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Abstract. We study the ε-level sets of the signed distance function to a planar Jordan curve Γ,
and ask what properties of Γ ensure that the ε-level sets are Jordan curves, or uniform quasicircles,
or uniform chord-arc curves for all sufficiently small ε. Sufficient conditions are given in term of
a scaled invariant parameter for measuring the local deviation of subarcs from their chords. The
chordal conditions given are sharp.

1. Introduction

Let A be a compact subset of R2. For each ε > 0, define the ε-boundary of A to
be the set

∂ε(A) = {x ∈ R2 : dist(x,A) = ε}.
Brown showed in [2] that for all but countably many ε, every component of ∂ε(A) is
a point, a simple arc, or a simple closed curve. In [3], Ferry showed, among other
results, that ∂ε(A) is a 1-manifold for almost all ε. Fu [4] generalized Ferry’s results,
and proved that for all ε outside a compact set of zero 1/2-dimensional Hausdorff
measure, ∂ε(A) is a Lipschitz 1-manifold. Papers [3] and [4] include theorems in higher
dimensional Euclidean spaces; the work for dimensions n ≥ 3 is more demanding.

Let Γ be a Jordan curve in R2 and Ω be the bounded component of R2 \ Γ. We
define the signed distance function

dist∗(x,Γ) =

{
dist(x,Γ), x ∈ Ω,

−dist(x,Γ), x ∈ R2 \ Ω;

and define for any ε ∈ (−∞,∞), the ε-level set of the signed distance function to be

γε = {x ∈ R2 : dist∗(x,Γ) = ε}.
What properties of Γ ensure that the ε-level sets are Jordan curves, or uniform

quasicircles, or uniform chord-arc curves for all ε sufficiently close to 0?
We say that a Jordan curve Γ in R2 has the level Jordan curve property (or

LJC property), if there exists ε0 > 0 such that the level set γε is a Jordan curve for
every 0 < |ε| ≤ ε0. A Jordan curve Γ is said to have the level quasicircle property
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(or LQC property), if there exist ε0 > 0 and K ≥ 1 such that the level set γε is a
K-quasicircle for every 0 < |ε| ≤ ε0. Finally, a Jordan curve Γ is said to have the
level chord-arc property (or LCA property), if there exist ε0 > 0 and C ≥ 1 such that
γε is a C-chord-arc curve for every 0 < |ε| ≤ ε0. It is not hard to see that if Γ has
the LQC property then it is a quasicircle and if Γ satisfies the LCA property then it
is a chord-arc curve; see Theorem 1.3.

Figure 1. A level set of a Jordan curve.

Given two points x, y on a Jordan curve γ, we take γ(x, y) to be the subarc of γ
connecting x and y that has a smaller diameter, or, to be either subarc when both
have the same diameter.

Modeled on the linear approximation property of Mattila and Vuorinen [12], we
define, for a Jordan curve Γ in the plane, a scaled invariant parameter to measure the
local deviation of the subarcs from their chords. For points x, y on a Jordan curve Γ
and the infinite line lx,y through x and y, we set

ζΓ(x, y) =
1

|x− y|
sup

z∈Γ(x,y)

dist(z, lx,y).

A Jordan curve Γ is said to have the (ζ, r0)-chordal property for a certain ζ > 0 and
r0 > 0, if

sup
x,y∈Γ,|x−y|≤r0

ζΓ(x, y) ≤ ζ.

We set
ζΓ = lim

r0→0
sup

x,y∈Γ,|x−y|≤r0
ζΓ(x, y).

This notion of chord-likeness provides us a gauge for studying the geometry of level
sets.

Theorem 1.1. Let Γ be a Jordan curve in R2. If Γ has the (1/2, r0)-chordal
property for some r0 > 0, then Γ has the level Jordan curve property.

Theorem 1.2. Let Γ be a Jordan curve in R2. If ζΓ < 1/2, then Γ has the
level quasicircle property. In particular, if Γ has the (ζ, r0)-chordal property for some
0 < ζ < 1/2 and r0 > 0, then there exist ε0 > 0 and K ≥ 1 depending on ζ, r0 and
the diameter of Γ so that the level sets γε are K-quasicircles for all 0 < |ε| < ε0.
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Lemmas 4.9 and 4.11 lead naturally to the (1/2, r0)-chordal condition for LJC
in Theorem 1.1; they show that the behavior of the level set near branch points in
Figure 1 is, in some sense, typical.

Condition ζΓ < 1/2 in Theorem 1.2 is used to prove the Ahlfors 2-point condition
for level Jordan curves, thereby establishing the LQC property.

The chordal conditions in both theorems are sharp. The sharpness in Theorem 1.1
is given in Remark 5.1, and the sharpness in Theorem 1.2 will be illustrated in Remark
5.2.

Moreover, using a lemma of Brown [2, Lemma 1], we are able to show the follow-
ing.

Theorem 1.3. A Jordan curve Γ in the plane satisfies the level chord-arc prop-
erty if and only if it is a chord-arc curve and has the level quasicircle property.

The paper is organized as follows. We discuss the chordal property in Section 3,
and study geometric properties of level sets in Section 4. In Section 5, we prove
Theorems 1.1 and 1.2 and give examples to show the sharpness of these theorems.
We give the proof of Theorem 1.3 in Section 6. Finally in Section 7, we provide an
additional example based on Rohde’s p-snowflakes.

2. Preliminaries

A homeomorphism f : D → D′ between two domains in R2 is called K-quasicon-
formal if it is orientation preserving, belongs to W 1,2

loc (D), and satisfies the distortion
inequality

|Df(x)|2 ≤ KJf (x) a.e. x ∈ D,
where Df is the formal differential matrix and Jf is the Jacobian. The smallest
K = K(f) for which the above inequality holds almost everywhere is called the
distortion of the mapping f .

A Jordan curve γ in R2 is called aK-quasicircle if it is the image of the unit circle
S1 under a K-quasiconformal homeomorphism of R2. A geometric characterization
due to Ahlfors [1] states that a Jordan curve γ is a K-quasicircle if and only if it
satisfies the 2-point condition:

(1) there exists C > 1 such that for all x, y ∈ γ, diam γ(x, y) ≤ C|x− y|,
where the distortion K and the 2-point constant C are quantitatively related.

A long list of remarkably diverse characterizations of quasicircles has been found.
See the monograph of Gehring [7] for informative discussion.

A homeomorphism f : D → D′ between two domains in R2 is said to be L-bi-
Lipschitz, if there exists L ≥ 1 such that for any x, y ∈ D

1

L
|x− y| ≤ |f(x)− f(y))| ≤ L|x− y|.

A rectifiable Jordan curve γ in R2 is called a C-chord-arc curve if there exists C ≥ 1
such that for any x, y ∈ γ, the length of the shorter component, γ′(x, y), of γ \ {x, y}
satisfies

`(γ′(x, y)) ≤ C|x− y|.
Here, and in the future, `(γ) denotes the length of a curve γ. Every C-chord-arc curve
is, in fact, the image of S1 under an L-bi-Lipschitz homeomorphism of R2, where the
constants C and L are quantitatively related; see[14, p. 23] and [9, Proposition 1.13].
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In the following, we denote by B(x, r) the disk {y ∈ R2 : |x − y| < r} and by
S(x, r) its boundary ∂B(x, r). In particular, B2 = B(0, 1) denotes the unit disk and
S1 = ∂B2 denotes the unit circle. For x, y ∈ R2, denote by [x, y] the line segment
having end points x and y, by (x, y) the line segment excluding the end points, and
by lx,y the infinite line containing x and y.

Finally, we write u . v (resp. u ' v) when u/v is bounded above (resp. above
and below) by positive constants.

3. Chordal property of Jordan curves

For planar Jordan curves, the connection between the chordal property and the
2-point condition is easy to establish.

Proposition 3.1. A Jordan curve Γ is a K-quasicircle if and only if Γ is (ζ, r0)-
chordal for some ζ > 0 and r0 > 0. Constants K and ζΓ are quantitatively related,
with ζΓ → 0 as K → 1.

The converse of the second statement is not true. Indeed, ζΓ = 0 for every smooth
Jordan curve Γ.

Proof. Suppose that Γ is a K-quasicircle and C is the constant in the Ahlfors
2-point condition (1) associated to K. Then Γ is (C, diam Γ)-chordal.

