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Abstract. In this paper, we study the existence and regularity of very weak solutions to the

fast diffusion equations with integrable data with respect to the distance to the boundary.

1. Introduction and statement of the main results

This paper deals with the following problem

(P )











∂u
∂t

−∆(|u|m−1u) = f in Q,

u = 0 on Σ,

u(x, 0) = u0 in Ω,

where Ω is a bounded open subset of RN (N ≥ 2) with smooth boundary ∂Ω and
T > 0, Q = Ω×(0, T ), Σ denotes the lateral surface of Q, f ∈ L1(Q, δ), u0 ∈ L1(Ω, δ),
δ(x) = distance(x, ∂Ω), 1− 2

N+1
< m < 1.

If m < 1, the above problem is called the fast diffusion problem; if m > 1, it
is called the porous media problem. There are systematic survey books about the
porous media equations written by Vázquez (see [29, 30]). Lukkari has discussed the
fast diffusion equation and the porous media equation with measure data (see [22,
23]).

Recently, Díaz and Rakotoson [11] have studied the very weak solutions to linear
elliptic equations with right-hand side integrable data with respect to the distance
to the boundary and answered the question of the integrablity of the generalized
derivative raised in the unpublished manuscript by Brezis (see also [9]). Lately,
they have extended these results to semilinear elliptic equations and linear parabolic
equations (see [12] and [25]).

My main goal in this paper is to study the existence and regularity of very weak
solutions to the fast diffusion equations with integrable data with respect to the
distance to the boundary in the framework of weighted spaces by using a different
method to that of [11] and [25].

We recall the weighted Lebesgue space and weighted Sobolev space as follows
(see [1,7,14,18]): For 1 ≤ p < +∞, 1 ≤ q < +∞,

Lp(Ω, δ) =

{

u : Ω → R is Lebesgue measurable,

ˆ

Ω

|u|pδ(x) dx < +∞
}
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which is equipped with the norm

‖u‖Lp(Ω,δ) =

(
ˆ

Ω

|u|pδ(x) dx
)

1
p

,(1.1)

Lp(Q, δ) = {u : Q→ R is Lebesgue measurable,

ˆ

Q

|u|pδ(x) dx dt < +∞},

which is equipped with the norm

‖u‖Lp(Q,δ) =

(
ˆ

Q

|u|pδ(x) dx dt
) 1

p

,(1.2)

Lq(0, T ;Lp(Ω, δ)) =

{

u : Q→ R is Lebesgue measurable,

ˆ T

0

(
ˆ

Ω

|u|pδ(x) dx
)

q

p

dt < +∞
}

,

which is equipped with the norm

‖u‖Lq(0,T ;Lp(Ω,δ)) =

(

ˆ T

0

(
ˆ

Ω

|u|pδ(x) dx
)

q

p

dt

)
1
q

,(1.3)

W 1,p(Ω, δ) = {u ∈ Lp(Ω, δ) | |Du| ∈ Lp(Ω, δ)},
which is equipped with the norm

‖u‖W 1,p(Ω,δ) =

(
ˆ

Ω

(|u|pδ(x) + |Du|pδ(x)) dx
)

1
p

(1.4)

Lq(0, T ;W 1,p(Ω, δ)) = {u ∈ Lq(0, T ;Lp(Ω, δ)) | |Du| ∈ Lq(0, T ;Lp(Ω, δ))},
which is equipped with the norm

(1.5) ‖u‖Lq(0,T ;W 1,p(Ω,δ)) =

(

ˆ T

0

(
ˆ

Ω

(|u|pδ(x) + |Du|pδ(x)) dx
)

q
p

dt

)
1
q

.

We define the space W 1,p
0 (Ω, δ) as the completion of C∞

0 (Ω) with respect to the above
norm. We can also define similarly the weighted Sobolev space Lq(0, T ;W 1,p

0 (Ω, δ)).
These weighted spaces equipped with the above norms are Banach spaces. Re-

placing δ(x) by δ(x)α, we can define Lp(Ω, δα), W 1,p(Ω, δα), W 1,p
0 (Ω, δα), Lq(0, T ;

Lp(Ω, δα)), Lq(0, T ;W 1,p(Ω, δα)), Lq(0, T ;W 1,p
0 (Ω, δα)).

Definition 1.1. A measurable function u will be called a very weak solution to
the problem (P ) if u ∈ L∞(0, T ;L1(Ω, δ)), |u|m ∈ L1(Q) and it satisfies

−
ˆ

Q

uϕt dx dt−
ˆ

Q

|u|m−1u∆ϕdx dt =

ˆ

Q

fϕ dx dt+

ˆ

Ω

u0(x)ϕ(x, 0) dx,

∀ϕ ∈ C∞(Q̄), ϕ = 0 on Σ, ϕ(x, T ) = 0.

(1.6)

Now we state the main results of this paper.

Theorem 1.1. If f ∈ L1(Q, δ), u0 ∈ L1(Ω, δ), then there exists a very weak solu-
tion u to problem (P ) such that u ∈ L∞(0, T ;L1(Ω, δ)), |u|m ∈ Lq(0, T ;W 1,q

0 (Ω, δ))∩
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Lq̄(Q, δ) ∩ Lq(0, T ;Lq0(Ω)) with

1 ≤ q <
m(N + 1) + 2

m(N + 1) + 1
, 1 ≤ q̄ <

m(N + 1) + 2

m(N + 1)
,

1 ≤ q0 <
mN(N + 1) + 2N

mN(N + 1) +N − 1
,

(1.7)

and it satisfies

‖u‖L∞(0,T ;L1(Ω,δ)) ≤ C[M +
1

2
measδ Ω],(1.8)

‖|u|m‖
Lq(0,T ;W 1,q

0 (Ω,δ))∩Lq̄(Q,δ)∩Lq(0,T ;Lq0 (Ω))(1.9)

≤ Cmax{M
2m(q1−1)
(m+1)q1−2 ,M

[(3m+1)q1−2(m+1)]
2[(m+1)q1−2] },

where C is a positive constant depending only on q, q̄ and q0,

M = ‖f‖L1(Q,δ) + ‖u0‖L1(Ω,δ),(1.10)

2 ≤ q1 <
2(N + 1)

N − 1
,(1.11)

which only depends on q, q̄, m and N .

Remark 1.1. Theorem 1.1 implies that if f ∈ L1(Q, δ) and u0 ∈ L1(Ω, δ) are
replaced by f ∈ M(Q, δ) and u0 ∈ M(Ω, δ), respectively, being the weighted Radon
measure space (see also [12]) in Theorem 1.1, the same conclusion holds.

Remark 1.2. By a weighted L1 contraction estimate for the problem (P ) in
Theorem 6.15 in [30], we can deduce that the very weak solution u to problem (P ) is
unique in Theorem 1.1, and also get the estimate (1.8) to hold without the measure
of Ω on the right hand side.

Remark 1.3. In this paper, the lower bound 1 − 2
N+1

for m is due to the fact
|u|m ∈ Lq̄(Q, δ), mq̄ ≥ 1, in Theorem 1.1.

Theorem 1.2. If f ∈ L1(Q, δα), u0 ∈ L1(Ω, δα) with

0 < α <
−(2mN + 2−m) +

√

(2mN + 2−m)2 + 8m(mN + 2)

4m
,

then there exists a very weak solution u to the problem (P ) such that u ∈ L∞(0, T ;L1(Ω,
δα)), |u|m ∈ Lq(0, T ;W 1,q

0 (Ω, δα)) ∩ Lq̄(Q, δα) with

(1.12) 1 ≤ q <
m(N + α) + 2

m(N + α) + 1
, 1 ≤ q̄ <

m(N + α) + 2

m(N + α)
.

Furthermore, |u|m ∈ Lq̃(0, T ;W 1,q̃
0 (Ω)) with

(1.13) 1 ≤ q̃ < min{2m(N + α) + 4

2m(N + α) + 3
,
2[m(N + α)(1− α) + 2− α]

m(N + α) + 2
}
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and u satisfies

‖u‖L∞(0,T ;L1(Ω,δα)) ≤ C[M1 +
1

2
measδαΩ],(1.14)

‖|u|m‖Lq(0,T ;W 1,q
0 (Ω,δα))∩Lq̄(Q,δα) ≤ Cmax{M

m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1 },(1.15)

‖|u|m‖
Lq̃(0,T ;W 1,q̃

0 (Ω)) ≤ CM
1
2
1

(

1 + max{M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1 }
)

,(1.16)

where C is a positive constant depending only on q, q̄ and q0, M1 = ‖f‖L1(Q,δα) +
‖u0‖L1(Ω,δα).

Remark 1.4. If f ∈ L1(Q, δα) and u0 ∈ L1(Ω, δα) are also replaced by f ∈
M(Q, δα) and u0 ∈ M(Ω, δα) in Theorem 1.2, the same conclusion holds.

Remark 1.5. The upper bound for q̃ in Theorem 1.2 shows that the fact that
α must be strictly smaller than

−(2mN + 2−m) +
√

(2mN + 2−m)2 + 8m(mN + 2)

4m
implies that α < 1.

Theorem 1.3. Let u be the very weak solution of the problem (P ) given in
Theorem 1.1, f ∈ L1(0, T ;L1 logL1(Ω, δ)), u0 ∈ L1 logL1(Ω, δ), where L1 logL1(Ω, δ)
is the Orlicz space generated by the function |s| log(1 + |s|) with weighted function
δ(x). Then |u|m ∈ Lq(0, T ;W 1,q

0 (Ω, δ)) ∩ Lq̄(Q, δ) ∩ Lq(0, T ;Lq0(Ω)) with

(1.17) q =
m(N + 1) + 2

m(N + 1) + 1
, q̄ =

m(N + 1) + 2

m(N + 1)
, q0 =

mN(N + 1) + 2N

mN(N + 1) +N − 1
.

