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Abstract. Let M be a handlebody of genus g ≥ 2. The space T (M), that parametrizes

marked Kleinian structures on M up to isomorphisms, can be identified with the space MSg of

marked Schottky groups of rank g, so it carries a structure of complex manifold of finite dimension

3(g − 1). The space M(M) parametrizing Kleinian structures on M up to isomorphisms, can be

identified with Sg, the Schottky space of rank g, and it carries the structure of a complex orbifold.

In these identifications, the projection map π : T (M) → M(M) corresponds to the map from MSg

onto Sg that forgets the marking. In this paper we observe that the singular locus B(M) of M(M),

that is, the branch locus of π, has (i) exactly two connected components for g = 2, (ii) at most two

connected components for g ≥ 4 even, and (iii) M(M) is connected for g ≥ 3 odd.

1. Introduction

The conformal automorphisms of the Riemann sphere Ĉ are given by the Möbius
transformations. By Poincare’s extension theorem, each Möbius transformation ex-
tends to an orientation-preserving isometry of the hyperbolic 3-space H3 and, in fact,
every orientation-preserving isometry of H3 is obtained in that way. We denote by
M ∼= PSL2(C) the group of Möbius transformations.

A Kleinian group is a discrete subgroup Γ of M and its region of discontinuity is

the (open) set Ω consisting of the points on Ĉ on which Γ acts discontinuously (which
might be empty). The quotient space MΓ = (H3 ∪ Ω)/Γ (respectively, SΓ = Ω/Γ) is
called the Kleinian orbifold (respectively, the Riemann orbifold) uniformized by Γ;
SΓ is also called the conformal boundary of MΓ. If Γ is a torsion free Kleinian group,
then MΓ is a manifold with conformal boundary the Riemann surface Ω/Γ, interior
the hyperbolic manifold M0

Γ = H3/Γ, and π1(M) is isomorphic to Γ. A Kleinian
structure on an orientable 3-manifold M (possible with non-empty boundary) is
given by a Kleinian group Γ so that MΓ is (orientable-preserving) homeomorphic to
M .

We assume from now on that M is an oriented handlebody of genus g.
A Kleinian structure on the handlebody M is provided by a Schottky group Γ of

rank g. In this case the conformal boundary SΓ is homeomorphic to the topological
boundary S of M (that is, Γ provides a Riemann surface structure to S).
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A one-to-one homomorphism φ : π1(M) → M will be called admissible for M if
φ(π1) is a Schottky group providing a Kleinian structure on M .

Two admissible homomorphisms for M , say φ1 and φ2, will be called equivalent
if there is some Möbius transformation A ∈ M so that φ2(α) = A ◦ φ1(α) ◦ A

−1, for
every α ∈ π1(M).

The set T (M) of equivalence classes of admissible homomorphisms for the handle-
body M is called the Teichmüller space of M . Classical quasiconformal deformation
theory [26] asserts that T (M) carries the structure of a complex manifold of finite
dimension. More precisely, if φ is a fixed admissible homomorphism for M , then
T (M) can be identified with the quasiconformal deformation space of the Schottky
group φ(π1(M)).

Two Kleinian structures on the handlebody M , provided by Schottky groups
Γ1 and Γ2, are called conformally equivalent if there is an orientation-preserving
diffeomorphism f : MΓ1

→ MΓ2
whose restriction f : M0

Γ1
→ M0

Γ2
is an isometry

(equivalently, the restriction f : SΓ1
→ SΓ2

is a conformal homeomorphism). The
moduli space of M , denoted by M(M), is the set of classes of conformally equivalent
Kleinian structures on M .

If ψ, φ : π1(M) → M are admissible homomorphisms for the handlebody M defin-
ing the same class in T (M), then φ(π1(M)) and ψ(π1(M)) define the same class in
M(M). This fact asserts the existence of a natural (surjective) map π : T (M) →
M(M).

Let Diff+(M) be the group of orientation-preserving self-diffeomorphisms of M
and let Diff0(M) be its normal subgroup consisting of those diffeomorphisms isotopic
to the identity. Then the modular group Mod(M) = Diff+(M)/Diff0(M) acts nat-
urally on T (M) as a discrete group of holomorphic automorphisms [26]. It follows
from the definition that the quotient space T (M)/Mod(M) is a model for M(M)
and that it is a finite dimensional orbifold. The projection π : T (M) → M(M) is
then a regular branched covering with branch locus B(M). A goal is to study the
topology of B(M), in particular, to study the connectedness of such a branch locus.
Our main result is the following.

Theorem 1. If M is a handlebody of genus g ≥ 2, then (i) B(M) has at most
two connected components for g ≥ 4 even, (ii) B(M) has exactly two connected
components if g = 2 and (iii) if g ≥ 3 is odd, then B(M) is connected.

We will see that B(M) consists of the union of two (not necessarily disjoint) con-
nected sets, say A and B. The points in A corresponds to those Kleinian structures
on M admitting an automorphism of order two where the connected components of
its fixed point set are an even number of simple loops and some simple arcs. The
points in B corresponds to those Kleinian structures on M admitting an automor-
phism of order two where the connected components of its fixed point set are an odd

number of simple loops and some simple arcs. In the case g = 2 we will see that
these two sets are disjoint and, for g ≥ 3 odd, that they intersect. In the case g ≥ 4
even we do not know if these two sets are disjoint or not, but we expect them to be
disjoint. In order to see if these two sets A and B are disjoint, we need to prove that
there is not a Kleinian structure on M admitting two automorphisms of order two,
say φ1 and φ2, so that the number of loops of fixed points of them are of different
parity. Let us observe that, in case the above is possible, the group G = 〈φ1, φ2〉 is
isomorphic to a dihedral group or order 2N . Clearly N has to be even (otherwise
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the two involutions are conjugated in G, their fixed point sets have the same number
of connected components which are loops, a contradiction). If N ≡ 2(mod 4), it is
possible to find in G another involution, say φ3, which is conjugate to φ2 and so that
〈φ1, φ3〉 is isomorphic to the abelian group Z2

2.

2. An interpretation in terms of Schottky groups

In this section we describe with some detail the identifications above, in terms of
Schottky groups. In particular, we reinterpret Theorem 1 in these terms (our proof
will be done in these terms).

2.1. Kleinian groups. A Kleinian group is a discrete subgroup of the group
of Möbius transformations M ∼= PSL2(C); the group of conformal automorphisms

of the Riemann sphere Ĉ. Each Möbius transformation extends naturally to an
isometry of the hyperbolic space H3 as an orientation-preserving isometry.

If K is a Kleinian group and p ∈ Ĉ, then we say that K acts discontinuously on p

if its K-stabilizer Kp = {A ∈ K : A(p) = p} is finite and there is an open set U ⊂ Ĉ
such that p ∈ U and A(U) ∩ U = ∅ for A ∈ K − Kp. The region of discontinuity
of K is the set Ω consisting of all the points over which K acts discontinuosly. The
book [23] is a good reference on the theory of Klenian groups.

