
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 513–526

MODIFIED LENGTH SPECTRUM METRIC ON
THE TEICHMÜLLER SPACE OF A RIEMANN

SURFACE WITH BOUNDARY

Jun Hu and Francisco G. Jimenez-Lopez

Brooklyn College of CUNY, Department of Mathematics
Brooklyn, NY 11210, U.S.A.; junhu@brooklyn.cuny.edu

and Graduate Center of CUNY, Ph.D. Program in Mathematics
365 Fifth Avenue, New York, NY 10016, U.S.A.; JHu1@gc.cuny.edu

CUNY Graduate Center, Department of Mathematics
365 Fifth Avenue, New York, NY 10016, U.S.A.; fjimenez_lopez@gc.cuny.edu

Abstract. Let S0 be a bordered Riemann surface of finite type, and let T (S0) (resp. TR(S0))

be the Teichmüller space (resp. reduced Teichmüller space) of S0. The length spectrum function

defines a metric on TR(S0) but not on T (S0). In this paper, we introduce a modified length spectrum

function that does define a metric on T (S0). Then we show that if two points of T (S0) are close in

the Teichmüller metric then they are close in the modified length spectrum metric, but the converse

is not true. We also prove that T (S0) is not complete under this modified length spectrum metric.

1. Introduction

Let S0 be a Riemann surface. A marked Riemann surface is a pair (S, f), where
f : S0 → S is a quasiconformal mapping. Two pairs (S1, f1) and (S2, f2) are equivalent
if there exists a conformal mapping c : S1 → S2 such that c ◦ f1 is homotopic to f2.
The reduced Teichmüller space TR(S0) is the set of the equivalence classes [S, f ].
Furthermore, c ◦ f1 is homotopic to f2 relative to boundary if c ◦ f1 agrees with
f2 on the boundary and there is a homotopy between them such that it takes the
same image at every point on the boundary when the other variable of the homotopy
changes. The set of the equivalence classes [S, f ] under such a homotopy is called
the Teichmüller space T (S0). Clearly, if S0 has no boundary, then TR(S0) = T (S0).

The Teichmüller metric on TR(S0) (resp. T (S0)) is defined by

dT ([S1, f1], [S2, f2]) = logK(f),

where f is an extremal quasiconformal mapping in the homotopy class (resp. the
homotopy class relative to boundary) of f2 ◦ f−1

1 and K(f) represents the maximal
dilation of f .

By comparing hyperbolic lengths of closed curves and their images, another met-
ric, called the length spectrum metric, is defined on reduced Teichmüller spaces. Let
S be a Riemann surface and Σ′

S a collection of nontrivial closed curves on S such that
none of them is homotopic to a puncture and no two of them are homotopic to each
other. We assume that Σ′

S is maximal in the sense that every nontrivial closed curve
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on S that is not homotopic to a puncture is homotopic to an element of Σ′

S. For any
closed curve γ on S, let lS(γ) denote the length of the geodesic in the homotopy class
of γ with respect to the hyperbolic metric. The length spectrum metric on TR(S0)
is defined by

dL([S1, f1], [S2, f2]) = log sup
γ∈Σ′

S1

{
lS2(f2 ◦ f−1

1 (γ))

lS1(γ)
,

lS1(γ)

lS2(f2 ◦ f−1
1 (γ))

}
.

This metric was introduced and studied by Sorvali [9] in 1972. In 1975, Sorvali [10]
proved that the two metrics dT and dL are metrically equivalent on the Teichmüller
space of a torus and posed a question as to whether or not this is true on the Teichmül-
ler space of an arbitrary Riemann surface. In 1986, Li [5] showed that the two metrics
induce the same topology on the Teichmüller spaces of compact Riemann surfaces.
In 1999, Liu [7] generalized Li’s result to the Teichmüller spaces of Riemann surfaces
of finite topological type. Then in 2003, Li [6] gave a negative answer to Sorvali’s
question. In the same year, Shiga [8] proved that if S0 is a Riemann surface of infinite
topological type admitting a pants decomposition that is both upper-bounded and
lower-bounded, then these two metrics define the same topology on TR(S0). In the
same paper, he also provided an example of a surface S0 of infinite topological type
such that on TR(S0), dT and dL are not topologically equivalent.

When a Riemann surface S0 has boundary, TR(S0) 6= T (S0). In this case, dL does
not define a metric on T (S0) since it does not separate points. For if f : S0 → S0 is
given by a Dehn twist along a boundary geodesic β, i.e., β is a geodesic homotopic
to some boundary component of S0, then dT ([S0, f ], [S0, id]) > 0 in T (S0). Thus
[S0, f ] 6= [S0, id] in T (S0). However, since there is no closed geodesic crossing β,
the length of every closed geodesic γ is not changed under the Dehn twist and then
dL([S0, f ], [S0, id]) = 0.