Remark 1.6. Theorem 1.3 shows that a limit regularity is achieved if one
improves the regularity of the right term f and initial value.

Theorem 1.4. Let u be the very weak solution of the problem (P ) given in
Theorem 1.1, f ∈ Lp(Q, δ) with

(1.18) 1 < p <
2m(N + 2) + 2

m(N + 3) + 2

and u0 = 0. Then |u|m ∈ Lq(0, T ;W 1,q
0 (Ω, δ)) ∩ Lq̄(Q, δ) ∩ Lq(0, T ;Lq0(Ω)) with

q =
[m(N + 1) + 2]p

m(N + 2− p) + 1
, q̄ =

[m(N + 1) + 2]p

m(N + 3− 2p)
,

q0 =
[mN(N + 1) + 2N ]p

m(N + 1)(N + 2− 2p) + (N + 1− 2p)
.

(1.19)

Remark 1.7. The lower bound for p in Theorem 1.4 is due to the fact that q
must not be smaller than 1. The upper bound for p implies q < 2.

Theorem 1.5. Let u be the very weak solution of the problem (P ) given in
Theorem 1.1, f ∈ Lp(Q, δ) with

(1.20)
2m(N + 2) + 2

m(N + 3) + 2
< p <

N + 3

2

and u0 ∈ Ld(Ω, δ) with

(1.21) d = m+ 1.
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Then |u|m ∈ L2(0, T ;W 1,2
0 (Ω, δ)) ∩ Lq̄(Q, δ) ∩ L2(0, T ;Lq0(Ω)) with

(1.22) q̄ <
2m(N + 2) + 2

m(N + 1)
, q0 <

2N

N − 1
.

Theorem 1.6. Let u be the very weak solution of the problem (P ) given in
Theorem 1.1, f ∈ Lp(Q, δ) with

(1.23) p >
N + 3

2

and u0 ∈ L∞(Q). Then |u|m ∈ L2(0, T ;W 1,2
0 (Ω, δ)) ∩ L∞(Q).

Theorem 1.7. Let u be the very weak solution of the problem (P ) given in
Theorem 1.1, f ∈ Lp(Q, δ) with

(1.24) p =
N + 3

2

and u0 ∈ L∞(Q). Then |u|m ∈ L2(0, T ;W 1,2
0 (Ω, δ))∩Lq̄(Q, δ)∩L2(0, T ;Lq0(Ω)) with

(1.25) 1 ≤ q̄ < +∞, 1 ≤ q0 < +∞.

Remark 1.8. Since Lp(Q, δ) ⊂ L1(Q, δ
1
p ), the conclusion in Theorem 1.2 still

holds under the assumpations of Theorems 1.4–1.7, respectively, and α = 1
p
.

Remark 1.9. Theorem 1.7 gives the regularity result in the limit case p = N+3
2

.

This paper is organized as follows. In Section 2, some preliminary results and
the existence of approximate solutions will be given; In Section 3, we will give a
priori estimates about the approximate solutions; the proofs of the main results of
this paper will be finished in Section 4.

2. Some preliminary results and existence of approximate solutions

Before we prove Theorems 1.1–1.7, we need some preliminary results. Firstly, let
us recall the weighted Orlicz spaces (see [1, 18]).

Definition 2.1. Assume that Φ is a N-function and ρ is an integrable and al-
most everywhere positive function in Ω. The weighted Orlicz class LΦ(Ω, ρ) (resp. the
weighted Orlicz space LΦ(Ω, ρ)) is defined as the set of (equivalence class of) measur-

able functions v on Ω such that
´

Ω
Φ(v(x))ρ(x) dx < +∞ (resp.

´

Ω
Φ(v(x)

λ
)ρ(x) dx <

+∞ for some λ > 0). Weighted Orlicz space LΦ(Ω, ρ) is a Banach space under the
norm

(2.1) ‖v‖LΦ(Ω,ρ) = inf

{

λ > 0:

ˆ

Ω

Φ

(

v(x)

λ

)

ρ(x) dx ≤ 1

}

,

and LΦ(Ω, ρ) is a convex subset of LΦ(Ω, ρ).

Remark 2.1. In this paper, we take Φ(s) = |s| log(1 + |s|) and ρ(x) = δ(x).

We also recall a weighted Sobolev space imbedding theorem.

Lemma 2.1. [17, Theorem 8.7 and Theorem 8.9] Let 1 ≤ q ≤ r < +∞, β and
γ are two real numbers. If

(2.2)
1

N
≥ 1

q
− 1

r
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and

β 6= q − 1,
N + γ

r
+ 1 ≥ N + β

q
,(2.3)

β = q − 1,
N + γ

r
+ 1 >

N + β

q
,(2.4)

then the weighted Sobolev spaceW 1,q
0 (Ω, δβ) is a continuous imbedding to the weighted

Lebesgue space Lr(Ω, δγ), that is,

(2.5) W
1,q
0 (Ω, δβ) 	 Lr(Ω, δγ).

If the inequalities in (2.2) and (2.3) are strict, then W 1,q
0 (Ω, δβ) is a compact imbed-

ding to Lr(Ω, δγ), that is,

(2.6) W
1,q
0 (Ω, δβ) 		 Lr(Ω, δγ).

To obtain a priori estimates of solutions, we need also the following lemmas.
From Lemma A.2. in [4] and Lemma 2.4 in [5], we have the following result.

Lemma 2.2. Let 1 ≤ q < q̂ < +∞. Suppose that there exists a positive
constants M independent of k such that

(2.7) measδα{|u| > k} = µδα(k) =

ˆ

{|u|>k}

δα dx dt ≤ Mk−q̂, ∀k > 0.

Then

(2.8)

ˆ

Q

|u|qδα dx dt ≤
(

q̂

q

)
q

q̂ q̂

q̂ − q
(measδα Q)

q̂−q
q̂ M

q
q̂ .

Proof. Given λ > 0, we have
ˆ

Q

|u|qδα dx dt ≤ λq measδα Q+

ˆ

{|u|>λ}

|u|qδα dx dt.

However, by using Hardy–Littlewood inequality, we have
ˆ

{|u|>λ}

|u|qδα dx dt = −
ˆ +∞

λ

kq dµδα(k) = λqµδα(λ) + q

ˆ +∞

λ

kq−1µδα(k) dk

≤ λq−q̂M +Mq

ˆ +∞

λ

kq−1−q̂ dk ≤ q̂

q̂ − q
Mλq−q̂.

Hence
ˆ

Q

|u|qδα dx dt ≤ λq measδα Q+
q̂

q̂ − q
Mλq−q̂.

Minimization of the right-hand side of the above inequality in λ and setting λ =

( q̂
q
)
1
q̂ (measδα Ω)

− 1
q̂M

1
q̂ , we get (2.8). �

The following lemma is a revised version of Proposition 3.1 in [13].

Lemma 2.3. Assume that v ∈ L∞(0, T ;Lr(Ω, δα)) ∩ Lq(0, T ;W 1,q
0 (Ω, δα)) with

r ≥ 1, 1 ≤ q < N + α, where α > 0. Then v ∈ Ls(Q, δα) and there exists a postive
constant C depending only on r, q, α and ∂Ω such that
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(i) if α 6= q − 1, then s = q(N+α+r)
N+α

and
ˆ

Q

|v|sδα dx dt ≤ C‖v‖
qr

N+α

L∞(0,T ;Lr(Ω,δα))‖v‖
q

Lq(0,T ;W 1,q
0 (Ω,δα))

;

(ii) if α = q − 1, then s = r + q − qr

q1
and

ˆ

Q

|v|sδα dx dt ≤ C‖v‖
(1− q

q1
)r

L∞(0,T ;Lr(Ω,δα))‖v‖
q

Lq(0,T ;W 1,q
0 (Ω,δα))

,

where q ≤ q1 <
(N+q−1)q

N−1
.

Proof. (i) Let s = θr + (1 − θ)q1, where q1 =
(N+α)q
N+α−q

, 0 < θ < 1. By using (2.2)

and (2.3) in Lemma 2.1, for a.e. t ∈ (0, T ) we have

‖v(t)‖Lq1 (Ω,δα) ≤ C‖v(t)‖W 1,q
0 (Ω,δα),

where C is a postive constant independent of t. Hölder’s inequality implies that
ˆ

Q

|v|sδα dx dt =
ˆ

Q

|v|θr+(1−θ)q1δθα+(1−θ)α dx dt

≤
ˆ T

0

(
ˆ

Ω

|v|rδα dx
)θ (ˆ

Ω

|v|q1δα dx
)1−θ

dt

≤ sup
0<t<T

(
ˆ

Ω

|v(t)|rδα dx
)θ ˆ T

0

(
ˆ

Ω

|v|q1δα dx
)1−θ

dt

≤ C‖v‖θrL∞(0,T ;Lr(Ω,δα))

ˆ T

0

‖v‖q1(1−θ)

W
1,q
0 (Ω,δα)

dt.

Let q1(1− θ) = q. Then θ = q

N+α
and s = q(N+α+r)

N+α
. Thus we obtain

ˆ

Q

|v|sδα dx dt ≤ C‖v‖
qr

N+α

L∞(0,T ;Lr(Ω,δα))‖v‖
q

Lq(0,T ;W 1,q
0 (Ω,δα))

.

