mr. Then,

‖wMηf‖p(·) . ‖wMrf‖p(·) = ‖wrM(f r)‖
1
r
p(·)
r

.

On the other hand, if f ∈ L
p(·)
w (Rn), then f r ∈ L

p(·)
r
wr (Rn) and by the boundedness

properties of M , we obtain that

‖wMηf‖p(·) . ‖wrf r‖
1
r
p(·)
r

= ‖wf‖p(·). �

Proof of Theorem 2.6. As in the proof of Theorem 2.3, we will show that

‖wMα,η(f/w)‖q(·) . ‖f‖p(·)

for every f ∈ Lp(·)(Rn) with ‖f‖p(·) = 1.
Under the assumptions over η, Theorem 4.9 gives us the following inequality

(5.2) Mα,η(f/w) . (Mψ(g))
1−α

n ,

where g(x) = |f(x)|p(x)/s(x)w−q(x)/s(x), s(x) = q(x)(1− α/n) and ψ(t) = φ(t1−α/n).

Since η1+
ρα

n−α ∈ B ρn
n−α

for all ρ > τ := β(n−α)/(n−αβ), we get that ψ ∈ Bρ for

all ρ > τ . In fact,
ˆ ∞

c0

ψ(v)

vρ
dv

v
=

ˆ ∞

c0

φ(v1−
α
n )

vρ
dv

v
≈

ˆ ∞

c1

φ(s)

s
ρn

n−α

ds

s
.

By changing variables twice and using that any Young function ϕ satisfy ϕ(t) ≤
ϕ′(t)t ≤ ϕ(2t), we obtain

ˆ ∞

c0

ψ(v)

vρ
dv

v
.

ˆ ∞

c2

u

[φ−1(u)]
ρn

n−α

du

u
=

ˆ ∞

c2

u1+
ρα

n−α

[φ−1(u)u
α
n ]

ρn
n−α

du

u
.

ˆ ∞

c2

u1+
ρα

n−α

[η−1(u)]
ρn

n−α

du

u

≤

ˆ ∞

c3

η(t)1+
ρα

n−α

t
ρn

n−α

η(2t)

η(t)

dt

t
≤

ˆ ∞

c3

η(2t)1+
ρα

n−α

t
ρn

n−α

dt

t
.

ˆ ∞

c4

η(z)1+
ρα

n−α

z
ρn

n−α

dz

z
.

Since by hypothesis the right side is finite for some positive constant c4, we obtain
that ψ ∈ Bρ for all ρ > τ .

Since 1 ≤ β < p− implies 1 ≤ τ < s−, from (4.2) we have that wβ ∈ A p(·)
β
,
q(·)
β

is equivalent to w
τn

n−α ∈ A s(·)
τ

. Besides, as in Theorem 2.3, g ∈ L
s(·)

w
n

n−α
(Rn) with

‖g‖
s(·),w

n
n−α

≤ 1. Then, using (5.2) and applying Theorem 2.5 we get

‖wMα,η(f/w)‖q(·) . ‖w
n

n−αMψg‖
n−α
n

s(·) . ‖w
n

n−α g‖
n−α
n

s(·) ≤ 1 = ‖f‖p(·). �

The next proofs correspond to Wiener’s type results.

Proof of Theorem 2.8. Fix ǫ > 0. Following the ideas in [10], let us define the
auxiliary function p̄ : Rn → [1,∞) as

p̄(x) =

{
p(x)+1

2
if 1 ≤ p(x) < 1 + ǫ,

p(x) if p(x) ≥ 1 + ǫ.

Notice that p(x)/2 ≤ p̄(x) ≤ p(x) and p̄(x) ≥ 1 for every x ∈ R
n.
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On the other hand,

ˆ

B

Mηf(x)w(x) dx ≤ w(B) +

∞̂

1

w({x ∈ B : Mηf(x) > t}) dt := w(B) + I.

Using (4.19) and the fact that η is a convex function, the integral I can be estimated
as follows

I .