Assume that S0 has a boundary. In this paper, we first introduce a modified
length spectrum that does define a metric on T (S0). Then we study properties of
this new metric and its relationship with the Teichmüller metric on T (S0) when S0

is of finite topological type.
Let S be a Riemann surface with boundary and Σ′′

S a collection of arcs connecting
boundary components of S such that none of them is homotopic to a boundary
segment relative to endpoints and no two of them are homotopic to each other relative
to endpoints. We assume that Σ′′

S is maximal in the sense that every arc connecting
boundary components of S that is not homotopic to a boundary segment relative
to endpoints is homotopic to an element of Σ′′

S relative to endpoints. For any arc γ
joining two boundary components, there exists a unique geodesic arc α homotopic
to γ relative to endpoints. Let β1 and β2 be the two closed geodesics homotopic to
the boundary components containing the endpoints of α (possibly β1 = β2), namely,
the boundary geodesics of the corresponding boundary components. If β1 6= β2, then
α crosses each of them exactly once; if β1 = β2, then α crosses β1 exactly twice,
probably at the same point. Let lS(γ) be the length of the geodesic segment of α
between β1 and β2. We define the modified length spectrum on T (S0) by

dML([S1, f1], [S2, f2]) = log sup
γ∈ΣS1

{
lS2(f2 ◦ f−1

1 (γ))

lS1(γ)
,

lS1(γ)

lS2(f2 ◦ f−1
1 (γ))

}
,

where ΣS0 = Σ′

S0

⋃
Σ′′

S0
.
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In this paper, we first prove the following:

Theorem 1. Assume that S0 is a Riemann surface with boundary. Then the
modified length spectrum function dML defines a metric on T (S0).

Then we assume that S0 is a Riemann surface of type (g,m, k), where g, m
and k are the genus, the number of punctures and the number of ideal boundaries,
respectively, with k > 0 and 6g−6+m+3k > 0. Under these assumptions, we show
the following results.

Theorem 2. The identity map

id : (T (S0), dT ) → (T (S0), dML)

is continuous, but the inverse map is not.

Corollary 1. The topologies induced by dML and dT on T (S0) are not equivalent.

Theorem 3. The metric space (T (S0), dML) is not complete.

2. Modified length spectrum

In this section, we prove Theorem 1. Notice that by using the definition, it is easy
to verify that dML is nonnegative and symmetric, and satisfies the triangle inequality.
The main work is to show that it separates points. We first introduce some notation.

(1) Let Lx,y denote the geodesic in the unit disk D or the upper half-plane H

with respect to the hyperbolic metric that connects two points x and y on
the boundary of D or H.

(2) If a geodesic L intersects two geodesics L1 and L2, then l(L;L1, L2) denotes
the length, in the hyperbolic metric, of the segment of L between L1 and L2.

Proposition 1. Let L1 and L2 be two disjoint geodesics in H without any
common endpoint and let Lx0,y0 be their common orthogonal. Then l(Lx0,y;L1, L2) >
l(Lx0,y0;L1, L2) for any geodesic Lx0,y crossing L1 and L2 with y0 6= y. Moreover, for
any given value l0 > l(Lx0,y0;L1, L2) there exist exactly two geodesics Lx0,y1 and
Lx0,y2 crossing L1 and L2 such that l(Lx0,y1;L1, L2) = l(Lx0,y2;L1, L2) = l0. These
geodesics are contained in different connected components of H \ Lx0,y0.

Proof. Without loss of generality, we may assume that Lx0,y0 = L0,∞, L1 = L−1,1,
L2 = L−b,b for some b > 1. Let c be a positive number with 2c > b. Then the
intersection points of L0,2c with L1 and L2 are the solutions of the following systems
respectively: {

x2 + y2 = 1,

(x− c)2 + y2 = c2,

and {
x2 + y2 = b2,

(x− c)2 + y2 = c2.

Solving these systems, we see that the x-coordinates of the intersection points of L0,2c

with L1 and L2 are given by 1/2c and b2/2c respectively. Now we parameterize the
segment of L0,2c between L1 and L2 by the equation

γ0,2c(t) = t+ i
√

c2 − (t− c)2 = t+ i
√
2ct− t2, t ∈ [1/2c, b2/2c].
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Then

l(L0,2c;L1, L2) =

ˆ
b2

2c

1
2c

|γ′

0,2c(t)|
Im(γ0,2c(t))

dt =

ˆ
b2

2c

1
2c

1√
2ct− t2

√
1 +

(c− t)2

2ct− t2
dt

=

ˆ b2

2c

1
2c

c

(2c− t)t
dt = ln b+

1

2
ln

4c2 − 1

4c2 − b2
.

Let

h(c) = l(L0,2c;L1, L2) = ln b+
1

2
ln

4c2 − 1

4c2 − b2
.

The derivative of h(c) is given by

h′(c) =
4c

4c2 − 1
− 4c

4c2 − b2
.

Since 2c > b and b > 1, h′(c) < 0. It follows that h is a strictly decreasing function
of c as soon as c > b/2 > 1/2, which implies that the length decreases as c goes to
∞. In fact, h(∞) = ln b = l(L0,∞;L1, L2).

Similarly, for c < 0 with 2c < −b, g(c) = h(−c) is the length of γ0,2c. Since
g′(c) = −h′(−c) > 0, it follows that for c < −b/2, g is an strictly increasing function
of c with g(−∞) = ln b = l(L;L0,∞, L2). �

Now we prove that dML separates points. Given any two points [S1, f1] and [S2, f2]
in T (S0), we use the same symbols to denote their equivalent classes in TR(S0). Then

dL([S1, f1], [S2, f2]) ≤ dML([S1, f1], [S2, f2]).

Suppose that dML([S1, f1], [S2, f2]) = 0. Then dL([S1, f1], [S2, f2]) = 0. Since dL is
a metric in TR(S0), it follows that f2 ◦ f−1

1 is homotopic to a conformal mapping
c : S1 → S2. We need to prove that f = f2 ◦ f−1

1 is homotopic to c relative to
boundary.

The following is a classical theorem which can be found in [4].

