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Abstract. It is shown that for any positive, non-decreasing, continuous and unbounded dou-

bling function ω on [0, 1), there exist two analytic infinite products f0 and f1 such that the asymp-

totic relation |f0(z)| + |f1(z)| ≍ ω(|z|) is satisfied for all z in the unit disc. It is also shown that

both functions fj for j = 0, 1 satisfy T (r, fj) ≍ logω(r), as r → 1−, and hence give examples of

analytic functions for which the Nevanlinna characteristic admits the regular slow growth induced

by ω.

1. Introduction and results

Let H(D) denote the algebra of all analytic functions in the unit disc D of the
complex plane C. To consider the growth and the zero distribution of functions in
H(D), we use the following classical notation. The non-integrated counting function

n(r, f, 0) counts the zeros of f in {z ∈ C : |z| ≤ r} according to multiplicities.
Quantities M∞(r, f), Mp(r, f), where 0 < p < ∞, N(r, f, a), where a ∈ C, and
T (r, f) denote the maximum modulus of f , the Lp-mean of f , the integrated counting

function of a-points of f and the Nevanlinna characteristic of f , respectively. We
also employ the notation a ≍ b, which is equivalent to the conditions a . b and
b . a, where the former means that there exists a constant C > 0 such that a ≤ Cb,
and the latter is defined analogously.

Let ω : [0, 1) → (0,∞) be non-decreasing, continuous and unbounded. Such a
function ω is said to be doubling, if there exists a constant B > 1 such that

(1) ω(1− r/2) ≤ B ω(1− r), 0 < r ≤ 1.

The following result shows that for any doubling function ω there exist two jointly
maximal products in the sense that the sum of their moduli behaves asymptotically
as ω(|z|) in D.
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Theorem 1. Let ω : [0, 1) → (0,∞) be doubling. Then, there exist f0, f1 ∈
H(D) such that

(2) |f0(z)|+ |f1(z)| ≍ ω(|z|), z ∈ D,

where both functions fj for j = 0, 1 satisfy n(r, fj , 0) = O ((1− r)−1), as r → 1−.

Moreover,

(3) Mp(r, fj) ≍ ω(r), r → 1−,

for all 0 < p ≤ ∞, and

(4) T (r, fj) ≍ N(r, fj , a) ≍ log ω(r), r → 1−,

for all a ∈ C.

The main advantage of our self-contained and constructive proof of Theorem 1
compared to the existing literature is that the zero distribution of the products
f0 and f1 is explicit. These products are similar to those applied to study the zero
distribution of functions in weighted Bergman spaces [7, Section 3]. Note also that our
argument gives an alternative way to prove [7, Theorem 3.15], whose original proof
is based on certain lacunary series. In fact, Theorem 1 generalizes [7, Theorem 3.15]
to doubling functions.

The existence of f0, f1 ∈ H(D) such that the asymptotic relation (2) is satisfied
for a given doubling function ω was recently proved in [1, Lemma 1]. To see that this
result is equivalent to [6, Theorem 1.1], that was published essentially at the same
time as [1], we may argue as follows. If ω is doubling, then ψ(x) = ω(1−1/x) is almost
subnormal; see [6] for the definitions. Conversely, if ψ is almost subnormal, then by
means of [6, Lemma 2.1] there exists a function φ ≍ ψ such that ω(r) = φ(1/(1−r)) is
doubling. Proofs of [1, Lemma 1] and [6, Theorem 1.1] rest upon the use of lacunary
series, which have been the key tool to solve similar problems in the existing literature.
The pioneering result [8, Proposition 5.4], which concerns (2) for ω(r) = 1/(1 − r),
have been a source of inspiration for several authors. For example, [4, Theorem 1.2]
proves (2) for ω(r) = − log(1 − r). It is well known that (2) has many applications
in the operator theory; for details, we refer to [1, 6].

