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Abstract. In this paper, we study the existence and regularity of very weak solutions to the
fast diffusion equations with integrable data with respect to the distance to the boundary.

1. Introduction and statement of the main results
This paper deals with the following problem
% — A(lul"Mu) = f inQ,

ot
(P) u=>0 on Y,
u(z,0) = ug in €,

where ) is a bounded open subset of RY (N > 2) with smooth boundary 9 and
T >0,Q=0Qx(0,7), X denotes the lateral surface of Q, f € L'(Q, ), ug € L*(£,4),
d(z) = distance(z, 092), 1 — NLH <m <1

If m < 1, the above problem is called the fast diffusion problem; if m > 1, it
is called the porous media problem. There are systematic survey books about the
porous media equations written by Vazquez (see [29, 30]). Lukkari has discussed the
fast diffusion equation and the porous media equation with measure data (see |22,
23]).

Recently, Diaz and Rakotoson [11] have studied the very weak solutions to linear
elliptic equations with right-hand side integrable data with respect to the distance
to the boundary and answered the question of the integrablity of the generalized
derivative raised in the unpublished manuscript by Brezis (see also [9]). Lately,
they have extended these results to semilinear elliptic equations and linear parabolic
equations (see [12] and [25]).

My main goal in this paper is to study the existence and regularity of very weak
solutions to the fast diffusion equations with integrable data with respect to the
distance to the boundary in the framework of weighted spaces by using a different
method to that of [11] and [25].

We recall the weighted Lebesgue space and weighted Sobolev space as follows
(see [1,7,14,18]): For 1 <p < 400, 1 < ¢q < +o0,

LP(Q2,6) = {u: 2 — R is Lebesgue measurable,/ |ulPé(x) dx < +oo}
Q
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which is equipped with the norm

(1) Jullisos = (/ a5 das),

LP(Q,0) ={u: @ — R is Lebesgue measurable,/ |ulPé(x) dx dt < +oo},
Q

which is equipped with the norm

(1.2) HUHLp Q,0) (/ \u\pé dxdt) s

L0, T LP(£2,6)) = {u: ) — R is Lebesgue measurable,

r :
/ (/ |u|Pd(x) dx) dt < —I—oo},
0 Q
which is equipped with the norm

(13) lull ooz 0005 = </ (/ sz d:c) dt) |

WP (Q,8) = {u € LP(Q,6) | |Du| € LP(Q,0)},
which is equipped with the norm

) ulwiras = ([ (P3G + 1DuP) do)
Q
LU0, T; WHP(Q,6)) = {u € LU(0,T; LF(Q2,6)) | |Du| € LU0, T; LP(2,6))},
which is equipped with the norm

(1.5) | Laco,rwrw (o)) = (/OT (/Q(|U|p5(55) + [Dul?é(x)) dfc)z dt) % -

We define the space W, (9, ) as the completion of C5°(Q) with respect to the above
norm. We can also define similarly the weighted Sobolev space L?(0, T VVO1 P(Q, 0)).
These weighted spaces equipped with the above norms are Banach spaces. Re-
placing (z) by 8(z)*, we can define LP(€,6%), W'P(Q,6%), Wy P(Q,6%), LI(0,T;
LP(Q,6%)), L0, T; WhP(Q, 5%)), LI(0, T; Wy P(Q, 5%)).
Definition 1.1. A measurable function u will be called a very weak solution to
the problem (P) if u € L>(0,T; L*(,9)), |u|™ € L'(Q) and it satisfies

—/ugptdzdt—/ |u|m_1uAg0dxdt:/fapdxdt—l—/uo(x)cp(x,O)dx,
Q ~ Q Q Q
Vo e C(Q), ¢ =0o0n X, ¢z, T)=0.

(1.6)

Now we state the main results of this paper.

Theorem 1.1. If f € LY(Q,6), ug € L*(€, ), then there exists a very weak solu-
tion u to problem (P) such that u € L>®(0,T; L'(Q,4)), |ul™ € L0, T; W, 9(€,48)) N
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L4(Q,5) N L0, T; L©(R)) with

m(N +1) +2 < m(N +1) +2

1 < —"Z - c T2

(1.7) =1 m(N +1)+1’ =1 m(N+1) ’
' mN(N + 1)+ 2N
1< < ,
mN(N+1)+N -1
and it satisfies
1

(1.8) |1l Lo 0,521 (,87) < CIM + 5 meass Q],
(1.9) ™ La(0,T3W 4 (,6))NLI(Q,8)NLA(0,T;L%0 (£2))

2m(qy —1) [(3m+41)g; —2(m+1)]

<C max{M(erl)tn*Z , M = 2(m+1Da; 2]

where C' is a positive constant depending only on q, ¢ and q,

(1.10) M = [[fllcr @ + lluollLi.),
AN +1)

1.11 2<q <~

(1.11) ShS TN T

which only depends on q, ¢, m and N.

Remark 1.1. Theorem 1.1 implies that if f € L'(Q,6) and uy € L*(€, ) are
replaced by f € M(Q,0) and uy € M(€,6), respectively, being the weighted Radon
measure space (see also [12]) in Theorem 1.1, the same conclusion holds.

Remark 1.2. By a weighted L' contraction estimate for the problem (P) in
Theorem 6.15 in [30], we can deduce that the very weak solution u to problem (P) is
unique in Theorem 1.1, and also get the estimate (1.8) to hold without the measure
of €2 on the right hand side.

Remark 1.3. In this paper, the lower bound 1 — NLH for m is due to the fact
lu|™ e L1(Q,d), mg > 1, in Theorem 1.1.

Theorem 1.2. If f € L'(Q, %), up € L*(,§%) with

—(2mN +2 —m) + /(2mN + 2 —m)2 + 8m(mN + 2)

D<ac<
@ 4dm

Y

then there exists a very weak solution u to the problem (P) such thatu € L>(0,T; L*(,
5)), [uf™ € La(0, T; WS, 6%)) 1 LI(Q, 6%) with

m(N + o) + 2 wr m(N + o) + 2

1.12 1<¢g< <
(1.12) 1 m(N +a) +1’ =4 m(N + «)

Furthermore, |u|™ € Li(0,T; Wy%(Q)) with

3 . 2m(N +a) +4 2[m(N +a)(1 —a)+2—a
(L18) 1= g<mindg oA m(N + ) + 2

}




364 Fengquan Li

and u satisfies

(1.14) HuHLoo(QT;Ll(Qﬁa)) < C[Ml + %meas(;aQ],
m(N+a+2)+1 m(N+a+2)
(1.15) | |u|m||Lq(O,T;Wol’q(Q,éa))ﬂLCI(Q,é&) < C'max{M, "I ey
1 m(N+a+2)+1 m(N+a+2)
(1.16) H|u|m||L¢i(0,T;Wol"7(Q)) < CM; (1 +max{ M, "V M }> ,

where C' is a positive constant depending only on q, q and qo, My = || f|1(Q,0) +
||u0||L1(Q75a).

Remark 1.4. If f € L'(Q,0%) and ug € L'(£,%) are also replaced by f €
M(Q,0%) and ug € M(Q2,%) in Theorem 1.2, the same conclusion holds.

