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Abstract. We investigate the continuity of discrete maximal operators in Sobolev space
W 1,p(Rn). A counterexample is given as well as it is shown that the continuity follows under
certain sufficient assumptions. Especially, our research verifies that for the continuity in Sobolev
spaces the role of the partition of the unity used in the construction of the maximal operator is very
delicate.

1. Introduction

In the case of the classical Hardy–Littlewood maximal operator M it is well
known, by [5], [7] and [4], that it is bounded in the first order Sobolev spaces, when
p > 1. Observe that in general bounded nonlinear operators do not need to be
continuous, as is the case for some natural maximal operators, see e.g. [10]. By the
main result of [9], the classical Hardy-Littlewood maximal operatorM is continuous
in W 1,p(Rn), when p > 1. In the case of metric measure spaces, as an example in [2]
shows, there is an unexpected obstruction concerning the regularity of M. Indeed,
it might even happen that Mf of a Lipschitz continuous function f may fail to
be continuous. For this reason, in the metric setting a so-called discrete maximal
function is often considered.

The discrete maximal function, as in [1], [6] and [8], of a Sobolev function f is
constructed in a metric measure space X = (X, d, µ) in terms of a covering and a
partition of unity. First fix a scale r > 0 and choose a family of balls {B(xj, r)} that
cover the space so that the dilated balls B(xj, 6r) are of bounded overlap, i.e.

∞∑
j=1

χB(xj ,6r) ≤ N <∞,

where the constant N is independent of r. Then a partition of unity subordinate
to the cover {B(xj, r)} of X is constructed by choosing functions ψrj , j = 1, 2, . . .,
on X such that 0 ≤ ψrj ≤ 1, ψrj = 0 on X \ B(xj, 6r) and ψrj ≥ C on B(xj, 3r).
Functions ψrj are also assumed to be Lipschitz continuous with constant C/r, where
C is independent of r, and

∑∞
j=1 ψ

r
j = 1 on X. We define the approximation of f at
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the scale of 3r by setting

(1.1) Tr f (x) =
∞∑
j=1

ψrj (x) fB(xj ,3r)

for every x. Here fB(xj ,3r) denotes the integral average of f in B(xj, 3r) with respect to
µ. The function Tr f is also called a discrete convolution of f . For some applications
of the partition of unity and the discrete convolution to the analysis in metric measure
spaces, we refer to [3] and [11]. See also pages 290–292 of [12]. The discrete maximal
function (corresponding to the above given partition of unity) is then defined by

(1.2) M∗f (x) = sup
r∈Q+

Tr |f | (x) ,

where Q+ denotes the positive rationals.
Observe that for each scale there are many possible choices for the covering, but

we simply take one of those. Note that the boundedness of M∗ in Sobolev spaces
does not depend on the chosen coverings and partitions of unity (see e.g. [6]). The
main point of this paper is to show that the same is not true in the case of continuity
even in the Euclidean space. For this reason, to avoid some inessential technical
difficulties, we consider throughout this work the discrete maximal function of f on
a discrete set of scales r = 2−k, defined by

(1.3) M∗f (x) = sup
k∈N

Tk |f | (x)

for all x, where Tk |f | := T2−k |f |.
We will show in Section 2 that, kind of surprisingly, it might happen that the

discrete maximal operator, as defined in (1.3), may fail to be continuous in W 1,p(R).
In the light of this example it is obvious that the same may happen for the standard
discrete maximal operator (1.2). In Section 3 we show that under assumption

(1.4) DiTk|f |(x)→ Di|f |(x) a.e. as k →∞, 1 ≤ i ≤ n,

for any f ∈ W 1,1
loc (Rn) , we get the continuity of M∗ in W 1,p(Rn)1. A similar kind

of an assumption, related to the continuity of the mapping r → DiTr|f |(x) would
yield the continuity in the standard case (1.2), as is briefly noted in Remark 3.4.
Finally, in Section 4 we give a one-dimensional example of a partition of unity for
which assumption (1.4) holds and thus the corresponding discrete maximal operator
is continuous in W 1,p(R), for p > 1. We also give an example indicating both that
the assumption (1.4) is definitely not necessary for the continuity and also that our
counterexample in Section 2 can not be remarkably simplified.