Construction of a product whose Nevanlinna characteristic admits a pregiven
asymptotic growth has been studied by several authors. In particular, it is known
that whenever Λ(r) exceeds the growth of − log(1 − r) as r → 1−, then there ex-
ists a product f whose Nevanlinna characteristic behaves asymptotically as Λ(r) [9,
Theorem 1]. The asymptotic formula (4) shows that we can find an infinite analytic
product in D such that its Nevanlinna characteristic grows asymptotically as the log-
arithm of a pregiven doubling ω, and hence we can prescribe characteristics growing
slower than − log(1 − r) as r → 1−. The method and the construction in the proof
of Theorem 1 are different from those employed in [9].

The current state of the development concerning complex linear differential equa-
tion f ′′ +A(z)f = 0 in D allows us to deduce a significant amount of information on
solutions f , whenever we can analyze the coefficient A in detail. If we take A to be
one of the functions f0 and f1 in the Theorem 1, then we get an important and in-
triguing family of examples of such differential equations. These particular equations
are way too complicated to be solved explicitly, but the growth and the oscillation of
their solutions are well understood due to the asymptotic properties satisfied by the
coefficient A. To be brief with regards to this matter, we settle to mention two cases
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in the recent literature of which the first one concerns polynomial regular functions.
This class of regularly growing analytic functions in D arises naturally in the theory
of ODEs [3]. In the sense of linear differential equations, polynomial regular functions
play a similar role in the unit disc as polynomials do in the complex plane. For a
more general example, see [2].

2. Proof of Theorem 1

The proof of Theorem 1 is divided in several steps. The point of departure
is the construction of the infinite products f0, f1 ∈ H(D), which is followed by a
discussion of their growth. Finally, we consider the asserted asymptotic properties
of the products f0 and f1.

2.1. Construction of the products. Before going into the details of the
construction, we note the following lemmas on doubling functions.

Lemma 2. Let ω : [0, 1) → (0,∞) be doubling. If B > 1 is the constant in (1),
then

(5) ω(t) ≤ C

(

1− r

1− t

)α

ω(r), 0 ≤ r ≤ t < 1,

where C = max
{

B ω(1/2)/ω(0), B2
}

and α = log2B.

Conversely, it is obvious that, if ω : [0, 1) → (0,∞) is non-decreasing, continuous,
unbounded and it satisfies (5) for some C > 1 and α > 0, then ω must be doubling.

Proof of Lemma 2. Since ω is doubling, (1) implies ω(t) ≤ B ω(2t − 1) for
all t ∈ [2−1, 1). Moreover, if 0 ≤ r ≤ t < 1, then there exist unique constants
j, k ∈ N∪{0}, j ≥ k, such that t ∈

[

1− 2−j, 1− 2−j−1
)

and r ∈
[

1− 2−k, 1− 2−k−1
)

.
If k = 0, then

ω(t) ≤ Bjω
(

2j(t− 1) + 1
)

≤
Bjω(1/2)

ω(0)
ω(r) ≤

B ω(1/2)

ω(0)

(

1− r

1− t

)log2 B

ω(r),

while if k > 0, then

ω(t) ≤ Bj−k+1ω
(

2j−k+1(t− 1) + 1
)

≤ Bj−k+1ω(r) ≤ B2

(

1− r

1− t

)log2 B

ω(r).

The assertion follows. �

The second lemma introduces a sequence of natural numbers depending on the
growth of the doubling function ω. This sequence is the foundation of our construc-
tion.

Lemma 3. Let ω : [0, 1) → (0,∞) be doubling. Then, there exist a sequence

{nk}
∞
k=1 of natural numbers, real constants λ and µ, and a constant d ∈ (0, 1) such

that the sequence {ak}
∞
k=1, defined by

ak =
ω
(

1− 1/nk+2

)

ω
(

1− 1/nk

) , k ∈ N,

satisfies

(6) 1 < λ ≤ ak ≤ µ <∞,
log ak+1

log ak
< d

nk+1

nk
, k ∈ N.
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Proof. Let α > 0 and C > 1 be the constants ensured by Lemma 2. Now, let γ
be a sufficiently large real constant such that

(7) 2γ−αC−1 > 1,
2γ + α + log2C

2γ − α− log2C
<

1

21/α

(

2γ/α

C1/α
− 1

)

.