2.2. Schottky groups. A Schottky group of rank 0 is just the trivial group.
A Schottky group of rank g ≥ 1 is a Kleinian group Γ which is isomorphic to a free
group of rank g, all of its non-trivial elements are loxodromic and it has non-empty
region of discontinuity.

A Schottky group of rank g ≥ 1 can be constructed as follows. Let Ck, C
′

k,

k = 1, . . . , g, be 2g Jordan curves on the Riemann sphere Ĉ such that they are mu-
tually disjoint and bound a 2g-connected domain, say D. Suppose that for each k
there exists a fractional linear transformation Ak ∈ PSL(2,C) so that (i) Ak(Ck)=C

′

k

and (ii) Ak(D) ∩ D = ∅. The group Γ, generated by all these transformations is a
Schottky group of rank g. This is mainly a consequence of Klein–Maskit’s combina-
tion theorems [22, 24].

That all Schottky groups are obtained from the above construction is mainly due
to Chuckrow [9].

If Ω is the region of discontinuity of a Schottky group Γ, say of rank g, then it
is known that Ω is connected, that Ω/Γ is a closed Riemann surface of genus g and
that (H3 ∪ Ω)/Γ is a handlebody of genus g.

2.3. Schottky space. Two Schottky groups of the same rank g, say Γ1 and
Γ2, are conjugate if there is a Möbius transformation A so that Γ2 = AΓ1A

−1. If
Γ is a Schottky group, then we denote by [Γ] its conjugacy class. The space that
parametrizes conjugacy classes of Schottky groups of rank g is called the Schottky
space of rank g, which we denote as Sg.

2.4. Marked Schottky space. A marked Schottky group of rank g is a tuple
(Γ, C1, . . . , Cg), where Γ is a Schottky group of rank g and C1, . . . , Cg is a set of
generators of Γ.

Two marked Schottky groups of rank g, say (Γ, C1, . . . , Cg) and (Γ̂, Ĉ1, . . . , Ĉg),
are said to be equivalent if there is a Möbius transformation A so that ACjA

−1 =

Ĉj, for every j = 1, . . . , g. We denote by [(Γ, C1, . . . , Cg)] the equivalence class of
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(Γ, C1, . . . , Cg). The space that parametrizes equivalence classes of marked Schottky
groups of rank g is called the marked Schottky space of rank g, which we denote as
MSg.

We have that MS0 = S0 consists of one point and that MS1 = S1 can be
identified with the punctured unit disc. If g ≥ 2, then MSg can be identified with
the quasiconformal deformation space of a fixed Schottky group of rank g; so it is a
complex manifold of dimension 3(g − 1) [6, 7, 26] (see Section 3).

2.5. Identification of T (M) with MSg. We fix a set of generators a1, . . . , ag
for the free group π1(M) of rank g.

To an admissible homomorphism φ : π1(M) → M we may associated the marked
Schottky group (Γ, C1, . . . , Cg), where Cj = φ(aj) and Γ = 〈C1, . . . , Cg〉; we also say
that (Γ, C1, . . . , Cg) is a marked Schottky structure on M .

Let φ and ψ two admissible homomorphisms for M . Let us consider the corre-
sponding marked Schottky structures, say (φ(π1(M)) = Γ, φ(a1) = C1, . . . , φ(ag) =

Cg) and (ψ(π1(M)) = Γ̂, ψ(a1) = Ĉ1, . . . , ψ(ag) = Ĉg). By the definition, these two
admissible homomorphisms are equivalent if and only if the corresponding marked
Schottky groups are equivalent.

The above permits to observe that there is a natural bijection between MSg and
T (M), in particular, to provide a complex manifold structure on T (M).

2.6. Identification of M(M) with Sg. Now, if Γ1 and Γ2 are two Schottky
groups providing equivalent Schottky structures on the handlebody M , then there
is, by the definition, an orientation-preserving diffeomorphism f : MΓ1

→ MΓ2
, By

lifting its restriction f : M0
Γ1

→ M0
Γ2

to the universal cover, we obtain an orientation-
preserving isometry A (a Móbius transformation) of the hyperbolic space H3. As A
necessarily conjugates Γ1 into Γ2, we may see that [Γ1] = [Γ2]. The converse is clear.
In this way we see that there is a natural bijection between Sg and M(M).

If g ≥ 2, then MSg can be identified with the quasiconformal deformation space
of a fixed Schottky group of rank g; so it is a complex orbifold of dimension 3(g− 1)
[6, 7, 26].

2.7. A description of π : T (M) → M(M). With the above identifications,
the projection π : T (M) → M(M) corresponds to the map

π : MSg → Sg, [(Γ, C1, . . . , Cg)] 7→ [Γ].

2.8. The modular group. The group of holomorphic automorphisms of
MSg is known to be isomorphic to the outer automorphism group Out(Fg) =
Aut(Fg)/Inn(Fg), where Fg is the free group of rank g, and the above projection
π : MSg → Sg is a regular (branched) cover whose deck group is Out(Fg) [11]. In
this way, we may identify the modular group Mod(M) with the group Out(Fg) of
outer automorphisms of the free group of rank g. As the space M(M) is naturally
identified (as seen above) to Sg, and Sg = MSg/Out(Fg), we see that M(M) carries
a natural structure of a complex orbifold or analytic space.

2.9. An interpretation of Theorem 1 in terms of Schottky groups. Let
Bg denote the locus of branch points of the quotient map π : MSg → Sg. Then, with
all the above identifications, we have that B(M) is identified with Bg.

We have that MS0 = S0 consists of one point and that MS1 = S1 can be
identified with the punctured unit disc; in particular, Bg = ∅ for g ≤ 1.
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Theorem 1 can be now written as follows:

Theorem 2. The locus B2 has exactly two connected components. If g ≥ 4 is
even, then Bg has at most two connected components. If g ≥ 3 is odd, then Bg is
connected.

Remark 3. Let M =MΓ be a handlebody with a Schottky structure produced
by a Schottky group Γ of rank g ≥ 2. The conformal boundary SΓ = Ω/Γ of MΓ

is a closed Riemann surface of genus g. There is a natural surjective holomorphic
map τ : Sg → Mg, where Mg is the moduli space of closed Riemann surfaces of
genus g. This map is a non-Galois branched covering through which the Galois
branched covering π̂ : Tg → Mg factors, where Tg is the Teichmüller space of closed
Riemann surfaces of genus g. The connectivity of the branch locus of π̂ in Mg has
been studied in [4, 3, 2, 5]. In general the branch locus in Mg is disconnected and
there are infinite families of genera where the number of connected components is
an increasing function of the genus. This is clearly contrary to the result stated
in Theorems 1 and 2. One of the main reasons for this to happen is that there
are examples of closed Riemann surfaces S admitting a conformal automorphism
f : S → S which cannot be continuously extended as a self-homeomorphism of any
handlebody M , with a Schottky structure, whose conformal boundary is S [14]. For
instance conformal automorphisms with S/〈f〉 of genus zero and exactly three cone
points.