Next suppose that Γ is (ζ, r0)-chordal. We claim that Γ satisfies property (1).
Let x, y ∈ Γ. If |x− y| ≥ r0, then

diam Γ(x, y) ≤ diam Γ

r0

|x− y|.

So, we assume |x− y| < r0, and let [z, w] be the orthogonal projection of Γ(x, y) on
lx,y, with points z, x, y and w listed in their natural order on the line. In the case
that z 6= x, choose a point z′ ∈ Γ(x, y) whose projection on lx,y is z. Denote by l the
line through x and orthogonal to lx,y, and fix a subarc σ of Γ(x, y) which contains z′
and has endpoints, called z1, z2, on Γ(x, y) ∩ l. Clearly σ = Γ(z1, z2) and l = lz1,z2 ;
and by the (ζ, r0)-chordal property, dist(z, l) = dist(z′, l) ≤ ζ|z1 − z2| ≤ 2ζ2|x − y|.
It follows that, in all cases, |z − w| ≤ (4ζ2 + 1)|x− y|. Therefore,

diam Γ(x, y) ≤ (4ζ2 + 2ζ + 1)|x− y|.
So Γ satisfies property (1) with C = max{4ζ2 + 2ζ + 1, diam Γ

r0
} and is a K-quasicircle

for some K depending on ζ, r0 and diam Γ.
The claim that ζΓ → 0 as K → 1 follows from a lemma of Gehring [5, Lemma 7],

which states that for each η > 0, there exists K0 = K0(η) > 1 such that if g is a
K-quasiconformal mapping of R2 with K ≤ K0, and if g fixes two points z1 and z2,
then

|g(z)− z| ≤ η|z1 − z2|, when |z − z1| < |z1 − z2|.
Quasiconformality in [5] is defined using the conformal modulus of curve families,
which is quantitatively equivalent to the notion of quasiconformality given in Sec-
tion 2 (See [15, Theorem 32.3]). This line of reasoning has been used by Mattila and
Vuorinen in [12, Theorem 5.2]. �

By Proposition 3.1, the following will be a corollary to Theorem 1.2.

Corollary 3.2. There exists a constant K0 > 1 such that all K0-quasicircles
have the LQC property.
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Mattila and Vuorinen [12] introduced the linear approximation property to study
geometric properties of K-quasispheres with K close to 1. Let k ∈ {1, 2, . . . , n− 1},
0 ≤ δ < 1, and r0 > 0. A set Z in Rn satisfies a (k, δ, r0)-linear approximation
property if for each x ∈ Z and each 0 < r < r0 there exists an affine k-plane P
through x such that

dist(z, P ) ≤ δr for all z ∈ Z ∩B(x, r).

In the same year, Jones [10] introduced a parameter, now known as the Jones beta
number, to measure the oscillation of a set at all points and in all scales, for the
investigation of the “traveling salesman problem”. Later, beta number has been used
by Bishop and Jones to study problems on harmonic measures and Kleinian groups.
As it turns out, the Jones beta number and the δ-parameter of Mattila and Vuorinen
are essentially equivalent.

For planar quasicircles, the chordal property and the linear approximation prop-
erty are quantitatively related as follows.

Lemma 3.3. Let Γ be a Jordan curve in R2. If Γ has the (ζ, r0)-chordal
property for some 0 < ζ < 1/4, then it is (1, 4ζ, r1)-linearly approximable, where
r1 = min{ r0

2
, diam Γ

C
} and C = C(ζ, r0, diam Γ) > 1 is a constant. On the other hand,

if Γ is a K-quasicircle that has the (1, δ, r0)-linear approximation property, then it is
(C ′2δ, r0/C

′)-chordal, for some constant C ′ = C ′(K) > 1.

Proof. Suppose that Γ is (ζ, r0)-chordal. Then Γ is a K-quasicircle by Propo-
sition 3.1, hence satisfies the 2-point condition (1) for some C > 1; here K and
C depend on ζ, r0 and diam Γ. Let 0 < r < min{ r0

2
, diam Γ

6C
}; take x ∈ Γ, and

x′ ∈ Γ\B(x, r) such that |x−x′| ≥ diam Γ
2

. Let x1, x2 be the points in Γ∩S(x, r) with
the property that one of the subarcs Γ \ {x1, x2} contains x′ and lies entirely outside
B(x, r), and the other subarc, called τ , contains x. Since diam(Γ\ τ) ≥ |x−x′|−r ≥
diam Γ

2
− r > 2Cr ≥ C|x1 − x2|, we have diam τ ≤ C|x1 − x2| and Γ(x1, x2) = τ .

Trivially, dist(x, lx1,x2) ≤ 2ζr. Then, for y ∈ Γ(x1, x2) and the line l through x and
parallel to lx1,x2 , we have

dist(y, l) ≤ dist(y, lx1,x2) + dist(lx1,x2 , l) ≤ ζ|x1 − x2|+ 2ζr ≤ 4ζr;

and the first claim follows.
For the second claim, suppose that Γ is a K-quasicircle that has the (1, δ, r0)-

linear approximation property. So Γ satisfies the 2-point condition (1) for some
C = C(K) ≥ 1. Take x, y ∈ Γ with 0 < |x − y| < r0

4C
and r = (C + 1)|x − y|, then

Γ(x, y) ⊂ B(x, r). Since r < r0, there exists a line l containing x such that

Γ(x, y) ⊂ {z ∈ B(x, r) : dist(z, l) ≤ δr}.

In particular, dist(y, l) ≤ δr. Given z ∈ Γ(x, y), take a point z′ ∈ l ∩ B(x, r) with
|z − z′| ≤ δr; then, from elementary geometry we get

dist(z′, lx,y) ≤
dist(y, l)
|x− y|

r ≤ (C + 1)δr.

It follows that dist(z, lx,y) ≤ |z−z′|+dist(z′, lx,y) ≤ (C+2)δr = (C+2)(C+1)δ|x−y|.
Hence, ζ(x, y) < 6C2δ, and the second claim is proved. �
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4. Geometry of level sets

Let Γ be a Jordan curve in R2, Ω be the bounded component of R2 \Γ. For any
ε 6= 0, define the open set

∆ε =

{
{x ∈ R2 : dist∗(x,Γ) > ε}, ε > 0,

{x ∈ R2 : dist∗(x,Γ) < ε}, ε < 0.

In general, ∆ε need not be connected, and ∆ε and ∆ε ∪ γε may not be equal (see
Figure 1).

However, for any ε > 0, the sets Ω\∆ε, (R2\Ω)\∆−ε, andR2\(∆ε∪∆−ε) are path-
connected. Indeed, given x, y ∈ Ω \∆ε, take x′, y′ ∈ Γ such that |x− x′| = dist(x,Γ)
and |y − y′| = dist(y,Γ). Note that [x, x′] and [y, y′] are entirely in Ω \ ∆ε. So x, y
can be joined in Ω \ ∆ε by the arc [x, x′] ∪ Γ(x′, y′) ∪ [y, y′]. Path-connectedness of
the other two sets can be proved analogously.

Furthermore, given x, y ∈ Ω, let x′, y′ be points in Γ with the property that
|x− x′| = dist(x,Γ) and |y − y′| = dist(y,Γ). If x, y, x′, y′ are not collinear then the
segments [x, x′], [y, y′] do not intersect except perhaps at their endpoints. Indeed, if
there is a point z ∈ [x, x′] ∩ [y, y′] which is not x′ or y′, then |z − x′| = |z − y′|. By
the triangle inequality,

|x− y′| < |x− z|+ |z − y′| = |x− z|+ |z − x′| = dist(x,Γ),

which is a contradiction. The same claim is true when x, y ∈ R2 \ Ω. The non-
crossing property of [x, x′], [y, y′] is a special case of Monge’s observation on optimal
transportation; see [16, p. 163].

In the following, a point will be considered as a degenerate arc.
Given a closed subset Λ of Γ and a number ε 6= 0, we define

γΛ
ε = {x ∈ γε : dist(x,Λ) = |ε|}.

In general, the set γΛ
ε may be empty even when Λ is a non-trivial arc (see Figure 1).

However, γΛ
ε is an arc when γε is a Jordan curve and Λ is connected, as we see from

the following lemma.

Lemma 4.1. Let Γ be a Jordan curve in R2, and assume that for some ε 6= 0,
the level set γε is a Jordan curve. If Λ is a closed subarc of Γ and γΛ

ε is nonempty,
then γΛ

ε is a subarc of γε.