Take t1 = 1/2, and define the sequence {tk}
∞
k=1 inductively by ω(tk+1)/ω(tk) = 2γ for

k ∈ N. Let nk = floor
(

(1− tk)
−1
)

, where floor(x) = max {n ∈ N : n ≤ x}. By means
of Lemma 2, and the estimates 2−1 ≤ nk(1− tk) ≤ 1, we may define 1 < λ < µ <∞
by

ak ≤
C ω(tk+2)

(

nk(1− tk)
)α
ω(tk)

≤ 2αC
ω(tk+2)

ω(tk+1)

ω(tk+1)

ω(tk)
= 22γ+αC = µ,

and

ak ≥

(

nk+2(1− tk+2)
)α
ω(tk+2)

C ω(tk)
≥

1

2αC

ω(tk+2)

ω(tk+1)

ω(tk+1)

ω(tk)
= 22γ−αC−1 = λ,

since these inequalities hold for all k ∈ N. By Lemma 2 we conclude

nk+1

nk
>

(

1

1− tk+1
− 1

)

(1− tk) >
1− tk
1− tk+1

− 1

≥
1

C1/α

(

ω(tk+1)

ω(tk)

)1/α

− 1 =
2γ/α

C1/α
− 1, k ∈ N,

(8)

and further by (7), we have

log ak+1

log ak
≤

log µ

log λ
=

2γ + α + log2C

2γ − α− log2C
<

1

21/α

(

2γ/α

C1/α
− 1

)

<
1

21/α
nk+1

nk

.

This confirms the last inequality in (6) for d = 2−1/α. �

Let {nk}
∞
k=1 be the sequence ensured by Lemma 3, and define

fj(z) =

∞
∏

k=1

1 + a2k+jz
n2k+j

1 + a−1
2k+jz

n2k+j
, z ∈ D, j = 0, 1.

Evidently both functions fj belong to H(D), since all factors are bounded functions
in D, and according to (6) the sum

∞
∑

k=1

∣

∣

∣

∣

∣

1 + a2k+jz
n2k+j

1 + a−1
2k+jz

n2k+j
− 1

∣

∣

∣

∣

∣

≤

∞
∑

k=1

a2k+j − a−1
2k+j

1− a−1
2k+j

|z|n2k+j ≤ (1 + µ)

∞
∑

k=1

|z|n2k+j

converges uniformly on compact subsets of D.

2.2. Growth estimates for the maximum modulus of the products. To
estimate the growth of fj for j = 0, 1 we define r2m+j = e−1/n2m+j for m ∈ N, and
write

(9) |fj(z)| =

∣

∣

∣

∣

∣

m
∏

k=1

a2k+j

a−1
2k+j + zn2k+j

1 + a−1
2k+jz

n2k+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∏

k=1

1 + a2(m+k)+jz
n2(m+k)+j

1 + a−1
2(m+k)+jz

n2(m+k)+j

∣

∣

∣

∣

∣

.

First, we prove that the infinite subproduct in (9) is bounded in D. To this end, let
τ = 2γ/αC−1/α − 1 be the lower bound in (8). According to (7) we know that τ > 1,
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and

(10)
n2(m+k)+j

n2m+j

=
n2(m+k)+j

n2(m+k)+j−1

· · ·
n2m+j+1

n2m+j

≥ τ 2k, k,m ∈ N.