3. Quasiconformal deformation spaces of Kleinian groups

In this section we review some definitions and classical results concerning qua-
siconformal deformation spaces of Kleinian groups. As we will be working with
Kleinian groups containing a Schottky group as a finite index subgroup, these groups
will be finitely generated with a connected region of discontinuity. For this reason,
we will only recall the quasiconformal deformation theory for these types of Kleinian
groups.

In particular, the marked Schottky space Sg will be seen as the quasiconformal
deformation space of a Schottky group of rank g.

3.1. Quasiconformal homeomorphisms. Let Ω1,Ω2 ⊂ Ĉ be non-empty
domains. An orientation-preserving homeomorphism W : Ω1 → Ω2 is called a quasi-

conformal homeomorphism if it satisfies the following two conditions:

(i) W has distributional partial derivatives with respect to z and z which can be
represented by locally integrable functions Wz and Wz, respectively, on Ω1;

(ii) there is a measurable function µ : Ω1 → C (called a complex dilation of W )
such that ‖µ‖∞ < 1, where ‖ ‖∞ denotes the essential supreme norm, (that
is, µ ∈ L∞

1 (Ω1)), and W satisfies the Beltrami equation

Wz(z) = µ(z)Wz(z) a.e. z ∈ Ω1.

The existence and uniqueness of quasiconformal homeomorphisms is due to Mor-
rey [25].

Theorem 4. [25] If µ : C → C is a measurable function with ‖µ‖∞ < 1, then

there is a unique quasiconformal homeomorphismWµ : Ĉ → Ĉ, with complex dilation
µ, satisfying

Wµ(∞) = ∞, Wµ(0) = 0, Wµ(1) = 1.
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The solution Wµ in the above theorem is called a normalized quasiconformal
homeomorphism for µ. Ahlfors–Bers [1] proved that the normalized quasiconformal
homeomorphism varies continuously with µ.

Theorem 5. (Measurable Riemann mapping’s theorem [1]) With the notations
of the previous theorem. If µ varies continuously (in the Banach space L∞(C)), then
Wµ also varies locally uniformly continuously in the space of continuous maps on C.

3.2. Quasiconformal deformation spaces. Let K be a finitely generated
Kleinian group with connected region of discontinuity Ω. Associated to K is the
Banach space L∞(K) (with the essential supreme norm ‖ ‖∞) whose elements are

those measurable functions µ : Ĉ → C so that
{
µ(z) = 0, ∀z ∈ Ĉ− Ω,

µ(k(z))kz(z) = kz(z)µ(z), if z ∈ Ω and k ∈ K.

Let L∞

1 (K) be the open unit ball in L∞(K); its elements are called the Beltrami

coefficients of K.
By Theorem 4, for each Beltrami coefficient µ ∈ L∞

1 (K) there is a unique qua-

siconformal homeomorphism Wµ : Ĉ → Ĉ, with complex dilation µ, that fixes 0, 1
and ∞. Now, for each k ∈ K, the element kµ = Wµ ◦ k ◦Wµ

−1 is again a Möbius
transformation. If we set Kµ = WµKWµ

−1, then the above provides an isomor-
phism of Kleinian groups χµ : K → Kµ : k 7→ kµ (the image Wµ(Ω) is the region of
discontinuity of Kµ).

We say that µ1, µ2 ∈ L∞

1 (K) are quasiconformal equivalent, denoted this by
µ1 ∼ µ2, if χµ1

= χµ2
. If the group K is non-elementary, then this is equivalent to

say that Wµ1
and Wµ2

coincide at the limit set of K.
The quasiconformal deformation space of K is the quotient space Q(K) = L∞

1 (K)
/ ∼. As a consequence of the measurable Riemann mapping’s theorem, the space
Q(K) is connected.

As the Kleinian group K has been assumed to be finitely generated, it is well
known that Q(K) is a complex manifold of finite dimension [21].

Remark 6. The above definitions can be done for finitely generated Kleinian
groups K with disconnected region of discontinuity with the property that Ω has a
connected component ∆ which is invariant under K. In such a case, one obtains the
so called quasiconformal deformation space Q(K,∆). In that case, when ∆ is simply
connected the space Q(K,∆) is a model of the Teichmüller space of the orbifold ∆/K
[6, 26].

3.3. Schottky space. If Γ is a Schottky group of rank g, then by [7] its
quasiconformal deformation space Q(Γ) turns out to be a connected complex manifold
of dimension

dimCQ(Γ) =





3g − 3, g ≥ 2;

1, g = 1;

0, g = 0.

As any two Schottky groups of the same rank g are quasiconformally equivalent,
their respective quasiconformal deformation spaces are complex analytically equiva-
lent. It can be seen that if Γ is a Schottky group of rank g, then Q(Γ) is isomorphic
to MSg; that is Q(Γ) is a model of the marked Schottky space MSg.
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To obtain a model of Sg, one has to consider the following equivalence relation on
Q(Γ): two deformations ω1 and ω2 are equivalent if there is a Möbius transformations
A so that ω1Γω

−1
1 = Aω2Γω

−1
2 A−1. Then, the set of equivalence classes is a model

for Sg.

3.4. An embedding property. Let Γ be a Schottky group of rank g ≥ 2.
Let us first assume that there is a Kleinian group K containing Γ as a finite index

normal subgroup (in particular, K is finitely generated). As each Beltrami coefficient
for K is also a Beltrami differential for Γ and both K and Γ have the same limit set,
there is a natural holomorphic embedding

ι : Q(K) → Q(Γ)

so that [0] ∈ ι(Q(K)) ⊂ Q(Γ).
Now, let us assume that Γ is not contained as a finite index normal subgroup of

another Kleinian group. If there is some [µ] ∈ Q(Γ) so that the Schottky group Γu

is contained in some Kleinian group K as a finite index normal subgroup, then the
above provides a holomorphic embedding

j : Q(K) → Q(Γ), j([0]) = [µ].

4. Cyclic-Schottky groups

Our constructions of connected subsets of the branch locus Bg will be done in
terms of certain Kleinian groups containing Schottky groups of rank g as normal
subgroups of finite index. It is known [12, 27] that, for g ≥ 2, such an index is
bounded above by 12(g − 1).

4.1. Maximal Schottky extension groups. Let K be a Kleinian group con-
taining a Schottky group of rank g ≥ 2 as a normal subgroup of maximal index
12(g − 1). In this situation we say that K is a maximal Schottky extension group.
Maximal Schottky extension groups play the same role for handlebodies as the Fuch-
sian triangular group (0; 2, 3, 7) plays for closed Riemann surfaces. There are exactly
four types of isomorphic classes of maximal Schottky extension groups K:

D2 ∗Z2
D3, D3 ∗Z3

A4, D4 ∗Z4
S4, D5 ∗Z5

A5,

where Dr is the dihedral group of order 2r, Ar is the alternating group in r letters and
S4 is the symmetric group in 4 letters [27]. A description of these maximal Schottky
extension groups, in terms of the Klein–Maskit combination theorems [22, 24] may
be found in [15, 16].

