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Abstract. We provide a general framework for fractional Hardy inequalities. Our framework

covers, for instance, fractional inequalities related to the Dirichlet forms of some Lévy processes,

and weighted fractional inequalities on irregular open sets.

1. Introduction

The objective of the present paper is to study inequalities of the general form

(1.1)

ˆ

D

|u(x)|p
φ(δx)

µ(dx) ≤ c

ˆ

D

ˆ

D∩B(x,Rδx)

|u(x)− u(y)|p
φ(δx)δdx

µ(dy)µ(dx) c, R > 0,

on metric measure spaces (X, ρ, µ), with the emphasis on X = Rd equipped with
the Euclidean distance and the Lebesgue measure. We write δx = dist(x,X \ D)
and D ⊂ X is a possibly irregular open set. The function φ : (0,∞) → (0,∞) is
a ‘perturbation’ of a power function t 7→ tη for some η ∈ R, and the exponent p
satisfies 0 < p < ∞.

Our main result, Theorem 5 in §3, brings together two so-far distinct lines along
which the fractional Hardy inequality has been generalised: one of them related to
the function φ, and the other to the regularity of the open set D ⊂ X. Let us present
the Euclidean version of our main result here; Theorem 1 below is a combination of
Theorem 5 and Propositions 6 and 10.

Theorem 1. Let 0 < p < ∞, H ∈ (0, 1] and η ∈ R. Suppose that D 6= ∅ is a
proper κ-plump open set in Rd and φ : (0,∞) → (0,∞) is a function so that either
condition (T) or condition (F) holds:

(T) dimA(∂D) < d− η, D is unbounded, and φ ∈ WUSC(η, 0, H−1);
(F) dimA(∂D) > d−η, D is bounded or ∂D is unbounded, and φ ∈ WLSC(η, 0, H).

Then inequality (1.1) holds for all measurable functions u for which the left hand
side is finite.

For the definitions of plumpness and Assouad dimensions dimA and dimA, we
refer to Section 2; the classes WUSC and WLSC are defined in Definition 3.1. Let
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us remark that inequality (1.1) fails for nonzero constant functions. This means that
under the assumptions of Theorem 1, the integral

´

D
φ(δx)

−1 dx must be divergent,
on the other hand, it shows that the assumption of the left hand side of (1.1) being
finite is essential. The relatively simple proof of our main result is a refinement of the
techniques in [7] where, e.g., Hardy inequalities (1.3) with β = 0 in case of bounded
Lipschitz domains are established.

Theorems 1 and 5 provide a general framework for fractional Hardy inequalities,
as they allow for both general open sets D and functions φ simultaneously. In the
sequel, we will state separate corollaries in each of these directions to make the
exposition of our framework transparent. First, instead of considering classes WUSC
and WLSC, we will confine ourselves to the well-known regularly varying functions.
Let us remind that φ is called regularly varying at origin (resp. infinity) with index
η, if

φ(λx)

φ(x)
→ λη

when x → 0+ (resp. when x → ∞) for every λ > 0. In the following corollary the
geometry of the underlying domain Rd \ {0} is particularly simple.

Corollary 2. Suppose that φ : (0,∞) → (0,∞) is a regularly varying function
at origin of index ρ0, a regularly varying function at infinity of index ρ∞, and is
bounded and bounded away from zero on every compact subset of (0,∞). Suppose
that either 0 < ρ0, ρ∞ < d or ρ0, ρ∞ > d. Let 0 < p < ∞. Then there exists a
constant c = c(φ, d, p) such that inequality

(1.2)

ˆ

Rd\{0}

|u(x)|p
φ(|x|) dx ≤ c

ˆ

Rd\{0}

ˆ

Rd\{0}

|u(x)− u(y)|p
φ(|x− y|)|x− y|d dy dx

holds for every measurable function u for which the left hand side is finite.