Acknowledgements. We would like to thank Juha Lehrbäck, Heli Tuominen, Juha
Kinnunen and Daniel Aalto for useful discussions and comments on the manuscript.

2. Counterexample

2.1. Partition of unity. For a fixed k ∈ N, we define intervals Ikj := [j 2−k, (j+

1) 2−k], where j ∈ Z. We also denote

Ikj =: B (xj, rk) ,

1Let Dif , 1 ≤ i ≤ n and Df denote the standard weak partial derivatives and weak gradi-
ent(respectively) of f .
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where xj = 2−k
(
j + 1

2

)
and rk = 2−k−1. Thus R is covered by a countable union of

balls B(xj, rk) such that the dilated balls B(xj, 6rk), j ∈ Z, are of bounded overlap.
Now let us define functions ψkj so that

ψkj =
1

4
in Ikj−1 ∪ Ikj ∪ Ikj+1

and
ψkj = 0 outside Ikj−2 ∪ Ikj−1 ∪ Ikj ∪ Ikj+1 ∪ Ikj+2.

Here the delicate point is how we pass from 1
4
to 0 on intervals Ikj−2 and Ikj+2. For that

purpose we define functions wk : [0, 2−k] → [0, 2k−1] in the following way. Suppose
l ∈
{

0, 1, . . . , 29k − 1
}
and define

(2.1) wk (t) =

{
2k−1, if t ∈ [l 2−10k, (l + 1) 2−10k], l is even, and
0, otherwise.

Then define

ψkj (x) =

{´ x−(j−2)2−k

0
wk (t) dt, if x ∈ Ikj−2, and

1
4
−
´ x−(j+2)2−k

0
wk (t) dt, if x ∈ Ikj+2.

So here we divide intervals Ikj−2 and Ikj+2 into 29k subintervals of the form [(j − 2) 2−k+

l 2−10k, (j − 2) 2−k+(l + 1) 2−10k] and [(j + 2) 2−k+l 2−10k, (j + 2) 2−k+(l + 1) 2−10k].
Notice that when k is large, ψkj approximates a straight line very precisely on intervals
Ikj−2 and Ikj+2, but the approximation is kind of serrated and slightly antisymmetric,
which is essential for this example to work.

Figure 1. A sketch of the above partition of unity.

The discrete convolution and the discrete maximal function are defined as in (1.1)
and (1.3) in the introduction.

2.2. Discontinuity.

Lemma 2.1. Let the partition of unity be defined as above and let f(x) = ax+b,
a < 0. Then each discrete convolution of f is strictly below f except in points that
are of the form i 2−k + l 2−10k for some i ∈ Z, k ∈ N and l ∈ N, where l is even.
Moreover,

(2.2) Tkf(x) ≥ f(x)− |a|2−10k

for every x ∈ R.

Proof. Fix k, let x ∈ R and take i ∈ Z such that x ∈ Iki . Then

Tk f (x) =
∑
j∈Z

ψkj (x) fB(xj ,3rk) =
i+2∑
j=i−2

ψkj (x) fB(xj ,3rk).
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The definition of functions ψkj and the fact that fB(xj ,3rk) = axj + b for each scale 3rk
gives

Tk f (x) =

(
1

4
−
ˆ x−i2−k

0

wk (t) dt

)
fB(xi−2,3rk) +

1

4
fB(xi−1,3rk)

+
1

4
fB(xi,3rk) +

1

4
fB(xi+1,3rk) +

( ˆ x−i2−k

0

wk (t) dt

)
fB(xi+2,3rk)

= a
xi−2 + xi−1 + xi + xi+1

4
+ b+ a

(ˆ x−i2−k

0

wk (t) dt

)
(xi+2 − xi−2)

= a i2−k + b+ a 2−k+2

ˆ x−i2−k

0

wk (t) dt.

Suppose then that

x = i2−k + l2−10k + c, where l ∈ {0, 1, . . . , 29k − 1} and c ∈ [0, 2−10k] .

Since
f(x) = ax+ b = ai2−k + b+ a(l2−10k + c),

we get from above that

(2.3) Tkf(x)− f(x) = a

(
2−k+2

ˆ x−i2−k

0

wk (t) dt − l2−10k − c

)
.