Since h1(x) = (y + x)/(1 + yx) is increasing on [0, 1) for each y ∈ [0, 1), we obtain
∣

∣

∣

∣

∣

1 + a2(m+k)+jz
n2(m+k)+j

1 + a−1
2(m+k)+jz

n2(m+k)+j

∣

∣

∣

∣

∣

= a2(m+k)+j

∣

∣

∣

∣

∣

a−1
2(m+k)+j + zn2(m+k)+j

1 + a−1
2(m+k)+jz

n2(m+k)+j

∣

∣

∣

∣

∣

≤ a2(m+k)+j

a−1
2(m+k)+j + |z|n2(m+k)+j

1 + a−1
2(m+k)+j |z|

n2(m+k)+j

<
1 + a2(m+k)+j

(

1
e

)

n2(m+k)+j

n2m+j

1 + a−1
2(m+k)+j

(

1
e

)

n2(m+k)+j

n2m+j

(11)

for |z| < r2m+j and k,m ∈ N. Moreover, since h2(x, y) = (1 + xy)/(1 + x−1y) is
increasing in both variables, provided that x > 1 and 0 ≤ y < 1, estimates (6), (10)
and (11) imply

(12)

∣

∣

∣

∣

∣

∞
∏

k=1

1 + a2(m+k)+jz
n2(m+k)+j

1 + a−1
2(m+k)+jz

n2(m+k)+j

∣

∣

∣

∣

∣

<

∞
∏

k=1

1 + µ
(

1
e

)τ2k

1 + µ−1
(

1
e

)τ2k
≤ C⋆ <∞,

for |z| < r2m+j and m ∈ N, where C⋆ > 0 is a constant independent of m ∈ N.
Second, we proceed to derive an upper estimate for the maximum modulus of fj. By
means of (6), (9), (12) and the inequality 1− x ≤ e−x for x ≥ 0, we get

|fj(z)| < C⋆
m
∏

k=1

a2k+j = C⋆ ω
(

1− 1/n2(m+1)+j

)

ω
(

1− 1/n2+j

) ≤ C⋆µ
ω
(

1− 1/n2m+j

)

ω
(

1− 1/n2+j

)

≤ C⋆µ
ω(r2m+j)

ω
(

1− 1/n2+j

) , |z| < r2m+j , m ∈ N.(13)

If |z| ≥ r2+j , then r2(m−1)+j ≤ |z| < r2m+j for some m ∈ N \ {1}. Note that by (10)
there exists t ∈ N such that n2(m+t)+j > 2n2m+j for all m ∈ N. Since e−x ≤ 1− x/2
for 0 ≤ x ≤ 1, we conclude

r2m+j ≤ 1− (2n2m+j)
−1 < 1− 1/n2(m+t)+j , m ∈ N.

Then (6), (13) and the inequality 1− x ≤ e−x for 0 ≤ x ≤ 1, give

|fj(z)| < C⋆µ
ω
(

1− 1/n2(m+t)+j

)

ω
(

1− 1/n2+j

) ≤ C⋆µ2+t ω
(

1− 1/n2(m−1)+j

)

ω
(

1− 1/n2+j

)

≤ C⋆µ2+t ω
(

r2(m−1)+j

)

ω
(

1− 1/n2+j

) ≤ C⋆µ2+t ω
(

|z|
)

ω
(

1− 1/n2+j

) .

Consequently, the maximum modulus of fj satisfies

(14) M∞(r, fj) = max
|z|=r

∣

∣fj(z)
∣

∣ . ω(r), 0 ≤ r < 1.

2.3. Growth estimates for the minimum modulus of the products. The
following discussion shows that the difference between the maximum modulus and
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the minimum modulus of fj for j = 0, 1 is small in a large subset of the unit disc.
Define Ej =

⋃∞
m=1 I2m+j , where I2m+j is the closed interval whose endpoints are

min I2m+j =

(

a
−n−1

2m+j

2m+j

)1−δ (

a
−n−1

2(m+1)+j

2(m+1)+j

)δ

, m ∈ N,

and

max I2m+j =

(

a
−n−1

2m+j

2m+j

)δ
n2m+j

n2m+1+j

(

a
−n−1

2(m+1)+j

2(m+1)+j

)1−δ
n2m+j

n2m+1+j

, m ∈ N.

Here 0 < δ < 1 is a sufficiently small constant, which is to be determined later.