Theorem 4. Let S1 and S2 be two hyperbolic Riemann surfaces and let fi : S1 →
S2, i = 1, 2, be two quasiconformal mappings. Assume that the Fuchsian group G1

representing S1 is non-elementary. Then

(1) f1 is homotopic to f2 if and only if they can be lifted to mappings of H which
agree on the limit set of G1; and

(2) f1 is homotopic to f2 relative to boundary if and only if they can be lifted to

mappings of H which agree on R̂.

Given a Riemann surface S with boundary, let G be the group uniformizing S.
The universal covering π : D → int(S) extends to a covering π : D\Λ(G) → S, where
Λ(G) is the limiting set of G. Then a quasiconformal mapping f from S to S lifts
to a mapping F : D \ Λ(G) → D \ Λ(G), which extends to a homeomorphism of D.
In this paper, in order to avoid repeating the details of the maps π and F on the
boundary of D, we say in brief that π : D → S is a universal covering map for S and
F : D → D is a lifting of f .

We continue to show that dML separates points in T (S0). Following the notation
introduced in this section and using the previous theorem, we let F : H → H and
C : H → H be liftings of f and c respectively that agree on the limit set Λ of the
Fuchsian group G1 uniformazing S1. Clearly, F◦C−1 maps each connected component
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of S1 \ Λ onto itself. It remains to show F ◦ C−1 is the identity on each connected
component. Let L be a lifting of a boundary geodesic β of S1. Then one of the arcs
bounded by the endpoints of L on S

1 is a connected component of S1 \ Λ and each
connected component is bounded by the endpoints of a lifting of a boundary geodesic
of S1.

Let L1 and L2 be two different liftings of a boundary geodesic β of S1, and
let Lx0,y0 be their common perpendicular. The mapping C, being conformal, maps
Lx0,y0 to the common perpendicular between C(L1) and C(L2). By assumption,
lS2(f(γ)) = lS1(γ) for every γ ∈ Σ′′

S0
. On the other hand, since c is an isometry, we

must have lS1(γ) = lS2(c(γ)) for every γ ∈ Σ′′

S0
. It follows that

l(LF (x0),F (y0);C(L1), C(L2)) = l(Lx0,y0;L1, L2) = l(LC(x0),C(y0);C(L1), C(L2)).

Since the common perpendicular segment is the unique segment of the smallest length
among all segments connecting two geodesics, it follows that F (x0) = C(x0) and
F (y0) = C(y0).

Let Ii be the interval on the real line bounded by the endpoints of Li. It projects
to the component of the ideal boundary of S0 homotopic to β. Assume x0 ∈ I1 and
y0 ∈ I2. For any point x ∈ I2 \ {y0}, consider the geodesic Lx0,x. Then

l(LF (x0),F (x);C(L1), C(L2)) = l(Lx0,x;L1, L2) = l(LC(x0),C(x);C(L1), C(L2)).

It follows from Proposition 1 that F (x) = C(x). This argument can be applied to

any point x ∈ R̂ that is not in the limit set Λ of G1. Thus both maps agree on
the whole boundary of H. It follows from Theorem 4 that their projections to the
surfaces are homotopic to each other modulo boundary. Thus, dML separates points
in T (S0) and then Theorem 1 follows.

3. Proofs of main results

The following is a well known result due to Wolpert (see [1]).

Lemma 1. Let S1 and S2 be two homeomorphic hyperbolic Riemann surfaces.
If f : S1 → S2 is a quasiconformal mapping, then

K(f) ≥ lS2(f(γ))

lS1(γ)
for any γ ∈ Σ′

S1
.

As an immediate consequence we obtain that for any two points τ1, τ2 ∈ TR(S0),
dL(τ1, τ2) ≤ dT (τ1, τ2). It follows that the identity map

id : (TR(S0), dT ) → (TR(S0), dL)

is continuous. Theorem 2 is an analogy of the previous statement to T (S0) under the
Teichmüller metric dT and the modified length spectrum dML. Before proving this
theorem, we introduce some lemmas.

Lemma 2. Let La,b, a < b, be a geodesic in H and I a closed interval contained
in (a, b). Assume that {Lan,bn}, b < an < bn, is a sequence of geodesics in H such
that the hyperbolic distance between Lan,bn and La,b is bounded below by some ǫ > 0
for every n. Then

inf
x∈I,yn∈(an,bn)

l(Lx,yn ;La,b, Lan,bn) → ∞ as n → ∞

provided that an, bn → b as n → ∞.
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Proof. For each n, we use the Möbius transformation

Tn(z) =
z − b

z − a

bn − a

bn − b

to map La,b and Lan,bn to L∞,0 and LTn(an),1 respectively. By the assumptions, the
distance between L∞,0 and LTn(an),1 is bounded below by some ǫ > 0. Then there
exists r > 0 such that Tn(an) ≥ r for every n. For any x ∈ I and yn ∈ (an, bn), we
have

l(Lx,yn ;La,b, Lan,bn) = l(LTn(x),Tn(yn);L∞,0, LTn(an),1) ≥ l(LTn(x),Tn(yn);L∞,0, Lr,1).

Since Tn(x) → −∞ uniformly for x ∈ I as n → ∞, it follows that

inf
x∈I,yn∈(an,bn)

l(LTn(x),Tn(yn);L∞,0, Lr,1) → ∞

as n → ∞. �

Let x and y be two distinct points on the unit circle S
1. Denote by ⌈x, y⌉ the

circular arc on S
1 connecting x to y in counterclockwise direction.