Remark 1.5. The upper bound for ¢ in Theorem 1.2 shows that the fact that
« must be strictly smaller than

—(2mN +2 —m) + /(2mN + 2 —m)% + 8m(mN + 2)
4m

implies that o < 1.

Theorem 1.3. Let u be the very weak solution of the problem (P) given in
Theorem 1.1, f € L'(0,T; L' log L*(,9)), ug € L*log L*(Q, §), where L* log L'(, )
is the Orlicz space generated by the function |s|log(1 + |s|) with weighted function
6(z). Then |u|™ e LI(0,T; Wy, 6)) N LI(Q,8) N LU0, T; Le(Q)) with

- m(N+1)+2  _ m(N+1)+2 ~ mN(N+1)+2N
=N+ )+ T TN P aNNF )N T

Remark 1.6. Theorem 1.3 shows that a limit regularity is achieved if one

improves the regularity of the right term f and initial value.

(1.17)

Theorem 1.4. Let u be the very weak solution of the problem (P) given in
Theorem 1.1, f € L*(Q, ) with

2m(N +2) +2
1.18 1
(1.18) <p<m(N+3)+2
and ug = 0. Then |u|™ € LU0, T; Wy (Q,6)) N LI(Q,5) N LI(0,T; L®(Q)) with
mN+1)+2p _ [m(N+1)+2]p

= mN+2-p+1 17 m(N+3-2p)°
B [mN(N + 1)+ 2N]p
O N+ )N +2—2p) + (N +1—2p)
Remark 1.7. The lower bound for p in Theorem 1.4 is due to the fact that ¢
must not be smaller than 1. The upper bound for p implies ¢ < 2.

(1.19)

Theorem 1.5. Let u be the very weak solution of the problem (P) given in
Theorem 1.1, f € LP(Q,§) with

2m(N +2) +2 N+3
<p< ——
m(N +3) + 2 2

(1.20)

and ug € L4(,d) with
(1.21) d=m+1.
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Then |u|™ € L*(0,T; Wy (2, 0)) N LU(Q, ) N L*(0, T; L*(Q)) with
2m(N +2)+2 _ 2N
m(N+1) D

(1.22) T

Theorem 1.6. Let u be the very weak solution of the problem (P) given in
Theorem 1.1, f € LP(Q, ) with

N+3
2
and 1y € L>(Q). Then [u|™ € L*(0,T; Wy*(Q,8)) N L>2(Q).

Theorem 1.7. Let u be the very weak solution of the problem (P) given in
Theorem 1.1, f € LP(Q, ) with

(1.23) p>

N
(1.24) po NS

2
and ug € L=(Q). Then |u|™ € L*(0,T; W,2(€,6)) N LI(Q, ) N L*(0, T; L*(Q)) with
(1.25) 1<g< 400, 1<qgy<+o0.

Remark 1.8. Since LP(Q,0) C LI(Q,éé), the conclusion in Theorem 1.2 still

holds under the assumpations of Theorems 1.4-1.7, respectively, and o = %.

Remark 1.9. Theorem 1.7 gives the regularity result in the limit case p = %

This paper is organized as follows. In Section 2, some preliminary results and
the existence of approximate solutions will be given; In Section 3, we will give a
priori estimates about the approximate solutions; the proofs of the main results of
this paper will be finished in Section 4.

2. Some preliminary results and existence of approximate solutions

Before we prove Theorems 1.1-1.7, we need some preliminary results. Firstly, let
us recall the weighted Orlicz spaces (see [1, 18]).

Definition 2.1. Assume that ® is a N-function and p is an integrable and al-
most everywhere positive function in 2. The weighted Orlicz class Lg(€2, p) (resp. the
weighted Orlicz space Lo (S, p)) is defined as the set of (equivalence class of ) measur-
able functions v on Q such that [, ®(v(x))p(x)dz < +oo (resp. [, (ID(U(;))p(x) dr <
+oo for some A > 0). Weighted Orlicz space Lo (S, p) is a Banach space under the
norm

(2.1) loll oo = inf {A -0 /Qcp <@) o(z) dz < 1} ,

and L4(€2, p) is a convex subset of Lg (€2, p).
Remark 2.1. In this paper, we take ®(s) = |s|log(1 + |s|) and p(x) = §(z).

We also recall a weighted Sobolev space imbedding theorem.

Lemma 2.1. [17, Theorem 8.7 and Theorem 8.9] Let 1 < ¢ < r < 400,  and
v are two real numbers. If

1

— >
N_

(2.2)

Q| =
S
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and
N+ N+
23 Bra-1, 1z L0
N N
(2.4) Bog_1, Ntv . NFF
r q

then the weighted Sobolev space W %(Q, 6%) is a continuous imbedding to the weighted
Lebesgue space L"(£2,97), that is,

(2.5) Wy 9(€,6%) © L™(Q,67).

If the inequalities in (2.2) and (2.3) are strict, then W,*(Q, 67) is a compact imbed-
ding to L"(£2,87), that is,

(2.6) W, (€, 6%) OO L7, 67).
To obtain a priori estimates of solutions, we need also the following lemmas.

From Lemma A.2. in [4] and Lemma 2.4 in [5], we have the following result.

Lemma 2.2. Let 1 < g < ¢ < 400. Suppose that there exists a positive
constants M independent of k such that

(2.7) measga { |u| > k} = psa (k) = / §“drdt < Mk, Yk > 0.
{lul>k}

Then

q
d—q q

(2.8) / |u|?0% dz dt < (g) ' Ai(meas(;a Q)@ Ma.
0 a) d—q
Proof. Given \ > 0, we have
/ |u]?0% dx dt < X\ measse Q + / |u|?0% dx dt.
Q {lu[>A}

However, by using Hardy-Littlewood inequality, we have
+o0 +o0
/ |u|90% dx dt = — / kT dpse (k) = M pga (X) + q/ k9 e (k) dke
{lu|>A} A A

+o0 45
< NN+ Mg / pelmd g < L ppya-a,
A

q—4q
Hence )
/ |u|96° d dt < M measge Q + —— MAT1,
Q q—4q
Minimization of the right-hand side of the above inequality in A and setting A =
(g)%(meas(ga Q)_%M%, we get (2.8). O

The following lemma is a revised version of Proposition 3.1 in [13].