Let K be a maximal Schottky extension group. By definition, K contains some
Schottky group Γ of rank g ≥ 2 as a normal subgroup of index 12(g − 1) (and any
Schottky group of rank g which is a normal subgroup of finite index of K has index
at most 12(g − 1)). We do not know if, for fixed g, such Schottky group is unique.
Now, as seen above, there is an embedding ι : Q(K) → Q(Γ) and π(ι(Q(K))) is a
1-dimensional locus inside Bg.

The 1-dimensional loci obtained as above inside Bg are necessarily disjoint for
different algebraic types of K, but it may be that there is a connected component of
Bg containing two of them.

In [16] we have constructed, for g ∈ {2, 3, 5, 11}, explicit embeddings of quasi-
conformal deformations of these maximal Schottky extension groups into the marked
Schottky space. The constructions are given by explicit surjective homomorphisms
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θ : K → G, whereG is either isomorphic to one ofD3, A4, A5, S4, andK ∼= D2∗Z2
D3.

The kernel Γ of θ is a Schottky group as desired.
If we set Γ2 = 〈γ2 : γ ∈ Γ〉, then Γ2 is a normal subgroup of Γ of index 2g in Γ.

Thus Γ2 is a Schottky group of rank 2g(g − 1) + 1, where g is the rank of Γ, which
is a normal subgroup of K. So, we obtain infinitely many genera with examples of
such embeddings.

4.2. Cyclic extension of Schottky groups. A Kleinian group K containing
a Schottky group Γ of rank g as a finite index normal subgroup so that K/Γ is a
cyclic group is called a cyclic extension Schottky group. A geometrical picture of
these Kleinian groups is provided in [13].

Below, we proceed to recall such a picture for the case that K/Γ is a cyclic group
of prime order p. In this case, the results in [13] state that K is a free product,
in the sense of the Klein–Maskit combination theorems (see Figure 1), of t cyclic
groups generated by loxodromic transformations, r cyclic groups generated by elliptic
transformations of order p and s Abelian groups, each one generated by a loxodromic
transformation and an elliptic transformation of order p both of them commuting,
so that g = 1 + p(t+ r + s− 1)− r. In particular

(1) K ∼= Z∗
t
· · · ∗Z ∗ Zp∗

r
· · · ∗Zp ∗ (Z× Zp)∗

s
· · · ∗(Z× Zp).

We say that K is a cyclic-Schottky group of type (g, p; t, r, s). The above geo-
metric structure permits us to see that (i) the fixed point set of φ in M = (H3∪Ω)/Γ
consists of r simple arcs (with end points in the conformal boundary) and s simple
loops (all of them pairwise disjoint) and that (ii) the quotient orbifold O =M/〈φ〉 is
a closed 3-manifold homeomorphic to a handlebody of genus t + s. In this case, the
branch locus of O is a collection of r pairwise disjoint simple arcs and a collection of
s pairwise disjoint simple loops (also disjoint from the previous arcs). If S = Ω/Γ,
then S is a closed Riemann surface of genus g admitting a conformal automorphism
φ of order p with S/〈φ〉 of signature (γ; p, 2r. . ., p).

The above description permits also to see that any two cyclic-Schottky groups
of the same type are quasiconformally conjugated. In particular, the quasiconformal
deformation space of a cyclic-Schottky groups of a fixed type (which is connected from
the measurable Riemann mapping’s theorem) contains all cyclic-Schottky groups of
such a type.

D

A B

C

Figure 1. t = 1, r = 1, s = 1.
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Let F (g, p; t, r, s) be the subset of Bg consisting of those [Γ] ∈ Sg for which there
exists some Γ0 ∈ [Γ] and a cyclic-Schottky group K, of type (g, p; t, r, s), containing
Γ0 as an index p normal subgroup.

Let K be a cyclic-Schottky group of type (g, p; t, r, s) and let Γ be a Schottky
group of rank g which is an index p normal subgroup of K. This provides an em-
bedding of the quasiconformal deformation space Q(K) into the marked Schottky
space MSg, which is projected under π to a connected subset of Bg contained inside
F (g, p; t, r, s).

As the cyclic-Schottky group K may contain different Schottky groups of rank g
(as index p normal subgroups), it may be that F (g, p; t, r, s) is disconnected.

In [10] we proved that if p = 2, then any two Schottky subgroups of index two
inside K are quasiconformally conjugated by a quasiconformal homeomorphism that
self-conjugates K. It follows that F (g, 2; t, r, s) is always connected. This is a key
observation for our arguments.

5. Connectivity of B2

We prove Theorem 2 for g = 2, that is, that B2 consists of two connected com-
ponents. These two components will be F (2, 2; 1, 1, 0) and F (2, 2; 0, 1, 1), both of
complex dimension 1.

5.1. Hyperelliptic involution. If (Γ, A, B) is a marked Schottky group of rank
two, then E = AB−BA is a Möbius transformation of order two so that EAE = A−1

and EBE = B−1. It follows that (Γ, A, B) and (Γ, A−1, B−1) are equivalent marked
Schottky groups. The Möbius transformation E induces an automorphism of order
two on MΓ so that its action on the conformal boundary is the hyperelliptic involu-
tion. We call such an involution the hyperelliptic involution on MΓ; it has exactly
three pairwise disjoint simple arcs of fixed points. Due to this, the branch locus B2

corresponds to those conjugacy classes of Schottky groups Γ of rank two for which
there is a Kleinian group W containing it strictly as a finite index normal subgroup
so that W/Γ contains elements different from the identity and the hyperelliptic in-
volution.

5.2. Maximal components. Let W be a Kleinian group containing a Schottky
group Γ (of rank 2) as a finite index normal subgroup so that W/Γ contains elements
different from the identity and the hyperelliptic involution. Let us consider the
natural surjective homomorphism θ : W →W/Γ. If we consider any element ρ ∈ W/Γ
of prime order p, different from the hyperelliptic involution, then K = θ−1(〈ρ〉) is a
Kleinian group containing Γ as a normal subgroup of index p so that K/Γ is a cyclic
group of order p which does not contain the hyperelliptic involution. In this way, B2

can be seen as the union of the conjugacy classes of Schottky groups of rank 2 which
are normal subgroups of prime order of some Kleinian group and whose quotient
cyclic group does not contain the hyperelliptic involution.

Let us write K/Γ = 〈φ〉 ∼= Zp. As described in Section 4.2, K is a cyclic-Schottky
group of type (2, p; t, r, s), that is, the free product of t cyclic groups generated by
loxodromic transformations, r cyclic groups generated by elliptic transformations of
order p and s Abelian groups, each one generated by a loxodromic transformation
and an elliptic transformation of order p both of them commuting, so that 1 =
p(t + r + s − 1) − r. Then the connected components of the set of fixed points (if
non-empty) of the automorphism φ consists of r simple arcs and s simple loops.
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If Ω is the region of discontinuity of K, then Ω/K is an orbifold of genus t + s
containing exactly 2r cone points of order p. By the Riemann–Hurwitz formula we
must have that t + s ∈ {0, 1}. In this way,

(p, r) ∈ {(2, 1), (2, 3), (3, 2)}.