A proof of this corollary can be found in §3.4. Inequalities like (1.2) have been
studied in [15] for weights of more general (but also more complicated) form and
p > 1, and in [14, 15, 22] in the one-dimensional case. The forms appearing on
the right hand side of (1.2) for p = 2 (and for more general domains) are, at least
for some functions φ, the Dirichlet forms of certain Lévy processes, which are being
extensively studied, see e.g. [13, 20, 33] and [5, Section 4.1].

To discuss our results for irregular open sets, we confine ourselves to weighted
fractional Hardy inequalities in Rd, i.e., we consider the function φ(t) = tsp−β with
d+ sp ≥ 0, in which case inequality (1.1) yields

(1.3)

ˆ

D

|u(x)|p
δspx

δβx dx ≤ c

ˆ

D

ˆ

D

|u(x)− y(y)|p
|x− y|d+sp

δβx dy dx.

An open set D ⊂ Rd is said to admit (s, p, β)-Hardy inequality, if inequality (1.3)
holds for all functions u ∈ C∞

0 (D) (i.e., smooth with compact support in D) with
c independent of u. There has been recent interest in (s, p, 0)-Hardy inequalities in
connection with the boundary regularity of an open set D, we refer to [10, 16, 17, 18].
In another direction, the sharp constants for fractional Hardy-type inequalities on
general domains are obtained in [27], where the distance is replaced with an averaged
pseudo distance. In [9] these results are further refined; let us also mention the other
related papers [4, 8, 11, 12, 34].
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The non-fractional counterpart of inequality (1.3) has also been studied. Namely,
the following weighted (p, β)-Hardy inequality, with c > 0,

(1.4)

ˆ

D

|u(x)|p
δpx

δβx dx ≤ c

ˆ

D

|∇u(x)|p δβx dx

holds for every u ∈ C∞
0 (D) if D is a bounded Lipschitz domain, 1 < p < ∞, and

β < p − 1, [32]. More generally, an open set admits a (p, β)-Hardy inequality if the
complement Dc = Rd \D is either sufficiently ‘thin’ or ‘fat’. For instance, an open
set D admits a (p, 0)-Hardy inequality if Dc is (1, p)-uniformly fat and 1 < p < ∞,
[26]. The (1, p)-fatness of Dc is also known to be sufficient for certain (p, β)-Hardy
inequalities, [24, 37]. A deeper understanding of the ‘thin’ vs. ‘fat’ dichotomy is
reached in an independent recent study [23], where an open set D ⊂ X is shown to
admit a (p, β)-Hardy inequality if Dc = X \D sufficiently thin or fat, measured in
terms of upper and lower Assouad dimension (dimA and dimA), respectively. We also
refer to [21].

Our framework covers an Assouad dichotomy result for fractional (s, p, β)-Hardy
inequalities with X = Rd, see the following Corollary 3.

Corollary 3. Let p, s, β be real numbers so that 0 < p < ∞ and d + sp ≥ 0.
Suppose D 6= ∅ is a proper κ-plump open set in Rd so that either condition (T) or
condition (F) holds:

(T) dimA(∂D) < d− sp+ β and D is unbounded;
(F) dimA(∂D) > d− sp+ β, and D is bounded or ∂D is unbounded.

Then D admits an (s, p, β)-Hardy inequality, i.e., inequality (1.3) holds for every
u ∈ C∞

0 (D) with a constant c > 0 independent of u.

This corollary follows from Theorem 1 with the aid of Example 3.3. As an
illustration of this result, we may consider the domain D ⊂ R2 bounded by the Koch
snowflake. It is a domain with a property dimA(∂D) = log 4/ log 3. Since D is also κ-
plump, Corollary 3 does apply. In the ‘thin case’ we may, e.g., consider the unbounded
domain G := Rd \ D. Now G is κ-plump and it satisfies dimA(∂G) = log 4/ log 3.
Let us note that [7, Theorem 1.1], apart from the case (T2) for α > 1, is a special
case of Corollary 3. We would also like to note that we do not need to assume the
positivity of s in Corollary 3.