(ii) As α = q − 1, by using (2.2) and (2.3) in Lemma 2.1, for a.e. t ∈ (0, T ) we
have

‖v(t)‖Lq1 (Ω,δα) ≤ C‖v(t)‖W 1,q
0 (Ω,δα),

where q1 <
(N+q−1)q

N−1
. Processing the proof of (i), we only take θ = q1−q

q1
, then

s = r + q − qr

q1
and
ˆ

Q

|v|sδα dx dt ≤ C‖v‖
(1− q

q1
)r

L∞(0,T ;Lr(Ω,δα))‖v‖
q

Lq(0,T ;W 1,q
0 (Ω,δα))

. �

Lemma 2.4. [11, Lemma 2] There is a function ϕ1 ∈ W 2,p(Ω) ∩W
1,2
0 (Ω) and

λ1 > 0 for all p ∈ (1,+∞) satisfying
{

−∆ϕ1 = λ1ϕ1 in Ω,

ϕ1 = 0 on ∂Ω,

and there are two positive constants c1 and c2 such that

(2.9) c1δ(x) ≤ ϕ1(x) ≤ c2δ(x), ∀x ∈ Ω.



368 Fengquan Li

For any given n > 0, let

(2.10) Tn(s) =

{

n if|s| < n,

n s
|s|

if |s| ≥ n.

In order to discuss problem (P ), we need consider the approximate problem

(Pn)











∂un

∂t
−∆(|un|m−1un) = fn in Q,

un = 0 on Σ,

un(x, 0) = u0n in Ω,

where fn = Tn(f), u0n = Tn(u0), Tn is defined in (2.10).

Lemma 2.5. For any given n > 0, the approximate problem (Pn) has a unique
weak solution un ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω)) ∩ L∞(Q) such that unt ∈
L2(0, T ;W−1,2(Ω)), |un|m−1un ∈ L2(0, T ;W 1,2

0 (Ω)) and satisfies

(P ′)







ˆ

Ω

untv +D(|un|m−1un)Dv dx =

ˆ

Ω

fnv dx, ∀v ∈ W
1,2
0 (Ω), a.e. t ∈ (0, T ),

un(x, 0) = u0n in Ω.

Proof. To prove the existence and uniqueness of a weak solution to the approxi-
mate problem (Pn), we consider first the following approximate problem (Pnk):

(Pnk)











∂unk

∂t
− div(m|Tk((|unk| − 1

k
)+ + 1

k
) sgnunk|m−1∇unk) = fn in Q,

unk = 0 on Σ,

unk(x, 0) = u0n in Ω,

where k > 1, Tk can be seen in (2.10).
Applying the results in [21], for every k we find that the problem (Pnk) has

a unique weak solution unk ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2
0 (Ω)) such that unt ∈

L2(0, T ;W−1,2(Ω)). By the regularity theory in [20], we also deduce that unk ∈
L∞(Q).

Firstly, we will obtain an estimate to ‖unk‖L∞(Q). Let vnk = e−tunk. Then the
problem (Pnk) can be written as

(P ′
nk)











∂vnk

∂t
− div(m|Tk((|etvnk|− 1

k
)++

1
k
) sgn vnk|m−1∇vnk) + vnk = e−tfn in Q,

vnk = 0 on Σ,

vnk(x, 0) = u0n in Ω,

Setting k0 = max(‖u0n‖L∞(Ω), ‖fn‖L∞(Q)), we can take (vnk − k0)+ as a test function
of the problem (P ′

nk), and we have
ˆ

Q

vnkt(vnk − k0)+ dx dt

+m

ˆ

Q

|Tk((|etvnk| −
1

k
)+ +

1

k
) sgn vnk|m−1DvnkD(vnk − k0)+ dx dt

+

ˆ

Q

vnk(vnk − k0)+ dx dt

=

ˆ

Q

e−tfn(vnk − k0)+ dx dt.

(2.11)
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By calculating it, we obtain
ˆ

Q

vnkt(vnk − k0)+ dx dt =
1

2

ˆ

Ω

(vnk(T )− k0)
2
+ dx dt−

1

2

ˆ

Ω

(u0n − k0)
2
+ dx dt

=
1

2

ˆ

Ω

(vnk(T )− k0)
2
+ dx dt ≥ 0

(2.12)

and

m

ˆ

Q

|Tk((|etvnk| −
1

k
)+ +

1

k
) sgn vnk|m−1DvnkD(vnk − k0)+ dx dt

= m

ˆ

Q

|Tk((|etvnk| −
1

k
)+ +

1

k
) sgn vnk|m−1|D(vnk − k0)+|2 dx dt ≥ 0.

(2.13)

Now (2.11), (2.12) and (2.13) imply that

(2.14)

ˆ

Q

vnk(vnk − k0)+ dx dt ≤
ˆ

Q

fn(vnk − k0)+ dx dt.

Adding −
´

Q
k0(vnk − k0)+ dx dt to the both sides of (2.13) we get

(2.15)

ˆ

Q

(vnk − k0)
2
+ dx dt ≤

ˆ

Q

(fn − k0)(vnk − k0)+ dx dt ≤ 0.

Thus we can deduce

(2.16) vnk ≤ k0, a.e. in Q.

Replacing vnk by −vnk in the above proof, we can get

(2.17) −vnk ≤ k0, a.e. in Q.

Hence we have

(2.18) |vnk| ≤ k0, a.e. in Q.

Thus we get

(2.19) ‖unk‖L∞(Q) ≤ eTk0.

Taking k > eTk0 + 1 in problem (Pnk), then problem (Pnk) can be written as

(P ′′
nk)











∂unk

∂t
− div(m|((|unk| − 1

k
)+ + 1

k
) sgnunk|m−1∇unk) = fn in Q,

unk = 0 on Σ,

unk(x, 0) = u0n in Ω.

Let ψ(s) =
´ s

0
|((|ξ| − 1

k
)+ + 1

k
) sgn ξ|m−1 dξ. Using ψ(unk) as a test function of the

problem (P ′′
nk), we have

ˆ

Q

unktψ(unk) dx dt+m

ˆ

Q

|(|unk| − 1
k
)+ + 1

k
) sgnunk|m−1DunkDψ(unk) dx dt

=

ˆ

Q

fnψ(unk) dx dt.

(2.20)

However,

(2.21)

ˆ

Q

unktψ(unk) dx dt =

ˆ

Ω

ˆ unk(T )

0

ψ(ξ)−
ˆ

Ω

ˆ u0n

0

ψ(ξ) ≥ −
‖u0n‖m+1

L∞(Ω)

m(m+ 1)
,
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m

ˆ

Q

|(|unk| − 1
k
)+ + 1

k
) sgn unk|m−1DunkDψ(unk) dx dt

= m

ˆ

Q

|Dψ(unk)|2 dx dt

= m

ˆ

Q

|(|unk| − 1
k
)+ + 1

k
) sgn unk|2m−2|Dunk|2 dx dt

(2.22)

ˆ

Q

fnψ(unk) dx dt ≤
1

m
‖fn‖L∞(Q)‖unk‖mL∞(Q)measQ

≤ (eTk0)
m

m
‖fn‖L∞(Q)measQ.

(2.23)

Now (2.20)–(2.23) yield

(2.24)

ˆ

Q

|Dψ(unk)|2 dx dt ≤
‖u0n‖m+1

L∞(Ω)

m2(m+ 1)
+

(eTk0)
m

m2
‖fn‖L∞(Q) measQ.

Hence,
ˆ

Q

|Dunk|2 dx dt

=

ˆ

Q

|(|unk| − 1
k
)+ + 1

k
) sgn unk|2m−2|Dunk|2

· |(|unk| − 1
k
)+ + 1

k
) sgn unk|2−2m dx dt

≤ (‖unk‖L∞(Q) + 1)2−2m

ˆ

Q

|Dψ(unk)|2 dx dt

≤ (eTk0 + 1)2−2m

(

‖u0n‖m+1
L∞(Ω)

m2(m+ 1)
+

(eTk0)
m

m2
‖fn‖L∞(Q) measQ

)

.

(2.25)

Inequality (2.24) and the first equation of (P ′′
nk) imply that

(2.26) ‖unkt‖L2(0,T ;W−1,2(Ω)) ≤ C,

where C is a positive constant depending only on ‖u0n‖L∞(Ω), ‖fn‖L∞(Q), m, T and
measQ.

Thus there exists a subsequence (still denoted by {unk}) and a function un ∈
L∞(Q) ∩ L2(0, T ;W 1,2

0 (Ω)) such that as k goes to infinity,

unk −→ un weakly in L2(0, T ;W 1,2
0 (Ω)),(2.27)

unkt −→ unt weakly in L2(0, T ;W−1,2(Ω)),(2.28)

unk −→ un weak* in L∞(Q).(2.29)

Using (2.27), (2.28) and the compactness arguments in [25], we have

(2.30) unk −→ un strongly in L2(Q)

and

(2.31) u0n = unk(0) −→ un(0) strongly in L2(Ω).
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The fact (2.29) yields

(2.32) unk −→ un a.e. in Q,

and (2.31) yields

(2.33) ψ(unk) −→
1

m
|un|m−1un a.e. in Q.

Hence we can deduce that

(2.34) Dψ(unk) −→
1

m
D(|un|m−1un) weakly in L2(Q).

Let k go to infinity in the problem (Pnk) and by using (2.27)–(2.29), (2.31) and (2.34),
we can obtain the existence of a solution to the problem (Pn). The uniqueness of a
solution to the problem (Pn) is easily proved. Thus Lemma 2.5 is completed. �

3. A priori estimates about the approximate problem (Pn)

In this section, by using the techniques introduced in [7] and [8] (see also [3]), we
obtain a priori estimates on un as follows.