For any d > 0, choose b = b(d) ∈ S
1 such that 0 < arg(b) < π/2 and the

hyperbolic distance between L−i,i and Lb,b is d. We call Lb,b the d-standard geodesic.
Now we assume that a positive number s is sufficiently small (depending on b(d)).
Let Is = ⌈xs, ys⌉ ⊆ ⌈i,−i⌉ and Js,b = ⌈zs, ws⌉ ⊆ ⌈b, b⌉ be the arcs on S

1 such that

the length of each of the arcs ⌈i, xs⌉, ⌈ys,−i⌉, ⌈b, zs⌉, and ⌈ws, b⌉ is equal to s.

Lemma 3. Assume that 0 < d0 < d1. For any D > d1, there exists s0 > 0 such
that for any d0 ≤ d ≤ d1, if l(Lp,q;L−i,i, Lb(d),b(d)) ≤ D, then p ∈ Is0 and q ∈ Js0,b(d).

Proof. Let D > d1. For any d ∈ [d0, d1], there exists a maximal s, denoted by
s(d), such that if l(Lp,q;L−i,i, Lb(d),b(d)) ≤ D then p ∈ Is and q ∈ Js,b(d). The function

d 7→ s(d) is a continuous function defined on the compact interval [d0, d1]. Then
s0 = mind∈[d0,d1] s(d) satisfies the conclusion of the lemma. �

Lemma 4. Assume that 0 < d0 < d1 and also assume that s0 is a positive
number small enough (only depending on d1). Then for any ǫ > 0, there exists δ > 0
depending on d0, d1, s0 and ǫ such that

(1) for every d ∈ [d0, d1],
(2) for every x, y, z, w ∈ S

1,
(3) for every p1, p2 ∈ Is0, and
(4) for every q1, q2 ∈ Js0,b(d),

if each of the numbers |p1 − p2|, |q1 − q2|, |x − i|, |y + i|, |z − b(d)| and |w − b(d)| is
less than δ, then ∣∣∣∣∣log

l(Lp1,q1;L−i,i, Lb(d),b(d))

l(Lp2,q2;Lx,y, Lz,w)

∣∣∣∣∣ < ǫ.

Proof. Suppose the lemma is false. Then there exists ǫ > 0 such that for every
δn = 1/n, there exist

(1) dn ∈ [d0, d1],

(2) xn, yn, zn, wn ∈ S
1 with |xn − i|, |yn + i|, |zn − b(dn)| and |w − b(dn)| < 1/n,

(3) p
(n)
1 , p

(n)
2 ∈ Is0 with |p(n)1 − p

(n)
2 | < 1/n, and

(4) q
(n)
1 , q

(n)
2 ∈ Js0,b(dn) with |q(n)1 − q

(n)
2 | < 1/n
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such that

(3.1)

∣∣∣∣∣log
l(L

p
(n)
1 ,q

(n)
1
;L−i,i, Lb(dn),b(dn)

)

l(L
p
(n)
2 ,q

(n)
2
;Lxn,yn, Lzn,wn

)

∣∣∣∣∣ ≥ ǫ.

We may assume, by passing to subsequences, that

(1) dn → d(0), which implies b(dn) → b(d(0));

(2) xn → i, yn → −i, zn → b(d(0)), wn → b(d(0)); and

(3) p
(n)
1 → p

(0)
1 , q

(n)
1 → q

(0)
1 and thus p

(n)
2 → p

(0)
1 , q

(n)
2 → q

(0)
1 .

Since p
(n)
1 ∈ Is0 and q

(n)
1 ∈ Js0,b(dn), it follows that p

(0)
1 and q

(0)
1 are contained in the

interior of ⌈i,−i⌉ and ⌈b(d(0)), b(d(0))⌉ respectively. Then we can choose n sufficiently
large so that ∣∣∣∣∣log

l(L
p
(n)
1 ,q

(n)
1
;L−i,i, Lb(dn),b(dn)

)

l(L
p
(0)
1 ,q

(0)
1
;L−i,i, Lb(d(0)),b(d(0))

)

∣∣∣∣∣ < ǫ/2

and ∣∣∣∣∣log
l(L

p
(n)
2 ,q

(n)
2
;Lxn,yn, Lzn,wn

)

l(L
p
(0)
1 ,q

(0)
1
;L−i,i, Lb(d(0)),b(d(0))

)

∣∣∣∣∣ < ǫ/2.

Combining both inequalities, we obtain
∣∣∣∣∣log

l(L
p
(n)
1 ,q

(n)
1
;L−i,i, Lb(dn),b(dn)

)

l(L
p
(n)
2 ,q

(n)
2
;Lxn,yn, Lzn,wn

)

∣∣∣∣∣ < ǫ

for n sufficiently large. This is a contradiction to the inequality (3.1). �

For the rest of this paper, we consider Riemann surfaces S of type (g,m, k),
where g, m and k are the genus, the number of punctures and the number of ideal
boundaries, respectively, with k > 0 and 6g − 6 +m+ 3k > 0. Let Sd be the double
of S. Then Sd is of type (2g + k − 1, 2m, 0) and the boundary curves of S become
closed geodesics on Sd. The intrinsic metric on S is defined to be the restriction to S
of the hyperbolic metric on Sd. The Nielsen kernel S̃ of S is the Riemann surface of
the same type obtained by removing from S the k funnels formed by the boundary
geodesics and the ideal boundary of S. The surface S is called the Nielsen extension

of S̃ and one of them is uniquely determined by the other. For more details about
the Nielsen kernel of a Riemann surface, the reader is referred to [2].

Bers [2] proved the following result.

Lemma 5. The intrinsic metric on S̃ is equal to the restriction to S̃ of the
hyperbolic metric on S.

Before we prove our theorems, we prepare a couple of more lemmas.