According to (6) all elements in the sequence
{

a
−1/nm
m

}∞

m=1
belong to the interval

(0, 1), this sequence is strictly increasing, and it converges to 1, asm→ ∞. Moreover,

I2m+j ⊂
(

a
−1/n2m+j

2m+j , a
−1/n2(m+1)+j

2(m+1)+j

)

for all m ∈ N. First, we prove that the infinite

subproduct in (9) is uniformly bounded away from zero for |z| ∈ Ej . If |z| ∈ I2m+j ,
then |z|n2(m+k)+j < a−1

2(m+k)+j for all k ∈ N, and therefore
∣

∣

∣

∣

∣

1 + a2(m+k)+jz
n2(m+k)+j

1 + a−1
2(m+k)+jz

n2(m+k)+j

∣

∣

∣

∣

∣

≥ a2(m+k)+j

a−1
2(m+k)+j − |z|n2(m+k)+j

1− a−1
2(m+k)+j |z|

n2(m+k)+j

=
1− a2(m+k)+j |z|

n2(m+k)+j

1− a−1
2(m+k)+j |z|

n2(m+k)+j

(15)

for |z| ∈ I2m+j and k, m ∈ N. Since h3(x, y) = (1 − xy)/(1− x−1y) is decreasing in
both variables, when x > 1 and 0 ≤ y < 1, estimates (6), (10) and (15) imply that
there exists a constant C∗ > 0, independent of m ∈ N, such that

∣

∣

∣

∣

∣

∞
∏

k=1

1 + a2(m+k)+jz
n2(m+k)+j

1 + a−1
2(m+k)+jz

n2(m+k)+j

∣

∣

∣

∣

∣

≥

∞
∏

k=1

1− a2(m+k)+j

(

a−δ
2m+j a

−
n2m+1+j
n2(m+1)+j

(

1−δ
n2m+j

n2m+1+j

)

2(m+1)+j

)

n2(m+k)+j

n2m+1+j

1− a−1
2(m+k)+j

(

a−δ
2m+j a

−
n2m+1+j
n2(m+1)+j

(

1−δ
n2m+j

n2m+1+j

)

2(m+1)+j

)

n2(m+k)+j

n2m+1+j

(16)

≥
∞
∏

k=1

1− µ
(

λ−δ
)τ2k−1

1− µ−1
(

λ−δ
)τ2k−1 ≥ C∗, |z| ∈ I2m+j , m ∈ N.

Second, we proceed to estimate the minimum modulus of fj on Ej . Note that the
last inequality in (6) implies

a2k+j |z|
n2k+j ≥ a2k+j

(

a
− 1

n2m+j
(1−δ)

2m+j a
− 1

n2(m+1)+j
δ

2(m+1)+j

)n2k+j

=
a2k+j

a

n2k+j
n2m+j

(1−δ)

2m+j a

n2k+j
n2(m+1)+j

δ

2(m+1)+j

≥
a2k+j

a
d2(m−k)(1−δ)
2k+j ad

2(m+1−k)δ
2k+j

≥
a2k+j

a1−δ
2k+j a

dδ
2k+j

= a
δ(1−d)
2k+j ≥ λδ(1−d) > 1

(17)



Jointly maximal products in weighted growth spaces 115

for |z| ∈ I2m+j when 1 ≤ k ≤ m, and m ∈ N; in particular, |z|n2k+j > a−1
2k+j .

Moreover, choose t ∈ N sufficiently large such that 1 − λ−1 ≥ τ−2t. Since h4(x) =
1− (1− a)x−1 − a1/x ≥ 0 for all x ∈ [1,∞), provided that a ∈ (0, 1), by applying (6)
and (10), we obtain

|z| ≤ a
−1/n2(m+1)+j

2(m+1)+j ≤ λ−1/n2(m+1)+j ≤ 1−
(

1− λ−1
)

n−1
2(m+1)+j

≤ 1− τ−2t n−1
2(m+1)+j ≤ 1− 1/n2(m+1+t)+j , |z| ∈ I2m+j , m ∈ N.