Lemma 3.1. Assume that f ∈ L1(Q, δ), u0 ∈ L1(Ω, δ). Then every weak
solution un of the problem (Pn) satisfies

‖un‖L∞(0,T ;L1(Ω,δ)) ≤ C[M + 1
2
measδ Ω],(3.1)

‖|un|m‖Lq(0,T ;W 1,q
0 (Ω,δ))∩Lq̄(Q,δ)∩Lq(0,T ;Lq0 (Ω))(3.2)

≤ Cmax

{

M
2m(q1−1)
(m+1)q1−2 ,M

[(3m+1)q1−2(m+1)]
2[(m+1)q1−2]

}

,

‖|Tk(un)|m−1Tk(un)‖L2(0,T ;W 1,2
0 (Ω,δ)) ≤ Ckm,(3.3)

where C is a positive constant depending only on q, q̄ and q0, M = ‖f‖L1(Q,δ) +
‖u0‖L1(Ω,δ), q, q̄, q0 and q1 are seen in (1.7) and (1.11), respectively.

Proof. Let ψ(s) = min{|s|, 1} sgn s, ∀s ∈ R. Then we get

Ψ(s) =

ˆ s

0

ψ(ξ) dξ =

{

s2

2
if |s| ≤ 1,

|s| − 1
2

if |s| > 1,

and |s| − 1
2
≤ Ψ(s) ≤ |s|. Taking v = ψ(un)ϕ1 in (P ′) and integrating it over

(0, τ), τ ∈ (0, T ), where ϕ1 denotes the first eigenfunction associated to the Laplacian
operator which is defined in Lemma 2.4, we have

(3.4)

ˆ τ

0

ˆ

Ω

untψ(un)ϕ1+D(|un|m−1un)D(ψ(un)ϕ1) dx dt =

ˆ τ

0

ˆ

Ω

fnψ(un)ϕ1 dx dt.

In the following we will estimate every term in (3.4):
ˆ τ

0

ˆ

Ω

untψ(un)ϕ1 dx dt =

ˆ

Ω

Ψ(un(τ))ϕ1dx−
ˆ

Ω

Ψ(u0n)ϕ1 dx

≥
ˆ

Ω

(|un(τ)| −
1

2
)ϕ1dx−

ˆ

Ω

|u0n|ϕ1 dx,

(3.5)
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ˆ τ

0

ˆ

Ω

D(|un|m−1un)D(ψ(un))ϕ1 dx dt

= m

ˆ τ

0

ˆ

Ω

|ψ(un)|m−1|D(ψ(un))|2ϕ1 dx dt ≥ 0,

(3.6)

ˆ τ

0

ˆ

Ω

D(|un|m−1un)ψ(un)Dϕ1 dx dt

=

ˆ τ

0

ˆ

Ω

Dϕ1D

ˆ |un|m−1un

0

ψ(|s| 1−m
m s) ds dx dt

= −
ˆ τ

0

ˆ

Ω

∆ϕ1

ˆ |un|m−1un

0

ψ(|s| 1−m
m s) ds dx dt ≥ 0.

(3.7)

Now (3.4)–(3.7) yield

(3.8)

ˆ

Ω

(|un(τ)| −
1

2
)ϕ1 dx−

ˆ

Ω

|u0n|ϕ1 dx ≤
ˆ τ

0

ˆ

Ω

|fn|ϕ1 dx dt.

Thus we get

(3.9) ‖un‖L∞(0,T ;L1(Ω,δ)) ≤ C(‖fn‖L1(Q,δ) + ‖u0n‖L1(Ω,δ) +
1
2
measδ Ω).

Let |un|m−1un = wn. For a given k > 0, taking v = Tk(wn)ϕ1 in (P ′) and
integrating it over (0, τ), τ ∈ (0, T ), we have

ˆ

Qτ

untTk(wn)ϕ1 dx dt+

ˆ

Qτ

|DTk(wn)|2ϕ1 dx dt+

ˆ

Qτ

DwnTk(wn)Dϕ1 dx dt

=

ˆ

Qτ

fnTk(wn)ϕ1 dx dt.

(3.10)

By using integration by parts for the third term on the left side of (3.10) and
Lemma 2.4, we have

ˆ

Qτ

DwnTk(wn)Dϕ1 dx = −
ˆ

Qτ

∆ϕ1

ˆ wn

0

Tk(s) dx dt

≥ λ1

2

ˆ

Qτ

ϕ1|Tk(wn)|2 dx dt.
(3.11)

We also get
ˆ

Qτ

untTk(wn)ϕ1 dx dt

=

ˆ

Ω

ϕ1

ˆ un(τ)

0

Tk(|s|m−1s) ds dx−
ˆ

Ω

ϕ1

ˆ u0n

0

Tk(|s|m−1s) ds dx

≥ 1

m+ 1

ˆ

Ω

|Tk(wn(τ))|
m+1
m ϕ1 dx− k

ˆ

Ω

|u0n|ϕ1 dx.

(3.12)

From (3.10)–(3.12) it follows that

ess sup
τ∈(0,T )

ˆ

Ω

|Tk(wn(τ))|
m+1
m δ(x) dx

+

ˆ

Q

(|DTk(wn)|2δ(x) + |Tk(wn)|2δ(x)) dx dt

≤ Ck(‖f‖L1(Q,δ) + ‖u0‖L1(Ω,δ)),

(3.13)
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where C is a positive constant independent of k.
By using Lemma 2.3(ii) (here α = 1, v = Tk(wn), r = m+1

m
, q = 2, s =

m+1
m

+ 2− 2(m+1)
mq1

), we obtain

(3.14)

ˆ

Q

|Tk(wn)|sδ dx dt ≤ C(kM)
2− 2

q1 ,

where

(3.15) 2 ≤ q1 <
2(N + 1)

N − 1
.

Thus we can deduce that

(3.16) measδ{|wn| > k} =

ˆ

{|wn|>k}

δ dx dt ≤ CM
2− 2

q1 k
2

mq1
−m+1

m .

By using Lemma 2.2 (here α = 1, u = wn, q̂ =
m+1
m

− 2
mq1

, q = q̄, M is replaced

by CM
2− 2

q1 ), it follows that

(3.17)

ˆ

Q

|wn|q̄δ dx dt ≤ (
q̂

q̄
)
q̄

q̂
q̂

q̂ − q̄
(measδ Q)

q̂−q̄

q̂ (CM
2− 2

q1 )
q̄

q̂ = C1M
2m(q1−1)q̄

(m+1)q1−2 ,

where q̄ < q̂ = m+1
m

− 2
mq1

<
m(N+1)+2
m(N+1)

, C1 = ( q̂
q̄
)
q̄

q̂
q̂

q̂−q̄
(measδ Q)

q̂−q̄

q̂ C
q̄

q̂ .

For any given h > 0, (3.13) yields

(3.18) measδ{|DTk(wn)| >
h

2
} ≤ CMkh−2.

From (3.16) and (3.18) it follows that

measδ{|Dwn| > h}
≤ measδ{|Dwn −DTk(wn)| > h

2
}+measδ{|DTk(wn)| > h

2
}

≤ measδ{|wn| > k}+measδ{|DTk(wn)| > h
2
}

≤ CM
2− 2

q1 k
2

mq1
−m+1

m + CMkh−2.

(3.19)

Minimizing (3.19) in k and setting k = (m+1
m

− 2
mq1

)
mq1

(2m+1)q1−2M
m(q1−2)

(2m+1)q1−2h
2mq1

(2m+1)q1−2 ,
we get

(3.20) measδ{|Dwn| > h} ≤ CM
m(q1−2)

(2m+1)q1−2
+1
h
−

2[(m+1)q1−2]
(2m+1)q1−2 .

By using Lemma 2.2 (here α = 1, u = Dwn, q̂ =
2[(m+1)q1−2]
(2m+1)q1−2

, M is replaced by

CM
m(q1−2)

(2m+1)q1−2
+1

), it follows that

(3.21)

ˆ

Q

|Dwn|qδ dx dt ≤ CM
[(3m+1)q1−2(m+1)]q

2[(m+1)q1−2] ,

where q < 2[(m+1)q1−2]
(2m+1)q1−2

<
m(N+1)+2
m(N+1)+1

.

For any given 1 ≤ q <
m(N+1)+2
m(N+1)+1

and 1 ≤ q̄ <
m(N+1)+2
m(N+1)

, (3.15) shows that we

can choose q1, which only depends on q, q̄, m and N , such that q < 2[(m+1)q1−2]
(2m+1)q1−2

, q̄ <
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m+1
m

− 2
mq1

hold. Furthermore, (3.17) and (3.21) also show that there is a positive
constant depending only q, q̄, N and measδQ such that

(3.22)

(
ˆ

Q

|wn|q̄δ dx dt
)

1
q̄

≤ CM
2m(q1−1)
(m+1)q1−2

and

(3.23)

(
ˆ

Q

|Dwn|qδ + |wn|qδ dx
)

1
q

≤ Cmax

{

M
2m(q1−1)
(m+1)q1−2 ,M

[(3m+1)q1−2(m+1)]
2[(m+1)q1−2]

}

.

Taking r = q0 =
Nq

N+1−q
, q <

2[(m+1)q1−2]
(2m+1)q1−2

, γ = 0, β = 1 in Lemma 2.1, and by using

(3.23) we have

(

ˆ T

0

(
ˆ

Ω

|wn|q0 dx
)

q

q0

dt

)
1
q

≤ C

(
ˆ

Q

|Dwn|qδ + |wn|qδ dx dt
)

≤ Cmax

{

M
2m(q1−1)
(m+1)q1−2 ,M

[(3m+1)q1−2(m+1)]
2[(m+1)q1−2]

}

.

(3.24)

For any given k > 0, let v = |Tk(un)|m−1Tk(un)ϕ1 in (P ′) and integrating it over
(0, τ), τ ∈ (0, T ), we have

ˆ τ

0

ˆ

Ω

unt|Tk(un)|m−1Tk(un)ϕ1 dx dt

+

ˆ

Qτ

D(|un|m−1un)D(|Tk(un)|m−1Tk(un))ϕ1 dx dt

+

ˆ

Qτ

D(|un|m−1un)|Tk(un)|m−1Tk(un)Dϕ1 dx dt

=

ˆ

Qτ

fn|Tk(un)|m−1Tk(un) dx dt.