Proof. It suffices to prove that if x and y are two distinct points in γΛ
ε then, one

of the two subarcs λ1, λ2 of γε connecting x and y is entirely in γΛ
ε .

Assume first that ε > 0. We claim that if λ1 \ γΛ
ε 6= ∅ then λ2 ⊂ γΛ

ε . Take
z ∈ λ1 \ γΛ

ε , x′, y′ ∈ Λ and z′ ∈ Γ \ Λ such that

|x− x′| = |y − y′| = |z − z′| = ε,

and let Λ1 be the subarc of Λ that joins x′, y′ (Λ1 could be just a point). We know that
the open line segments (x, x′), (y, y′), (z, z′) and the Jordan curve γε do not intersect
one another. Let U1 be the quadrilateral (possibly degenerated in the case x′ = y′)
enclosed by the Jordan curve [x, x′] ∪ λ1 ∪ [y, y′] ∪ Λ1. Then the open arc λ2 \ {x, y}
must be contained in U1. For otherwise, λ2 \ {x, y} would intersect either the arc
[x, x′]∪λ1∪ [y, y′] or the segment [z, z′]; this is impossible in view of properties of the
distance function dist(·,Γ). Therefore, the quadrilateral U2 enclosed by the Jordan
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curve [x, x′] ∪ λ2 ∪ [y, y′] ∪ Λ1 is contained in U1. Suppose now that λ2 ⊂ γΛ
ε is false.

Then, by the argument above with the roles of λ1 and λ2 reversed, we get U1 ⊂ U2.
Hence U1 = U2, which is impossible. This proves the claim.

When ε < 0, we choose J1 = [x, x′]∪λ1∪[y, y′]∪Λ1 and J2 = [x, x′]∪λ2∪[y, y′]∪Λ1

as before, however define U1 and U2 to be the unbounded components of R2 \J1 and
R2 \ J2, respectively, then proceed as above. �

We show next that when two points x, y on a level Jordan curve γε have a common
closest point on Γ, γε(x, y) is a circular arc.

Lemma 4.2. Let Γ be a Jordan curve in R2, and assume that the level set γε
is a Jordan curve for some ε 6= 0. Suppose that there exist x, y ∈ γε and z ∈ Γ such
that |x − z| = |y − z| = |ε|. Then γε(x, y) is a circular arc on S(z, |ε|) of length at
most π|ε|.

Proof. By Lemma 4.1, γ{z}ε = {w ∈ γε : |w − z| = ε} is a subarc of γε ∩ S(z, |ε|).
Since {x, y} ⊂ γ

{z}
ε , γε(x, y) is one of the two subarcs of S(z, |ε|) that connects x and

y.
Suppose that `(γε(x, y)) > π|ε|. Then the domain U enclosed by the Jordan

curve γε(x, y) ∪ [x, y] contains precisely one point from Γ, namely the point z; all
other points on Γ are in the exterior of U . So, Γ intersects the segment [x, y];
consequently, dist(x,Γ) < |ε| and dist(y,Γ) < |ε|. This is a contradiction. �

The following lemma shows that components of ∆ε satisfy a weak form of one
part of linearly local connectedness introduced in [8]; see also [6, p. 67]. In particular,
∆ε has no inward cusps.

Lemma 4.3. Let Γ be a Jordan curve, ε 6= 0 and D a connected component of
∆ε. Then for any x, y ∈ D with |x − y| ≤ 2|ε|, there exists a polygonal arc τ in D
that joins x and y and has diam τ ≤ 5|x− y|.

Proof. Suppose first that ε > 0. Let x, y be two points in D with |x − y| ≤ 2ε.
So [x, y] ∩ Γ = ∅ and the segment [x, y] is contained in the bounded component Ω
of R2 \ Γ. Let τ ′ be any curve in D that connects x to y. After approximating
τ ′ by a polygonal curve, erasing the loops and making small adjustments near the
segment [x, y], we may assume that τ ′ is a simple polygonal curve which intersects
[x, y] in a finite set. In other words, τ ′ is the union of finitely many simple polygonal
subarcs σ′ in D, each of which meets [x, y] precisely at its end points. The curve τ
in the proposition will be obtained by replacing each σ′ with a polygonal arc σ in
D ∩B(x, 5

2
|x− y|) with the same end points.

Fix such a subarc σ′ having end points a, b ∈ [x, y]. Assume that σ′ \B(x, 2|x−
y|) 6= ∅; otherwise, just let σ = σ′. Let U be the domain enclosed by the Jordan
curve σ′ ∪ [a, b]. Since ∂U ∩Γ = ∅ and Ω is simply connected, U ⊂ Ω. We claim that

U \B(x, 2|x− y|) ⊂ ∆ε.

Otherwise, take a point z ∈ U \ (B(x, 2|x− y|) ∪∆ε) and assume as we may, by the
continuity of the distance function, that z ∈ γε. Let z′ be a point on Γ for which
|z− z′| = dist(z,Γ) = ε. Since U ⊂ Ω, z′ /∈ U and the open segment (z, z′) intersects
∂U at some point z′′. If z′′ is in [a, b] ⊂ [x, y] then

dist(x,Γ) ≤ |x− z′| ≤ |x− z′′|+ |z′′ − z′| = |x− z′′|+ ε− |z − z′′| < ε,
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a contradiction. If z′′ is in σ′ then ε = |z − z′| > |z′′ − z′| ≥ dist(z′′,Γ) > ε, again a
contradiction. This proves the claim.

Let U ′ be the connected component of U∩B(x, 2|x−y|) that contains the segment
[a, b] in its boundary. Since U is a polygon, U ′ is simply connected and ∂U ′ is a Jordan
curve. In particular, ∂U ′ \ (a, b) is composed of finitely many line segments in D and
finitely many subarcs of S(x, 2|x− y|). In view of the claim above, ∂U ′ \ (a, b) is an
arc contained in D. After replacing each maximal circular subarc of ∂U ′ \ (a, b) by a
polygonal arc nearby, we obtain a polygonal arc σ in D ∩ B(x, 5

2
|x− y|) connecting

a to b. The arc τ in the proposition is given by the union of these new σ’s.
Assume next that ε < 0. Given two points x, y ∈ D with |x − y| ≤ 2|ε|, we

define τ ′, σ′, a, b, U as before, and need to replace each subarc σ′ of τ ′ by a new arc
σ in D ∩ B(x, 5

2
|x − y|). Since ∂U = σ′ ∪ [a, b] ⊂ ∆ε is contained in the unbounded

component of R2 \ Γ and ∂U contains some points in ∆ε, we have either Ω ∩ U = ∅,
or Ω ⊂ U .

Suppose Ω∩U = ∅. Then U ⊂ R2\Ω. We first check that U \B(x, 2|x−y|) ⊂ ∆ε,
then choose a replacement σ for σ′ following the same steps as in the case ε > 0.

Suppose Ω ⊂ U . We set V = R2 \ U , then prove V \ B(x, 2|x − y|) ⊂ ∆ε

by replacing U with V in the argument for the case ε > 0. Define V ′ to be the
component of V ∩B(x, 2|x− y|) that contains [a, b] in its boundary, and choose σ to
be a polygonal curve close to ∂V ′ \ (a, b) in D∩B(x, 5

2
|x− y|) and having end points

a, b. �

We next prove that the boundary of any connected component of ∆ε is a Jordan
curve. We will need a theorem of Lennes in [11] which gives a sufficient condition for
the frontier, of a bounded planar domain, to be a Jordan curve. Let D be a bounded
domain and p a closed polygonal curve which encloses D in its interior. Let E ′ be
the set of all points in the plane that can be joined to p by a continuous curve in the
complement of D. The frontier F of D is the set of all common limit points of E ′

and D, that is, F = E
′ ∩D. Define moreover the interior set of the frontier F to be

I = R2 \ (E ′ ∪ F ) and the exterior set of the frontier F to be E = E ′ \ F . Observe
that all the above definitions are independent of the choice of p.

Furthermore, a point x ∈ F is said to be externally accessible if there exists a
finite or a continuous infinite polygonal path τ : [0, 1] → R2 such that τ([0, 1)) ⊂ E
and τ(1) = x. And a point x ∈ F is said to be internally accessible if there exists a
finite or a continuous infinite polygonal path τ : [0, 1] → R2 such that τ([0, 1)) ⊂ I
and τ(1) = x. Lennes proved the following.