Lemma 6. For any curve γ ∈ Σ′′

S ,

(3.2)
lS̃d(γ̃d)

2
≤ lS(γ) ≤

lS̃d(γ̃d)

2
+ 2M,

where γ̃ is the restriction of γ to S̃, γ̃d is the double of γ̃, and

M = max{lS(β) : β is a boundary geodesic in S}.
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Proof. For any curve α in S̃d, let l̃S̃d(α) denote the length of the curve α in

the hyperbolic metric on S̃d. Let γ be an arc in Σ′′

S ; without loss of generality

we may assume that it is a geodesic arc. By Lemma 5, l̃S̃d(γ̃) = lS(γ). Since

l̃S̃d(γ̃) = l̃S̃d(γ̃d)/2 ≥ lS̃d(γ̃d)/2, the left-hand side inequality follows.
Recall that the geodesic arc γ either crosses two distinct boundary geodesics

exactly once or one exactly twice. Let β1, β2 ∈ Σ′

S be the ones crossed by γ at the
points p1 and p2 respectively. If β1 = β2, then p1 and p2 belong to the same geodesic
boundary and in this case p1 may be equal to p2. Let β be the closed geodesic on

S̃d in the homotopy class of γ̃d. Then β crosses β1 and β2 in a similar fashion as γ.
Denote these two crossing points by q1 and q2 respectively. Let β ′

i be one of the two
segments of βi joining pi to qi, i = 1, 2. Then

lS(γ) = l̃S̃d(γ̃) ≤ l̃S̃d(β
′

1) + l̃S̃d(β ∩ S̃) + l̃S̃d(β
′

2) = l̃S̃d(β
′

1) +
1
2
l̃S̃d(β) + l̃S̃d(β

′

2)

≤ S̃d(β1) +
1
2
l̃S̃d(β) + lS̃d(β2) ≤ 1

2
l̃S̃d(β) + 2M = 1

2
lS̃d(γ̃

d) + 2M,

where the second equality follows from the fact that β is homotopic to γ̃d, which is
symmetric with respect to the geodesics on S̃d coming from the boundary geodesics
of S. The right-hand inequality of (3.2) now follows. �

Lemma 7. Let fn : S0 → Sn, n = 1, 2, · · · , be a sequence of quasiconformal
mappings such that K(fn) → 1 as n → ∞. Then there exists a sequence of quasi-
conformal mappings hn : S0 → Sn such that (i) if n is sufficiently large, then hn is
homotopic to fn relative to boundary and hn preserves the Nielsen kernel of Sn, i.e.,

hn(S̃0) = S̃n, and (ii) K(hn) → 1 as n → ∞.

Proof. For each n = 0, 1, 2, · · · , let Gn be the group uniformizing Sn, let πn : D →
Sn be the universal covering map, and let Fn : D → D be a lifting of fn normalized
to fix three points. Then K(Fn) → 1 and Fn converges uniformly to the identity
map.

Let D0 ⊆ D be a Dirichlet fundamental domain for G0. Then Fn(D0) is a
fundamental domain for Gn. From now on, we assume that n is sufficiently large.
Then Fn is very close to the identity map. It follows that the vertices of D0 are
moved very little by Fn. Then for each edge e of D0, replace Fn(e) by the geodesic
segment connecting the endpoints of Fn(e). These new edges bound a domain Dn,
which is a new fundamental domain for Gn. We briefly explain why it is so in two
steps.

Note that when n is sufficiently large, nonadjacent edges of Dn do not intersect.
Step 1: We show that each orbit under the action of Gn intersects Dn. Let p ∈ D.

Then there exists g ∈ Gn such that g(p) ∈ Fn(D0). Suppose g(p) 6∈ Dn. Then g(p)
belongs to a connected component of Fn(D0) \ Dn. This connected component is
bounded by a segment of an edge (or probably a full edge) of Dn and a segment of
Fn(e) (or probably the full curve Fn(e)), where e is an edge of D0. The curve Fn(e)
is paired to another curve Fn(e

′) by an element g2 ∈ Gn, where e′ is an edge of D0.
Then (g2 ◦ g)(p) is contained in Dn \ Fn(D0). Thus, (g2 ◦ g)(p) ∈ Dn.

Step 2: We prove that the interior int(Dn) of Dn contains at most one point
from each orbit under Gn. Suppose that there are two points p1 and p2 of int(Dn)
that lie on the same orbit. Assume that p1 ∈ int(Dn) \ Fn(D0). Using an argument
similar to the one in Step 1, we can show that there exists g1 ∈ Gn such that
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g1(p1) belongs to the interior of Fn(D0). Clearly, there exists g2 ∈ Gn such that
g2(p2) ∈ Fn(D0). The positions of g1(p1) and g2(p2) make a contradiction since they
stay on the same orbit. Therefore, p1 ∈ Fn(D0). With the same reasoning, we know
p2 ∈ Fn(D0). Since Fn(D0) is a fundamental domain for Gn, it follows that there
exist two edges e1 and e2 of D0 and an element g ∈ Gn such that p1 ∈ Fn(e1),
p2 ∈ Fn(e2), g(Fn(e1)) = Fn(e2) and g(p1) = p2. All these force p1 and p2 to stay on
a pair of edges of Dn; otherwise, one of them belongs to int(Dn) and the other has
to be outside of Dn. Both situations contradict the assumption. Therefore, int(Dn)
contains at most one point from each orbit.