∞̂

1

ˆ

{x∈B : |f(x)|>t}

η

(
|f(x)|

t

)
Mw(x) dx dt(5.3)

.

∞̂

1

ˆ

{x∈B : |f(x)|>t}

η

((
|f(x)|

t

)p̄(x))
Mw(x) dx dt

.

∞̂

1

ˆ

{x∈B : |f(x)|>t}

t−p̄(x)η(|f(x)|p̄(x))Mw(x) dx dt

.

ˆ

{x∈B : |f(x)|>1}

η(|f(x)|p̄(x))Mw(x)




|f(x)|
ˆ

1

t−p̄(x) dt


 dx.

Let us estimate
´ |f(x)|

1
t−p̄(x) dt for different values of p̄. If p̄(x) = 1, it is clear

that
´ |f(x)|

1
t−p̄(x) dt = log(|f(x)|) ≤ log(e+ |f(x)|)q(x) since q(x) = 1. If p̄(x) ≥ 1+ ǫ,

we have q(x) = 0 and, therefore,

ˆ |f(x)|

1

t−p̄(x) dt =
1− |f(x)|1−p̄(x)

p̄(x)− 1
≤

1

ǫ
=

1

ǫ
log(e + |f(x)|)q(x).

Now, if 1 < p̄(x) < 1 + ǫ, we have q(x) = ǫ−1(ǫ + 1 − p(x)), 1 < p̄(x) < 1 + ǫ
2

and
p̄(x)− 1 = (p(x)− 1)/2.

In [10], the authors proved that, for any a > 1, the function

A(y) =
ay − 1

y
χ(0,1](y) + log a χ{y=0}(y)

is a log-convex function, which means that log(A) is a convex function. Moreover,
given 0 < ǫ ≤ 1, they obtain the following inequality

(5.4) A(y) ≤
1

ǫ
ay(log a)1−

y
ǫ

for every 0 ≤ y ≤ ǫ. Thus, if |f(x)| > 1, by taking a = |f(x)| in (5.4) we obtain that

A(y) ≤
2

ǫ
|f(x)|y log(|f(x)|)1−

2y
ǫ

for every 0 ≤ y ≤ ǫ
2
.
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Now, taking y = p̄(x)− 1, since 1− 2(p̄(x)−1)
ǫ

= q(x), we obtain that
ˆ |f(x)|

1

t−p̄(x) dt = |f(x)|1−p̄(x)
|f(x)|p̄(x)−1 − 1

p̄(x)− 1
≤

|f(x)|p̄(x)−1 − 1

p̄(x)− 1

≤
2

ǫ
|f(x)|p̄(x)−1 log(|f(x)|)q(x) ≤ C|f(x)|(p(x)−1)/2 log(e + |f(x)|)q(x).

Finally, if we split the last integral in (5.3) taking into account the three cases above
and use that η is a convex function, we obtain that

ˆ

B

Mηf(x)w(x) dx .

ˆ

{|f |>1, p̄=1}

η(|f(x)|p(x)) log(e+ |f(x)|)q(x)Mw(x) dx

+

ˆ

{|f |>1, p̄≥1+ǫ}

η(|f(x)|p(x)) log(e + |f(x)|)q(x)Mw(x) dx

+

ˆ

{|f |>1, 1<p̄<1+ǫ}

η
(
|f(x)|

p(x)+1
2

)
|f(x)|

p(x)−1
2 log(e+ |f(x)|)q(x)Mw(x) dx

≤

ˆ

{|f |>1}

η(|f(x)|p(x)) log(e+ |f(x)|)q(x)Mw(x) dx. �

Proof of Theorem 2.9. Since η ∈ Bq for every q > 1, then η(t) . tq for every
t ≥ t0. Without loss of generality we can suppose t0 = 1. We define p̄ as in the
previous proof. Then, we have

ˆ

B

Mηf(x)w(x) dx ≤ w(B) +

ˆ

{x∈B : |f(x)|>1}

Mw(x)

ˆ |f(x)|

1

η

(
|f(x)|

t

)
dt dx.