By the definition of wk(t) in (2.1), it is easy to compute that
ˆ x−i2−k

0

wk (t) dt =

{
l
2

2k−1 2−10k + c2k−1, when l is even,
l+1
2

2k−1 2−10k, when l is odd.

Substitution of this formula to (2.3) then gives us that

(2.4) Tkf(x)− f(x) =

{
ac, when l is even,
a(2−10k − c), when l is odd.

Our claim is an immediate consequence of this formula. �

Lemma 2.2. Let the partition of unity be defined as previously and let f(x) =
ax + b, a < 0. Then the derivative of Tk f is either 0 or 2a outside the set {i2−k +
l2−10k : i ∈ Z, l ∈ {0, 1, . . . , 29k − 1}}.

Proof. Let x = i2−k + l2−10k + c, where l ∈ {0, 1, . . . , 29k − 1} and c ∈ [0, 2−10k] .
In the proof of the previous lemma we computed in (2.4) that

Tkf(x) = ax+ b+

{
ac, when l is even,
a(2−10k − c), when l is odd.

When 0 < c < 2−10k, one can straightforwardly differentiate Tkf using this formula
to obtain

DTk f (x) =

{
2a if l is even,
0 if l is odd.

This implies the claim. �
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Lemma 2.3. Let the partition of unity be defined as previously, let f(x) = ax+b,
a < 0, and define f ε(x) = f(x) + ε(x2 − 10x), for ε > 0. Then

M∗f ε(x) > f ε(x) for all x ∈ R.

Proof. Let x0 ∈ R and let Lx0(x) = a′(x) + b′ denote the tangent line of f ε at
point x0. Then it holds e.g. by Taylor’s formula that

f ε(x) = Lx0(x) + ε(x− x0)2 for all x ∈ R .

Denote g(x) = (x− x0)2. Using the linearity of the discrete convolution we then get
that

(2.5) Tkf
ε(x0) = Tk(L

x0)(x0) + εTk(g)(x0) .

Furthermore, it follows from Lemma 2.1 that

(2.6) Tk(L
x0)(x0) ≥ Lx0(x0)− |(Lx0)′|2−10k = f ε(x0)− |(Lx0)′|2−10k.

On the other hand, an elementary calculation shows that

(2.7) Tk(g)(x0) ≥ c(2−k)2

for any k ∈ N and c > 0 independent of k and x0. Combining (2.5),(2.6) and (2.7)
gives that

(2.8) Tkf
ε(x0) ≥ f ε(x0) + c′ε2−2k

if k is sufficiently big. SinceM∗f ε(x0) ≥ Tk|f ε|(x0) ≥ Tkf
ε(x0), our proof is complete.

�

We will also need the following elementary fact.

Proposition 2.4. Let fk : R → R, 1 ≤ k ≤ k0, be a collection of continuous
functions, which are differentiable up to a finite set and let F (x) = max1≤k≤k0 fk(x).
Then F is continuous and a.e. differentiable such that a.e. DF (x) = Dfk(x) for some
1 ≤ k(x) ≤ k0.

The following Theorem verifies the discontinuity of the discrete maximal operator
in W 1,p(R) for the above given partition of unity.

Theorem 2.5. Let the partition of unity be defined as above, let f(x) = max{0,
10− |x|} and f ε(x) = f(x) + χ[0,10](x)ε(x2 − 10x). Then

DM∗f ε 6→ DM∗f in Lp when ε→ 0.

Proof. Denote I = [4, 5], g(x) = −x + 10 and gε(x) = g(x) + ε(x2 − 10x). Since
rk ≤ 1

2
for all k ∈ N, it follows that M∗f = M∗g and M∗f ε = M∗gε on I. Therefore

we may consider f and f ε as if they were g and gε (respectively), to obtain that
previous lemmas of this section are in our use.

First of all, Lemma 2.1 implies that M∗f = f on I, and so we have DM∗f = −1
on I. Moreover, by Lemma 2.2 we obtain that for every k ∈ N the derivative of Tkf
is equal to 0 or −2 a.e. in I.

Consider then the derivative of Tkf ε. By the linearity of the discrete convolution
and the derivative it follows that

(2.9) DTkf
ε = DTkf + εDTk(x

2 − 10x).