Now for each such large n, let D̃n = π−1
n (S̃n)

⋂
Dn. The region D̃n is a convex

polygon whose vertices are either in D or on ∂D and it projects to the Nielsen

kernel S̃n of Sn. Each Dn is the convex hull of its vertices, thus we can construct a
piecewise hyperbolic affine map Hn : D̃0 → D̃n mapping vertices to vertices. In order

to extend Hn to D0, we foliate each connected component of D0 \ D̃0 by geodesic

rays starting at ∂D̃0 and ending at ∂D
⋂

D0, where D0 is the closure of D0 in the
closed unit disk with respect to the Euclidean metric. For each such geodesic ray

with endpoints z ∈ ∂D̃0 and x ∈ ∂D
⋂

D0, we let Hn map this ray onto the geodesic
ray starting at Hn(z) and ending at Fn(x) such that the distances from the starting
points are preserved. Finally we extend Hn to the whole hyperbolic disk by using the
actions of G0 and Gn on D. By Theorem 4, Hn projects to a mapping hn : S0 → Sn

which is homotopic to fn relative to boundary and by the construction hn(S̃0) = S̃n.
Moreover, since Fn converges uniformly to the identity, the vertices of Dn approach
the vertices of D0 as n → ∞. Thus, Hn → id and K(Hn) → 1 as n → ∞. Hence
K(hn) → 1 as n → ∞. �

Theorem 5. The identity function id : (T (S0), dT ) → (T (S0), dML) is continu-
ous.

Proof. Let {τn} be a sequence of points in T (S0) converging to a point τ in the
Teichmüller metric and let ǫ > 0 be given. Without loss of generality, we may assume

that τ = [S0, id]. Let τn = [Sn, fn], by Lemma 7, we may assume that fn(S̃0) = S̃n

and K(fn) → 1 as n → ∞. Consider [Sn, fn] and [S0, id] as elements of TR(S0). As
we mention in the introduction, it is proved in [7] that dL and dT are topologically
equivalent in TR(S0). Thus, there exists N1 such that

(3.3)

∣∣∣∣log
lSn

(fn(γ))

lS0(γ)

∣∣∣∣ < ǫ

for every n > N1 and every γ ∈ Σ′

S0
. For each n = 0, 1, 2, · · · , let

Mn = max{lSn
(β) : β is a boundary geodesic in Sn}.

Then the previous property (3.3) implies that Mn converges to M0 as n → ∞. Hence
there exists a constant M ′ > 0 such that Mn ≤ M ′ for every n.

Let γ ∈ Σ′′

S0
. Since fn maps S̃0 to S̃n, it follows that f̃n(γ) = f̃n(γ̃) and (f̃n(γ̃))

d =

f̃ d
n(γ̃

d), where f̃n = f |S̃0
and f̃ d

n : S̃
d
0 → S̃d

n is the double mapping of f̃n. Then by
lemma 6 and the fact that Mn ≤ M ′ for any n = 0, 1, 2, · · · , we conclude that

(3.4)
lS̃d

0
(γ̃d)

2
≤ lS0(γ) ≤

lS̃d
0
(γ̃d)

2
+ 2M ′
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and

(3.5)
lS̃d

n
(f̃ d

n(γ̃
d))

2
≤ lSn

(fn(γ)) ≤
lS̃d

n
(f̃ d

n(γ̃
d))

2
+ 2M ′.

Combining inequalities (3.4) and (3.5), we obtain

1
2
lS̃d

n
(f̃ d

n(γ̃
d))

1
2
lS̃d

0
(γ̃d) + 2M ′

≤ lSn
(fn(γ))

lS0(γ)
≤

1
2
lS̃d

n
(f̃ d

n(γ̃
d)) + 2M ′

1
2
lS̃d

0
(γ̃d)

or
l
S̃d
n
(f̃d

n(γ̃
d))

l
S̃d
0
(γ̃d)

1 + 4M ′

l
S̃d
0
(γ̃d)

≤ lSn
(fn(γ))

lS0(γ)
≤

lS̃d
n
(f̃ d

n(γ̃
d))

lS̃d
0
(γ̃d)

+
4M ′

lS̃d
0
(γ̃d)

.

Lemma 1 and the fact that K(f̃ d
n) = K(f̃n) ≤ K(fn) imply

1

K(fn)
≤

lS̃d
n
(f̃ d

n(γ̃
d))

lS̃d
0
(γ̃d)

≤ K(fn).

Thus we can choose D and N2 sufficiently large such that if n > N2 and lS0(γ) > D,

then lS̃d
n
(f̃ d

n(γ̃
d))/lS̃d

0
(γ̃d) is sufficiently close to 1 and 4M ′/lS̃d

0
(γ̃d) is sufficiently small.

More precisely, we choose D and N2 large enough such that

(3.6)

∣∣∣∣log
lSn

(fn(γ))

lS0(γ)

∣∣∣∣ < ǫ

for every n > N2 and every γ ∈ Σ′′

S0
, lS0(γ) > D. It remains to consider all arcs

γ ∈ Σ′′

S0
with lS0(γ) ≤ D.

Let G0 be the Fuchsian group uniformizing S0 and let π : D → S0 be the universal
covering map. Let B be a boundary component of S0 and β the corresponding
boundary geodesic. Assume that β∗ is a lifting of β in D. Then β∗ separates the
unit circle S

1 into two open circular arcs and one of them is a cover of B under
π. We denote it by B∗. Let I be a closed segment of B∗ such that I minus one
of its endpoint covers B exactly once. Without loss of generality, we assume that
all elements in Σ′′

S0
are geodesic arcs. Let F be the collection of the liftings γ∗ of

the elements γ ∈ Σ′′

S0
with lS0(γ) ≤ D such that they have one endpoint on I. We

claim that besides β∗, there are only finitely many lifting geodesics of the boundary
geodesics of S0 such that they intersect at least one γ∗ ∈ F . Let β∗

1 , β
∗

2 , · · · , β∗

r be
such lifting geodesics (different from β∗).