Let us comment on the cases (T) and (F) in Corollary 3. Focusing on the case
(T) first, recall that dimA(∂D) = d − 1 for a Lipschitz domain D. The unbound-
edness of D cannot be removed, at least if 0 < s < 1, in which case a bounded
Lipschitz domain satisfies an (s, p, 0)-Hardy inequality if and only if sp > 1, [7]. Cer-
tain non-homogeneous (s, p, 0)-Hardy inequalities remain valid for John domains D
with dimA(∂D) < d − sp, [18]. Therein (T) with β = 0 is formulated in terms of a
certain Aikawa dimension which equals to the upper Assouad dimension in Euclidean
spaces, see [25]. Recalling that John domains are both bounded and κ-plump, we
may conclude that our framework provides a far-reaching generalisation of the afore-
mentioned non-homogeneous results to the case of unbounded open sets.

Moving on to the case (F) with ‘fat’ boundary, let us first formulate an illustra-
tive, but more restrictive, version of Corollary 3. We refer to §4.4 for the relevant
definitions.
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Corollary 4. Let p, s, β be real numbers so that 1 < p < ∞, 0 < sp − β < d,
and d+ sp ≥ 0. Suppose D is a κ-plump open set in Rd such that ∂D is (s−β/p, p)-
uniformly fat (-locally uniformly fat, if D is bounded). Then D admits an (s, p, β)-
Hardy inequality.

This corollary is a consequence of Corollary 3 and Propositions 8 and 9. Unlike
in the case of inequality (1.4) with β = 0 and s = 1, the (s, p)-uniform fatness of ∂D
(let alone Dc) is not a sufficient condition for an open set D to admit an (s, p, 0)-
Hardy inequality (at least) in the case of 0 < sp ≤ 1. This ‘non-local obstruction’ is
recognised and addressed in [16]. It affects the fractional Hardy inequalities studied
in [10], where Dc is assumed to be (s, p)-uniformly fat and, as a conclusion, on the
right hand side of (1.3) one then has integration over Rd ×Rd.

Suppose that D is an open set whose boundary is (s, p)-uniformly fat (locally
uniformly fat, if D is bounded). It is an interesting question, what additional con-
ditions are sufficient for D to admit an (s, p, 0)-Hardy inequality. To this end, we
improve [16, Corollary 1.4] where uniformity, [29, 36], of a domain D is shown to be
a sufficient additional condition. Indeed, by Corollary 4, we may replace uniformity
with the significantly weaker κ-plumpness. Let us remark that [16, Theorem 4.1],
stated in terms of a ‘visibility condition on the boundary’, still covers some other
cases where our results do not apply, e.g., certain domains with outward cusps.

The structure of this paper is as follows. In §2 we define both the lower and
upper Assouad dimension, and the notion of κ-plumpness. We also present other
basic notation. Our main result is Theorem 5, stated and proven in §3. There we
also define classes WLSC and WUSC of functions φ and a condition DC(a, γ, d) for
open sets D. The latter condition is further clarified in §4 and §5, where we study
the cases of ‘fat’ and ‘thin’ boundaries in terms of uniform fatness, and the lower and
upper Assouad dimension.

Acknowledgment. Research is supported by the DFG through SFB-701 ‘Spectral
Structures and Topological Methods in Mathematics’. Part of the research was done
while the second author was visiting University of Bielefeld, and he would like to
thank B. Dyda and M. Kaßmann for their hospitality. The first author was supported
in part by the NCN grant 2012/07/B/ST1/03356. The authors would like to thank
K. Bogdan, T. Grzywny and J. Lehrbäck for helpful discussions and preprints of [5]
and [23].

2. Assouad dimensions and plumpness

We recall the lower and upper Assouad dimensions of a set ∅ 6= E ⊂ Rd, [19].
The lower Assouad dimension measures the ‘fatness’ of a set E, whereas the upper
one measures how ‘thin’ a set E is. The upper Assouad dimension is often called
Assouad dimension, a notion tracing back to [2] and even [6]. We refer to [19, 28] for
further information and other results.