(3.25)

Using the same argument as that of (3.13), we get

ess sup
τ∈(0,T )

ˆ

Ω

|Tk(un(τ))|m+1δ(x) dx

+

ˆ

Q

(|D(|Tk(un)|m−1Tk(un))|2δ(x) + ||Tk(un)|m−1Tk(un)|2δ(x)) dx dt

≤ Ckm(‖f‖L1(Q,δ) + ‖u0‖L1(Ω,δ)) = CMkm,

(3.26)

where C is a positive constant independent of k and n.
Thus the proof of Lemma 3.1 is completed. �

Lemma 3.2. Assume that f ∈ L1(Q, δα), u0 ∈ L1(Ω, δα) with 0 < α <
−(2mN+2−m)+

√
(2mN+2−m)2+8m(mN+2)

4m
. Then every weak solution un of the problem

(Pn) satisfies

‖un‖L∞(0,T ;L1(Ω,δα)) ≤ C[M1 +
1
2
measδα Ω],(3.27)

‖|un|m‖Lq(0,T ;W 1,q
0 (Ω,δα))∩Lq̄(Q,δα) ≤ Cmax

{

M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1

}

,(3.28)
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(3.29) ‖|un|m‖Lq̃(0,T ;W 1,q̃
0 (Ω)) ≤ CM

1
2
1

(

1 + max

{

M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1

})

,

where C is a positive constant depending only on q, q̄ and q0, M1 = ‖f‖L1(Q,δα) +
‖u0‖L1(Ω,δα), q, q̄ and q̃ are seen in (1.12) and (1.13).

Proof. The proof of this lemma is similar to that of Lemma 3.1, here we only
simply revise the proof of Lemma 3.1. In the process of the proof of Lemma 3.1, we
only need to replace ϕ1 by ϕα

1 , δ by δα. Since

(3.30) ∆ϕα
1 = α(α− 1)ϕα−2

1 |Dϕ1|2 + αϕα−1
1 ∆ϕ1,

then as α < 1 (3.7) and (3.11) are replaced by the following inequalities:
ˆ τ

0

ˆ

Ω

D(|un|m−1un)ψ(un)Dϕ
α
1 dx dt

=

ˆ τ

0

ˆ

Ω

Dϕα
1D

ˆ |un|m−1un

0

ψ(|s| 1−m
m s) ds dx dt

= −
ˆ τ

0

ˆ

Ω

∆ϕα
1

ˆ |un|m−1un

0

ψ(|s| 1−m
m s) ds dxdt

= α(1− α)

ˆ τ

0

ˆ

Ω

ϕα−2
1 |Dϕ1|2

ˆ |un|m−1un

0

ψ(|s| 1−m
m s) ds dx dt

+ αλ1

ˆ τ

0

ˆ

Ω

ϕα
1

ˆ |un|m−1un

0

ψ(|s| 1−m
m s) ds dx dt ≥ 0,

ˆ τ

0

ˆ

Ω

DwnTk(wn)Dϕ
α
1 dx dt = −

ˆ τ

0

ˆ

Ω

∆ϕα
1

ˆ wn

0

Tk(s) ds dx dt

≥ α(1− α)

ˆ τ

0

ˆ

Ω

ϕα−2
1 |Dϕ1|2

ˆ wn

0

Tk(s) ds dx dt+
αλ1

2

ˆ τ

0

ˆ

Ω

ϕα
1 |Tk(wn)|2 dx dt

≥ αλ1

2

ˆ τ

0

ˆ

Ω

ϕα
1 |Tk(wn)|2 dx dt.

Now (3.9), (3.13), (3.22) and (2.23) are changed into

(3.31) ‖un‖L∞(0,T ;L1(Ω,δα)) ≤ C(‖fn‖L1(Q,δα) + ‖u0n‖L1(Ω,δα) +
1
2
measδα Ω),

ess sup
τ∈(0,T )

ˆ

Ω

|Tk(wn(τ))|
m+1
m δα dx+

ˆ

Q

(|DTk(wn)|2δα + |Tk(wn)|2δα) dx dt

≤ Ck(‖f‖L1(Q,δα) + ‖u0‖L1(Ω,δα)),

(3.32)

(3.33)

(
ˆ

Q

|wn|q̄δα dx dt
)

1
q̄

≤ CM
m(N+α+2)
m(N+α)+2

1

and

(3.34)

(
ˆ

Q

|Dwn|qδα + |wn|qδα dx dt
)

1
q

≤ Cmax

{

M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1

}

,

where 1 ≤ q <
m(N+α)+2
m(N+α)+1

, 1 ≤ q̄ <
m(N+α)+2
m(N+α)

and M1 = ‖f‖L1(Q,δα) + ‖u0‖L1(Ω,δα).
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For a given λ > 0, set

(3.35) ψ(s) =

ˆ s

0

dt

(1 + |t|)λ , ∀s ∈ R.

If λ > 1, then

(3.36) ψ(s) =
1

λ− 1
[1− 1

(1 + |s|)λ−1
]sgn(s), ∀s ∈ R.

Let v = ψ(wn)ϕ
α
1 in (P ′) and integrating it over (0, T ), we obtain

(3.37)

ˆ

Q

|Dwn|2
(1 + |wn|)λ

δα(x) dx dt ≤ CM1.

For all 1 < q̃ < 2, using Hölder’s inequality we obtain
ˆ

Q

|Dwn|q̃ dx dt =
ˆ

Q

|Dwn|q̃

(1 + |wn|)
q̃λ

2

δ
q̃α

2 (1 + |wn|)
q̃λ

2 δ−
q̃α

2 dx dt

≤
(
ˆ

Q

|Dwn|2
(1 + |wn|)λ

δα dx dt

)
q̃

2
(
ˆ

Ω

(1 + |wn|)
q̃λ

2−q̃ δ−
q̃α

2−q̃ dx dt

)
2−q̃

2

≤ CM
q̃

2
1

(

1 +

ˆ

Q

|wn|
q̃λ
2−q̃ δ

− q̃α
2−q̃ dx dt

)
2−q̃

2

.

(3.38)

Taking r = q̃λ

2−q̃
= q, γ = − q̃

2−q̃
, β = α in Lemma 2.1, (2.2), (2.3) and (2.4) yield

(3.39)
N − q̃

2−q̃

q̃λ

2−q̃

+ 1 >
N + α

q
.

Now λ > 1, q̃λ

2−q̃
= q and (3.39) imply that

(3.40) q̃ <
2q

q + 1
and q̃ < 2

(

1− α

q

)

.

From (3.34) and (3.38) it follows that

(
ˆ

Q

|Dwn|q̃ dx dt
)

1
q̃

≤ CM
1
2
1

(

1 + max

{

M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1

}q)
2−q̃

2q̃

≤ CM
1
2
1

(

1 + max

{

M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1

})
(2−q̃)q

2q̃

≤ CM
1
2
1

(

1 + max

{

M
m(N+α+2)+1
m(N+α)+2

1 ,M
m(N+α+2)
m(N+α)+2

1

})

.

(3.41)

Now q <
m(N+α)+2
m(N+α)+1

and (3.40) yield

(3.42) 1 < q̃ < min

{

2m(N + α) + 4

2m(N + α) + 3
,
2[m(N + α)(1− α) + 2− α]

m(N + α) + 2

}

.

To ensure 1 ≤ q̃, this needs 0 < α <
−(2mN+2−m)+

√
(2mN+2−m)2+8m(mN+2)

4m
.

Thus the proof Lemma 3.2 is completed. �
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Lemma 3.3. Assume that f ∈ L1(0, T ;L1 logL1(Ω, δ)), u0 ∈ L1 logL1(Ω, δ).
Then for the unique weak solution un of the problem (Pn), there exists a positive
constant C independent of n such that

(3.43) ‖|un|m‖Lq(0,T ;W 1,q
0 (Ω,δ))∩Lq̄(Q,δ)∩Lq(0,T ;Lq0 (Ω)) ≤ C,

where q, q̄ and q0 can be seen in (1.17).

Proof. Let λ = 1 in (3.35). Then

(3.44) ψ(s) = ln(1 + |s|) sgn(s), ∀s ∈ R.

Taking v = ψ(wn)ϕ1 in (P ′) and integrating it over (0, T ), similarly to (3.37), we
obtain

ˆ

Q

|Dwn|2
1 + |wn|

δ(x) dx dt

≤ C

[
ˆ

Q

|fn| ln(1 + |wn|)δ dx dt+
ˆ

Ω

|u0|(1 + ln(1 + |u0|))δ dx
]

.

(3.45)

By using the inequality ab ≤ a ln(1 + a) + eb, ∀a, b > 0, we get

ˆ

Q

|fn| ln(1 + |wn|)δ dx dt

≤
ˆ

Q

|fn| ln(1 + |fn|)δ dx dt+
ˆ

Q

(1 + |wn|)δ dx dt

≤
ˆ

Q

|f | ln(1 + |f |)δ dx dt+
ˆ

Q

(1 + |wn|)δ dx dt

≤
ˆ

Q

|f | ln(1 + |f |)δ dx dt+
(
ˆ

Q

(1 + |wn|)
1
m δ dx dt

)m

(measδ Q)
1−m.