Lemma 4.4. [11, Theorem 5.3] If every point of a frontier F possesses both the
internal and the external accessibility, then F is a Jordan curve.

We now apply the theorem of Lennes to prove the following.

Lemma 4.5. Let Γ be a Jordan curve and ε 6= 0. Then, the boundary of every
connected component of ∆ε is a Jordan curve.

Proof. We prove the claim for ε > 0 only. The proof for the case ε < 0 is
essentially the same. Recall that Ω is the bounded component of R2 \ Γ. Let D be
a connected component of ∆ε, and p be a closed polygonal curve that encloses Ω in
its interior. Every point x ∈ Ω \ D can be joined to one of its closest points on Γ
by a line segment entirely outside D, then to p by a curve in R2 \ Ω. Therefore,



Sets of constant distance from a Jordan curve 219

E ′ = R2 \ D, F = E
′ ∩ D = ∂D and I = D, and any point in ∂D is externally

accessible.
To check the internal accessibility, we take x ∈ ∂D, and a sequence {xn} in

D with distance |xn − x| < 2−nε for every n ≥ 1. By Lemma 4.3, there exist
a family of polygonal arcs {τn}n∈N in D such that τn joins xn to xn+1 and has
diam τn ≤ 5|xn − xn+1| ≤ 21−nε. Then, take τ to be the infinite polygonal path
{x} ∪

⋃
n≥1 τn. This proves that x is internally accessible, and by Lennes’ theorem,

we conclude that ∂D is a Jordan curve. �

Components of ∆ε satisfy one of the two conditions for the linearly local con-
nectedness [6], when Γ is a quasicircle.

Lemma 4.6. Suppose that Γ is a K-quasicircle. Then, there exists a constant
M > 0 depending only on K such that for any ε 6= 0, for any connected component
D of ∆ε, and for any two points x, y ∈ D, there exists a curve τ in D joining x and
y such that diam τ ≤M |x− y|.

Proof. In view of Lemma 4.3, we consider points x and y in D with distance
|x − y| > 2|ε| only. The proof follows closely that of Lemma 4.3; however, the
segment [x, y] here may intersect Γ.

Assume first that ε > 0. Since Γ is a K-quasicircle, it satisfies condition (1) for
some C = C(K) > 1. Fix a simple polygonal curve τ ′ in D joining x and y that
intersects [x, y] in a finite set. As in Lemma 4.3, we will replace each subarc σ′ of τ ′
that has end points in [x, y] and does not intersect [x, y] anywhere else, by a new arc
σ in D ∩B(x, (C + 2)|x− y|) having the same end points.

Fix such a subarc σ′ having end points a, b ∈ [x, y]. Assume that σ′ \ B(x, (C +
2)|x − y|) 6= ∅; otherwise, just set σ = σ′. The domain U enclosed by the Jordan
curve σ′ ∪ [a, b] may now contain points outside Ω. We claim nevertheless that

(2) U \B(x, (C + 2)|x− y|) ⊂ ∆ε.

Suppose U \ B(x, (C + 2)|x− y|) * ∆ε. As before, we may pick a point z ∈ (U \
B(x, (C + 2)|x− y|)) ∩ γε and a point z′ ∈ Γ such that |z − z′| = dist(z,Γ) = ε.
Suppose z′ /∈ U ; the segment [z, z′] must intersect ∂U at some point z′′. Because
|x − y| > 2|ε|, the point z′′ cannot be in [x, y], therefore z′′ ∈ σ′. Hence ε =
|z − z′| > |z′′ − z′| ≥ dist(z′′,Γ) > ε, a contradiction. So z′ must be in U , therefore
z′ ∈ (U ∩ Γ) \B(x, (C + 1)|x− y|).

Since ε > 0, Γ cannot be entirely in U , so Γ∩ ∂U 6= ∅. Since ∂U = σ′ ∪ [a, b] and
σ′ ⊂ D, Γ∩ [a, b] 6= ∅. Let z1, z2 be the points in [a, b]∩Γ with the property that the
open subarc Γ′ of Γ connecting z1 to z2 and containing the point z′, is entirely in U .
So |z1 − z2| < |a− b| ≤ |x− y| and

diam Γ′ ≥ dist(z′, [z1, z2]) ≥ |z′ − x| − |x− y| ≥ C|x− y| > C|z1 − z2|.
From the 2-point condition (1) it follows that the diameter of the subarc Γ′′ = Γ \ Γ′

is at most C|z1 − z2|. Therefore, Γ′′ ⊂ B(x, (C + 1)|x− y|), and Γ ⊂ U ∪ B(x, (C +
1)|x− y|).

Let w be one of the points on σ′ that is furthest from x. Since Γ′ \ {z1, z2}
is contained in the open set U , |x − w| > maxu∈Γ′ |x − u|; furthermore |x − w| ≥
(C + 2)|x − y| > maxu∈Γ′′ |x − u|. As a consequence, w, also σ′, is contained in the
unbounded component of R2 \ Γ. This is impossible because σ′ ⊂ D ⊂ ∆ε ⊂ Ω.
Claim (2) is proved.
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Let U ′ be the component of U ∩ B(x, (C + 2)|x − y|) whose boundary contains
[a, b]. As in Lemma 4.3, σ′ will be replaced by the subarc σ = ∂U ′ \ (a, b) ⊂ D ⊂ ∆ε.
The curve τ in the proposition is the union of these new σ’s.

Now suppose ε < 0. Given x, y ∈ D with |x − y| > 2|ε|, we define τ ′, σ′, a, b, U
as before, and need to replace each subarc σ′ of τ ′ by a new arc σ in D ∩B(x, (C +
2)|x − y|). When ε is negative, depending on the pair x, y, either possibility U \
B(x, (C + 2)|x− y|) ⊂ ∆ε or U \B(x, (C + 2)|x− y|) * ∆ε may actually occur.

Suppose U \ B(x, (C + 2)|x− y|) ⊂ ∆ε. Choose U ′ as in the case ε > 0 and
replace σ′ by σ = ∂U ′ \ (a, b).

Suppose U \B(x, (C + 2)|x− y|) * ∆ε. We follow the argument for claim (2), to
conclude that Γ ⊂ U∪B(x, (C+1)|x−y|), therefore Ω ⊂ U∪B(x, (C+1)|x−y|). Let
U ′′ be the component of B(x, (C + 2)|x− y|) \U that contains [a, b] in its boundary.
Note that σ = ∂U ′′\(a, b) is a Jordan arc composed of a finite number of line segments
belonging to σ′ and a finite number of subarcs of S(x, (C + 2)|x − y|) \ U and that
σ ⊂ B(x, (C + 2)|x− y|).

It remains to check that

S(x, (C + 2)|x− y|) \ U ⊂ ∆ε.

Take z ∈ S(x, (C + 2)|x − y|) \ U and z′ ∈ Γ so that |z − z′| = dist(z,Γ). Write
Γ = (Γ∩U)∪(Γ\U). If z′ ∈ Γ∩U , then the segment (z, z′) intersects ∂U = [a, b]∪σ′
at some point, say z′′. Since dist(z, [a, b]) > |ε|, the point z′′ is not in [a, b], hence in
σ′ ⊂ ∆ε. Therefore,

dist(z,Γ ∩ U) ≥ dist(z,Γ) = |z − z′| = |z − z′′|+ |z′′ − z′| ≥ dist(z′′,Γ) > |ε|.

Since Γ \ U ⊂ B(x, (C + 1)|x − y|, we also have dist(z,Γ \ U) ≥ |x − y| > |ε|. So
dist(z,Γ) > |ε|. This proves the claim and the lemma. �

Remark 4.7. Both Lemmas 4.3 and 4.6 can be strengthened to include the case
when x and y are in D. In such case, curves τ satisfying the diameter estimates in
the lemmas are contained in D with the exception of their endpoints.

We now state an elementary geometric fact needed in the following two lemmas.
Given 0 < δ < ε and a point a = δeiα in B(0, ε), then

S(a, ε) \B(0, ε) = {a+ εeiθ : |θ − α| ≤ π − cos−1(
δ

2ε
)},

and the circular arc is contained in the sectorial region {z ∈ R2 : | arg z − α| ≤
cos−1( δ

2ε
)}.