One can easily check that

(2.10) |DTk((x2 − 10x))| < C a.e.
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for some constant C > 0, independent of k. Since DTk(f) is equal to 0 or −2 on I,
it follows from (2.9) and (2.10) that also the derivative of DTk(f ε) is a.e. close to 0
or −2. Especially, there is ε0 > 0 s.t. for any ε < ε0 it holds that

(2.11) |DTk(f ε)− (−1)| ≥ 1

2
a.e. in I.

Moreover, by using Lemma 2.3 and the continuity of functions M∗f ε and f ε, we
know that there exists λ > 0 such that M∗f ε > f ε + λ on I. This implies that there
exists k0 = k0(ε) ∈ N such that for every x ∈ I

(2.12) M∗f ε(x) = max
1≤k≤k0

Tkf
ε(x).

Then it follows by Proposition 2.4 that for a.e. x ∈ I

(2.13) DM∗f ε(x) = DTk(x)f
ε(x).

for some 1 ≤ k(x) ≤ k0 . It is easy to see that combining this fact with (2.11)
completes the proof. �

Remark 2.6. While the above theorem verifies the discontinuity of M∗ (for the
above given partition of unity) in Sobolev spaces, it also provides an example where
Df ε → Df pointwise uniformly but still |DM∗f ε(x) − DM∗f(x)| → 1, as ε → 0,
outside a countable set E. This can be seen by carefully revising the proof of the
above theorem.

3. Positive results

In this section we establish the continuity of discrete maximal operators in
W 1,p(Rn), 1 < p < ∞, in the case where derivatives of the discrete convolutions
behave nicely in small scales. More precisely, we assume, throughout this section
that

(3.1) DiTkf(x)→ Dif(x) a.e. as k →∞

for all 1 ≤ i ≤ n and f ∈ W 1,1
loc (Rn) . We will show that this additional assumption

yields the continuity of M∗ in W 1,p(Rn) , when 1 < p < ∞ . The proof follows
essentially the same lines as in [9].

Let us begin with some notation: The Lebesque measure of A ⊂ Rn is denoted
by |A|. For A ⊂ Rn and δ > 0, let |x− A| = infy∈A |x− y| and

A(δ) = {x ∈ Rn : |x− A| ≤ δ }.

Let us first define the sets Rf(x) of ’best scales’ by

(3.2) Rf(x) = {2−k : M∗f(x) = Tk|f |(x)}.

This definition was introduced in the case of the usual Hardy–Littlewood maximal
function in [9]. Here we also make a convention T∞f = |f | and 2−∞ = 0 , thus if
M∗f(x) = |f(x)|, then 0 ∈ Rf(x). Since almost every point is a Lebesgue point, one
can easily check that Rf(x) is non-empty and closed set for a.e. x.

The following Lemma is proven in [9] for the usual Hardy–Littlewood maximal
operator and exactly the same proof applies also in the case of the discrete maximal
operator.
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Lemma 3.1. Let 1 ≤ p < ∞ and suppose fj, f ∈ Lp(Rn) s.t. ‖fj − f‖ → 0
when j →∞ . Then for all R > 0 and λ > 0 it holds that

|{x ∈ B(0, R) : Rfj(x) 6⊂ Rf(x)(λ)}| → 0 if j →∞. �

Let us then define for A,B ⊂ Rn a distance function ∆ by

∆(A,B) := inf{δ > 0: A ⊂ B(δ)}.
With this new notation Lemma 3.1 says that

|{x ∈ B(0, R) : ∆(Rfj(x),Rf(x)) > λ}| → 0 when j →∞.
That is to say ∆(Rfj(x),Rf(x))→ 0 in measure, as j →∞ . It is well known that
in this case there exists a subsequence fji so that

∆(Rfji(x),Rf(x))→ 0, for a.e. x ∈ B(0, R), as i→∞.
This will be exploited in the proof of the continuity.

The following theorem provides a formula for the derivative of the discrete max-
imal operator, corresponding to [9, Theorem 3.1]. Since the set {2−k : k ∈ Z } ∪ {0}
has only one density point, the result is more evident. However, unlike in the case of
Hardy–Littlewood maximal operator, we had to take into account the fact that the
operators Tk do not commute with translations.