Lemma 2.3. Assume that v € L>(0,T; L"(€,6%)) N L0, T; Wy %(Q, 6%)) with
r>1,1<qg< N+ a, where « > 0. Then v € L*(Q, %) and there exists a postive
constant C' depending only on r, q, o and 0S) such that
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(i) ifa#q—l,thens:%and

/ o|"6% da dt < C|Jo]| T
Q

L2 (0,T;L7(Q,6%)) lv ||quTW1‘I(Qaa))
(ii) ifa:q—l,thens:r—l—q——and

)r
L°°(0TL7" (£2,6%)) || ||Lq (0,T;Wy 9 (Q,82))”

/ |v[?0 dx dt < C||v||

where ¢ < ¢y < %.
Proof. (i) Let s = 0r + (1 — 0)q1, where ¢; = E\J[\:;a)q’ 0 <0 < 1. By using (2.2)

and (2.3) in Lemma 2.1, for a.e. t € (0,7) we have
[0z @5 < Cllv)lwpag,s0),

where C' is a postive constant independent of ¢. Holder’s inequality implies that

/|u\85adxdt /W” 0 ghet (=0 g

/ (/ |v’"5°‘dx) (/ |v|qlaadx) "
< sup. (/Q |v(t)|’"6°‘dx) / (/ |v|q15°‘d9§) "

< Ol | WIS
0

Let ¢1(1 —0) = ¢. Then 0§ = gL~ and s = qu}%:j”. Thus we obtain

/Q [v]*6% dx dt < C||U||£V;?0TU oVl (0,T5Wy(2,62))”

(ii)) As @ = ¢ — 1, by using (2.2) and (2.3) in Lemma 2.1, for a.e. t € (0,T) we
have

o)z @5 < Cllv)lwrag,se)

where ¢; < %. Processing the proof of (i), we only take § = 21 then
s=r+q— L and
/ lv[?0% dx dt < C||v ||LOO(OTLT Q,60)) v ||Lq OTWE@.52) O

Lemma 2.4. [11, Lemma 2| There is a function p; € W2?(Q) N W,*(Q) and
A1 > 0 for all p € (1, +00) satisfying

—Ap; = M1 in Q,
w1 =0 on 01},
and there are two positive constants c¢; and cy such that

(2.9) a10(z) < p1(x) < ed(z), Vo e Q.



368 Fengquan Li

For any given n > 0, let

(2.10) To(s) = {n if|s| < n,

ns if |s| > n.
Is|

In order to discuss problem (P), we need consider the approximate problem

% - A(|un‘m_1un) = fu n@Q,

(Pn) Uy =0 on X,
Un(l’, O) = Uon in Q,

where f, = T,(f), won = Tn(ug), T}, is defined in (2.10).

Lemma 2.5. For any given n > 0, the approximate problem (F,) has a unique
weak solution u, € C([0,T]; L*(Q)) N L*(0,T; Wy*(Q)) N L®(Q) such that u,; €
L2(0,T; W12(Q)), [tn|™  u, € L2(0,T; Wy *(Q)) and satisfies
) / Ungv + D (|| ) Do da = / favdz, Yo e W,?(Q), ae te(0,T),

Q Q
Un(.flf, 0) = Uon in Q

Proof. To prove the existence and uniqueness of a weak solution to the approxi-
mate problem (F,), we consider first the following approximate problem (P,):

% — d1v(m|Tk((|unk| — %)4_ + %) sgnunk\m_1Vunk) = fn in Q,
(Pnk) Unk = 0 on 2,
Unk(l', O) = Uon n Q,
where k > 1, T}, can be seen in (2.10).
Applying the results in [21], for every k we find that the problem (FP,;) has
a unique weak solution wu,, € C([0,T]; L*(Q)) N L2(0,T; Wy*(Q2)) such that u,,; €
L0, T;W=12(Q)). By the regularity theory in [20], we also deduce that w,; €
1%(Q).
Firstly, we will obtain an estimate to ||un||z(Q)- Let vnp = € "unp. Then the
problem (P,;) can be written as

% — div(m| Ty ((|e' v —%)++%) SEN Vpke| ™ IV Uu) + U = €78, in Q,
(Prg) 4§ ok =0 on %,
Unk(2,0) = ugy, in €,

Setting ko = max(||uon|| L), || foll (@), We can take (v, — ko)+ as a test function
of the problem (P!, ), and we have

/ Unget(Unk — ko) da dt
Q
1 1
+ m/ \Tk((|etvnk\ — %)4. -+ E) sgnvnk\m_lenkD(vnk — ]{30)+ dx dt
(2.11) Q
+/ Uk (Vnk, — ko)1 da dt
Q

= / e_tfn(vnk - kO)—l— dx dt.
Q
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By calculating it, we obtain

1 1
/ Unkt (Unk — ko) d dt = 5 /(vnk(T) — ko)? da dt — /(uOn — ko) dzdt
Q 2 /o 2 Jo
(2.12) 1
=5 /('Unk(T) — ko)2 dxdt >0
2 Q
an
m/ | Te((le"vnk| — ) )sgn Onge|™ ™ DU D (s, — ko) 4 dex dt
(2.13)

1 1
= m/ Ty ((| e vpr| — —)+ + k) sg Vpi|™ | D (Un — ko )+ |* d dt > 0.
Now (2.11), (2.12) and (2.13) imply that
(2.14) / Unk (Vnk — ko) 4 dx dt < / fr(Vnk — ko) da dt.
Q Q

Adding — fQ ko(vnk — ko)+ dx dt to the both sides of (2.13) we get

(2.15) /(vnk — k)2 dwdt < /(fn — ko) (Vi — ko) dx dt < 0.
Q Q

Thus we can deduce

(2.16) Uk < ko, a.e. in Q.

Replacing v, by —v,x in the above proof, we can get

(2.17) Uk < ko, a.e. in Q.

Hence we have

(2.18) |vnk] < ko, a.e. in Q.

Thus we get

(2.19) k]l (@) < " ko

Taking k > eTky + 1 in problem (P,;), then problem (P,;,) can be written as
gt — div(m|((Junk| = £)+ + £) sgn k| Vung) = fo 0 Q,

(Pr) Upg =0 on X,
Unk (2, O) = Ugp in Q.

Let 9 (s fo (€] — )sgn§|m_1 d¢. Using ¥(uy,i) as a test function of the

problem (P".), we have

/unkt¢(unk) d:)sdt+m/| [tnr| — )++ LY sgn | Dty D) () dav dt
(2.20) "¢

:/fn¢(unk)dxdt.
Q

However,

(2.21) /Q Uit (i) d dt = /Q /Ounkm / / b(E |uz:7!":1)>
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m/ (|t = £)+ + 1) 580 Unge| ™ Dty DY (uny) dw dit
Q
(2.22) :m/ | D (upy)|? da dt

Q

_ m/ (el = L5 + 1) 5000 P Dt e
Q

1 m
[ At it < 1l e gy meas Q
Q

(2.23) R
e m
< |l () meas Q.
Now (2.20)—(2.23) yield
luoall ity (Tko)m
2 () 0
(2.24) /Q|D¢(unk)| dedt < 2 + 1) — | full oo () meas Q.
Hence,
/\Dunk|2dxdt

/| |[Unie| — )sgnunk|2”"b_2|Dunk|2

(2.25) |(Jttnse] = )4 + 1) S Ui |* > d dt

< (ftnill (@) + 12" /Q D ()

IIUOnII?;Ié) (T ko)
m2(m+1)

S (eT]{Zo + 1)2—2m (

Inequality (2.24) and the first equation of (P/,) imply that
(226) ||unkt||L2(0 T.W71,2 < C

[ fnll (@ meas@) :

where C' is a positive constant depending only on ||u0n|| @) |[fallLe(@), m, T and
meas Q).

Thus there exists a subsequence (still denoted by {u,;}) and a function w,, €
L>(Q) N L*(0,T; W, () such that as k goes to infinity,

(2.27) Upj, — Uy, weakly in L*(0,T; Wy *(Q)),

(2.28) Upgt — Upy weakly in L2(0,T; W 12(Q)),
(2.29) Upk — U, Weak™ in L(Q).