Given any x0 ∈ γε, ε 6= 0, set

Γ{x0} = {y ∈ Γ: |x0 − y| = |ε|}.
Lemma 4.8. Suppose ε 6= 0 and x0 is a non-isolated point in γε. Then the set

Γ{x0} lies entirely in a semi-circular subarc of S(x0, |ε|).
Proof. Suppose that ε > 0. Choose a sequence of points an on γε that converges

to x0; set δn = |an−x0| and assume as we may that 0 < δn < ε . Since dist(an,Γ) = ε,
we have dist(an,Γ{x0}) ≥ ε, for all n ≥ 1. In particular Γ{x0} is contained in the part
of S(x0, ε) that is outside B(an, ε), which is a circular arc of length (2π−2 cos−1( δn

2ε
)) ε.

The claim follows by letting n→∞. The proof for the case ε < 0 is the same. �
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Fix a non-isolated point x0 on γε, we examine the geometry of the level set γε
near x0.

Let X = Γ{x0}. Since X is compact, there exist x1, x2 ∈ X (possibly x1 = x2)
such that |x1−x2| = diamX ≤ 2|ε|; and by Lemma 4.8, X lies in a subarc Σ (possibly
degenerated) of S(x0, |ε|) having endpoints x1 and x2 and of length at most π|ε|. Let
U = B(x1, |ε|) ∪ B(x2, |ε|); clearly γε ∩ U = ∅. Set ε0 = (ε2 − |x1 − x2|2/4)1/2. For
0 < δ < ε0, the set S(0, δ) \ U is a connected arc when |x1 − x2| < 2|ε|, and it has
two components when |x1 − x2| = 2|ε|. Let Sδ be a component of S(0, δ) \ U .

Lemma 4.9. Suppose ε 6= 0 and x0 is a non-isolated point in γε. There exists
δ0 ∈ (0, ε0) such that if 0 < δ < δ0 then the set γε ∩ Sδ contains at most two points.

Specifically, if 0 < δ < δ0, a ∈ γε∩Sδ, and a′ is a point in Γ with |a−a′| = ε, then
at least one of the two components (maybe empty) S1

δ,a, S
2
δ,a of Sδ \ {a} is contained

entirely in the disk B(a′, ε); in other words, there exists j ∈ {1, 2} such that every
point in Sjδ,a has distance strictly less than ε from Γ.

Remark 4.10. For every non-isolated point x0 on γε and every δ ∈ (0, ε0), the
set γε ∩ S(x0, δ) contains at most two points when |x1 − x2| < 2|ε|, and at most four
points when |x1 − x2| = 2|ε|. See Figure 1 for some of the possibilities.

Proof. We prove the lemma for ε > 0. The case ε < 0 is essentially the same.
Assume as we may that x0 = 0, x1 = εeiτ , x2 = εei(2π−τ) with τ ∈ [π/2, π], and

that Σ ⊂ {z : Re z ≤ 0}. Consider from now on only those δ in (0, ε0). Consequently,
Sδ ⊂ {z : Re z > 0} when 0 < |x1 − x2| < 2ε and S(0, δ) ∩ {z : Re z ≥ 0} ⊂ Sδ when
x1 = x2 = −ε; assume therefore without loss of generality that Sδ ⊂ {z : Re z ≥ 0}
when |x1 − x2| = 2ε. It is straightforward to check that

(3) −
(
τ − cos−1

(
δ

2ε

))
≤ arg z ≤ τ − cos−1

(
δ

2ε

)
for all z ∈ Sδ.

Fix a number ξ ∈ (0, π
24

) depending on τ so that τ − ξ > π/2 when τ > π/2, and
ξ = π/48 when τ = π/2. Fix also a number δ0 ∈ (0, ε0), satisfying cos−1( δ0

2ε
) > 5π

12
,

and having the property that for any a ∈ γε ∩B(0, δ0) and any point a′ on Γ nearest
to a, i.e., |a− a′| = ε, we have

(4) τ − ξ ≤ arg a′ ≤ 2π − τ + ξ.

If there were no such δ0, X would contain a point outside Σ.
Suppose the assertion in the lemma is false. Then, there exist δ ∈ (0, δ0), a ∈

γε ∩ Sδ, a, a point a′ ∈ Γ with |a − a′| = ε, b1 ∈ S1
δ,a and b2 ∈ S2

δ,a such that
b1, b2 /∈ B(a′, ε). Assume as we may that

−
(
τ − cos−1

(
δ

2ε

))
≤ arg b1 < arg a < arg b2 ≤ τ − cos−1

(
δ

2ε

)
.

Let l1 (resp. l2) be the line that bisects the segment [a, b1] (resp. [a, b2]). Since
|bj − a′| ≥ ε = |a − a′| for j = 1 and 2, the point a′ lies in the closure of the
component of R2 \ {l1, l2} that contains a. In particular by (3),

−
(
τ − cos−1

(
δ

2ε

))
≤ arg b1 + arg a

2
≤ arg a′ ≤ arg b2 + arg a

2
≤ τ − cos−1

(
δ

2ε

)
,

which is impossible in view of (4) and the fact that ξ < π/24 < cos−1( δ0
2ε

). This
proves the second assertion and the lemma. �
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Lemma 4.11. Suppose that for some ε 6= 0, there exist a connected component
D of ∆ε and a connected component G of γε ∪ ∆ε such that D ( G. Then, there
exists a point x0 ∈ ∂D and points x1, x2 ∈ Γ such that x0, x1, x2 are collinear and

|x0 − x1| = |x0 − x2| = |ε|.

Furthermore, Γ{x0} = {x1, x2}.
Proof. We treat the case ε > 0 only; the case ε < 0 is similar. Let E = G \D.

Since G is connected, we have that E ∩ D 6= ∅ and E ∩ ∂D 6= ∅. Fix a point
x0 ∈ E ∩ ∂D; clearly x0 is a non-isolated point in γε. Define X = Γ{x0}, the shortest
subarc Σ of S(x0, ε) containing X, its end points x1, x2, the open set U , and the
number δ0 > 0, relative to the point x0 as in Lemma 4.9.

Suppose that |x1−x2| < 2ε. Then for δ ∈ (0, ε0), S(x0, δ)\U is the arc Sδ. Since
x0 ∈ ∂D, there exists a number δ1 = δ1(x0, D, ε) > 0 such that D ∩ Sδ contains a
non-trivial arc for every 0 < δ < δ1. Therefore ∂D ∩ Sδ contains at least two points
in γε. Hence, by Lemma 4.9, E ∩ Sδ = ∅ when 0 < δ < min{δ0, δ1}. This contradicts
the assumption x0 ∈ E. Therefore |x1 − x2| = 2ε and x0, x1 and x2 are collinear.

We now prove Γ{x0} = {x1, x2}. Assume, as in Lemma 4.9, that x0 = 0, Σ ⊂
{Re z ≤ 0}, x1 = εeiπ/2 and x2 = εei3π/2. Suppose there exists another point x3 ∈
Γ{x0} \ {x1, x2}; so Rex3 < 0. Observe, by elementary calculations, that there exists
δ2 = δ2(x3, ε) ∈ (0, ε0) so that for any y in the half disk B(0, δ2) ∩ {Re z < 0},
one of the numbers |y − x1|, |y − x2|, |y − x3| is strictly less than ε. Therefore,
(∆ε ∪ γε) ∩ B(0, δ2) ⊂ {Re z ≥ 0} \ U . Since x0 ∈ D, ∂D ∩ Sδ contains at least two
points in γε for all sufficiently small δ. As before, it follows from Lemma 4.9 that
E ∩ Sδ must be empty for all sufficiently small δ, a contradiction. This proves that
Γ{x0} = {x1, x2}, and the lemma. �

The next two propositions lead naturally to the (1/2, r0)-chordal condition for
the LJC property in Theorem 1.1.

Proposition 4.12. Suppose that for some ε 6= 0, ∆ε 6= ∅, γε ∪∆ε is connected,
and ∆ε ( γε∪∆ε. Then, there exist points x0 ∈ γε and x1, x2 ∈ Γ which are collinear
such that

|x0 − x1| = |x0 − x2| = |ε|.
Moreover, Γ{x0} = {x1, x2}.

From the assumptions, there exist a connected component D of ∆ε and a con-
nected component G of γε ∪∆ε such that D ⊂ D ( G. The proposition follows from
Lemma 4.11.

Remark 4.13. The point x0 in Proposition 4.12, which is chosen according to
Lemma 4.11, lies, in fact, on the boundary of a component of ∆ε.