Definition 2.1. Consider all λ ≥ 0 for which there is C > 0 so that, if 0 < r <
R < 2 diam(E) and x ∈ E, then at least C(R/r)λ balls—centred in E and of radius
r—are needed to cover B(x,R) ∩ E. The supremum of all such λ is called the lower

Assouad dimension of E and it is denoted by dimA(E).

Definition 2.2. Consider all λ ≥ 0 for which there is C > 0 so that, if 0 < r <
R < 2 diam(E) and x ∈ E, then we can cover E ∩B(x,R) by at most N ≤ C(R/r)λ
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balls B1, . . . , BN such that each Bj is centred in E and has radius r. We call the

infimum of all such λ the upper Assouad dimension of E, and write it as dimA(E).

We also recall a geometric notion from [36]. See also [30].

Definition 2.3. A set A ⊂ Rd is κ-plump with κ ∈ (0, 1) if, for each 0 < r <
diam(A) and each x ∈ Ā, there is z ∈ B̄(x, r) such that B(z, κr) ⊂ A.

Here is other notation; (X, ρ, µ) is a metric measure space, and we denote

δx = dist(x,Dc)

with Dc = X \D. The open ball centred at x ∈ X and of radius r > 0 is denoted by
B(x, r) ⊂ X. The boundary of set A is written as ∂A, A denotes the closure of A,
and |A| is the Lebesgue measure of a measurable set A ⊂ Rd. For a proper open set
D ⊂ Rd, we fix its Whitney decomposition W(D), and write Wm(D) for the family
of Whitney cubes with side length 2−m, m ∈ Z. If Q ∈ W(D), then

(2.1) diam(Q) ≤ dist(Q, ∂D) ≤ 4 diam(Q).

For other properties of Whitney cubes we refer to [35, VI.1].

3. Main result

We state and prove our main result. For definition of conditions DC(a, γ, d),
WLSC(η, 0, H) and WUSC(η, 0, H), we refer to §3.1 and §3.2. The proof of Theo-
rem 5 is taken up in §3.3.

Theorem 5. Suppose that a proper open set D ⊂ X satisfies DC(a, γ, d) with
a ∈ (0,∞) \ {1}. Moreover, suppose that for some H ∈ (0, 1], either a ∈ (0, 1), η +
γ−d > 0 and φ ∈ WLSC(η, 0, H), or a > 1, η+γ−d < 0 and φ ∈ WUSC(η, 0, H−1).
Then for any 0 < p < ∞ there exist constants c and R > 0 such that

(3.1)

ˆ

D

|u(x)|p
φ(δx)

µ(dx) ≤ c

ˆ

D

ˆ

D∩B(x,Rδx)

|u(x)− u(y)|p
φ(δx)δdx

µ(dy)µ(dx)

for all measurable functions u for which the left hand side is finite.

3.1. Assumptions on a function φ. We adopt the notion of a global weak
lower (or upper) scaling condition (WLSC or WUSC for short) from [5, Section 3].
In our case, the middle parameter in WLSC(·, 0, ·) and WUSC(·, 0, ·) is always zero
and could be therefore omitted, but we prefer to keep the original notation. We
formulate these conditions in an equivalent way, which is more convenient for our
purposes than the original formulation.

Definition 3.1. Let η ∈ R and H ∈ (0, 1]. We say that a function φ : (0,∞) →
(0,∞) satisfies global WLSC(η, 0, H) (resp., WUSC(η, 0, H−1)) and write φ ∈ WLSC
(η, 0, H) (φ ∈ WUSC(η, 0, H−1)), if

φ(st) ≥ Htηφ(s), s > 0,(3.2)

for every t ≥ 1 (resp., for every t ∈ (0, 1]).

Remark 3.2. If the domain D in Theorem 5 is bounded, then it suffices to
assume (3.2) for all s, st < diam(D).