(3.46)

By virtue of f ∈ L1(Q, δ), u0 ∈ L1(Ω, δ), by using of the estimates (3.1) and
(3.2) in Lemma 3.1, we have

ˆ

Q

(1 + |wn|)
1
m δ dx dt ≤ 2

1−m
m

ˆ

Q

1 + |un|δ dx dt ≤ C,(3.47)

ˆ

Q

|wn|rδ dx dt ≤ C,(3.48)

where 1 ≤ r <
m(N+1)+2
m(N+1)

, the constant C depending only on ‖f‖L1(Q,δ), ‖u0‖L1(Ω,δ)

and measδ Ω, measδ Q.
Thus it follows from (3.45)–(3.47) that

(3.49)

ˆ

Q

|Dwn|2
1 + |wn|

δ(x) dx dt ≤ C.
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For all 1 < q <
m(N+1)+2
m(N+1)

, Hölder’s inequality and (3.49) imply that
ˆ

Q

|Dwn|qδ(x) dx dt =
ˆ

Q

|Dwn|q
(1 + |wn|)

q

2

δ
q
2 (1 + |wn|)

q
2 δ

2−q
2 dx dt

≤
(
ˆ

Q

|Dwn|2
1 + |wn|

δ(x) dx dt

)
q

2
(
ˆ

Q

(1 + |wn|)
q

2−q δ dx dt

)
2−q

2

≤ C

(

1 +

ˆ

Ω

|wn|
q

2−q δ dx dt

)
2−q

2

.

(3.50)

By using Lemma 2.3(i) (here α = 1, v = wn, r =
1
m
, s = [m(N+1)+1]q

m(N+1)
= q̄) and (3.1),

(3.48) and (3.50), we obtain
ˆ

Q

|wn|q̄δ dx dt ≤ C‖wn‖
q

m(N+1)

L∞(0,T ;L
1
m (Ω,δ))

‖wn‖q
Lq(0,T ;W 1,q

0 (Ω,δ))

≤ C

(

1 +

(
ˆ

Ω

|wn|
q

2−q δ dx dt

)
2−q

2

)

.

(3.51)

Let

(3.52)
[m(N + 1) + 1]q

m(N + 1)
= q̄ =

q

2− q
.

Then we get

(3.53) q =
m(N + 1) + 2

m(N + 1) + 1
, q̄ =

m(N + 1) + 2

m(N + 1)
.

From (3.50)–(3.52) and Young’s inequality, it follows

(3.54)

ˆ

Q

|wn|q̄δdxdt ≤ C,

(3.55)

ˆ

Q

|Dwn|qδ dx dt ≤ C.

Combining it to (3.48) (r = q), we obtain

(3.56)

ˆ

Q

|Dwn|qδ + |wn|qδ dx dt ≤ C.

Taking r = q0, γ = 0, β = 1 in Lemma 2.1, (2.2) and (2.3) yield

(3.57)
N

q0
+ 1 ≥ N + 1

q
.

This implies that q0 admits the maximum and

(3.58) q0 =
mN(N + 1) + 2N

mN(N + 1) +N − 1
.

By using (2.5) in Lemma 2.1, (3.56) implies

(3.59)

ˆ T

0

(
ˆ

Ω

|wn|q0 dx
)

q

q0

dt ≤ C

ˆ

Q

|Dwn|qδ + |wn|qδ dx dt ≤ C.

Thus Lemma 3.3 is proved. �
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Lemma 3.4. Assume that f ∈ Lp(Q, δ) with 1 < p <
2m(N+2)+2
m(N+3)+2

and u0 = 0.

Then for the unique weak solution un of the problem (Pn), there exists a positive
constant C independent of n such that

(3.60) ‖|un|m‖Lq(0,T ;W 1,q
0 (Ω,δ))∩Lq̄(Q,δ)∩Lq(0,T ;Lq0 (Ω)) ≤ C,

where q, q̄ and q0 can be seen in (1.19).

Proof. Similarly to the proof of (3.13) and (3.14), we have

ess sup
τ∈(0,T )

ˆ

Ω

|Tk(wn(τ))|
m+1
m δ(x) dx+

ˆ

Q

(|DTk(wn)|2δ(x)

+ |Tk(wn)|2δ(x)) dx dt ≤ C‖f‖Lp(Q,δ)(

ˆ

Ω

|Tk(wn)|p
′

δ dx dt)
1
p′ ,

(3.61)

(3.62)

ˆ

Q

|Tk(wn)|sδ dx dt ≤ C

(

‖f‖Lp(Q,δ)

(
ˆ

Q

|Tk(wn)|p
′

δ dx dt

)
1
p′

)2− 2
q1

,

where s = m+1
m

+2− 2(m+1)
mq1

, 2 ≤ q1 <
2(N+1)
N−1

. Due to p < 2m(N+2)+2
m(N+3)+2

and q1 <
2(N+1)
N−1

,

then p′ > 2m(N+2)+2
m(N+1)

> s = m+1
m

+ 2− 2(m+1)
mq1

. Thus

(3.63)

(
ˆ

Q

|Tk(wn)|p
′

δ dx dt

)
1
p′

≤ k
p′−s

p′

(
ˆ

Q

|Tk(wn)|sδ dx dt
)

1
p′

.

Now (3.62) and (3.63) yield

ˆ

Q

|Tk(wn)|sδ(x) dx ≤ C‖f‖
2− 2

q1

Lp(Q,δ)k
2(p′−s)(q1−1)

p′q1

(
ˆ

Q

|Tk(wn)|sδ dx dt
)

2(q1−1)

p′q1

,(3.64)

Young’s inequality implies that

(3.65)

ˆ

Q

|Tk(wn)|sδ dx dt ≤ C‖f‖
2(q1−1)p′

(p′−2)q1+2

Lp(Q,δ) k
2(p′−s)(q1−1)

(p′−2)q1+2 .

By using the same proceeding as (3.16) and (3.17), we get

(3.66)

ˆ

Q

|wn|q̄1δ dx dt ≤ C,

where q̄1 <
[(m+1)q1−2]p

[(2−p)q1+2(p−1)]m
<

[m(N+1)+2]p
m(N+3−2p)

.

Let 0 < λ < 1 in (3.35), then

(3.67) ψ(s) =
1

1− λ
[(1 + |s|)1−λ − 1] sgn(s), ∀s ∈ R.

Let v = ψ(wn)ϕ1 in (P ′) and integrating it over (0, T ), by the same process as that
of (3.37) and using Hölder’s inequality, we obtain

ess sup
τ∈(0,T )

ˆ

Ω

|wn(τ)|1−λ+ 1
m δ dx+

ˆ

Q

|Dwn|2
(1 + |wn|)λ

δ dx dt

≤ C

(
ˆ

Q

(1 + |wn|)
(1−λ)p
p−1 δ dx dt

)1− 1
p

.

(3.68)
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For all 1 < q < min{2, [m(N+1)+2]p
m(N+3−2p)

}, Hölder’s inequality and (3.68) imply that

ˆ

Q

|Dwn|qδ(x) dx dt =
ˆ

Q

|Dwn|q

(1 + |wn|)
qλ

2

δ
q

2 (1 + |wn|)
qλ

2 δ
2−q

2 dx dt

≤
(
ˆ

Q

|Dwn|2
(1 + |wn|)λ

δ(x) dx dt

)
q

2
(
ˆ

Q

(1 + |wn|)
qλ

2−q δ dx dt

)
2−q

2

≤ C

(
ˆ

Ω

(1 + |wn|)
(1−λ)p
p−1 δ(x) dx dt

)
(p−1)q

2p
(
ˆ

Q

(1 + |wn|)
qλ

2−q δ dx dt

)
2−q

2

.

(3.69)

By using Lemma 2.3(i) (here α = 1, v = wn, r = 1−λ+ 1
m
, s =

(N+2−λ+ 1
m
)q

N+1
= q̄),

we obtain
ˆ

Q

|wn|q̄δ dx dt ≤ C‖wn‖
q(1−λ+ 1

m )

N+1

L∞(0,T ;L1−λ+ 1
m (Ω,δ))

‖wn‖q
Lq(0,T ;W 1,q

0 (Ω,δ))

≤ C

(
ˆ

Q

(1 + |wn|)
(1−λ)p
p−1 δ dx dt

)
(p−1)q
(N+1)p

(
ˆ

Q

|Dwn|qδ + |wn|qδ dx dt
)

.

(3.70)

From (3.66) (here let q̄1 = q) and (3.68) it follows that
ˆ

Q

|wn|q̄δ dx dt

≤ C

(
ˆ

Q

(1 + |wn|)
(1−λ)p
p−1 δ dx dt

)
(p−1)q
(N+1)p

[(
ˆ

Ω

(1 + |wn|)
(1−λ)p
p−1 δ(x) dx dt

)
(p−1)q

2p

·
(
ˆ

Q

(1 + |wn|)
qλ

2−q δ dx dt

)
2−q

2

+ 1

]

≤ C

(

1 + (

ˆ

Q

|wn|
(1−λ)p
p−1 δ dx dt)

(p−1)q
(N+1)p

+ (p−1)q
2p (

ˆ

Q

|wn|
qλ

2−q δ dx dt)
2−q

2

)

.

(3.71)

Let q̄ = (1−λ)p
p−1

= qλ

2−q
=

(N+2−λ+ 1
m
)q

N+1
. We can deduce

(3.72) λ =
(2− q)p

2p− q
< 1, q =

[m(N + 1) + 2]p

m(N + 2− p) + 1
, q̄ =

[m(N + 1) + 2]p

m(N + 3− 2p)
.

Thanks to p < 2m(N+2)+2
m(N+3)+2

, we have (p−1)q
(N+1)p

+ (p−1)q
2p

+ 2−q

2
< 1. Hence, by using Young’s

inequality, we obtain

(3.73)

ˆ

Q

|wn|q̄δ dx dt ≤ C,

ˆ

Q

|Dwn|qδ dx dt ≤ C.