(18)

Therefore (9), (16) and (18) yield

|fj(z)| ≥ C∗
m
∏

k=1

a2k+j

∣

∣

∣

∣

∣

a−1
2k+j + zn2k+j

1 + a−1
2k+j z

n2k+j

∣

∣

∣

∣

∣

= C∗ω
(

1− 1/n2(m+1)+j

)

ω
(

1− 1/n2+j

)

m
∏

k=1

∣

∣

∣

∣

∣

a−1
2k+j + zn2k+j

1 + a−1
2k+j z

n2k+j

∣

∣

∣

∣

∣

≥ C∗ω
(

1− 1/n2(m+1+t)+j

)

µt ω
(

1− 1/n2+j

)

m
∏

k=1

|z|n2k+j − a−1
2k+j

1− a−1
2k+j |z|

n2k+j

≥ C∗ ω(|z|)

µt ω
(

1− 1/n2+j

)

m
∏

k=1

|z|n2k+j − a−1
2k+j

1− a−1
2k+j |z|

n2k+j

(19)

for |z| ∈ I2m+j and m ∈ N. For our purposes, it suffices to show that the product in
the last line of (19) is uniformly bounded away from zero for |z| ∈ Ej . To simplify
computations, we prove that the reciprocal of this product is uniformly bounded for
such values of z. Now, since log x ≤ x− 1 for x ≥ 1, we have

m
∏

k=1

1− a−1
2k+j|z|

n2k+j

|z|n2k+j − a−1
2k+j

= exp

(

m
∑

k=1

log
1− a−1

2k+j|z|
n2k+j

|z|n2k+j − a−1
2k+j

)

≤ exp

(

(1 + µ)
m
∑

k=1

1− |z|n2k+j

a2k+j |z|n2k+j − 1

)

for |z| ∈ I2m+j and m ∈ N. By means of (10), (17), and the estimate 1 − e−x ≤ x
for x ≥ 0, we conclude

m
∏

k=1

1− a−1
2k+j|z|

n2k+j

|z|n2k+j − a−1
2k+j

≤ exp

(

1 + µ

λδ(1−d) − 1

m
∑

k=1

(1− |z|n2k+j )

)

≤ exp

(

1 + µ

λδ(1−d) − 1

m
∑

k=1

(

1− a
−n2k+j/n2m+j

2m+j

)

)

≤ exp

(

1 + µ

λδ(1−d) − 1
log µ

m
∑

k=1

n2k+j

n2m+j

)

≤ exp

(

1 + µ

λδ(1−d) − 1
log µ

∞
∑

k=0

1

τk

)
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for |z| ∈ I2m+j and m ∈ N, which gives the desired uniform lower bound for the
product in the last line of (19). Hence, by (14) and (19), we get

(20) |fj(z)| ≍ ω(|z|), |z| ∈ Ej =
∞
⋃

m=1

I2m+j .

2.4. The covering property of the sets where the products are maximal.
It remains to prove that the sets E0 and E1 induce a covering of [min I2, 1). Note that
the closed intervals {I2m}

∞
m=1 are pairwise disjoint, which is also true for {I2m+1}

∞
m=1.

Consequently, it is sufficient to show that

(21) min I2m+1 ≤ max I2m, min I2(m+1) ≤ max I2m+1, m ∈ N.

We proceed to prove the first inequality in (21). By the definition of I2m+j , the first
inequality in (21) is equivalent to

(22) a
− 1−δ

n2m+1

2m+1 a
− δ

n2m+3

2m+3 ≤ a
− δ

n2m+1

2m a
− 1

n2m+2

(

1−δ
n2m

n2m+1

)

2m+2 , m ∈ N.