Observe that the case (p, r) = (2, 1) provides two different cases; they are (t, s) =
(0, 1) and (t, s) = (1, 0).

(1) If (p, r) = (2, 3), then φ is the hyperelliptic involution and we obtain a con-
tradiction.

(2) If (p, r) = (2, 1) and (t, s) = (1, 0), then φ has exactly one arc of fixed points
and the quotient MΓ/〈φ〉 is a handlebody of genus one.

(3) If (p, r) = (2, 1) and (t, s) = (0, 1), then φ has exactly two components of
fixed points, one is a simple loop and the other a simple arc, and the quotient
MΓ/〈φ〉 is a handlebody of genus one.

(4) If (p, r) = (3, 2), the φ has exactly two arcs of fixed points and the quotient
MΓ/〈φ〉 is the closed 3-ball.

As a consequence of all the above, we may see that B2 is the union of three
connected subsets. One of them, F (2, 2; 1, 1, 0), consists of classes of Schottky groups
of rank two which are contained as index two subgroups of cyclic-Schottky groups
of type (2, 2; 1, 1, 0), the other, F (2, 2; 0, 1, 1), consists of classes of Schottky groups
of rank two which are contained as index two subgroups of cyclic-Schottky groups
of type (2, 2; 0, 1, 1), and the third one, F (2, 3; 0, 2, 0), consists of classes of Schottky
groups of rank two which are contained as index two subgroups of cyclic-Schottky
groups of type (2, 3; 0, 2, 0). This ensures that B2 can at most have three connected
components.

5.3. The component F (2, 2; 0, 1, 1) is disjoint from F (2, 2; 1, 1, 0). Let
us assume there is a Schottky group Γ of rank two and cyclic-Schottky groups K1

of type (2, 2; 0, 1, 1) and K2 of type (2, 2; 1, 1, 0) both containing Γ as an index two
subgroup. Set M = MΓ and S = SΓ. Let φj be the order two automorphism of M
induced by Kj. The involution φ1 has two components of fixed points, one is an arc
and the other is a loop. The involution φ2 has only one component of fixed points,
that being an arc. On the genus two closed Riemann surface S we have that the
induced conformal involutions, which we still calling as φ1 and φ2, each one acts with
exactly two fixed points. It can be checked that φ1◦φ2 is the hyperelliptic involution.
In particular, φ1 and φ2 commute.

Now, we look at the quotient orbifold Oj =M/〈φj〉, for j = 1, 2.
The automorphism φ2 induces an automorphism of order two, say ψ2, on O1.

It can be seen that ψ2 has exactly two arcs of fixed points which intersect both
components of the branch locus in O1. The quotient M/〈φ1, φ2〉 = O1/〈ψ2〉 is a
closed ball with connected branch locus. On the other hand, the automorphism φ1

induces an automorphism of order two, say ψ1, on O2. It can be seen that ψ1 has
exactly two arcs of fixed points and only one of these arcs intersects the branch locus
of O2. The quotient M/〈φ1, φ2〉 = O2/〈ψ1〉 is a closed ball with disconnected branch
locus. We have obtained a contradiction.

5.4. The set F (2, 3; 0, 2, 0) is connected. A cyclic-Schottky group K of
type (2, 3; 0, 2, 0) contains exactly two normal Schottky groups of index three, say
Γ1 and Γ2. In order to see this, we consider K = 〈E1, E2〉, where E1 and E2 are
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of order three (K is the free product of 〈E1〉 and 〈E2〉), and the possible surjective
homomorphisms θ : K → Z3. If we set u = θ(F1), then we have only two possibilities
for θ(E2) ∈ {u, u−1}. If θ(E2) = u, then γ1 = ker(θ) = 〈E1E

−1
2 , E1

1E2〉, and if
θ(E2) = u−1, then Γ2 = ker(θ) = 〈E1E2, E

−1
1 E−1

2 〉. It is possible to construct a
quasiconformal homeomorphism W so that WE1W

−1 = E1 and WE2W
−1 = E−1

2

(this can be seen as a rotation in 180◦ of a disc containing the two fixed points of
E2). Then such a W will conjugate Γ1 to Γ2. This ensures that F (2, 3; 0, 2, 0) is
connected.

5.5. The component F (2, 3; 0, 2, 0) is contained inside F (2, 2; 1, 1, 0).
Let us consider a cyclic-Schottky group K1 of type (2, 3; 0, 2, 0) generated by the
elliptic transformations E1 and E2, both of order three (see Figure 2 where A = E1

and C = E−1
2 ). Let us denote by aj and bj both fixed points of Ej, for j = 1, 2.

There is a unique elliptic transformation of order two, say B, so that B(aj) = bj , for
j = 1, 2 (see Figure 2). In fact

B(z) =
(a1b1 − a2b2)z + a1a2(b1 + b2) + b1b2(a1 + a2)

(a1 + a2 + b1 + b2)z − a1b1 + a2b2
.

It follows that BEjB
−1 = E−1

j , for j = 1, 2. The group K = 〈E1, E2, B〉 is a

Kleinian group. Let us consider the surjective homomorphism θ : K → 〈u, v : u3 =
v2 = (uv)2 = 1〉, defined by θ(E1) = u, θ(E2) = u−1 and θ(B) = v. The kernel of θ
is the Schottky group Γ = 〈E1E1, E

−1
2 E−1

1 〉.
The group θ−1(〈u〉) is K1 and the group θ−1(〈v〉) is generated by E1E2 and B,

which is a cyclic-Schottky group of type (2, 2; 1, 1, 0).
All the above ensures that B2 consists of exactly two connected components, one

of them is F (2, 2; 1, 1, 0) and the other is F (2, 2; 0, 1, 1).

Remark 7. The following example clarifies the above construction (up to a
quasiconformal conjugation). Let us consider the Möbius transformations A(z) =
E1(z) = e2πi/3z, B(z) = 1/z. Then 〈A,B〉 is a dihedral group of order six. Set
C = BAB = E−1

2 , a Möbius transformation of order three so that 〈B,C〉 is a
dihedral group of order six and so that 〈A,C〉 is a free product (see Figure 2). We
may apply Maskit–Klein’s combination theorem [22, 24] to see that K = 〈A,B,C〉 is
a Kleinian group, with connected region of discontinuity, which is the amalgamated
free product, over the cyclic group 〈B〉, of the groups 〈A,B〉 and 〈B,C〉.