When p̄(x) = 1, then q(x) = 1 and by the convexity of η we obtain that
ˆ |f(x)|

1

η

(
|f(x)|

t

)
dt =

ˆ |f(x)|

1

η(u)
|f(x)|

u

du

u
≤ |f(x)|

ˆ |f(x)|

1

η′(u)
du

u

≤ |f(x)|η′(|f(x)|) log(e+ |f(x)|).

In the other two cases, since p̄(x) > 1, we use that η ∈ Bp̄(x):
ˆ |f(x)|

1

η

(
|f(x)|

t

)
dt .

ˆ |f(x)|

1

(
|f(x)|

t

)p̄(x)
dt = |f(x)|p̄(x)

ˆ |f(x)|

1

t−p̄(x) dt.

Finally, we estimate the last integral as we did in the proof above, and we use
the fact that η′(|f(x)|)q(x) ≥ 1 since η′(|f(x)|) ≥ 1 and q(x) ≥ 0. �

Proof of Theorem 2.11. Fix 0 < ǫ < 1. We define r(·) and q(·) as in Theorem 1.5
of [10]. For the sake of completeness we include the definition and properties.

Let R(·) be defined by

R(x) = p(x) + (p(x)− 1)(p(x)− (1 + ǫ)) = (p(x)− 1)(p(x)− ǫ) + 1.

Following [10], and from the fact that p(·) satisfies the log-Hölder condition (1.3) and
p+ <∞ we have that p(·)2 and then, R(·) are also log-Hölder continuous functions.

We now define r(x) = min(p(x), R(x)) which also satisfies the log-Hölder condi-
tion (1.3). It is easy to see that when p(x) = 1, R(x) = 1 and when p(x) ≥ 1 + ǫ,
R(x) ≥ p(x), so in both cases r(x) = p(x). On the other hand, for 1 < p(x) < 1 + ǫ,
we have 1 < R(x) < p(x) which implies 1 < r(x) < p(x).
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In order to define q(·), let F = {x : p(x) ≤ 1 + ǫ/3} and let

r∗ =




sup
x∈F

r(x) if F 6= ∅,

1 + ǫ/3 if F = ∅.

which is log-Hölder continuous.
We define r̃(x) = min(r(x), r∗) and finally

(5.5) q(x) = max

{
3

ǫ

(
1 +

ǫ

3
−
p(x)

r̃(x)

)
, 0

}
.

Then, r̃(·) satisfies condition (1.3), so q(·) is also log-Hölder continuous. Since r̃(x) ≤
r(x) ≤ p(x), we have that 0 ≤ q(x) ≤ 1. Moreover, when p(x) = 1, we have r̃(x) = 1

so q(x) = 1. And when p(x) ≥ 1 + ǫ, p(x)
r̃(x)

≥ 1 + ǫ
3

which gives us q(x) = 0.

Fix a weight w and a function f as in the hypothesis. Let us split the ball B in
the following subsets

B1 = {x ∈ B : Mηf(x) ≤ 1, p(x) > 1 + ǫ/3}

B2 = {x ∈ B : Mηf(x) > 1, p(x) > 1 + ǫ/3}

B3 = {x ∈ B : p(x) ≤ 1 + ǫ/3}.

Then
ˆ

B

Mηf(x)
r(x)w(x) dx ≤

3∑

i=1

ˆ

Bi

Mηf(x)
r(x)w(x) dx.

We estimate each integral separately. For the first one we have
ˆ

B1

Mηf(x)
r(x)w(x) dx ≤ w(B1) ≤ w(B).

We will estimate now the last term since it easily follows from Theorem 4.17 with
r(·) = r̃(·) instead of p(·) ≥ r(·) and Theorem 2.8 with ǫ/3 and p(·)/r̃(·). In fact,
ˆ

B3

Mηf(x)
r(x)w(x) dx .