By taking the logarithm to the base a2m on the both sides of (22), and then solving
the resulting inequality with respect to δ, we conclude that the first inequality in
(22) is valid if and only if δ ≤ T (m) for all m ∈ N, where

T (m) =
loga2m a

− 1
n2m+2

2m+2 − loga2m a
− 1

n2m+1

2m+1

1
n2m+1

− loga2m a
− 1

n2m+1

2m+1 + loga2m a
− 1

n2m+3

2m+3 + loga2m a
−

n2m
n2m+1n2m+2

2m+2

.

Note that the denominator of T (m) can be written in the form

loga2m a
− 1

n2m+3

2m+3 − loga2m a
− 1

n2m+1

2m+1

+
n2m

n2m+1

(

loga2m a
− 1

n2m+2

2m+2 − loga2m a
− 1

n2m
2m

)

> 0, m ∈ N,

and hence T (m) is strictly positive for all m ∈ N. By means of (6) we get

T (m) ≥
(d− 1) loga2m a

− 1
n2m+1

2m+1

1
n2m+1

− loga2m a
− 1

n2m+1

2m+1

=
(1− d) loga2m a2m+1

1 + loga2m a2m+1
, m ∈ N.

This implies that, if

(23) 0 < δ ≤
(1− d) logµ λ

1 + logλ µ
,

then the first inequality in (21) is satisfied for all m ∈ N. The second inequality in
(22) follows by a similar argument, and the choice (23) for δ is again adequate. We
conclude that

(24) |f0(z)|+ |f1(z)| ≍ ω(|z|)

for |z| ≥ min I2. Finally, since
{

a
−1/nm
m

}∞

m=1
is strictly increasing, (24) holds also for

|z| ≤ min I2, and hence f0 and f1 are analytic functions satisfying (2).
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2.5. Asymptotic properties of the products. Product fj for j = 0, 1
has exactly n2m+j simple zeros on the each circle

{

z : |z| = s2m+j

}

, where s2m+j =

a
−1/n2m+j

2m+j for m ∈ N. Therefore, we obtain

n2m+j ≤ n(s2m+j , fj, 0) =
m
∑

k=1

n2k+j = n2m+j

m
∑

k=1

1
n2m+j

n2k+j

≤ n2m+j

∞
∑

k=0

1

τk
. n2m+j , m ∈ N,

by (10). By applying the estimates 1 − x < log x−1 < 2(1 − x), which are valid
for 4−1 < x < 1, it follows that n(s2m+j , fj, 0) ≍ (1 − s2m+j)

−1 for all m ∈ N.
Consequently,

n(r, fj , 0) = O
(

(1− r)−1
)

, r → 1−.

Now we observe that E0 ∪ E1 = [min I2, 1), so it is not possible that d(E0) =
d(E1) = 0, where

d(F ) = lim inf
r→1−

m
(

F ∩ [r, 1)
)

1− r

is the lower density of the set F ⊂ [0, 1), and where m denotes the Lebesgue measure.
Consequently, for some j = 0, 1 we have d(Ej) > 0, which together with the nature
of the sets Ej , implies that d(Ej) > 0 for both j = 0, 1. Consequently, (20) holds
outside a set E⋆

j = [0, 1) \ Ej, which satisfies

d(E⋆
j ) = lim sup

r→1−

m
(

E⋆
j ∩ [r, 1)

)

1− r
< 1, j = 0, 1.

So, (20), [5, Lemma 2] and Lemma 2 yield Mp(r, fj) ≍ ω(r), as r → 1−, where the
constants in the asymptotic relation are independent of 0 < p ≤ ∞. This proves (3).
On the other hand, for any a ∈ C, Jensen’s formula and (20) imply that N(r, fj , a) ≍
log ω(r) for r ∈ [0, 1) \ E⋆

0 . The fact that the same estimate holds also without the
exceptional set E⋆

0 follows again from [5, Lemma 2] and Lemma 2. Furthermore,
log ω(r) ≍ N(r, fj , 0) . T (r, fj) ≤ logM∞(r, fj) ≍ log ω(r), as r → 1−, again by
Jensen’s formula. This completes the proof of Theorem 1.
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