Example 3.3. Function φ(x) = xη satisfies WLSC(η, 0, 1) and WUSC(η, 0, 1)
whenever η ∈ R.
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Example 3.4. Suppose that φ : (0,∞) → (0,∞) is a regularly varying function
at origin of index ρ0, a regularly varying function at infinity of index ρ∞, and is
bounded and bounded away from zero on every compact subset of (0,∞). If ρ0 > η
and ρ∞ > η, then φ ∈ WLSC(η, 0, H) for some H ∈ (0, 1], and if ρ0 < η and ρ∞ < η,
then φ ∈ WUSC(η, 0, H−1) for some H ∈ (0, 1]. These follow from Potter’s theorem
[3, Theorem 1.5.6].

We note that if, say, a < 1, ρ0 ≥ η, ρ∞ ≥ η, and if η+γ−d > 0 and the assump-
tions on domain in Theorem 5 hold, then also the assertion (3.1) holds. Indeed, for
every ε > 0 function φ satisfies WLSC(η − ε, 0, Hε) with some constant Hε ∈ (0, 1],
hence by taking ε > 0 small enough we still have (η − ε) + γ − d > 0.

To have more concrete examples, let us note that functions

φ1(x) = xα + xβ , φ2(x) = xη(1 + | log x|)β

are regularly varying both at the origin (of indices min(α, β) and η, respectively) and
at infinity (of indices max(α, β) and η, respectively).

Example 3.5. Functions φ are not confined to regularly varying functions. In-
deed, φ(x) = xηex satisfies WLSC(η, 0, 1), but is not regularly varying at infinity.

3.2. Assumption DC(a, γ, d) on open sets. In what follows we assume that
D is an open set in a metric measure space (X, ρ, µ).

Definition 3.6. We say that D satisfies a domain condition DC(a, γ, d) where
γ ∈ R, d > 0, a > 0, a 6= 1, if there exist M > 0 and (possibly empty) families

B(n) = {B(n)
j } of subsets of D indexed by n ∈ Z such that the following conditions

(B1)–(B4) hold.

(B1) D = ∪j,nB
(n)
j and each x ∈ D belongs to at most M sets B

(n)
j .

(B2) For any B
(n)
j we have

M−1an ≤ δx ≤ Man, x ∈ B
(n)
j , M−1and ≤ µ(B

(n)
j ) ≤ Mand.

(B3) For any B
(n)
j and any integer k > M , there exists a nonempty finite set

V (B
(n)
j , k) of indices so that, for each i ∈ V (B

(n)
j , k),

sup{ρ(x, y) : x ∈ B
(n)
j and y ∈ B

(n+k)
i } ≤

{

Man, if a < 1,

Man+k, if a > 1.

(B4) For each n ∈ Z and k > M ,

sup
i

∑

j:i∈V (B
(n)
j ,k)

1

♯V (B
(n)
j , k)

≤ Makγ .

Remark 3.7. The slightly technical Definition 3.6 allows a unified treatment of
fractional Hardy inequalities in different cases. In the Euclidean spaces, we usually

take Whitney cubes of roughly the same size as the sets B
(n)
j and then conditions

(B1) and (B2) are immediate, we refer to §4.1 and §5.1 for examples. Formulating
the definition using these general sets rather than Whitney cubes gives us some
flexibility, see Examples 3.8 and 3.9 for an illustration. The last two conditions (B3)
and (B4) specify the relationship between the layers

Dn := D ∩ {x : M−1an ≤ δx ≤ Man}
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and

Dn+k := D ∩ {x : M−1an+k ≤ δx ≤ Man+k}
for large values of k. Namely, in a ‘neighbourhood’ of each B

(n)
j ⊂ Dn there should be

‘sufficiently many’ sets B
(n+k)
i ⊂ Dn+k; the number γ describes this quantitatively.

Below we provide some illustrative examples of sets satisfying condition DC(a, γ, d).
In the two examples X = Rd with the Euclidean distance, in which case δx =
dist(x, ∂D) for all x ∈ D. Moreover, µ is the Lebesgue measure.