C

B
A

C

AC −1

A
−1

Figure 2. The Kleinian group K = 〈A,B,C〉 ∼= 〈A,B〉∗〈B〉〈B,C〉 ∼= D3∗Z2
D3 and the Schottky

group Γ = 〈AC−1, A−1C〉.
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Remark 8. (1) The above asserts that if M is a handlebody, with Kleinian
structure provided by a Schottky group Γ0 of rank two, and η is an automorphism of
order three (whose fixed point set consists of two simple arcs), then M also admits an
automorphism ρ of order two with fixed locus a simple arc. In fact, this is consequence
of the fact that given any two Möbius transformations of order three, say E and F ,
then there is a Möbius transformation of order two conjugating E into F , and the
decomposition structure provided in [13].

(2) Let K be constructed as in Section 5.5. It is not difficult to see that there is
a Möbius transformation D of order two commuting with B so that DAD−1 =

C. Again, by Maskit–Klein combination theorem [22, 24] the new group K̂ =
〈A,B,D〉 ∼= D2 ∗Z2

D3 (where D3 = 〈A,B〉, D2 = 〈B,D〉 and Z2 = 〈B〉) is a
Kleinian group for which Γ is also a normal subgroup (of index 12).

6. Connectivity of Bg, for g ≥ 3

If g ≥ 3, then generically a handlebody with a Kleinian structure has no hyperel-
liptic involution. In this situation, Bg consists of those conjugacy classes of Schottky
groups of rank g which are strictly contained in a Kleinian group as a finite index
normal subgroup (equivalently, the handlebody uniformized by the Schottky group
has a non-trivial automorphism).

Lemma 9. The branch locus Bg is the union of the subsets F (g, p; t, r, s), where
p is prime, t, r, s are non-negative integers so that g − 1 = p(t+ r + s− 1)− r.

Proof. Let W be a Kleinian group containing a Schottky group Γ as a non-trivial
finite index normal subgroup and let us consider the natural surjective homomor-
phism θ : W → W/Γ. Let φ ∈ W/Γ an element of prime order p. The group
K = θ−1(〈φ〉) is a Kleinian group containing Γ as a normal subgroup of index p. �

Lemma 10. Each F (g, p; t, r, s), where p ≥ 3 is prime, intersects some F (g, 2;
t′, r′, s′).

Proof. Let K be a cyclic-Schottky group of type (g, p; t, r, s), where p ≥ 3 is a
prime.

We consider a surjective homomorphism θ : K → Zp = 〈φ〉 for which Γ = ker(θ).

the orbifold O

the orbifold O/ τ>

τ

p

p

pp

2

22

2
2

2

<

Figure 3. t = 1, r = 1, s = 1.
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As described in Section 4.2, the group K is a free product, in the sense of
the Klein–Maskit combination theorems, of t cyclic groups generated by loxodromic
transformations, r cyclic groups generated by elliptic transformations of order p and
s Abelian groups, each one generated by a loxodromic transformation and an elliptic
transformation of order p both of them commuting, so that g = 1+p(t+r+s−1)−r.

The orbifold O = M/〈φ〉 admits an orientation-preserving self-homeomorphism
τ of order two with the following properties (see Figure 3):

(1) each arc in the branch locus is kept invariant under τ , but τ permutes the
end points of the arc;

(2) each loop in the branch locus is kept invariant under τ and τ has exactly two
fixed points on the loop.

The involution τ lifts to a self-homeomorphism τ̂ (again of order two) of M so
that H = 〈φ, τ̂〉 ∼= Dp (the dihedral group of order 2p). In fact, let us identify
the orbifold fundamental group of the orbifold O with K. Next, we look at the
homotopical action of τ over K. If K ′ denotes the derived subgroup of K, then τ
induces the isomomorphism

K/K ′ → K/K ′ : kK ′ 7→ k−1K ′.

As the branched cover M → O is Abelian (in fact cyclic), we have that K ′ ⊳ Γ.
It follows that the homotopical action of τ keeps Γ invariant, providing the lifting
property. As τ has order two and it has fixed points, we can find a lifting τ̂ of order
two. The fact that τ̂ ◦ φ ◦ τ̂ = φ−1 is clear.

In this way, we have that the handlebody M admits the group H = 〈φ, τ̂〉 as a
finite group of orientation-preserving homeomorphisms. It is known that there is a
Kleinian structure on M for which H acts as a group of automorphisms [27]. This
can also be easily seen as follows: Look at the boundary S of M and the action of H
on S as a finite group. By classical results on Riemann surfaces due to Nielsen (see
[18]), there is a Riemann surface structure on S so that H is a group of conformal
automorphisms. The Riemann surface structure on S induces a Kleinian structure
on M for which H acts as a group of automorphisms (see [20, 27]).

It follows that there is a quasiconformal deformation of the groupK, say χµ : K →
Kµ, so that the group H acts a group of automorphisms of the handlebody with
Kleinian structure provided by the corresponding quasiconformal deformation χµ(Γ) =
Γµ.

We have proved that every π-image of an embedding of a quasiconformal defor-
mation space of a Kleinian group K containing a Schottky group Γ of index a prime
p must intersect the π-image of an embedding of a quasiconformal deformation space
of a Kleinian group containing a Schottky group of index two. �

As a direct consequence of the both two lemmas is the following fact.

Proposition 11. The number of connected components of the union of all the
connected subsets F (g, 2; t, r, s) is an upper bound on the number of connected com-
ponents of Bg.

Remark 12. The complex dimension of the subsets F (g, 2; t, r, s) is (3g−3+r)/2.
A cyclic-Schottky group of type (g, 2; t, r, s) is called a Whittaker group of rank g in
[10]. A cyclic-Schottky group of type (g, 2; 0, g + 1, 0) is also called a hyperelliptic
Whittaker group of rank g. In this last case, the unique index two subgroup which
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does not contain elliptic elements is a Schottky group of rank g, called a hyperelliptic
Schottky group [17]. As a consequence of the above proposition, the number of
connected components of Bg is bounded above by the number of different topological
types of Whittaker groups, that is, bounded above by (see [10])

1

2

([
g + 1

2

]
+ 1

)([
g + 1

2

]
+ 2

)
.

The above is a rude upper bound as we will see.

The following two results (whose proofs are provided in the following two sections)
imply that Bg consists at most of two connected components g ≥ 3 and, that Bg is
connected for odd g ≥ 3.

Theorem 13. If g ≥ 4 is even, then the following hold.

(1) F (g, 2; t, r, s) ∩ F (g, 2; g/2, 1, 0) 6= ∅, if s and t are even.
(2) F (g, 2; t, r, s) ∩ F (g, 2; (g − 2)/2, 3, 0) 6= ∅, if s is even and t is odd.
(3) F (g, 2; t, r, s) ∩ F (g, 2; (g − 2)/2, 1, 1) 6= ∅, if s is odd and t is even.
(4) F (g, 2; t, r, s) ∩ F (g, 2; (g − 4)/2, 3, 1) 6= ∅, if s and t are odd.
(5) F (g, 2; g/2, 1, 0)∩ F (g, 2; (g − 2)/2, 3, 0) 6= ∅.
(6) F (g, 2; (g − 2)/2, 1, 1) ∩ F (g, 2; (g − 4)/2, 3, 1) 6= ∅.