Using (2.27), (2.28) and the compactness arguments in [25], we have
(2.30) Unp — Uy, strongly in L*(Q)

and

(2.31) Uon = Uni(0) — 1, (0) strongly in L*(€2).
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The fact (2.29) yields
(2.32) Upk — Uy, a.€. in Q,

and (2.31) yields
1
(2.33) Y (Ung) — E|un|m_1un a.e. in Q.

Hence we can deduce that
1
(2.34) Dy(upg) — ED(\un\m_lun) weakly in L*(Q).

Let k go to infinity in the problem (P,;) and by using (2.27)-(2.29), (2.31) and (2.34),
we can obtain the existence of a solution to the problem (F,). The uniqueness of a
solution to the problem (P,) is easily proved. Thus Lemma 2.5 is completed. O

3. A priori estimates about the approximate problem (P,)
In this section, by using the techniques introduced in |7] and [8] (see also [3]), we

obtain a priori estimates on u,, as follows.

Lemma 3.1. Assume that f € L'(Q,0), ugp € L'(Q,0). Then every weak
solution u,, of the problem (P,) satisfies

(31) ||un||Loo(0,T;L1(Q,5)) S C[M + % measgs Q],
(3'2> H |u"|m HLq(O,T;Wol’q(Q,é))ﬂLfT(Q,cS)ﬂLq(O,T;qu(Q))
{ 2m(q1—1) [(3m+1)g; —2(m+1)] }
S CmaX M (m+1)q1 -2 , M 2(m+1Da;—2]
(3'3> H|Tk(un)|m_1Tk(Un)||L2(0,T;W0172(Q75)) < C]fma

where C' is a positive constant depending only on q, q and qo, M = | f|L1 (0.8 +
lluollr(.6), 45 @, qo and ¢y are seen in (1.7) and (1.11), respectively.

Proof. Let 1(s) = min{|s|, 1} sgns,Vs € R. Then we get

2
s > if [s| <1
U(s) = de =4 2 L=
()= [ wieras {M_% i,
and |s| — 1 < W(s) < [s|. Taking v = ¥(u,)p1 in (P') and integrating it over
(0,7), 7 € (0,T), where ¢, denotes the first eigenfunction associated to the Laplacian
operator which is defined in Lemma 2.4, we have

(3.4) /OT/Qunt@b(un)apl+D(|un|m_1un)D(¢(un)gpl)d:):dt: /OT/an@b(un)apl dx dt.

In the following we will estimate every term in (3.4):

/Or/ﬂumﬂﬂ(un)@l dmdt:/Q\II(UTL(T))%dx—/Q‘I’(u()n)goldx

(3.5)
> [ ()l = )rda = [ funliorda,
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| Dl ) D)o ot
= [ [ 1ol D) P dodt > 0,
/ /D ™11 )t (1) Depy i it

[un ™
(3.7) :/ /D%D/
|un ™™ Lu
/ /Agol/ s| ms)dsdxdt > 0.

Now (3.4)—(3.7) yield

68 [ -pedi= [ uled< [ [ 1nlpdede

Thus we get

(3.6)

s 17Tms) ds dx dt

(3.9) [tn | e o,520@.8) < CUlfullLr @) + ltonll 21,6 + 5 meass Q).

Let |u,|™ 'u, = w,. For a given k > 0, taking v = Tj(w,)¢; in (P') and
integrating it over (0,7), 7 € (0,7, we have

/ Une Ty (W) 1 dx dt + | DTy (wy,) |21 da dt + Dw, Ty (w,) Dy dz dt
(3.10) '@ Q- Q-

fnTr(wy) ey dx dt.
QT

By using integration by parts for the third term on the left side of (3.10) and
Lemma 2.4, we have

Dw, Ti(w,) Dy dz = —/ Aapl/ Ti(s)dzx dt
, 0

A
> 2L [ o | Ty(wy)|? de dt.
2 Jo,

(3.11) @

We also get

/ Ut Tie (w1 dx dt

(3.12) /gol/ i (|s™ )dsdx—/gol/ Ti(|s|™'s) ds dx

m+1
Ty (wy, mprdr —k nlp1 dx.
> g [ D) e de =k [ e do

From (3.10)—(3.12) it follows that

ess sup / Ti(wa(7))

7€(0,T)

m—+1

o o(x) da

(3.13) + /Q (DT (w,) 26 () + |T(w,)[26(x)) da dt

< Ck([| fllzrv @) + lluollzr.s))
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where C' is a positive constant independent of k.
By using Lemma 2.3(ii) (here a = 1, v = Tp(wy,), 7 = ™=, ¢ = 2, 5 =

mil 42— (m+1)) we obtain
mqi

(3.14) / T (w,) |26 d dt < C(kM)* o
Q
where
2(N +1)
3.15 2 < _
(3.15) T
Thus we can deduce that
(3.16) meass{|w,| > k} = / ddrdt < CM 2
{Jwn|>k}
By using Lemma 2.2 (here a =1, u =w,, ¢ = mTH — miql, q = q, M is replaced
by CM>~ ) it follows that
i q i—q _2.3q 2m(q; ~1)q
(3.17) / |w, |96 dx dt < ( )5 a ~(meass Q) @ (CM* q21)5 = O, Mz,
Q 7 q—1q
where g < § = ™ — miql < %, C) = (g)%q%q(measa Q)7 Ci.
For any glven h >0, (3.13) yields
h
(3.18) meass{| DTy (w,,)| > 5} < CMkh™2.

From (3.16) and (3.18) it follows that
meass{| Dw,| > h}
< meass{|Dw,, — DTy (w,)| > 2} + meass{| DT}, (w,)| > 4}

(3.19) < meass{|wn| > k;} + meas; {| DTy (w,)| > 2}

mqy m(qq—2) 2mqy

Minimizing (3.19) in k and setting k = (™ — 2 )@niha=2 \J @nila =2 h @miDa =2
q1
we get

2[(m+1)q; —2]

m(a ~2)
(3.20) meass{|Dw,| > h} < CM @t 2 Ly~ a2

A 2(mAD)q—2]

By using Lemma 2.2 (here o« = 1, u = Dw,, ¢ = @mig 2> M is replaced by

mlg=2) g
CM e a=2"") it follows that

(3t Dy —2(mDlg

(3.21) / | Dw,|% dxdt < CM 2miha =2

2[(m+1)q1 —2] m(N+1)+2
(2m+1)q1—2 m(N+1)+1"

For any given 1 < g < % and 1 < g < %, (3.15) shows that we
2[(m+1)q1—2]

can choose ¢, which only depends on ¢, ¢, m and N, such that ¢ < emi D=2

where ¢ <

q<
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mil _ miql hold. Furthermore, (3.17) and (3.21) also show that there is a positive

constant depending only ¢, ¢, N and meass () such that

1

= 2m(qy —1)
(3.22) (/ |wp, |10 dx dt) <CM [CEsyrne
Q

and

% 2m(q1 —1) [((Bm+1)q1 —2(m+1)]
(3.23) | Dw,|%0 + |w,|?0dr ) < Cmaxq MFDa=2 ) 20niDa—2]
Q

Nq 2[(m+1)q1 2]
N+1-q’ q< 2m+1)g1 -2

Taking r = ¢ =
(3.23) we have

T o= i
(/ (/ |w,, | dx) ’ dt) <C </ | Dw,, |96 + |wn\q5d:cdt)
(3.24) 0o \Va Q

2m(qy—1) [((Bm+1)qy —2(m+1)]
< C'max { M mFha-2 , M2l D=2 .