Proposition 4.14. Suppose that ∆ε 6= ∅ and γε ∪∆ε is not connected for some
ε 6= 0. Then, there exist points x0 ∈ Ω and x1, x2 ∈ Γ which are collinear such that

|x0 − x1| = |x0 − x2| = dist(x0,Γ) < |ε|.

Moreover, Γ{x0} = {x1, x2}.
Proof. We first prove the proposition for ε > 0. Choose a connected component

D of ∆ε, a point x ∈ D, and a point y in a connected component of ∆ε∪γε that does
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not meet D, and define

d0 = sup{δ > 0: x, y are in a common component of ∆δ}.
Since Ω is path connected, d0 > 0; and since x and y are in two different components
of the closed set γε ∪∆ε, d0 < ε.

For δ ∈ (0, d0), let Gδ be the component of ∆δ that contains x and y. Then, for
0 < δ < δ′ < d0 we have Gδ′ ⊂ Gδ′ ⊂ Gδ. Since {Gδ}δ∈(0,d0) is a nested family of
compact connected sets, the intersection G =

⋂
0<δ<d0

Gδ is a connected subset of
γd0 ∪∆d0 that contains D ∪ {y}.

We claim that G is the component of γd0 ∪ ∆d0 that contains x, y. Indeed, let
G̃ be the component of γd0 ∪ ∆d0 that contains x, y. Clearly G ⊂ G̃. Since the set⋃
x∈G̃B(x, δ) is open and connected for every δ ∈ (0, d0),

G̃ ⊂
⋃
x∈G̃

B(x, δ) ⊂ Gd0−δ for each δ ∈ (0, d0).

So G̃ ⊂ G and G is the component of γd0 ∪ ∆d0 that contains x, y. Hence, D ( G
and the proposition now follows from Lemma 4.11.

Suppose now that ε < 0. Choose D, x, y as before, and define

d0 = inf{δ < 0: x, y are in a common component of ∆δ}.
For δ ∈ (d0, 0), let G′δ be the component of ∆δ that contains x and y, and let
G′ =

⋂
d0<δ<0G

′
δ. Since, for all d0 < δ < 0, sets R2 \ G′δ are contained in a fixed

planar disk, the intersection G′ is connected. The rest of the proof is similar to that
of the case ε > 0. �

Remark 4.15. The point x0 in Proposition 4.14, chosen according to Lemma
4.11, lies on the boundary of a component of ∆d0 for some 0 < |d0| < |ε|.

5. Level curves and level quasicircles

In this section, we give the proofs of Theorem 1.1 and Theorem 1.2 along with
two examples that show the sharpness of the conditions.

Proof of Theorem 1.1. We give the proof for the case ε > 0; the case ε < 0 is
practically the same. By the assumption of the theorem, there exists r0 > 0 such
that ζΓ(x, y) ≤ 1/2, for all x, y ∈ Γ with |x− y| ≤ r0.

First we claim that ∆ε ∪ γε is connected for all ε ∈ (0, r0/2). Otherwise, by
Proposition, 4.14, there exist d0 ∈ (0, r0/2) and collinear points x0 ∈ γd0 and x1, x2 ∈
Γ such that Γ{x0} = {y ∈ Γ: |x0 − y| = d0} = {x1, x2}. The line l that contains
x0 and is perpendicular to lx1,x2 intersects Γ(x1, x2) at some point z. Note that
|x1 − x2| = 2d0 < r0 and that

dist(z, lx1,x2) = |x0 − z| > dist(x0,Γ) = d0.

So ζΓ(x1, x2) > 1/2, a contradiction.
Next we claim that ∆ε must be connected for all ε ∈ (0, r0/2). Otherwise, for

some ε ∈ (0, r0/2) the open set ∆ε would have at least two components, called D1, D2.
By the continuity of the distance function, each Dj, j = 1, 2, would contain a point
zj of distance ε′ to Γ, for some ε′ ∈ (ε, r0/2). This would imply that ∆ε′ ∪ γε′ is not
connected; this contradicts the previous claim.
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Therefore, by Lemma 4.5, ∂∆ε is a Jordan curve for every ε ∈ (0, r0/2). It remains
to check that γε = ∂∆ε for all ε ∈ (0, r0/2). Suppose ∂∆ε  γε for some ε ∈ (0, r0/2).
Then ∆ε  ∆ε ∪ γε. Therefore, by Proposition 4.12, we can find collinear points
x0 ∈ γε and x1, x2 ∈ Γ such that Γ{x0} = {x1, x2}. As before, this will lead to the
inequality ζΓ(x1, x2) > 1/2, a contradiction. So γε = ∂∆ε.

This completes the proof of the theorem. �

Remark 5.1. The (1/2, r0)-chordal condition is sharp for the conclusion of The-
orem 1.1.

We construct a chord-arc curve Γ with ζΓ = 1
2
which satisfies

(i) there exist two sequences of points {xn}, {yn} on Γ such that |xn − yn| → 0
and ζΓ(xn, yn) = 1

2
+ 2−n,

(ii) there exists a decreasing sequence of positive numbers {εn} with εn → 0 such
that γεn is not a Jordan curve,

as follows. Let Γ be the boundary of the domain

D = [−1, 2]× [−3, 0] ∪
∞⋃
n=0

[2−n − 2−n−2, 2−n]× [0, 2−n−2(1/2 + 2−n)].

Observe that Γ is a Jordan curve and it is not difficult to show that Γ is also a
chord-arc. Set, for any n ∈ N,

xn = (2−n − 2−n−2, 0) and yn = (2−n, 0).

Note that ζΓ(xn, yn) = 1
2

+ 2−n and that it is not hard to check that ζΓ = 1
2
. Let

Λn = Γ(xn, yn) and εn = 2−n−3. Then, the set γΛn
εn = {x ∈ γεn : dist(x,Λn) = εn}

is the union of the line segment {xn + 2−n−3} × [0, 2−2n−2] and two quarter-circles
{xn + εne

iθ : 3π
2
≤ θ ≤ 2π}

⋃
{yn + εne

iθ : π ≤ θ ≤ 3π
2
}. It follows that γεn is not a

Jordan curve.

We now apply Lemma 4.3, Lemma 4.6, and Theorem 1.1 to prove Theorem 1.2.
Recall from Lemma 4.3 that ∆ε, if a Jordan domain, has no inward cusp. Condition
ζΓ < 1/2, together with the estimates (5) below, shows that ∆ε has no outward cusps.

Proof of Theorem 1.2. We prove the theorem for ε > 0 only. The proof for the
case ε < 0 is practically the same.

By the assumption of the theorem, there exist ζ ∈ (0, 1/2) and r0 > 0 such that
ζΓ(x, y) ≤ ζ for all x, y ∈ Γ with |x − y| ≤ r0. From Theorem 1.1 and its proof,
γε is a Jordan curve for every ε ∈ (0, r0/2); by Lemma 3.1, Γ is a K(ζ)-quasicircle,
therefore satisfies the 2-point condition (1) for some constant C(ζ) > 1. Constants
below will depend only on ζ.

We now prove that there exists K ′ > 1 depending only on ζ such that γε is a
K ′-quasicircle for any

0 < ε < min

{
r0

10
,

diam Γ

20C(ζ)

}
.

By the 2-point condition, it suffices to prove that there existsM > 1, depending only
on ζ, such that

diam γε(x, y) ≤M |x− y| for all x, y ∈ γε.
Given x and y in γε, choose x′, y′ ∈ Γ such that |x−x′| = |y−y′| = ε; segments [x, x′]
and [y, y′] do not meet except possibly at x′ and y′. By Remark 4.7, there exists
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a curve τx,y, with τx,y \ {x, y} ⊂ ∆ε, that connects x to y, and satisfies |x − y| ≤
diam τx,y ≤ C1(ζ)|x − y| for some constant C1(ζ) > 1. Consider the domain D
enclosed by the Jordan curve [x, x′] ∪ Γ(x′, y′) ∪ [y, y′] ∪ τx,y. Let γε(x, y)∗ be the
component of γε \ {x, y} that is contained in D; note that γε(x, y)∗ and γε(x, y) are
not necessarily the same arc. It suffices to show that

diam γε(x, y)∗ ' |x− y|.
We consider four cases according to the ratios |x′ − y′|/ε and |x− y|/ε.