Theorem 14. If g ≥ 3 is odd, then the following hold.

(1) F (g, 2; t, r, s) ∩ F (g, 2; (g − 1)/2, 2, 0) 6= ∅, if t is even.
(2) F (g, 2; t, r, s) ∩ F (g, 2; (g − 3)/2, 4, 0) 6= ∅, if t is odd.
(3) F (g, 2; (g − 1)/2, 2, 0) ∩ F (g, 2; (g − 3)/2, 4, 0) 6= ∅.

We will work out in details the case g even; as for the case g odd, the constructions
are similar; we only indicates the suitable modifications.

Remark 15. Observe that the cyclic-Schottky groups of type (g, 2; g/2, 1, 0) and
(g, 2; (g−1)/2, 2, 0), induce actions on the Riemann surface SΓ = Ω/Γ. These induced
actions are the same that the ones found in [5] to show that all the Riemann surfaces
admitting an action of order 2 or 3 belong to the same connected component of the
branch locus of moduli space of Riemann surfaces of genus g ≥ 3.

7. Proof of Theorem 13

If g is even and K is a cyclic-Schottky group of type (g, 2; t, r, s), then r is
necessarily odd as g = 1 + 2(t+ r + s− 1)− r. So we may write r = 2b− 1.

In order to prove our theorem, in each case we need to construct a Kleinian group

K̂ containing two cyclic-Schottky groups, one of type (g, 2; t, r, s) and other of the
required type, both of them containing the same Schottky group Γ of rank g as index
two subgroup.

7.1. Case t and s are even. Let us consider non-negative integers a, b, c,
so that t = 2a, r = 2b − 1 and s = 2c, and consider a collection of circles as
shown in Figure 4; finally, let D be the common domain bounded by them. Let
F1 elliptic of order two with both fixed points on Σ0, Ej elliptic of order two with
both fixed points on Σj (for j = 1, . . . , b), Aj loxodromic transformation so that
Aj(Σ1,j,1) = Σ1,j,2 and Aj(D)∩D = ∅ (for j = 1, . . . , a), Bj loxodromic transformation
so that Bj(Σ2,j,1) = Σ2,j,2 and Bj(D) ∩ D = ∅ (for j = 1, . . . , c), Cj elliptic of order
two with both fixed points on Σ2,j,3 and commuting with Bj (for j = 1, . . . , c).
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Let K̂ be generated by all the above Möbius transformations. Then K̂ turns
out to be a Kleinian group (by the Klein–Maskit combination theorems) with D as
a fundamental domain, isomorphic to the free product of a copy of Z2

2 (the group
generated by F1 and E1), b − 1 copies of Z2 (each one generated by E2, . . . , Eb,
respectively), a infinite cyclic groups (generated by A1, . . . , Aa, respectively), and c
copies of Z× Z2 (generated by Bj and Cj, for j = 1, . . . , c).

Moreover, by the same combination theorems, if Ω is the region of discontinuity

of K̂, then Ω is connected (the complement of a Cantor set) and Ω/K̂ is of signature
(a+ c; 2, 2b−1. . . , 2).

Let us consider the surjective homomorphism

θ : K̂ → 〈u, v : u2 = v2 = (uv)2 = 1〉 ∼= Z2
2

defined by

θ(E1) = · · · = θ(Eb) = θ(C1) = · · · = θ(Cc) = u, θ(F1) = v,

θ(A1) = · · · = θ(Aa) = θ(B1) = · · · = θ(Bc) = 1.

The kernel of θ is a torsion free Kleinian group Γ; which is a normal subgroup
of index 4 in K̂. As Γ has also Ω as its region of discontinuity, it follows from the
classification of function groups that Γ is necessarily a Schottky group. Its rank g
can be computed by the Riemann–Hurwitz formula, i.e., g = 4a+ 2b+ 4c− 2.

The group K1 = θ−1(〈u〉) is generated by the transformations

E1, . . . , Eb, C1, . . . , Cs, F1E2F1, . . . , F1EbF1, F1C1F1, . . . , F1CcF1,

A1, . . . , Aa, B1, . . . , Bc, F1A1F1, . . . , F1AaF1, F1B1F1, . . . , F1BcF1

and it is cyclic-Schottky group of type (g, 2; 2a, 2b− 1, 2c). The group K2 = θ−1(〈v〉)
is generated by the transformations

F1, E1E2, . . . , E1Eb, E1C1, . . . , E1Cc, A1, . . . , Aa, B1, . . . , Bc, E1A1E1, . . . , E1AaE1

and it is cyclic-Schottky group of type (g, 2; 2a+ b+ 2c− 1, 1, 0).
The group K1 induces an involution onMΓ whose branch locus consists of exactly

2c loops and 2b−1 arcs and the group K2 induces an involution on MΓ whose branch
locus consists of exactly 1 arc of fixed points.
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Figure 4. The Kleinian group K̂ for g even and t = 2a, r = 2b− 1 and s = 2c.
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Figure 5. The Kleinian group K̂ for g even and t = 2a− 1, r = 2b− 1 and s = 2c.

7.2. Case t odd and s even. If t = 2a− 1, then we consider a Kleinian group

K̂ as in the previous section, but we delete the transformation Aa and add an elliptic
element of order two, say F2. We use the same homomorphism θ as before with
θ(F2) = v. Then K1 = θ−1(〈u〉) will be a cyclic-Schottky group of type (g, 2; t, r, s)
and K2 = θ−1(〈v〉) will be a cyclic-Schottky group of type (g, 2; (g − 2)/2, 3, 0).
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Figure 6. The group K̂ for g even and t odd.

7.3. Case s odd and t even. Let us write s = 2c− 1 and t = 2a. Then K̂ is
the Kleinian group constructed a the free product of (b− 1) cyclic groups generated
by elliptic elements E1, . . . , Eb−1 of order 2, a cyclic groups generated by loxodromic
transformationsA1, . . . , Aa, (c−1) groups isomorphic to Z×Z2 generated by the lox-
odromic transformations B1, . . . , Bc−1 and the elliptic transformations of order two
C1, . . . , Cc−1, so that BjCj = CjBj , and a Kleinian group generated by elliptic trans-
formations of order two F1, F2, F3 and F4, so that F1F2 = F2F1, F2F3 = F3F2 and
F3F4 = F4F3 (see Figure 6). In this case we consider the surjective homomorphism
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θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(Ej) = θ(Ck) = θ(F2) = θ(F4) = u,

θ(F1) = θ(F3) = v, θ(Al) = θ(Bk) = 1.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; t, r, s) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 2)/2, 1, 1).