=0, =1 in Lemma 2.1, and by using

For any given k > 0, let v = | Ty (u,)|™ ' T)(u,)p1 in (P') and integrating it over
(0,7), 7 €(0,T), we have

/ / o T (1) [T (11 ) 0
0 Q

+ D(|un|m_1un)D(|Tk(un)|m_1Tk(un))g01 dx dt
Qr

(3.25)
N / D ™11 | T (1) ™ T (1) Depy i it
Qr

Sl T ()| T (u,) e .
Qr

Using the same argument as that of (3.13), we get
ess sup / T (wn (7)) T16() dx
7€(0,T) JQ
3.26 . .
G20t | DT T (e + ) Ti) o)

< CE™(Iflzv@.e) + lluollr,s)) = CME™,

where C' is a positive constant independent of k and n.
Thus the proof of Lemma 3.1 is completed. O

Lemma 3.2. Assume that f € LY(Q,d6%), uy € L'(Q,0%) with 0 < a <
—(2mN+2—m)+\/(2mN+2—m)2+8m(mN+2)

(P,) satisfies

Then every weak solution u, of the problem

(327) ||unHLoo(0,T;L1(Q75a)) < C[Ml + %meas(;a Q],
m(]zf;(wrf);l m5%+a)+2%
m(N+a)+ m(N+a)+
(3.28)  lunl™l oot a@s0nnLai@eey < € max {M1 » My } )
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(3.29)  |||un|™ <CM% 1+ M”ﬁﬁiﬁ? MZE%iZTf%
: nl - llLao,mwli max 1 y ;

where C' is a positive constant depending only on q, ¢ and qo, My = || f|1(Q,50) +
|uol| 21 (0,609, ¢, @ and G are seen in (1.12) and (1.13).

Proof. The proof of this lemma is similar to that of Lemma 3.1, here we only
simply revise the proof of Lemma 3.1. In the process of the proof of Lemma 3.1, we
only need to replace ¢; by ¢f, d by 6. Since

(3.30) Apt = ala = 1)@i 7?1 Dy |* + apd ™ Ay,
then as a < 1 (3.7) and (3.11) are replaced by the following inequalities:

//D\un\m Ly V() D d it

‘u ‘m 1

/ /D@?D/ s\ o s) ds dx dt
‘u ‘m 1y
/ /A(pl/ \ ms) ds dadt
-2 y [l
ati=a) [ [ |D<P1|/ (s
0

‘un|m 1
+a)\1/ /gpl/ s| ms)dsddt >0,

//DwnTk(wn)Dap1 dx dt = //Ago‘f/ Ty(s)dsdxdt
0 Jo 0
Wn, )\
> a(l —a) / / 2|Dg01\2/ Ti(s )dsdxdt—i—g/ /gol|Tk w,,)|* dx dt
A
a 1/ /<)01|T,.C wy)|? da dt.

Now (3.9), (3.13), (3.22) and (2.23) are changed into

177”15) ds dx dt

(331) ||un||Loo(0TL1(Q 5a)) (anHLl (Q,60) + Huon||L1(Q o) +1 5 Ineasga Q)

ess sup / | Ty (wn (T
(3.32) 7€(0.T)

< k([ fller@aey + l[woll o1 @.50);

)| S dx+/(|DTk(wn)|25°‘ + [Ty (w,,) 0% d dt
Q

B l— m(N+a+2)
(3.33) < / |, |76° da dt) < C M
Q

and

m(N+a+2)+1 m(N+a+2)
Y

1
(3.34) (/ | Dw,|96% + |w,|16® da dt) g < Cmax {Ml ONERIET [ v+
Q

m(N+a)+2 1

m(N+a)+2
m(N+a)+1"

<4< e and My = | flloyqee) + [luollr@.em)-

where 1 < ¢ <
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For a given A > 0, set

S dt
If A > 1, then
(3.36) P(s) = ! 11— ! —|sgn(s), Vs € R.
A—1 (14 |s])r1
Let v = ¥ (w,)¢$ in (P') and integrating it over (0,7"), we obtain
2
(3.37) /Q %5%) du dt < CM,.

For all 1 < ¢ < 2, using Hélder’s inequality we obtain

i Dw,|? D e
/|Dwn|qudt:/L‘@M(H—mnnw ¢ du dt
Q Q (

2—4q

3.38 < ————0%dzdt 1 n|)2-10 2=d dx dt
0 < ([ pliraasa) ([t ’

2—qg

2

< OM; (1 +/ lw, |77 62 d:cdt)
Q

Taking r = 2‘% =q, 7= —2%&, f =« in Lemma 2.1, (2.2), (2.3) and (2.4) yield

N —.L N
(3.39) S L
e q
Now A\ > 1, 2‘% = ¢ and (3.39) imply that
- 2q . o)
A4 —— d 2(1——1.
(3.40) qg< | and ¢ < ( q)

From (3.34) and (3.38) it follows that

) : ) m(N+a+2)+1 m(N+a+2) Y 9\ ‘25
([puae) <o (1 moe {2 Y
Q

(2—9)q

m(N+a+2)+1 m(N+a+2) 24
CM? 1+ max{ M, "N+ e+

m(N+a+2)+1 m(N+a+2)
C'M; (1 + max {M1 NSRRI+ }) )

Now ¢ < % and (3.40) yield

(N+
2m(N + o) +4 2[m(N+a)(1—a)+2—a]}
2m(N + a) + 3’ m(N + «a) +2 '

(3.41)

[NIES

IN

N[

IN

(3.42) l<g< min{

- - —m)2
To ensure 1 < (j, this needs 0 < a < (2mN+2 m)+\/(2TZn]\1f+2 m)24+8m(mN+2)

Thus the proof Lemma 3.2 is completed. O
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Lemma 3.3. Assume that f € L'(0,T; L'log L'(,9)), ug € L'log L'(Q,4).
Then for the unique weak solution w, of the problem (P,), there exists a positive
constant C' independent of n such that

(3.43) [[unl™ ||Lq(07T;W01’q(Qﬁ))mL@(Qﬁ)qu(07T;L¢I0 @) = C,

where q,q and qo can be seen in (1.17).
Proof. Let A =1 in (3.35). Then

(3.44) ¥(s) =In(1 + |s|)sgn(s), Vs € R.