Example 3.8. Set D = Rd\{0} satisfies condition DC(a, γ, d) with a = 2, γ = 0
and

M = 2 ∨ (1− 2−d)|B(0, 1)| ∨ 1

(1− 2−d)|B(0, 1)| .

Indeed, one may take B
(n)
1 := B(0, 2n) \ B(0, 2n−1). That is, for each n there is

exactly one set B
(n)
j , namely one with j = 1. Then V (B

(n)
j , k) = {1} in (B3).

Example 3.9. Set D = Rd \ {0} satisfies condition DC(a, γ, d) with a = 1
2
,

γ = 0 and

M = 2 ∨ (1− 2−d)|B(0, 1)| ∨ 1

(1− 2−d)|B(0, 1)| .

Indeed, one may take B
(n)
1 := B(0, 2−n) \B(0, 2−n−1) and V (B

(n)
j , k) = {1} in (B3).

3.3. Proof of Theorem 5. Let us write

q = 2p+1M4+2|η|H−1ak(η+γ−d), R = 1 +M2(1 ∨ ak), S = 2p+1a−kdMd+1,

where k > M is chosen such that q < 1 and ak ∨ a−k > M2.
We fix a function u for which the left hand side of (3.1) is finite, and define a set

F =

{

x ∈ D : |u(x)|p > Sδ−d
x

ˆ

D∩B(x,Rδx)

|u(x)− u(y)|p µ(dy)
}

.

Let us first observe that, for x ∈ D \ F ,

(3.3)
|u(x)|p
φ(δx)

≤ S

ˆ

D∩B(x,Rδx)

|u(x)− u(y)|p
φ(δx)δdx

µ(dy).

Note that if the set F were empty, we would be already done.

At this stage we fix n and claim that, for x ∈ F ∩ B
(n)
j and i ∈ V (B

(n)
j , k), we

have

(3.4) µ

({

y ∈ B
(n+k)
i :

1

2
|u(x)| ≤ |u(y)| ≤ 3

2
|u(x)|

})

≥ 1

2
µ(B

(n+k)
i ).

Suppose (3.4) fails. By our choice of R and conditions (B2) and (B3), B
(n+k)
i ⊂

D ∩ B(x,Rδx). Thus, we have
ˆ

D∩B(x,Rδx)

|u(x)− u(y)|p µ(dy) ≥
ˆ

B
(n+k)
i

|u(x)− u(y)|p µ(dy)

≥ 1

2
µ(B

(n+k)
i ) · 2−p|u(x)|p ≥ 2−p−1akdM−d−1δdx|u(x)|p = S−1δdx|u(x)|p,

which contradicts x ∈ F . Thus inequality (3.4) holds as claimed.
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Let us record the following estimates for B
(n+k)
i ∈ B(n+k) and B

(n)
j ∈ B(n). By

condition (B2), µ(B
(n)
j ) ≤ M2a−kdµ(B

(n+k)
i ), moreover, for x ∈ B

(n)
j and y ∈ B

(n+k)
i

it holds M2a−kδy ≥ δx ≥ M−2a−kδy. Hence, by condition (3.2)

φ(δx) = φ

(

δy
δx
δy

)

≥ H

(

δx
δy

)η

φ(δy) ≥ HM−2|η|a−kηφ(δy).

Here we need to ensure that δx
δy

< 1 in the case when a > 1 and that δx
δy

> 1 in the

case when a < 1. But these are satisfied since, by assumption, ak ∨ a−k > M2, i.e.,
k is large enough. By the above estimate and inequality (3.4) we obtain
ˆ

F∩B
(n)
j

|u(x)|p
φ(δx)

µ(dx) ≤ µ(B
(n)
j ) sup

x∈F∩B
(n)
j

|u(x)|p
φ(δx)

≤ 2p+1M2a−kd

♯V (B
(n)
j , k)

∑

i∈V (B
(n)
j ,k)

ˆ

B
(n+k)
i

|u(y)|p
HM−2|η|a−kηφ(δy)

µ(dy).