Theorem 3.2. Let p > 1 and f ∈ W 1,p(Rn) . Then

(3.3) DiM
∗f(x) = DiTk|f |(x) for every 2−k ∈ Rf(x).

Proof. We may assume that f is non-negative. Let hj > 0 and hj → 0 as j →∞.
Since we know that M∗f ∈ W 1,1

loc (Rn) as well as Tkf ∈ W 1,1
loc (Rn) for every k ∈ N

(see [6, Lemma 3.3 and Theorem 3.6]), it follows for a.e. x ∈ Rn that

DiM
∗f(x) = lim

j→∞

1

hj

(
M∗f(x+ hjei)−M∗f(x)

)
= lim

j→∞

1

hj

(
M∗f(x)−M∗f(x− hjei)

)
and

DiTkf(x) = lim
j→∞

Tkf(x+ hjei)− Tkf(x)

hj

= lim
j→∞

Tkf(x)− Tkf(x− hjei)
hj

for every k ∈ N.
Let then k ∈ Rf(x), whence it holds a.e. that

M∗f(x+ hj)−M∗f(x)

hj
≥ Tkf(x+ hjei)− Tkf(x)

hj

j→∞−→ DiTkf(x).

On the other hand,
M∗f(x)−M∗f(x− hjei)

hj
≤ Tkf(x)− Tkf(x− hjei)

hj

j→∞−→ DiTkf(x).

Clearly above inequalities imply the claim. �

Theorem 3.3. If assumption (3.1) is valid, then M∗ : W 1,p(Rn) 7→ W 1,p(Rn) is
continuous for all 1 < p <∞ .
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Proof. Let fj → f in W 1,p(Rn) when j →∞. We may assume that functions fj
and f are non-negative. Because we know the continuity of M∗ in Lp(Rn), it suffices
to prove that ‖DiM

∗fj −DiM
∗f‖p → 0 for all i, 1 ≤ i ≤ n . Let us assume, on the

contrary, that this does not hold. Thus by extracting a subsequence, if needed, we
have

(3.4) ‖DiM
∗fj −DiM

∗f‖p > λ > 0 for every j ∈ N.

Let then R > 0. Again, by a possible choice of a subsequence, we may assume
that

(3.5) ∆(Rfj(x),Rf(x))→ 0, for a.e. x ∈ B(0, R), as j →∞
and (by boundedness of M∗ in Lp)

(3.6) M∗(|D(fj − f)|)(x)→ 0, for a.e. x ∈ B(0, R), as j →∞.
Then, let us choose for almost every x a pair 2−kj(x) := 2−kj ∈ Rfj(x) and

2−k
′
j(x) := 2−k

′
j ∈ Rf(x) so that they minimize the distance between the sets Rfj(x)

and Rf(x). Now (3.5) implies that |2−kj −2−k
′
j | → 0 as j →∞. Moreover, it follows

from Theorem 3.2 and the linearity of operators Tk that for almost every x ∈ B(0, R)

|DiM
∗fj(x)−DiM

∗f(x)| =
∣∣DiTkjfj(x)−DiTk′jf(x)

∣∣
≤
∣∣DiTkjfj(x)−DiTkjf(x)

∣∣+
∣∣DiTkjf(x)−DiTk′jf(x)

∣∣
=
∣∣Tkj(Difj)− Tkj(Dif)(x)

∣∣+
∣∣DiTkjf(x)−DiTk′jf(x)

∣∣
≤ C(M∗(|D(fj − f)|)(x)) +

∣∣DiTkjf(x)−DiTk′jf(x)
∣∣

=: s1j(x) + s2j(x).

Now (3.6) implies that s1j → 0 a.e. as j → ∞ . On the other hand, our assumption
(3.1) guarantees that for almost every x the function

(3.7) 2−k 7→ DiTkf(x), 0 7→ Dif(x)

is uniformly continuous on {2−k : k ∈ N} ∪ {0}. Since |2−kj − 2−k
′
j | → 0, it follows

that also s2j → 0 a.e. in B(0, R) as j → ∞ . Here R > 0 was arbitrarily chosen and
thus we have shown that DiM

∗fj converges to DiM
∗f pointwise a.e.