Case 1. |x′− y′| ≥ 4(1− ζ)ε. In this case, |x′− y′|− 2ε ≤ |x− y| ≤ |x′− y′|+ 2ε,
which implies

1− 2ζ

2− 2ζ
|x′ − y′| ≤ |x− y| ≤ 3− 2ζ

2− 2ζ
|x′ − y′|.

Since 0 < ζ < 1/2, diam τx,y ' |x−y| and Γ is a K(ζ)-quasicircle, we have diamD '
|x− y|. Hence, diam γε(x, y)∗ ' |x− y|.

Case 2. x′ = y′. In this case, γ(x, y)∗ = γ(x, y). By Lemma 4.2, γε(x, y) is a
subarc of S(x′, ε) of length at most πε, hence diam γε(x, y) = |x− y|.

Case 3. 0 < |x′− y′| < 4(1− ζ)ε and |x− y| ≥ ε(1− 2ζ)2/10. Since diamD ' ε
and γε(x, y)∗ ⊂ D, we have diam γε(x, y)∗ ' |x− y| ' ε.

Case 4. 0 < |x′ − y′| < 4(1 − ζ)ε and 0 < |x − y| < ε(1 − 2ζ)2/10. In view
of Lemma 4.6 and Remark 4.7, we may assume that diam τx,y ≤ 5|x − y| < ε/2. It
is easy to check that in this case γ(x, y)∗ = γ(x, y). However, there is no relation
between |x− y| and |x′ − y′|, and diamD may be much bigger than |x− y|. We will
construct a new domain D′ whose closure contains γε(x, y) and has diamD′ ' |x−y|.

First, let R(x′, y′) be the rectangular domain whose boundary has two sides
parallel to the line lx′,y′ of length a = |x′− y′|, and two other sides having mid-points
x′ and y′ and of length b = 2(ε− ζ|x′ − y′|). Then define a domain

U(x′, y′) = B(x′, ε) ∪B(y′, ε) ∪R(x′, y′).

It is possible that R(x′, y′) is contained in B(x′, ε)∪B(y′, ε) for some pairs x′ and y′.
Nevertheless, ∂U(x′, y′) areK ′′-quasicircles for some constantK ′′ > 1 depending only
on ζ, in particular not on x′ and y′. This observation follows from the inequalities:
0 < ζ < 1/2,

(5) 0 < a = |x′ − y′| < 4(1− ζ)ε, and 0 < ε(1− 2ζ)2 <
b

2
= ε− ζ|x′ − y′| < ε.

Next, we claim that U(x′, y′) ∩ ∆ε = ∅. Indeed, for any z ∈ R(x′, y′) the line
containing z and perpendicular to lx′,y′ must intersect the arc Γ(x′, y′) at some point
z′. Note that dist(z,Γ) ≤ dist(z,Γ(x′, y′)) ≤ |z − z′| ≤ dist(z, lx′,y′) + dist(z′, lx′,y′) <
b
2

+ ζ|x′ − y′| = ε. Clearly, dist(z,Γ) < ε for all z ∈ B(x′, ε) ∪B(y′, ε).
Recall that x ∈ ∂B(x′, ε) ∩ ∂U(x′, y′) and y ∈ ∂B(y′, ε) ∩ ∂U(x′, y′). Let Tx,y

be the subarc of ∂U(x′, y′) connecting x to y that has the smaller diameter. Then,
Tx,y ⊂ R2 \∆ε, and diamTx,y ' |x− y| because ∂U(x′, y′) is a K ′′-quasicircle.

To summarize, ∆ε is a Jordan domain, x and y are two points on ∂∆ε, and τx,y,
γε(x, y), and Tx,y are arcs connecting x to y, with τx,y \ {x, y} ⊂ ∆ε, γε(x, y) ⊂ ∂∆ε,
and Tx,y ⊂ R2 \∆ε.

Let D′ be the domain enclosed by the Jordan curve τx,y ∪ Tx,y. We claim that
γε(x, y) is contained in D′. Otherwise, τx,y would be contained in the closure of the
domain D′′ enclosed by the Jordan curve γε(x, y) ∪ Tx,y. By the connectedness of



226 Vyron Vellis and Jang-Mei Wu

∆ε, the entire ∆ε would be contained in D′′. A preliminary estimate of diam γε(x, y)
from the fact γε(x, y) ⊂ D shows that

diam γε(x, y) ≤ 5|x− y|+ 2ε+ C(ζ)|x′ − y′| ≤ 7C(ζ)ε.

Therefore,

diam ∆ε ≤ diamD′′ ≤ diam γε(x, y) + diamU(x′, y′)

≤ 7C(ζ)ε+ 4ε+ |x′ − y′| ≤ 15C(ζ)ε <
3

4
diam Γ < diam ∆ε,

a contradiction. So γε(x, y) ⊂ D′, and therefore

diam γε(x, y) ≤ diamD′ ≤ diam τx,y + diamTx,y ' |x− y|.
This completes the proof of diam γε(x, y) ' |x− y| for Case 4, and the theorem. �

Remark 5.2. The condition ζΓ < 1/2 is sharp for the conclusion of Theorem
1.2.

We first make an observation. Given α ∈ [0, π/12], let σ be the circular arc
{eiθ : α ≤ θ ≤ π − α}, and Γ′ be the infinite simple curve obtained by replacing the
segment [eiα, ei(π−α)] on leiα,ei(π−α) by σ. The set of points below Γ′ that have unit
distance to Γ′ is a simple arc γ′ consisting of two horizontal semi-infinite lines and two
circular arcs τ1 and τ2, where τ1 is a subarc of the circle S(eiα, 1) connecting 0 and
−i+ eiα , and τ2 is a subarc of the circle S(ei(π−α), 1) connecting 0 and −i+ ei(π−α).
Since τ1 and τ2 meet at an angle 2α, the arc γ′ is a K(α)-quasiline with K(α)→∞
as α→ 0.

Fix now a decreasing sequence αn converging to 0 with α1 = π/12, and another
sequence εn = 4−n−2. Let pn be the point having coordinates (2−n,−εn sinαn) and σn
be the subarc of S(pn, εn) above the real axis; and let ω be the simple curve that has
end points −1 and 1 and is the union of circular arcs

⋃
n≥1 σn and a countable number

of horizontal segments in [0, 1]. Fix a large N ∈ N, and let P be the boundary of a
regular N -polygon in the lower half-plane which has [−1, 1] as one of its edges. Let
Γ be the Jordan curve obtained from P by replacing the edge [−1, 1] by ω.

It is not hard to see that for sufficiently large N , Γ is a K-quasicircle for some
K > 1 independent of N , that ζΓ(x, y) < 1/2 for all x, y ∈ Γ with |x− y| ≤ 1/2, and
that ζΓ = 1/2.

On the other hand, every level curve γεn is a Kn-quasicircle which contains two
circular arcs, with the same curvature, meeting at an angle 2αn. Since αn → 0, Kn’s
cannot have a uniform upper bound. So Γ does not satisfy the LQC property.

6. Level chord-arc property

In this section we give the proof of Theorem 1.3. We start by recalling a known
fact: if a bounded starlike domain in R2 satisfies a strong interior cone property,
then its boundary is a chord-arc curve.

For a ∈ (0, π), h > 0, x ∈ R2 and v ∈ S1, denote by

Ca,h(x, v) = {z ∈ R2 : cos(a/2) |z − x| ≤ v · (z − x) ≤ h}
the truncated cone with vertex x, direction v, height h and aperture a.

Suppose that U ⊂ R2 is a bounded starlike domain with respect to a point
x0 ∈ U , i.e., for every x ∈ ∂U the line segment [x0, x] intersects ∂U only at the point
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x. Suppose in addition (U, x0) satisfies the strong interior cone property, i.e., there
exist a ∈ (0, π), h > 0 so that the truncated cone Ca,h(x, vx) \ {x}, in the direction
vx = (x0 − x)/|x0 − x|, is contained in U for every x ∈ ∂U . Assume from now on
x0 = 0, and set

ρ = max{|x| : x ∈ ∂U}.

We obtain, by elementary geometry, positive constants c1 = c1(a, h
ρ
), c2 = c2(a), c3 =

c3(a) such that

c2 |x− y| ≤ |x− |x|
y

|y|
| ≤ c3|x− y|, for all x, y ∈ ∂U with | x

|x|
− y

|y|
| ≤ c1.