By summing over all j and applying condition (B4),

∑

j

ˆ

F∩B
(n)
j

|u(x)|p
φ(δx)

µ(dx)

≤ 2p+1M2+2|η|H−1ak(η−d) sup
i

∑

j:i∈V (B
(n)
j ,k)

1

♯V (B
(n)
j , k)

∑

i

ˆ

B
(n+k)
i

|u(y)|p
φ(δy)

µ(dy)

≤ 2p+1M3+2|η|H−1ak(η+γ−d)
∑

i

ˆ

B
(n+k)
i

|u(y)|p
φ(δy)

µ(dy),

and after summing over all n
ˆ

F

|u(x)|p
φ(δx)

µ(dx) ≤ q

ˆ

D

|u(y)|p
φ(δy)

µ(dy).

Recall that q < 1. Hence, by finiteness of the left hand side of (3.1),
ˆ

F

|u(x)|p
φ(δx)

µ(dx) ≤ q

1− q

ˆ

D\F

|u(y)|p
φ(δy)

µ(dy).

This estimate and inequality (3.3) finish the proof. �

3.4. Proof of Corollary 2. We use Potter’s theorem [3, Theorem 1.5.6] to
replace φ(δx) by cφ(|x − y|) in the denominator, with c = c(R, φ). The assumption
0 < ρ0, ρ∞ is used here. The result follows now from Theorem 5 and Examples 3.4,
3.8 and 3.9. �

4. Fat boundary

We prove a domain condition while assuming that the boundary of the open set is
sufficiently ‘fat’ in terms of the lower Assouad dimension. Then we study the relation
between lower Assouad dimension and uniform fatness.

Proposition 6. Suppose D 6= ∅ is a proper κ-plump open set in Rd such that D
is bounded or ∂D is unbounded. Then D satisfies DC(a, λ, d) if a = 1/2 and either
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0 < λ < dimA(∂D) or λ = 0. Moreover, the associated constant M depends only on
d, κ, λ and the constant C appearing in (F1) below.

Under the assumptions of Proposition 6, the following two conditions hold.

(F1) There is a constant C > 0 as follows. Let 0 < r < R < 2 diam(∂D) and
x ∈ ∂D. Suppose that B1, . . . , BN is a cover of B(x,R) ∩ ∂D by balls Bj =
B(ωj, r) with ωj ∈ ∂D for j = 1, . . . , N . Then N ≥ C(R/r)λ.

(F2) for each 0 < r < diam(D) and each x ∈ ∂D, there is z ∈ B̄(x, r) so that
B(z, κr) ⊂ D.

4.1. Construction of families B
(n). We define a constant

(4.1) τ =

(

15
√
d

κ

)d

> 1.

For a given n ∈ Z and a ∈ {1
2
, 2}, we define

B(n) := B(n)
1/2, B(n)

a := {B(n)
j } := {Q ∈ W(D) : τ−1 ≤ a−nd|Q| ≤ τ}.

Recall that W(D) stands for a Whitney decomposition of D. In particular, by

inequalities (2.1), for any x ∈ B
(n)
j ∈ B(n)

a ,

τ−1/dan ≤ δx = dist(x, ∂D) ≤ 5
√
dτ 1/dan.

Observe also that a given Whitney cube Q ∈ W(D) may belong to at most 1 +

2d−1 log2 τ families B(n) = B(n)
a indexed by n ∈ Z. Let us denote by x

(n)
j the midpoint

of B
(n)
j . For later purposes we fix, once and for all, any point y

(n)
j ∈ ∂D for which

|x(n)
j − y

(n)
j | = dist(x

(n)
j , ∂D).

4.2. Families V (B
(n)
j , k) for k large. If D is unbounded, we construct

families V (B
(n)
j , k) for k > 3. If D is bounded, then we construct these families for

k > 3 ∨ log2(5τ
1/d).