The final component of the proof is the following uniform pointwise estimate;
Using the fact |DM∗f | ≤ CM∗(|Df |) (see e.g. [1]), we get

|DiM
∗f(x)−DiM

∗fj(x)| ≤ |DiM
∗f(x)|+ |DiM

∗(fj)(x)|
≤ C(M∗(|Df |)(x) +M∗(|Dfj|)(x))

= C(M∗(|Df |)(x) +M∗(|Dfj| − |Df |+ |Df |)(x))

≤ 2CM∗(|Df |)(x) + CM∗(|Dfj| − |Df |) =: F (x)+Fj(x).

Here F ∈ Lp(Rn) and Fj → 0 in Lp(Rn). An elementary modification of the Lebesgue
dominated convergence Theorem combined with the pointwise a.e. convergence im-
plies the desired contradiction with (3.4). �

Remark 3.4. For the continuity of the discrete maximal operator in the case of
(1.2), where suprema is considered with respect to the everywhere dense set Q+, the
above proof would apply if it is assumed that for almost every x ∈ Rn the function

(3.8) r → DiTrf(x)
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is uniformly continuous on Q+.

4. Two examples and important comments

What can we say about the sharpness of Theorem 3.3? Do we have any example
on the partition of unity related to the coverings {Ikj } such that assumption (3.1)
holds and the corresponding M∗ is continuous? Or does there exist much easier ex-
amples of discontinuity than it was given in section 2? In this section these questions
are discussed.

4.1. Standard partition of unity in R. Consider the case, where the most
simple partition of unity related to the coverings {Ikj }, Ikj as in Section 2, is used.
Indeed, let ψkj be such that ψkj is 1

2
on Ikj and tends linearly to zero on intervals

Ikj−1 and Ikj+1 . Let us call this as the standard partition of unity on R. We show
below that this partition of unity satisfies the assumption (3.1) given in Section 3,
and therefore the corresponding discrete maximal operator is continuous inW 1,p(R),
when 1 < p <∞.

Proposition 4.1. Condition (3.1) holds for the above defined standard partition
of unity on R.

Proof. Suppose that f ∈ W 1,1
loc (R), denote the center points of intervals Ikj by xkj

and fix k ∈ N. Recall first that f is differentiable a.e. and thus it suffices to show
the claim at points x ∈ R such that

(4.1) f(y) = f(x) + (y − x)Df(x) + εx(y − x),

where εx(h)
|h| → 0 as h→ 0. Then for every k denote by Ikj′ the unique interval so that

x ∈ Ikj′ . By the definition of the discrete convolutions Tk we have

DTkf(x) =
∑
j∈Z

fB(xkj ,3rk)
Dψkj (x)

= fB(xk
j′−1

,3rk)
Dψkj′−1(x) + fB(xk

j′ ,3rk)
Dψkj′(x) + fB(xk

j′+1
,3rk)

Dψkj′+1(x)

= fB(xk
j′−1

,3rk)

(
− 1

4rk

)
+ fB(xk

j′+1
,3rk)

1

4rk

=
1

4rk

(
fB(xk

j′+1
,3rk)
− fB(xk

j′−1
,3rk)

)
.

Substituting the formula (4.1) into the above average integrals the above equation is
reduced by elementary calculations to

DTkf(x) = Df(x) +
1

4rk

(
1

6rk

( ˆ
B(xk

j′+1
,3rk)

εx(y − x) dy +

ˆ
B(xk

j′−1
,3rk)

εx(y − x) dy

))
.

Finally, it is easy to check that εx(h)
|h| → 0 implies that the error term above tends to

zero as k →∞. This completes the proof. �

At this moment we do not know any concrete partitions of unity in dimensions
n ≥ 2 for which the assumption (3.1) holds. The complete understanding of this
question seems to require its own survey, also in the 1-dimensional case. Thus, we
would like to pose the following question:
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Question 4.2. For general dimension n, characterize (in some natural way)
those partitions of unity for which (3.1) holds or, alternatively, for which

‖DTkf −Df‖p → 0 as k →∞.
4.2. Are there more simple counterexamples? There is evidently a big

’gap’ between the assumption (3.1) guaranteeing the continuity and the complexity
of the partition of unity in our counterexample in Section 2. There are examples
related to the coverings {Ikj } of Section 2 for which (3.1) is not valid and which are
simpler than there. Perhaps the simplest such example is as follows. Suppose that
the above defined standard partition of unity is modified so that ψkj remains the same
on the interval Ikj , but on the interval Ikj+1 we let ψkj (x) = 0 on the right-hand side of
Ikj+1 i.e. on [xkj+1, x

k
j+1 + rk] and let ψkj tend linearly from 1

2
to 0 on [xkj+1− rk, xkj+1] .