The above estimate yields

(3.74)

ˆ

Q

|wn|qδ + |Dwn|qδ dx dt ≤ C.

Taking r = q0, γ = 0, β = 1 in Lemma 2.1, (2.2) and (2.3) yield

(3.75)
N

q0
+ 1 ≥ N + 1

q
.
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From this, it follows

(3.76) q0 =
[mN(N + 1) + 2N ]p

m(N + 1)(N + 2− 2p) + (N + 1− 2p)
.

Now (2.5) in Lemma 2.1 and (3.74) imply that

(3.77)

ˆ T

0

(
ˆ

Ω

|wn|q0 dx
)

q
q0

dt ≤ C

ˆ

Q

|Dwn|qδ + |wn|qδ dx dt ≤ C.

Thus we can get (3.60) by using (3.73), (3.74) and (3.77). �

Lemma 3.5. Assume that f ∈ Lp(Q, δ) with 2m(N+2)+2
m(N+3)+2

< p < N+3
2

and u0 ∈
Ld(Ω, δ) with d = m+1. Then for the unique weak solution un of the problem (Pn),
there exists a positive constant C independent of n such that

(3.78) ‖|un|m‖L2(0,T ;W 1,2
0 (Ω,δ))∩Lq̄(Q,δ)∩L2(0,T ;Lq0 (Ω)) ≤ C,

where q̄ and q0 are defined in (1.22).

Proof. Let v = wnϕ1 in (P ′). Integrating it over (0, T ), similarly to (3.13), we
obtain

ess sup
τ∈(0,T )

ˆ

Ω

|wn(τ)|
m+1
m δ dx+

ˆ

Q

|Dwn|2δ + |wn|2δ dx dt

≤ C

[

‖f‖Lp(Q,δ)

(
ˆ

Ω

|wn|p
′

δ dx dt

)
1
p′

+

ˆ

Ω

|u0|m+1δ

]

≤ C

[

(
ˆ

Ω

|wn|p
′

δ dx dt

)
1
p′

+ 1

]

.

(3.79)

Taking α = 1, v = wn, r =
m+1
m
, q = 2, s = m+1

m
+ 2− 2(m+1)

mq1
= q̄ in Lemma 2.3(ii),

we have
ˆ

Q

|wn|sδ dx dt ≤ C‖wn‖
(1− 2

q1
)(1+ 1

m
)

L∞(0,T ;L1+ 1
m (Ω,δ))

‖wn‖2L2(0,T ;W 1,2
0 (Ω,δ))

≤ C

[

(
ˆ

Ω

|wn|p
′

δ dx dt

)
1
p′

+ 1

]2− 2
q1

≤ C





(
ˆ

Ω

|wn|p
′

δ dx dt

)

2(q1−1)

q1p
′

+ 1



 ,

(3.80)

where 2 ≤ q1 <
2(N+1)
N−1

. Let s = m+1
m

+ 2− 2(m+1)
mq1

= q̄. Then we can get

(3.81) q̄ <
2m(N + 2) + 2

m(N + 1)
.

Now 2m(N+2)+2
m(N+3)+2

< p < N+3
2

impies N+3
N+1

< p′ <
2m(N+2)+2
m(N+1)

, thus we can deduce that
2(q1−1)
q1p′

< 1 and choose q̄ such that q̄ ≥ p′. By using (3.79), (3.80) and Young’s
inequality, we obtain

ˆ

Q

|wn|q̄δ dx dt ≤ C,(3.82)

ˆ

Q

|Dwn|2δ + |wn|2δ dx dt ≤ C.(3.83)
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Using Lemma 2.1 (here r = q0, q = 2, γ = 0, β = 1) again, (2.2) and (2.4) yield

(3.84)
N

q0
+ 1 >

N + 1

2
.

From this, it follows

(3.85) q0 <
2N

N − 1
.

By using (2.6) and (3.83), we get

(3.86)

ˆ T

0

(
ˆ

Ω

|wn|q0 dx
)

2
q0

dt ≤ C

ˆ

Q

|Dwn|2δ + |wn|2δ dx dt ≤ C.

From (3.82), (3.83) and (3.86), it is easy to get (3.78). �

Lemma 3.6. Assume that f ∈ Lp(Q, δ) with p > N+3
2

and u0 ∈ L∞(Ω). Then
for the unique weak solution un of the problem (Pn), there exists a positive constant
C independent of n such that

(3.87) ‖|un|m‖L2(0,T ;W 1,2
0 (Ω,δ))∩L∞(Q) ≤ C.

Proof. By Lemma 3.5, we obtain a priori estimate about ‖|un|m‖L2(0,T ;W 1,2
0 (Ω,δ)).

Here we need to estimate ‖|un|m‖L∞(Q). That is ‖wn‖L∞(Q). For any given k ≥ k0 =
‖u0‖Ω, let v = sgnwn(|wn| − k)+ϕ1 in (P ′) and integrating it over (0, τ), τ ∈ (0, T ),
we have

ˆ τ

0

ˆ

Ω

unt sgnwn(|wn| − k)+ϕ1 dx dt

+

ˆ

Qτ

DwnD(sgnwn(|wn| − k)+)ϕ1 dx dt

+

ˆ

Qτ

Dwn sgnwn(|wn| − k)+Dϕ1 dx dt

=

ˆ

Qτ

fn sgnwn(|wn| − k)+ϕ1 dx dt.

(3.88)

By calculating, we obtain

ess sup
τ∈(0,T )

ˆ

Ω

(| sgnwn(|wn(τ)| − k)+)|
m+1
m δ dx

+

ˆ

Q

|D(sgnwn(|wn| − k)+)|2δ dx dt+
ˆ

Q

| sgnwn(|wn| − k)+|2δ dx dt

≤ C

ˆ

Q

|fn|| sgnwn(|wn| − k)+|δ dx dt.

(3.89)
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Let α = 1, v = sgnwn(|wn| − k)+, r = m+1
m
, q = 2, s = m+1

m
+ 2 − 2(m+1)

mq1
in

Lemma 2.3(ii). We have
ˆ

Q

| sgnwn(|wn| − k)+|sδ dx dt

≤ C‖ sgnwn(|wn| − k)+‖
(1− 2

q1
)(1+ 1

m
)

L∞(0,T ;L1+ 1
m (Ω,δ))

‖ sgnwn(|wn| − k)+‖2L2(0,T ;W 1,2
0 (Ω,δ))

≤ C

[
ˆ

Q

|fn|| sgnwn(|wn| − k)+|δ dx dt
]2− 2

q1

≤ C

[
ˆ

Q

|f || sgnwn(|wn| − k)+|δ dx dt
]2− 2

q1

,

(3.90)

where 2 ≤ q1 <
2(N+1)
N−1

. Taking l = s

2− 2
q1

, due to q1 ≥ 2, then we have l > 1.

Furthermore, p > N+3
2

implies that we can choose 2 ≤ q1 <
2(N+1)
N−1

such that 2− 2
q1
>

p′.
Let ϕ(k) = measδ{|wn| > k} =

´

{|wn|>k}
δ dx dt. Hölder’s inequality, Young’s

inequality and the term on the right-hand side of (3.89) imply that

C(

ˆ

Q

|f ||(|wn| − k)+|δ dx dt)2−
2
q1

≤ C

(

ε

ˆ

Q

|f ||(|wn| − k)+|lδ dx dt+ ε−
1

l−1

ˆ

{|wn|>k}

|f |δ dx dt
)2− 2

q1

≤ Cε
2− 2

q1 ‖f‖
2− 2

q1

Lp(Q,δ)

(
ˆ

Q

|(|wn| − k)+|lp
′

δ dx dt

)
1
p′
(2− 2

q1
)

+ Cε
− 1

l−1
(2− 2

q1
)‖f‖

2− 2
q1

Lp(Q,δ)ϕ(k)
1
p′
(2− 2

q1
)

≤ Cε
2− 2

q1 ‖f‖
2− 2

q1

Lp(Q,δ)

ˆ

Q

|(|wn| − k)+|sδ dx dt

+ Cε
− 1

l−1
(2− 2

q1
)‖f‖

2− 2
q1

Lp(Q,δ)ϕ(k)
2− 2

q1
p′ .

(3.91)

Let ε
2− 2

q1 = 1

2(C‖f‖
2− 2

q1
Lp(Q,δ)

+1)

. Then we have

(3.92)

ˆ

Q

(|wn| − k)+|sδ dx dt ≤ 2
l

l−1C

(

C‖f‖
2− 2

q1

Lp(Q,δ) + 1

)
1

l−1

‖f‖
2− 2

q1

Lp(Q,δ)ϕ(k)
2− 2

q1
p′ .

Thus, for every h > k > 0, we can deduce that

(3.93) ϕ(h) ≤
2

l
l−1C

(

C‖f‖
2− 2

q1

Lp(Q,δ) + 1

)
1

l−1

‖f‖
2− 2

q1

Lp(Q,δ)ϕ(k)
2− 2

q1
p′

(h− k)s
.

By using Lemma 4.1 in [28], there exists a positive constant h0 depending only on
‖f‖Lp(Q,δ), ‖u0‖Ω and measδ Ω such that

(3.94) ϕ(h0) = 0.
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Hence

(3.95) ‖wn‖L∞(Q) ≤ h0.

Thus we finish the proof of Lemma 3.6. �

Lemma 3.7. Assume that f ∈ Lp(Q, δ) with p = N+3
2

and u0 ∈ L∞(Q). Then
for the unique weak solution un of the problem (Pn), there exists a positive constant
C independent of n such that

(3.96) ‖|un|m‖L2(0,T ;W 1,2
0 (Ω,δ))∩Lq̄(Q,δ)∩L2(0,T ;Lq0 (Ω)) ≤ C,

where 1 ≤ q̄ < +∞, 1 ≤ q0 < +∞.