Let ψ : ∂U → S1 be the map x 7→ x
|x| . Then ρψ is L-bi-Lipschitz for some constant

L > 1 depending only on a and h/ρ. Therefore ∂U is a C-chord-arc curve for some
constant C > 1 depending only on a and h/ρ.

Essential to our proof of Theorem 1.3 is a lemma of Brown [2] on sets of constant
distance from a compact subset A of R2. Recall from the Introduction that for a
given ε > 0, the ε-boundary of A is the set

∂ε(A) = {x ∈ R2 : dist(x,A) = ε}.

In Lemma 1 of his paper, Brown proved that if ε > diamA, then ∂ε(A) is the
boundary of a starlike domain Uε with respect to any point x0 ∈ A. In fact, whenever
ε > 3 diamA, (Uε, x0) also possesses the strong interior cone property, namely, the
cone Cπ

3
, ε
3
(x, (x0 − x)/|x0 − x|) \ {x} with vertex x ∈ ∂ε(A) is contained in Uε. Since

2ε < diam(∂ε(A)) < 3ε, we have the following.

Lemma 6.1. There is a universal constant c0 > 1 for the following. Suppose
that A is a compact subset of R2 and that ε > 3 diamA. Then the ε-boundary ∂ε(A)
of A is a c0-chord arc curve.

We now apply Lemma 6.1 locally and repeatedly to prove Theorem 1.3.

Proof of Theorem 1.3. We prove the theorem for the case ε > 0 only. The case
ε < 0 is essentially the same.

For the necessity, we only need to check that Γ is a chord-arc curve. By the
LCA property, there exist L > 1, n0 ∈ N, and for each n ≥ n0, an L-bi-Lipschitz
homeomorphism fn ofR2 such that fn(B2) = ∆ 1

n
. Since fn|B2 are equicontinuous, by

Arzela-Ascoli, there is a subsequence fkn|B2 which converges to a homeomorphism
f . It is not hard to see that f is bi-Lipschitz and maps B2 onto Ω. Therefore,
Γ = f(∂B2) is a chord-arc curve.

To show the sufficiency, we assume that Γ is a C1-chord-arc curve, and that there
exist ε0 > 0 and K > 1 such that the Jordan curves γε are K-quasicircles for all
ε ∈ (0, ε0]. In the rest of the proof, constants are understood to depend on C1 and
K only, in particular independent of ε.

For ε ∈ (0, ε0] and for a closed subset λ ⊂ γε, we set

Γλ = {y ∈ Γ: |y − x| = ε for some x ∈ λ} = {y ∈ Γ: dist(y, λ) = ε}.

In general, Γλ need not be connected, and there is no relation between the diameter
of λ and the diameter of Γλ.
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We prove now that γε is a chord-arc curve. Since γε is a K-quasicircle, it suffices
to check

`(λ) . diamλ for all subarcs λ ⊂ γε.

We consider three cases according to the diameter of Γλ.
Case 1. diam Γλ ≤ ε/10. Set

∂ε(Γ
λ) = {x ∈ R2 : dist(x,Γλ) = ε}.

After a moment of reflection, we see that λ ⊂ ∂ε(Γ
λ). By Lemma 6.1, there exists a

universal constant c0 > 1 such that, for any x, y ∈ ∂ε(Γλ),
`(∂ε(Γ

λ)(x, y)) ≤ c0|x− y|;
recall that ∂ε(Γλ)(x, y) is the subarc of ∂ε(Γλ) connecting x and y that has the smaller
diameter. We deduce from this the following

`(λ) ≤ c0 diamλ.

To prepare for the next two cases, we take Λ to be the subarc of Γ that contains
Γλ having the smallest diameter. Subdivide Λ into subarcs Λ1,Λ2, . . . ,ΛN which have
mutually disjoint interiors and satisfy the condition

ε/100 ≤ diam Λn < ε/10 for all n = 1, . . . , N.

Since Γ is a quasicircle, diam Λ ' diam Γλ; since Γ is a C1-chord-arc curve Nε '
diam Λ. So,

N ' ε−1 diam Λ ' ε−1 diam Γλ.

Set λn = γΛn
ε ∩ λ for n = 1, . . . , N . Again, after a moment of reflection, we see that

λ =
⋃N
n=1 λn. Recall, from Lemma 4.1, that γΛn

ε = {x ∈ γε : dist(x,Λn) = ε} are arcs
whenever they are nonempty, so λn are subarcs of γε. Note however that some of
{λn} may overlap. We now apply Lemma 6.1 to the ε-boundary ∂ε(Λn) of Λn. Since
λn is also a subarc of ∂ε(Λn), it follows, as in Case 1, that

`(λn) ≤ c0 diamλn . ε.

Case 2. ε/10 < diam Γλ ≤ 10ε. From the estimates above, we obtain

`(λ) ≤
N∑
n=1

`(λn) ≤
N∑
n=1

c0 diamλn ≤ Nc0 diamλ ' diamλ.

Note that in this case, diameter of λ might be much smaller than ε.
Case 3. 10ε < diam Γλ. In this case, it is geometrically evident that

diam Γλ − 2ε ≤ diamλ ≤ diam Γλ + 2ε,

hence diamλ ' diam Γλ. Therefore,

`(λ) ≤
N∑
n=1

`(λn) ≤
N∑
n=1

c0 diamλn . Nε ' diam Γλ ' diamλ. �

Remark 6.2. Suppose that Γ is a Jordan curve. The proof of the previous
theorem shows that each level set γε, with ε 6= 0, is contained in a finite union of
c0-chord-arc curves, and that if γε is a quasicircle with ε 6= 0, then it is a C(Γ, ε)-
chord-arc curve.

Remark 6.3. Suppose that Γ is a Jordan curve which satisfies a local C-chord-
arc condition with 1 < C <

√
2. Then, Γ has the LCA property.
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Proof. Suppose that for any x, y ∈ Γ with |x − y| < r0 and any z ∈ Γ(x, y), we
have |z−x|+ |z− y| ≤ `(Γ(x, y)) ≤ C|x− y|. Then Γ(x, y) is contained in the closed
region whose boundary is the ellipse having foci at the points x, y and semi-minor
1
2

√
C2 − 1|x − y|. Since C <

√
2, we have ζΓ ≤ 1

2

√
C2 − 1 < 1/2. By Theorem 1.2,

Γ has the LQC property; and by Theorem 1.3, Γ has the LCA property. �

7. Examples from Rohde’s snowflakes

In [13], Rohde gives an intrinsic characterization of planar quasicircles. He defines
explicitly a family F of snowflake-type curves, then proceeds to prove that every
quasicircle in the plane is bi-Lipschitz homeomorphic to a member of this family.

Each of Rohde’s snowflakes S is constructed as follows. Fix a number p ∈ [1
4
, 1

2
),

and let S1 be the unit square. The polygon Sn+1 is constructed by replacing each of
the 4n edges of Sn by a rescaled and rotated copy of one of the only two polygonal
arcs allowed in Figure 1, in such a way that the polygonal regions are expanding.
The curve S is obtained by taking the limit of Sn, just as in the construction of the
usual von Koch snowflake. Clearly every Rohde’s snowflake is a quasicircle. The
entire collection of Rohde’s snowflakes, with all possible p ∈ [1

4
, 1

2
), forms the family

F .
Theorem. [13, Theorem 1.1] A bounded Jordan curve Γ is a quasicircle if and

only if there exist a curve S ∈ F and a bi-Lipschitz homeomorphism f of R2 so that
Γ = f(S).

Figure 2.

Fix now a natural number N ≥ 4. Suppose that a regular N -gon, of unit side
length, is used in place of the unit square in the first step of Rohde’s construction,
while the remaining steps are unchanged. So each snowflake-type curve is the limit
of a sequence of polygons, having N4n−1 edges at the n-th stage. Let FN be the
family of these snowflakes. Then Rohde’s argument shows that every quasicircle in
R2 is the image of a curve in FN under a bi-Lipschitz homeomorphism of R2.

Let FN,p be the subfamily of curves in FN constructed using only the polygonal
arcs indexed by (1/4, 1/4, 1/4, 1/4) and (p, p, p, p). It is not hard to see that there
exist N0 > 4 and p0 ∈ (1

4
, 1

2
) for the following. Given N ≥ N0 and 1/4 ≤ p ≤ p0,

there exists 0 < ζN,p < 1/2 and rN,p > 0 such that every curve S ∈ FN,p has the
(ζN,p, rN,p)-chordal property, and therefore satisfies the LQC property.
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