We show the claim. Suppose there are infinitely many such lifting geodesics
{β∗

j }∞j=1 besides β∗. For each j, let γ∗

j ∈ F such that γ∗

j ∩ β∗

j 6= ∅. If there is a
subsequence {β∗

jk
} that does not accumulate at one of the endpoints of β∗, then it

is easy to see that l(γ∗

jk
; β∗, β∗

jk
) → ∞ as k → ∞, which contradicts the fact that

l(γ∗

jk
; β∗, β∗

jk
) ≤ D. Suppose now that there is a subsequence {β∗

jk
} accumulating at

one of the endpoints of β∗. By the Collar Lemma [3], the distance between β∗ and
β∗

j is bounded from below by a constant d0 > 0. Then by Lemma 2, we also obtain
l(γ∗

jk
; β∗, β∗

jk
) → ∞ as k → ∞. Again a contradiction to l(γ∗

jk
; β∗, β∗

jk
) ≤ D for all k.

As we mentioned above, by the Collar Lemma, there exists d0 > 0 such that
the hyperbolic distance between β∗ and β∗

j , j = 1, 2, · · · , r, is at least d0. On the
other hand, l(γ∗; β∗, β∗

j ) ≤ D for each γ∗ in F . Let d1 be the maximum of the
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hyperbolic distance between β∗ and β∗

j for j = 1, 2, · · · , r. Then d0 < d1 ≤ D.
For each j = 1, 2, · · · , r, we can normalize the group G0 so that β∗ = L−i,i and
β∗

j = Lb,b, i.e., β∗

j is the d-standard geodesic for some d ∈ [d0, d1]. Corresponding to
each normalization, every map Fn is changed to Fn,j. Let s0 > 0 be the constant to
guarantee the conclusion of Lemma 3. Choose δ > 0 so small that the conclusion
of Lemma 4 follows. Recall that Fn converges uniformly to the identity map. In
fact, for each fixed 1 ≤ j ≤ r, Fn,j also converges uniformly to the identity map
as n → ∞. Thus we can choose N(j) sufficiently large so that for each n > N(j),
|Fn,j(x) − x| < δ. It follows from Lemma 4 that for every n > N(j) and for every
geodesic γ∗ = Lp,q ∈ F crossing L−i,i and Lb,b, we obtain

(3.7)

∣∣∣∣∣log
l(Lp,q;L−i,i, Lb(d),b(d))

l(LFn,j(p),Fn,j(q);LFn,j(−i),Fn,j(i), LFn,j(b),Fn,j(b)
)

∣∣∣∣∣ < ǫ.

After applying the same argument to any geodesic β∗

j for each 1 ≤ j ≤ r and then
the same arguments of this part to any boundary component B of S0 (finitely many),
we conclude that there exists N3 such that for every n > N3 and every γ ∈ Σ′′

S0
with

lS0(γ) ≤ D,

(3.8)

∣∣∣∣log
lSn

(fn(γ))

lS0(γ)

∣∣∣∣ < ǫ.

Letting N = max{N1, N2, N3} and combining inequalities (3.3), (3.6) and (3.8),
we obtain for every n > N ,

log sup
γ∈ΣS0

{
lSn

(fn(γ))

lS0(γ)
,

lS0(γ)

lSn
(fn(γ))

}
< ǫ;

that is, dML([Sn, fn], [S0, id]) → 0 as n → ∞. Thus the map

id : (T (S0), dT ) → (T (S0), dML)

is continuous. �

In fact, the techniques used in the proof of Theorem 5 also show the following
result.

Corollary 2. Let {[Sn, fn]} be a sequence in T (S0) satisfying

(1) for each n, fn(S̃0) = S̃n,
(2) K(fn|S̃0

) → 1 as n → ∞, and
(3) for each n, there is a lifting Fn : D → D of fn such that the sequence {Fn}

converges uniformly to the identity on S
1.

Then dML([Sn, fn], [S0, id]) → 0 as n → ∞.

Unlike the case of TR(S0), the metrics dT and dML do not define the same topol-
ogy on T (S0).

Theorem 6. There exists a sequence {τn} in T (S0) such that

dML(τn, τ) → 0 and dT (τn, τ) → ∞
as n → ∞, where τ = [S0, id].

Proof. For each n = 1, 2, 3, · · · , we construct a mapping Fn : D → D that projects
to a mapping fn : S0 → S0 such that the sequence {[S0, fn]} satisfies the hypothesis
of Corollary 2.
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Let G0 be the Fuchsian group uniformizing S0 and π : D → S0 the covering map.
Suppose D0 ⊆ D is a Dirichlet fundamental domain for G0 and let I be an arc
contained in D0 ∩ S

1 that projects to a segment on a boundary component of S0.
Let T be a Möbius transformation from D onto the upper half plane that maps I to
the interval [0, 1], and for each n, let bn = 1/(2n+1 − 1), cn = 1/2n. Define Fn|I to
be the mapping T−1 ◦ Hn ◦ T , where Hn : [0, 1] → [0, 1] is the piecewise linear map
that sends 0, bn, cn and 1 to 0, (2n − 1)/22n and cn, 1 respectively. Clearly, Hn and
hence Fn|I converge to the identity map on I uniformly as n → ∞. Denote by β
the boundary geodesic on S0 homotopic to the boundary component containing π(I)
and let A be the connected component of D0 \ π−1(β) containing I. Define Fn to be
the identity on (D0∩S

1 \ I)∪ (D0 \A). Finally, foliate A by geodesic rays starting at
points in D0 ∩ π−1(β) and ending at points in A ∩ S

1. For every geodesic ray in the
foliation starting at z and ending at x ∈ S

1, let Fn map this ray onto the one starting
at z and ending at Fn(x) by preserving the hyperbolic distance to z. The mapping
Fn : D0 → D0 can be extended to the whole hyperbolic plane by pre-composing and
post-composing by elements of G0. Since Fn|D0

converges uniformly to the identity, it
follows that Fn : D → D and Fn : S

1 → S
1 converge uniformly to the identity as well.