Taking v = ¥(w,)p; in (P’) and integrating it over (0,7'), similarly to (3.37), we
obtain

D 2
/' Onl” 502 dr it
o 1+ |wy]

(3.45)
gc{/ |fn|1n(1+|wn|)5d:)3dt+/|u0|(1+1n(1+|u0|))5dx .
Q Q

By using the inequality ab < aln(1 + a) + €°, Va,b > 0, we get

/\fn|ln(1+\wn\)5da:dt

Q

g/|fn|ln(1+\fn|)5dxdt+/(1+\wn|)5dxdt

(3.46) 9 “

§/Q|f|ln(1—|—|f|)5d3:dt+/Q(1+|wn|)5d1’dt

§/|f\ln(1—|—|f\)5dxdt+ </(1+|Wn|)%5d$dt> (meas; Q).
Q Q

By virtue of f € LY(Q,9), uy € L'(€, ), by using of the estimates (3.1) and
(3.2) in Lemma 3.1, we have

(3.47) /(1+ |wp|) 7 6 da dt < 217’"/ 1+ |up|ddz dt < C,
Q Q
(3.48) / |wy,|"d dx dt < C,
Q
where 1 < r < %, the constant C' depending only on || f||£1(0.s), [[woll 1.6

and meass €2, meas;s ().
Thus it follows from (3.45)—(3.47) that

| Dw,|”

(3.49)

d(z)dedt < C.
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m(N+1)+2

Foralll<g¢g< ™ (VD)

, Holder’s inequality and (3.49) imply that

D n q —q
/|Dwn|q5(:c)dxdt:/ D" 544y ) 26%5 dw
Q Q (1+[wal)2
2—gq

(3.50) < ( | D[ 5(z) dxdt)% (/Q(1+ |wn|)2qq§d9§dt>T

o 1+ |wy]
2—q

§C<1+/\wn|2‘qf15d:cdt) .
Q

By using Lemma 2.3(i) (herea =1, v =w,, r ==, s = % =q) and (3.1),
(3.48) and (3.50), we obtain

q m(NJrl)
/|wn|5d:vdt<0||wn|| 0L (©5) || n||Lq0TW1q(Qé))

(3.51) 2=
§C<1+</ |wn|2qq<5d:cdt> )
Q
Let
m(N+1)+1]¢g ¢
(3:52) mN+1) T2
Then we get
N+1)4+2 N+1)+2
(3.53) m(N +1) + _ m(N+1)+

TN+ +1U T T+
From (3.50)—(3.52) and Young’s inequality, it follows

(3.54) / lw,|%6dxdt < C,
Q
(3.55) / | Dw,|%0 dx dt < C.
Q
Combining it to (3.48) (r = ¢), we obtain
(3.56) / D6 + w90 dzdt < C.
Q
Taking r = qp, v =10, =1 in Lemma 2.1, (2.2) and (2.3) yield
N N +1
(3.57) A
do q
This implies that ¢y admits the maximum and

mN(N + 1) + 2N
mN(N+1)+N -1
By using (2.5) in Lemma 2.1, (3 56) implies

(3.59) / (/ |w,, | dx) dt < C’/ | Dwy, |0 + |w, |70 dedt < C.

Thus Lemma 3.3 is proved. O

(3.58) Q0 =
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. 2m(N+2)+2
Lemma 3.4. Assume that f € LP(Q,d) with 1 < p < ﬁ

Then for the unique weak solution w, of the problem (P,), there exists a positive
constant C' independent of n such that

and ug = 0.

(3.60) I |u"|mHLq(O,T;WOl’q(Q,&))ﬂL‘i(Qﬁ)ﬂLq(07T;L‘10(Q)) <G,

where q,q and qo can be seen in (1.19).
Proof. Similarly to the proof of (3.13) and (3.14), we have

ess sup / | Ty (wi (T |mm+15( ) dx +/(|DTk(wn)|25(1’)
7€(0,T)

(3.61)

L
P’

4 | Th (wy,) 26 (0 ) dx dt < C||fllzeq,s) /|Tk W, |p5dzdt)

1\ 2%
(3.62) / ‘Tk(wn)‘sédx dt < C (HfHLP(Qﬁ) (/ ‘Tk(wn)‘p’édx dt) ) ,
Q Q

m m N m(N N
where s = r—(rtl —l—)2 — 2(m;’11) 2< 1 < 2; +1) . Due top < % and ¢ < 2(N_+11),
2m(N+2)+2 m+1 2(m+1)
then p/ > W > 8§ = + 2 — p—— Thus

L
Y

Y e

(3.63) (/Q |Tk(wn)|¥”5dg;dt) < KV

Now (3.62) and (3.63) yield

</ | T (wy,)] sédxdt)
2(q1—1)

20" =s)(q p'q
@00 [ iTutwe5tx) do < UG 4 ([ mgwradrar) T

Young’s inequality implies that

7(2(‘112)1)12 2(p' —s)(a1 1)
(3.65) \Tk wy)[*dda dt < C||flI T on T k Eeea
By using the same proceedlng as (3.16) and (3.17), we get
(3.66) / (|8 dardt < C,
Q
where §; < [(m+Dqi=2lp - [m(N+1)+2p

[(2—p)q1+2(p—1)]m m(N+3—2p)

Let 0 < A < 1in (3.35), then
1
(3.67) P(s) = m[(l +[s|)'™* — 1] sgn(s), Vs € R.

Let v = ¢(w,)p; in (P') and integrating it over (0,7"), by the same process as that
of (3.37) and using Holder’s inequality, we obtain

Duw,|?
ess sup /|wn i A+m5d$—|—/$5dﬂ?dt

r€(0,T) wn|)A

sc(4u+mm

(3.68)

1-1
p—1 5dxdt) .
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For all 1 < ¢ < min{2, %} Hoélder’s inequality and (3.68) imply that

D q
/|Dwn|q5(z)dajdt:/w (14 |wa))® > 572" du dt
Q Q (14 |wn])*

o= (/Q %5(‘”’ dm)g (/Q<1+ |wn|>zq—25dxdt)7

(p—1)q 2—q
q 2
SC(/(1+|wn|) = "5(x )d:cdt) </(1+|wn\)2i15dxdt)
Q Q
By using Lemma 2.3(i) (herea = 1, v = w,,, r = 1=+, % =q),
we obtain
a(1-A 4L )
- N+1
[w, |76 d dt < C”w"”m(o}y - H wal|7, OTWI@,5)
(3.70)

(p*l
<C </(1 + |wn|) = 5d:vdt) (/ | Dw, |96 + |wn|q5d1’dt>
Q

From (3.66) (here let ¢, = ¢) and (3.68) it follows that

/|wn|q5d1’dt
gC(/(1+|wn|)pl 5d:)3dt) {(/(1+|wn|)w §(z )da:dt)
Q Q

2—q

: (/Q(l + \wn\)%édxdt)z + 1}

SC(l—}— /|wn| p— 1 5d1’dt)(1\’+1)p+( 2! /|wn|2 q(;dl’dt) )

(p—1)g
2

(3.71)

Letq:(lp_fl)pzzq—)‘—% We can deduce
2— N+1)+2 N4+1)+2
(3.72) A q>p<1, g= (N +1) + ]P’ qz[m( +1)+2p
Zp—q m(N +2—p)+1 m(N + 3 — 2p)
2m(N+2)+2

we have £=1¢ 4 (p 1)q + 2 =4 < 1. Hence, by using Young’s

Thanks to p < MNT3)2 (N+1)p

inequality, we obtain

(3.73) / w960 dx dt < C, / | Dw,|?6 dxdt < C.
Q Q
The above estimate yields
(3.74) / |wy |96 + | Dw, |96 de dt < C.
Q
Taking r = qp, v =0, =1 in Lemma 2.1, (2.2) and (2.3) yield