Proof. Firstly, we obtain a priori estimate about ‖|un|m‖L2(0,T ;W 1,2
0 (Ω,δ)) by Lemma

3.5. In the following we will obtain a priori estimate about ‖|un|m‖Lq̄(Q,δ)∩L2(0,T ;Lq0 (Ω).
For any given θ > 0, let v = |wn|2θwnϕ1 in (P ′). Integrating it over (0, τ), τ ∈

(0, T ), we have

ˆ τ

0

ˆ

Ω

unt|wn|2θwnϕ1 dx dt+

ˆ

Qτ

DwnD(|wn|2θwn)ϕ1 dx dt

+

ˆ

Qτ

Dwn|wn|2θwnDϕ1 dx dt =

ˆ

Qτ

fn|wn|2θwnϕ1 dx dt.

(3.97)

Similarly to (3.13), we can deduce

ess sup
τ∈(0,T )

ˆ

Ω

|wn(τ)|2θ+1+ 1
m δ dx+

ˆ

Q

|D(|wn|θwn)|2δ + ‖wn|θwn|2δ dx dt

≤ C

(

‖f‖Lp(Q,δ)

(
ˆ

Ω

|wn|(2θ+1)p′δ dx dt

)
1
p′

+ ‖u0‖L∞(Q)

)

≤ C

(

(
ˆ

Ω

|wn|(2θ+1)p′δ dx dt

)
1
p′

+ 1

)

.

(3.98)

Taking α = 1, v = |wn|θwn, r =
2θ+1+ 1

m

θ+1
, q = 2, s =

2θ+1+ 1
m

θ+1
+ 2 − 2(2θ+1+ 1

m
)

q1(θ+1)
in

Lemma 2.3(ii), we have

ˆ

Q

||wn|θwn|sδ dx dt

≤ C‖|wn|θwn‖
(1− 2

q1
)
(2θ+1+ 1

m )

θ+1

L∞(0,T ;L
2θ+1+ 1

m
θ+1 (Ω,δ))

‖|wn|θwn‖2L2(0,T ;W 1,2
0 (Ω,δ))

≤ C

(

(
ˆ

Q

|wn|(2θ+1)p′δ dx dt

)
1
p′

+ 1

)2− 2
q1

≤ C





(
ˆ

Q

||wn|θwn|
(2θ+1)p′

θ+1 δ dx dt

)

2(q1−1)

q1p
′

+ 1



 ,

(3.99)
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where 2 ≤ q1 <
2(N+1)
N−1

. Since p = N+3
2

, we can choose q1 such that s > (2θ+1)p′

θ+1
.

Hölder’s inequality and (3.99) yield

(3.100)

ˆ

Q

|wn|(θ+1)sδ dx dt ≤ C





(
ˆ

Q

|wn|(θ+1)sδ dx dt

)

2(q1−1)

q1p
′

+ 1



 .

By virtue of 2(q1−1)
q1p′

< 1, then by using Young’s inequality, we get

(3.101)

ˆ

Q

|wn)|(θ+1)sδ(x) dx ≤ C.

Thus from (3.98) and (3.101) it follows that

(3.102)

ˆ

Q

|D(|wn|θwn)|2δ + ||wn|θwn|2δ dx dt ≤ C.

Doing the same work as that of (3.86) we obtain

ˆ T

0

(
ˆ

Ω

||wn|θwn|q3 dx
)

2
q3

dt ≤ C

ˆ

Q

|D(|wn|θwn)|2δ + |(|wn|θwn)|2δ dx dt

≤ C,

(3.103)

where q3 <
2N
N−1

.

Set q̄ = (θ+1)s, q0 = (θ+1)q3. Due to θ is an arbitrary nonegative real number,
then q̄ and q0 are two arbitrary nonegative finite real numbers. Thus Lemma 3.7 is
proved. �

4. Proofs of the main results

In this section, we will finish the proofs of Theorems 1.1–1.7. Because the proofs
of Theorems 1.2–1.7 are similar to that of Theorem 1.1, here we only give the proof
of Theorem 1.1.

Proof of Theorem 1.1. To establish the compactness in the weighted L1 space,
we need the following truncated function

(4.1) hk(s) =



















1 if |s| ≤ k,

1− s+ k if k < s ≤ k + 1,

1 + s+ k if − k − 1 ≤ s < −k,
0 if |s| > k + 1.

Let

(4.2) Hk(s) =

ˆ s

0

hk(τ) dτ, ∀s ∈ R, ∀k > 0.

If we multiply the approximate equation of the problem (Pn) by hk(un), we get
in the sense of distributions

(Hk(un))t = div(mhk(un)|un|m−1Dun)−m|un|m−1|Dun|2h′k(un) + fnhk(un).(4.3)
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Note that supp(hk) ⊆ [−k − 1, k + 1], 0 ≤ hk ≤ 1, |h′k| ≤ 1. If n > k + 1,

mhk(un)|un|m−1Dun = mhk(un)|Tk+1(un)|m−1DTk+1(un)

= hk(un)D(|Tk+1(un)|m−1Tk+1(un)),
(4.4)

m|un|m−1|Dun|2h′k(un) = m|Tk+1(un)|m−1|DTk+1(un)|2h′k(un)

=
1

m
|Tk+1(un)|1−m|D(|Tk+1(un)|m−1Tk+1(un))|2h′k(un)

≤ 1

m
(k + 1)1−m|D(|Tk+1(un)|m−1Tk+1(un))|2.

(4.5)

By Lemma 3.1 and (4.1)–(4.5), for fixed k > 0, we deduce mhk(un)|un|m−1Dun
is bounded in L2(Q, δ), and m|un|m−1|Dun|2h′k(un) is bounded in L1(Q, δ). Hence
(Hk(un))t is bounded in L2(0, T ; (W 1,2

0 (Ω, δ))∗)) +L1(Q, δ). By virtue of DHk(un) =
hk(un)Dun = hk(un)DTk+1(un) = 1

m
hk(un)D(|Tk+1(un)|m−1Tk+1(un))|Tk+1(un)|1−m,

(3.3) implies that Hk(un) is bounded in L2(0, T ;W 1,2
0 (Ω, δ)). Hence a compactness

result (see Corollary 4 in [26]) allows to conclude that Hk(un) is compact in L1(Q, δ).
Thus there exists a subsequence of {Hk(un)} (still be denoted by {Hk(un)}) such
that it also converges in measure and almost everywhere in Q.

For all σ > 0 and ε > 0, we have

measδ{|un − um| > σ} ≤ measδ{|un| > k}+measδ{|um| > k}
+measδ{|Hk(un)−Hk(um)| > σ}.(4.6)

By (3.1) in Lemma 3.1, we can choose k large enough to have

(4.7) measδ{|un| > k}+measδ{|um| > k} < ε

2
, ∀n,m.

Furthermore, for the above fixed k, we can choose a large N̄ such that

(4.8) measδ{|Hk(un)−Hk(um)| > σ} < ε

2
, ∀n,m > N̄.

Now (4.6), (4.7) and (4.8) yield

(4.9) measδ{|un − um| > σ} < ε, ∀n,m > N̄,

and (4.9) implies that {un} is a Cauchy sequence in measure in Q. Hence there exists
a measurable function u such that

(4.10) un −→ u a.e. in Q.

Now (3.1) in Lemma 3.1, (4.10) and Fatou’s lemma yield u ∈ L∞(0, T ;L1(Ω, δ)). By
(4.10) and (3.2)–(3.3) in Lemma 3.1 and Vitali’s theorem, as n→ ∞ we have

|un|m−1un −→ |u|m−1u weakly in Lq(0, T ;W 1,q
0 (Ω, δ))

∀1 ≤ q <
m(N + 1) + 2

m(N + 1) + 1
,

(4.11)

(4.12) |un|m−1un −→ |u|m−1u strongly in Lq̄(Ω, δ) ∀1 ≤ q̄ <
m(N + 1) + 2

m(N + 1)
,

|un|m−1un −→ |u|m−1u weakly in Lq(0, T ;Lq0(Ω))

∀1 ≤ q0 <
mN(N + 1) + 2N

mN(N + 1) +N − 1
.

(4.13)
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Due to 1− 2
N+1

< m < 1 and q̄ < m(N+1)+2
m(N+1)

, we can choose q̄ such that mq̄ > 1. Thus

from (4.10), (4.12) and Vitali’s theorem, we can obtain

(4.14) un −→ u strongly in Lmq̄(Ω, δ).

From (4.11)–(4.13), it follows that (1.9) holds. For any given ϕ ∈ C∞(Q̄), ϕ = 0 on
Σ, ϕ(x, T ) = 0 and taking v = ϕ in (P ′) and integrating it over (0, T ), we have

(4.15)

ˆ

Q

untϕdx dt+

ˆ

Q

D(|un|m−1un)Dϕdx dt =

ˆ

Q

fnϕdx dt.

By using integration by parts for the left-hand side of (4.15), we get

(4.16) −
ˆ

Q

unϕt dx dt−
ˆ

Q

|un|m−1un∆ϕdx dt =

ˆ

Q

fnϕdx dt+

ˆ

Ω

u0n(x)ϕ(x, 0) dx.

Let n→ ∞ in (4.16), (4.13) and (4.14) yield

(4.17) −
ˆ

Q

uϕt dx dt−
ˆ

Q

|u|m−1u∆ϕdx dt =

ˆ

Q

fϕ dx dt+

ˆ

Ω

u0(x)ϕ(x, 0) dx.

Thus we obtain u is a very weak solution to the problem (P ) in the sense of Defini-
tion 1.1. So the proof of Theorem 1.1 is finished. �
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