Moreover, each Fn can be projected to a map fn : S0 → S0 such that fn|S̃0
= idS̃0

.
Let τn = [S0, fn]. Then by Corollary 2,

dML(τn, τ) → 0 as n → ∞,

where τ = [S0, id].
For any four points x, y, z, w ∈ R, let cr(x, y, z, w) denote the cross ratio

cr(x, y, z, w) =
(y − x)(w − z)

(z − y)(w − z)
.

Notice that by construction,

cr(0, bn, cn, 1) = 1

and

cr(Fn(0), Fn(bn), Fn(cn), Fn(1)) = 2n − 2 +
1

2n−1
→ ∞

as n → ∞. This implies that K(fn) → ∞ as n → ∞, i.e.,

dT (τ, τn) → ∞ as n → ∞. �

Theorems 5 and 6 together imply Theorem 2. Now we prove Theorem 3.

Proof. Let G0, D0 and I = ⌈a, b⌉ be as in the proof of Theorem 6. Let T be a
Möbius transformation from D onto the upper half plane H such that I is mapped to
[0, 1], with T (a) = 0 and T (b) = 1. For each n, we construct a mapping Fn : H → H

in the same fashion as in the proof of Theorem 6 except that the map Hn used to
define Fn|I = T−1 ◦Hn ◦ T is replaced by the piecewise linear map that maps 0, 1/2
and 1 to 0, 1/2n and 1, respectively. Note that for any n > m,

Hn ◦H−1
m (x) =

{
2m−nx if 0 ≤ x ≤ 1

2m
,

2m−2m+n

2n−2n+m (x− 1) + 1 if 1
2m

≤ x ≤ 1.

Thus

max
x∈[0,1]

|Hn ◦H−1
m (x)− x| ≤ 1

2m
− 1

2n
≤ 1

2m
.



Modified length spectrum metric on the Teichmüller space of a Riemann surface with boundary 525

It follows that Hn ◦H−1
m is uniformly close to the identity if n > m and m is large,

and hence so does Fn ◦F−1
m . Let fn be the projection of Fn to the surface S0. Clearly,

fn◦f−1
m is the identity on the Nielsen kernel S̃0. Now we apply Corollary 2 to conclude

that

dML([S0, fn], [S0, fm]) = dML([S0, fn ◦ f−1
m ], [S0, id]) → 0

as n,m → ∞. Thus {[S0, fn]} is a Cauchy sequence under the metric dML. Now we
show that this sequence cannot have a limit in T (S0) in this metric. Suppose not,
then there is τ = [S, f ] ∈ T (S0) such that

(3.9) dML([S0, fn], [S, f ]) → 0

as n → ∞. Then

dL([S0, fn], [S, f ]) → 0

in the reduced Teichmüller space TR(S0) as n → ∞.
Our construction shows that [S0, fn] = [S0, id] in TR(S0) for each n. It follows

that [S, f ] and [S0, id] determine the same point in the reduced Teichmüller space
and hence S0 is conformally equivalent to S. By post-composing by an appropriate
conformal mapping, we may assume that τ = [S0, f ] and fn is homotopic to f for
each n.

The maps Fn are liftings of the maps fn and they agree with each other on the
limit set of G0. Let F be the lifting of f that agrees with Fn on the limit set. Let β∗

1

and β∗

2 be two liftings of the boundary geodesic β that is homotopic to the boundary
component of S0 to which I = ⌈a, b⌉ projects. We can choose I to be an interval
such that it shares one endpoint with the common perpendicular geodesic γ∗

0 of β∗

1

and β∗

2 . That is, we may assume γ∗

0 = La,y for some y ∈ S
1.

By the construction, each Fn fixes a and y. Then La,y = LFn(a),Fn(y) for all n. It
follows that lS0(fn(γ0)) = lS0(γ0) for all n, where γ0 is the projection of γ∗

0 . Then,
condition (3.9) implies lS0(f(γ0)) = lS0(γ0). Since the common perpendicular is the
unique shortest segment between β∗

1 and β∗

2 , we must have F (a) = a and F (y) = y.
Now let γ∗

1 = LT−1(1/2),y . By the construction,

Fn(T
−1(1/2)) → a as n → ∞.

Thus

l(LFn(T−1(1/2)),Fn(y); β
∗

1 , β
∗

2) → l(La,y; β
∗

1 , β
∗

2) as n → ∞;

that is

lS0(fn(γ1)) → lS0(γ0) as n → ∞,

where γ1 is the projection of γ∗

1 . By condition (3.9), we obtain lS0(f(γ1)) = lS0(γ0).
Using again the uniqueness of the common perpendicular as the shortest segment
between β∗

1 and β∗

2 , we conclude that

F (T−1(1/2)) = a.

Since F (a) = a, we obtain a contradiction to the injectivity of F on D. �
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