N N+1

(3.75) R

qo q



The fast diffusion equation with integrable data with respect to the distance to the boundary 381

From this, it follows

ImN(N + 1)+ 2N|p
m(N+1)(N+2—2p)+ (N +1-2p)
Now (2.5) in Lemma 2.1 and (3.74) imply that

T %
(3.77) / </ |, |0 d:c) dt < C/ | Dw, |6 + |w,|96 dz dt < C.
0 Q Q

(3.76) do =

Thus we can get (3.60) by using (3.73), (3.74) and (3.77). O
Lemma 3.5. Assume that f € LP(Q,J) with % <p< M and ug €

LY, 6) with d = m+ 1. Then for the unique weak solution u,, of the prob]em (P),
there exists a positive constant C' independent of n such that

(3.78) ||‘un‘mHL2(07T;W01’2(Q,é))ﬂL‘?(Q,é)ﬂL2(07T;L‘10(Q)) <,
where ¢ and qy are defined in (1.22).

Proof. Let v = wyyy in (P'). Integrating it over (0,7), similarly to (3.13), we
obtain

m—+1

m 5dx+/ | Dw,, |26 + |wy|?0 dx dt
Q

ess sup / |wn(T)
7€(0,T) JQ

(3.79) < C | Ifller@.0) (/Q |wn|p’5 dx dt) / |ug |m+15]
<C (/ wn [P0 da dt) T4
Q

Taking a =1, v =w,, r= m—“ qg=2, s= m+1+2 % = ¢ in Lemma 2.3(ii),
we have

/ |w,|?0 dx dt < C|wy,
Q

P
Loo(o,T;LH%(Q,a)) Wnllz20,mwi2(@.0))

(3.80)

S
7

<C [( |wn\p5d:cdt) +1

2(q1—1)
(/ |wn|P’5d:cdt) B ,
Q

where 2 < ¢; < (N+1) Let s = m+1 49— Amtl) G- Then we can get

S

maqy
2m(N +2) + 2
(3.81) m (N++)1;L
m
Now % <p< % impies %—ﬁ’ <p < %, thus we can deduce that

22=D) < 1 and choose  such that § > p/. By using (3.79), (3.80) and Young’s

. ap . K
inequality, we obtain

(3.82) / |w, |70 dz dt < C,
Q

(3.83) / | Dw, |26 + |wy|?0 dv dt < C.
Q
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Using Lemma 2.1 (here r = qo, ¢ =2, 7 =10, § = 1) again, (2.2) and (2.4) yield

N N+1
3.84 —+1>—".
(3.84) o 2
From this, it follows
2N
(3.85) qo < N1

By using (2.6) and (3.83), we get

T m
(3.86) / (/ |w,, | % dx) dt < 0/ | D, |*6 4 |wy|?0 de dt < C.
0 Q Q

From (3.82), (3.83) and (3.86), it is easy to get (3.78). O

Lemma 3.6. Assume that f € LP(Q,0) with p > Y32 and uy € L*(Q). Then
for the unique weak solution u,, of the problem (P,), there exists a positive constant
C independent of n such that

(3.87) Heenl™ Nl 20 w2 = @) < €

Proof. By Lemma 3.5, we obtain a priori estimate about || |un|m||L2(0’T;W01,z(Q75)).
Here we need to estimate |||uy,|™| roo(qg). That is ||wy|| re(g). For any given k > ky =
||woll, let v = sgnw, (|w,| — k)11 in (P') and integrating it over (0,7), 7 € (0,7,
we have

/ / Unt SEN wn(|wn| - k)-i—@l dx dt
0 Q

+ Dw,, D(sgnwy,(|wy,| — k)4 )1 do dt
QT

(3.88)
+/ Dw,, sgn w, (|w,| — k)+ Dy da dt
Q-

:/ fasgnw, (|w,| — k)11 dx dt.
QT

By calculating, we obtain

m-41

m 0 dr

ess sup / (1 s wn(Jua(7)] — k)4)

7€(0,T)

(3.89) +/ \D(sgnwn(\wn\—k)+)|26d:cdt+/ | sgnwn (|wn] — k)4 |28 dx dt
Q Q

< c/ | fol | sgn w,(Jwn| — &) |0 da dt.
Q
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2(m+1) -

Let o = 1, v = sgnwn(|wn| — k)4, v = mT-Hv q=2 5= mTH+2_ mar
Lemma 2.3(ii). We have
/ [ senwy (|wn] — k)4 %6 da dt
Q
(1-2)0+ D)
< Cllsgounfal = -0 sgmun(lnl = B B s,
(3.90) 22
<C |:/ | ful sgnwy (Jw,| — k)+|5d$dt:|
Q
2
a1
<o [ itsrontio - bidsaa] .
Q
2(N+1)
where 2 < ¢ < =—7. Taking | = _2, due to ¢ > 2, then we have [ > 1.
N+3 2(N+1

Furthermore, p > implies that we can choose 2< 1 < such that 2 — = - >

/

P
Let (k) = meass{|w,| > k} = f{\wn|>k}5d5£ dt. Holder’s inequality, Young’s
inequality and the term on the right-hand side of (3.89) imply that

el /Q 11l — k)18 d dty>

22
§C<5/ 1 £11(Jwnl —k)+|l5dxdt+e—ﬁ/ |f|5dxdt)
Q {lwnl>k}

L-2)
_2 2
(3.91) < Cea ||fHLP(Q6 (/ |(|wn| — k) \lp5dxdt)
2

+ TR fll L <k>ﬁ<2‘ﬁ’

_2
SC{:‘2 qufHLP(Qé /| |wn| S(Sd:(}dt

ql
+Cemin r|f||Lp <k:> Ty

92
Let e @ = ———15——. Then we have

2C1 fll (b5 +1)

(3.92) /Q(\wn\ k) [ drdt <27 1c(cy|f||L,,(Q5 +1) y|f||Lp(Q5 olk) 7.

Thus, for every h > k > 0, we can deduce that

2
22
l a1

250 (Ol 1) Wl 7
= by

By using Lemma 4.1 in [28], there exists a positive constant hy depending only on
I fllzr0,6): |10l and meass € such that

(3.94) p(ho) =

(3.93) p(h) <
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Hence
Thus we finish the proof of Lemma 3.6. O

Lemma 3.7. Assume that f € LP(Q,8) with p = %53 and up € L>*(Q). Then
for the unique weak solution u,, of the problem (P,), there exists a positive constant
C independent of n such that

(3.96) H|u"|mHL2(O,T;Wol’z(Q,&))mL@(Q,é)mLQ(O,T;qu(Q)) <C,

where 1 < g < 400, 1 < gy < +00.