Moreover, on Ikj−1 we define ψkj (x) = 1
2
− ψkj (x + 4rk) . While it is easy to show

that in this case (3.1) fails, it turns out that M∗ will still be continous in W 1,p(R),
1 < p <∞. In the following we sketch a proof for this.

Theorem 4.3. If the partition of the unity is as above then (3.1) fails but M∗

is continuous in W 1,p(R).

Sketch of the proof. First we remark that Lemma 3.1 and Theorem 3.2 do not
use assumption (3.1) and so are applicable here. Assumption (3.1) comes into play
in the proof of Theorem 3.3, only because we needed the continuity condition (3.7).
In addition to the choices of subsequences in the proof of Theorem 3.3, let us also
choose a subsequence of (fj) such that for a.e. x ∈ R it holds that

(4.2) M∗(Dfj −Df)(x)→ 0 as j →∞.

Suppose that 2−kj(x) ∈ Rfj(x) and 2−k
′
j(x) ∈ Rf(x) are chosen as in the proof

of Theorem 3.3. When revising the proof, one observes that we had to assume (3.1)
only to get from the fact

|2−kj(x) − 2−k
′
j(x)| → 0 as j →∞

that

(4.3)
∣∣DiTkjf(x)−DiTk′jf(x)

∣∣→ 0 as j →∞.

It is also clear that this convergence may only fail in the case where 2−kj(x) and
2−k

′
j(x) both tend to zero as j →∞ (we have to choose a subsequence if needed). In

particular, in this possible bad setM∗f(x) = f(x) a.e. The crucial point is that now,
if |Df(x)| 6= 0, then the ’antisymmetry’ of our partition of unity guarantees that a.e.
in this set actually also M∗fj(x) = fj(x) if j is big enough. To show this, consider
first the case, where Df(x) > 0 (and f is differentiable at x). In this case, it is
easy to check that the antisymmetry of our partition of unity implies Tkf(x) > f(x)
for k large enough. Especially, M∗f(x) > f(x), which contradicts the assumption
M∗f(x) = f(x). Thus, it suffices to check the case Df(x) < 0. In this case, since
each discrete convolution weights the values on the right-hand side of x, one can use
the assumption (4.2) and straightforwardly compute that there exists j(x) such that
M∗fj(x) = fj(x) for any j ≥ j(x).

Summing up, it follows that in this possible bad set it holds a.e. that

(4.4) |DiM
∗f(x)−DiM

∗fj(x)| = |Difj(x)−Dif(x)|
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for any sufficiently big j. Since we assumed (or may assume) that Difj → Dif a.e.,
this case is not a problem anymore.

After that, we only have to check the case Df(x) = 0. However, it is again easy
to see that in this case the convergence DiTkf(x) → Dif(x) = 0 as k → ∞ is valid
(contrary to case Df(x) 6= 0) implying finally the desired convergence (4.3). �

The above proof shows that for the continuity of the discrete maximal operator,
assumption (3.1) is far from sharp, but can evidently be replaced by a suitable as-
sumption about the ’antisymmetry’ of the partition of unity. In the light of the above
example one might also see the challenges which have to be faced when trying to con-
struct a discontinous discrete maximal operator inW 1,p(Rn). Namely, avoiding (3.1)
roughly saying means that for any linear function L 6= 0 it holds that DTkL 6→ DL as
k →∞ (say, inW 1,p(Rn)). Furthermore, if this holds in a manner that is ’too strict’,
we can not avoid the same phenomenon as in the proof of the previous example and
thus it follows that in the only possible ’bad’ set,
(4.5) {x : M∗f(x) = |f(x)|, |Df(x)| 6= 0},
it typically happens that also M∗fj(x) = |fj(x)| for suitably large j if fj → f in
W 1,p(Rn).
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