ˆ

B3

S(x)r̃
−

w(x) +

ˆ

B3

Mη

(
|f(·)|r̃(·)

)
(x)w(x) dx

≤ w(B3)+

ˆ

B

η
(
|f(x)|r̃(x)

p(x)
r̃(x)

)
log(e+ |f(x)|r̃(x))q(x)Mw(x) dx

. w(B) +

ˆ

Rn

η
(
|f(x)|p(x)

)
log(e+ |f(x)|)q(x)Mw(x) dx,(5.6)

where the exponent q(·) is given in (5.5).
Finally, to estimate

´

B2
Mηf(x)

r(x)w(x) dx, we need to consider both cases p− = 1

and p− > 1. By hypotesis, if p− > 1, we assume η ∈ Bp−. Then, since η is
submupltiplicative, there exist 1 < τ < p− such that η ∈ B p−

τ

⊂ B p−
B2
τ

. On the

other hand, if p− = 1, η ∈ Bq for all q > 1. Then, since
p−B2

1+ǫ/6
>

p−B2

1+ǫ/3
≥ 1, we

have η ∈ B p−
B2

1+ǫ/6

. Thus, in both cases, there exists a constant λ ∈ (1, p−B2
) such that

η ∈ B p−
B2
λ

.

Hence, from Theorem 4.17 we have that for every x ∈ B2

Mηf(x)
p(x) . S(x)p(x) +M(f(·)

p(·)
λ )(x)λ,



48 Ana Bernardis, Estefanía Dalmasso and Gladis Pradolini

and thus, from the fact that r(x) ≤ p(x)
ˆ

B2

Mηf(x)
r(x)w(x) dx ≤

ˆ

B2

Mηf(x)
p(x)w(x) dx

.

ˆ

B2

S(x)p
−

w(x) dx+

ˆ

B2

M(f(·)
p(·)
λ )(x)λw(x) dx

≤ 2w(B2) +

ˆ

B2

[
M
(
f(·)χ{|f |>1}

) p(·)
λ

]λ
(x)w(x) dx

. w(B) +

ˆ

Rn

[
M
(
f(·)χ{|f |>1}

)p(·)
λ

]λ
(x)w(x) dx.

Since λ > 1, it is well known (see, for example, [20]) that
ˆ

Rn

[
M
(
f(·)χ{|f |>1}

)p(·)
λ

]λ
(x)w(x) dx .

ˆ

{x∈Rn : |f(x)|>1}

|f(x)|p(x)Mw(x) dx.

Thus,
ˆ

B2

Mηf(x)
r(x)w(x) dx . w(B) +

ˆ

Rn

η(|f(x)|p(x)) log(e+ |f(x)|)q(x)Mw(x) dx

since q(x) ≥ 0. �

5.7. Remark. If η ∈ Bq for every q > 1, we can improve the estimate in (5.6)
by using Theorem 2.9 in order to get
ˆ

B3

Mηf(x)
r(x)w(x) dx . w(B)+

ˆ

Rn

|f(x)|p(x) [η′(|f(x)|) log(e + |f(x)|)]
q(x)

Mw(x) dx.

Proof of Theorem 2.15. Let us first notice that, from Theorem 4.9 and the
hypotesis over f , the following inequality holds

Mα,ηf(x)
n

n−α . Mψ

(
|f(·)|p(·)/s(·)

)
(x).

Then, we can apply Theorem 2.8 for ψ instead of η and s(·) instead of p(·) to obtain
ˆ

B

Mα,ηf(x)
n

n−αw(x) dx .

ˆ

B

Mψ(|f(·)|
p(·)/s(·))(x)w(x) dx

. w(B) +

ˆ

Rn

ψ
(
|f(x)|p(x)

)
log(e + |f(x)|)r(x)Mw(x) dx,

where r(x) = max{ǫ−1(ǫ+ 1− s(x)), 0}. �
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