Proof. Firstly, we obtain a priori estimate about [||u,|™| .2 7 w2, by Lemma
3.5. In the following we will obtain a priori estimate about || |un| ||Lq(Q YNL2(0,T5L90 () -

For any given 6 > 0, let v = |w,|*w,p; in (P'). Integrating it over (0,7), T €
(0,T), we have

/ / Ut [ W, | wpy de dit + Dw, D(|w,|*w,) ey dx dt
(3.97) “ Q-

+ Dw, |wy|*w, Dy d dt = flwn |*wyq de dt.
Q- Qr

Similarly to (3.13), we can deduce

ess sup /|w |29+1+m5d1'—|—/ | D(|w,|®w,) |25 + ||wn|®w,|?6 dz dt

7€(0,T)

398) =C (HfHLPQé (/ |wh |(29+1p5d$dt) + HUOHLOO(Q)>
<C <</ \wn\(z(’“)p’édxdt)p +1> .
Q

. 20414~ 20+1+L 2(20+14+L) .
Taking a = 1, v = |w,|’w,, r = s 4= 2, 8= 5o +2_W in
Lemma 2.3(ii), we have

/ || wn|Pw,|*8 da dt
Q
( _i)(29+1+%)
< Ollfw"wal ™ " )7 wal"wa I}

2041+ 5

L2(0,T;Wy 7 (€2,6))
Lo(0,T;L7 0FL  (Q,5))

(3.99)

1

22
» g
<C ((/ \wn\@@“)p’édxdt) +1>
Q

2(q1—1)

(/Hwn\ wn\(eifp&dxdt) "o,
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where 2 < ¢ < % Since p = %, we can choose ¢; such that s > (2904;11);; "
Hoélder’s inequality and (3.99) yield
2(q1 —1)
q1p’
(3.100) / |w,| V28 da dt < C < / 1w, | V6 da dt) R
Q Q

By virtue of % < 1, then by using Young’s inequality, we get

(3.101) / lw,)| V36 (z) do < C.
Q
Thus from (3.98) and (3.101) it follows that
(3.102) / |D(|wn|®wn) 26 + ||wn|®w,|?0 de dt < C.
Q

Doing the same work as that of (3.86) we obtain

T W
0 q3 0 2 0 2
(3.103) /0 (/Q”wn| W dl") dt < C/Q|D(|wn| wn) |26 4 |(|wa|"w, ) |26 da dt
<,

where q3 < %
Set ¢ = (0+1)s, qo = (#+1)gs. Due to 6 is an arbitrary nonegative real number,
then ¢ and ¢q are two arbitrary nonegative finite real numbers. Thus Lemma 3.7 is

proved. O]

4. Proofs of the main results

In this section, we will finish the proofs of Theorems 1.1-1.7. Because the proofs
of Theorems 1.2-1.7 are similar to that of Theorem 1.1, here we only give the proof
of Theorem 1.1.

Proof of Theorem 1.1. To establish the compactness in the weighted L' space,
we need the following truncated function

1 if |s| <k,
_ i <
(4.1) i (s) = 1—s+k Tfk:<s_k+1,
1+s+k if —k—1<s< —k,
0 if |s| > k+ 1.
Let
(4.2) Hk(s):/ hi(T)dr, Vs € R, Yk > 0.
0

If we multiply the approximate equation of the problem (P,) by hx(u,), we get
in the sense of distributions

(4.3)  (Hi(up))e = div(mi () [tn]™ Dty — m|un]™ | Dun|2H, (wn) + fohi(tn).
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Note that supp(hy) C [k — 1,k+ 1], 0 < h <1, |h}| < 1. Ifn>k+1,
mhk(un)‘un‘m_lDun = mhk(un)|Tk+1(un)|m_1DTk+1(un>
= e () D(| Thogr (un) | Toa (u),

mftn| ™ Dt * i (wn) = m| Tsr () [~ DT () i ()

(4.5) = [ Tia ) DT )| ™ i ()P )

(4.4)

1 —-m m—
< —(k+ 1) D( T (un) ™ T () )

By Lemma 3.1 and (4.1)—(4.5), for fixed k& > 0, we deduce mhy(uy,)|u,|™ " Du,
is bounded in L?(Q,9), and m|u,|™ | Du,|*h},(u,) is bounded in L'(Q,d). Hence
(H(uy)); is bounded in L2(0, T; (W, *(,6))*)) + LY(Q, 8). By virtue of DHj(u,) =
T (tn) Dty = () DTsr () = 5P (ttn) D (| T (1) " T (1)) | T () [,
(3.3) implies that Hj(u,) is bounded in L(0,T; Wy(,6)). Hence a compactness
result (see Corollary 4 in [26]) allows to conclude that Hy(u,) is compact in L'(Q, §).
Thus there exists a subsequence of {H(u,)} (still be denoted by {Hj(u,)}) such
that it also converges in measure and almost everywhere in Q.

For all 0 > 0 and € > 0, we have
(46) meass{|u, — uy,| > o} < meass{|u,| > k} + meass{|u,| > k}
' + meass{|Hg(un) — Hp(um)| > o}

By (3.1) in Lemma 3.1, we can choose k large enough to have
(4.7) meass{|u,| > k} + meass{|un,| > k} < %, Vn, m.

Furthermore, for the above fixed k, we can choose a large N such that
(4.8) meass{ | Hy (1) — Hy(un)| > 0} < g Vn,m > N.

Now (4.6), (4.7) and (4.8) yield
(4.9) meass{|u, — un| >0} <e, Vn,m > N,

and (4.9) implies that {u,} is a Cauchy sequence in measure in (). Hence there exists
a measurable function u such that

(4.10) U, — u a.e. in Q.

Now (3.1) in Lemma 3.1, (4.10) and Fatou’s lemma yield u € L>(0,T; L*(£,)). By
(4.10) and (3.2)—(3.3) in Lemma 3.1 and Vitali’s theorem, as n — oo we have

|t | ™ Y1ty — Ju|™ru weakly in L9(0, T; Wy (9, 6))

4.11 N +1 2
(4.11) vi<qemMVAD T2
m(N+1)+1

_ N +1 2

(412)  Junl™ "up —> Ju|™ " u strongly in LU(Q, 6) V1 < g < %

|| ™y, — Ju™ tu weakly in L9(0, T; L(9))
(4.13) mN(N +1)+2N
V1<q < .
=S NN+ D)+ N -1




The fast diffusion equation with integrable data with respect to the distance to the boundary 387

Due to 1 — NLH <m<landqg< %, we can choose ¢ such that mg > 1. Thus

from (4.10), (4.12) and Vitali’s theorem, we can obtain
(4.14) u, — u strongly in L™(,§).

From (4.11)—(4.13), it follows that (1.9) holds. For any given ¢ € C*(Q), ¢ =0 on
Y, ¢(x,T) =0 and taking v = ¢ in (P’) and integrating it over (0,7"), we have

(4.15) /untgpdatdt+/D(|un|m_1un)Dg0dxdt:/fngpd:zdt.
Q Q Q

By using integration by parts for the left-hand side of (4.15), we get

(4.16) — / oy da it — / ™ iy A d it — / Fopda dt+ / ton(2) 0 (x, 0) dz.
Q Q Q Q

Let n — oo in (4.16), (4.13) and (4.14) yield
(4.17) —/ wpy dz dt —/ lu|" M ulp dr dt = / fodxdt + / up(z)p(x,0) dx.
Q Q Q Q

Thus we obtain u is a very weak solution to the problem (P) in the sense of Defini-
tion 1.1. So the proof of Theorem 1.1 is finished. O
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