7.4. Case s and t odd. Let us write s = 2c− 1 and t = 2a− 1. Then K̂ is the
Kleinian group constructed a the free product of b cyclic groups generated by elliptic
elements E1, . . . , Eb−1, F5 of order 2, (a− 1) cyclic groups generated by loxodromic
transformations A1,. . . ,Aa−1, (c−1) groups isomorphic to Z×Z2 generated by the lox-
odromic transformations B1, . . . , Bc−1 and the elliptic transformations C1,. . . , Cc−1

of order two, so that BjCj = CjBj , and a Kleinian group generated by elliptic trans-
formations of order two, F1, F2, F3 and F4, so that F1F2 = F2F1, F2F3 = F3F2 and
F3F4 = F4F3 (see Figure 7). In this case we consider the surjective homomorphism

θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(Ej) = θ(Ck) = θ(F2) = θ(F4) = u,

θ(F1) = θ(F3) = θ(F5) = v, θ(Al) = θ(Bk) = 1.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; t, r, s) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 4)/2, 3, 1).
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Figure 7. The group K̂ for g even and s and t odd.

7.5. F (g, 2; g/2, 1, 0) ∩ F (g, 2; (g − 2)/2, 3, 0) 6= ∅. Let us consider a
Kleinian group which is the free product of g/2 cyclic groups of order two, say gen-
erated by the elliptic elements F1, . . . , Fg/2, and a group isomorphic to Z2

2 generated
by the elliptic elements E1 and E2 (see Figure 8). Now consider the surjective ho-

momorphism θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(F1) = · · · = θ(F(g−2)/2) = uv, θ(E1) = u, θ(E2) = θ(Fg/2) = v.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; g/2, 1, 0) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 2)/2, 3, 0).
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F

E E

1

1

F
g/2

Figure 8. A group K̂.

7.6. F (g, 2; (g − 2)/2, 1, 1) ∩ F (g, 2; (g − 4)/2, 3, 1) 6= ∅. Let us consider
a Kleinian group which is the free product of (g − 2)/2 cyclic groups of order two
generated by the elliptic elements F1, . . . , F(g−2)/2, and a group generated by the
elliptic elements of order two E1, E2, E3 and E4, so that E1E2 = E2E1, E3 =
E3E2 and E3E4 = E4E3 (see Figure 9). Now consider the surjective homomorphism

θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(F1) = · · · = θ(F(g−4)/2) = uv,

θ(E1) = θ(E3) = θ(F(g−2)/2) = v, θ(E2) = θ(E3) = u.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; (g − 2)/2, 1, 1) and
K2 = θ−1(〈v〉) is of type (g, 2; (g − 4)/2, 3, 1).

(g−2)/2
F

E

1

1

F

E

E2

3

E
4

Figure 9. A group K̂.

8. Proof of Theorem 14

If g is odd and K is a cyclic-Schottky group of type (g, 2; t, r, s), then r is neces-
sarily even as g = 1 + 2(t+ r + s− 1)− r. So we may write r = 2b.

8.1. Case s and t even. Let us write s = 2c and t = 2a. Then K̂ is
the Kleinian group constructed a the free product of (b + 1) cyclic groups gener-
ated by elliptic elements E1, . . . , Eb and F1 of order 2, a cyclic groups generated by
loxodromic transformations A1, . . . , Aa, and c groups isomorphic to Z × Z2 gener-
ated by the loxodromic transformations B1, . . . , Bc and the elliptic transformations
C1, . . . , Cc of order two, so that BjCj = CjBj . In this case we consider the surjective

homomorphism θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(Ej) = θ(Ck) = u, θ(F1) = v, θ(Al) = θ(Bk) = 1.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; t, r, s) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 1)/2, 2, 0).

8.2. Case s is even and t is odd. Let us write s = 2c and t = 2a−1. Then K̂
is the Kleinian group constructed a the free product of (b+2) cyclic groups generated
by elliptic elements E1, . . . , Eb, F1 and F2 of order 2, (a− 1) cyclic groups generated
by loxodromic transformations A1, . . . , Aa−1, and c groups isomorphic to Z×Z2 gen-
erated by the loxodromic transformations B1, . . . , Bc and the elliptic transformations
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C1, . . . , Cc of order two so that BjCj = CjBj . In this case we consider the surjective

homomorphism θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(Ej) = θ(Ck) = u, θ(F1) = θ(F2) = v, θ(Al) = θ(Bk) = 1.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; t, r, s) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 3)/2, 4, 0).

8.3. Case s is odd and t is even. Let us write s = 2c− 1 and t = 2a. Then
K̂ is the Kleinian group constructed a the free product of b cyclic groups generated
by elliptic elements E1, . . . , Eb of order 2, a cyclic groups generated by loxodromic
transformations A1, . . . , Aa, (c−1) groups isomorphic to Z×Z2 generated by the lox-
odromic transformations B1, . . . , Bc−1 and the elliptic transformations C1, . . . , Cc−1

of order two, so that BjCj = CjBj , and a group generated by three elliptic elements
of order two: F1, F2 and F3, so that F1F2 = F2F1 and F2F3 = F3F2. In this case we

consider the surjective homomorphism θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(Ej) = θ(Ck) = θ(F2) = u, θ(F1) = θ(F3) = v, θ(Al) = θ(Bk) = 1.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; t, r, s) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 1)/2, 2, 0).

8.4. Case s and t odd. Let us write s = 2c − 1 and t = 2a − 1. Then
K̂ is the Kleinian group constructed a the free product of (b + 1) elliptic elements
of order 2, say E1, . . . , Eb and F1, (a − 1) cyclic groups generated by loxodromic
transformations, say A1, . . . , Aa−1, (c−1) groups isomorphic to Z×Z2, say generated
by the loxodromic transformations B1, . . . , Bc−1 and the elliptic transformations of
order two C1, . . . , Cc−1, so that BjCj = CjBj , and a group generated by three elliptic
elements of order two: F2, F3 and F4, so that F2F3 = F3F2 and F3F4 = F4F3. In this

case we consider the surjective homomorphism θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(Ej) = θ(Ck) = θ(F3) = u, θ(F1) = θ(F2) = θ(F4) = v, θ(Al) = θ(Bk) = 1.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; t, r, s) and K2 =
θ−1(〈v〉) is of type (g, 2; (g − 3)/2, 4, 0).

8.5. F (g, 2; (g − 1)/2, 2, 0) ∩ F (g, 2; (g − 3)/2, 4, 0) 6= ∅. Let us consider
a Kleinian group which is the free product of (g = 3)/2 cyclic groups of order two,
generated by the elliptic elements F1, . . . , F(g+1)/2, and E. Now consider the surjective

homomorphism θ : K̂ → 〈u, v〉 ∼= Z2
2, defined by

θ(F3) = · · · = θ(F(g+1)/2) = uv, θ(E) = u, θ(F1) = θ(F2) = v.

Then K1 = θ−1(〈u〉) is a cyclic-Schottky group of type (g, 2; (g − 1)/2, 2, 0) and
K2 = θ−1(〈v〉) is of type (g, 2; (g − 3)/2, 4, 0).
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