Let us fix B
(n)
j ∈ B(n), and define E := B(y

(n)
j , 2−n) ∩ ∂D. By the 5r-covering

theorem, see for instance [31, p. 23], there are points ω1, . . . , ωN ∈ E such that the
balls Bm := B(ωm, 2

−n−k) are disjoint and E is covered by the union of balls 5Bm,

m = 1, . . . , N . Let us estimate the number N =: N
(n,k)
j of these balls;

Lemma 7. We have N
(n,k)
j ≥ C5−λτ−λ/d2kλ.

Proof. First consider the case when D is unbounded. Since k > 3, we find that

r := 5 · 2−n−k < 2−n =: R.

Recall that the balls 5Bm = B(ωm, r) cover the set E = B(y
(n)
j , R)∩∂D. By condition

(F1), we find that N ≥ C(R/r)λ = C5−λ2kλ. The bounded case is similar, and we
use the facts that k > 3 ∨ log2(5τ

1/d) and diam(∂D) ≥ diam(D). �

The next step is to use the plumpness condition (F2) in order to locate a
sufficiently large cube inside each Bm. Namely, for each m = 1, . . . , N , there is
zm ∈ B̄(ωm, 2

−n−k/3) such that

B(zm, κ2
−n−k/3) ⊂ D.
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Let us consider a Whitney cube Qm ∈ W(D) for which zm ∈ Qm. By inequalities
(2.1), we have Qm ⊂ Bm. Moreover,

κ2−n−k/3 ≤ dist(zm, ∂D) ≤ 5 diam(Qm) ≤ 5 dist(zm, ∂D) ≤ 5 · 2−n−k/3.

Hence, by our definition (4.1) of τ , we obtain

τ−1 ≤ 2d(n+k)|Qm| ≤ τ.

That is, cube Qm ⊂ Bm belongs to B(n+k). Since the balls Bm, m = 1, . . . , N , are
disjoint, also the cubes Qm are disjoint. Hence, the indexing set

V (B
(n)
j , k) = {i : B(n+k)

i = Qm for some m = 1, . . . , N
(n,k)
j }

contains exactly N
(n,k)
j indices.

4.3. Proof of Proposition 6. We focus on conditions (B3) and (B4), as the

remaining conditions are clearly satisfied. Let us fix B
(n)
j and k large enough so that

V (B
(n)
j , k) is defined. Let us consider i ∈ V (B

(n)
j , k), and two given points x ∈ B

(n)
j

and y ∈ B
(n+k)
i . Using the notation above, we have B

(n+k)
i = Qm ⊂ Bm for some

m = 1, . . . , N
(n,k)
j . Thus,

|x− y| ≤ |x− x
(n)
j |+ |x(n)

j − y
(n)
j |+ |y(n)j − ωm|+ |ωm − y|

< diam(B
(n)
j ) + dist(x

(n)
j , ∂D) + 2−n + 2−n−k ≤ 8

√
dτ 1/d2−n.

This is condition (B3). A particular consequence of this estimate is the following.

We fix a cube B
(n+k)
i and a point y therein. Then, if B

(n)
j ∈ B(n) is such that

i ∈ V (B
(n)
j , k),

B
(n)
j ⊂ B(y, 8

√
dτ 1/d2−n).

Since the interiors of cubes in B(n) are disjoint, we find that there are at most

(16
√
dτ 1/d2−n)d

τ−12−nd
= (16

√
d)dτ 2

cubes B
(n)
j subject to the conditions above. By using this fact, we may now deduce

the remaining estimate as follows; For a fixed i,
∑

j:i∈V (B
(n)
j ,k)

1

♯V (B
(n)
j , k)

=
∑

j:i∈V (B
(n)
j ,k)

1

N
(n,k)
j

≤ (16
√
d)dτ 2+λ/dC−15λ2−kλ.

This is condition (B4). �

4.4. Lower Assouad dimension and uniform fatness. We provide a useful
connection between the lower Aikawa dimension and (local) uniform fatness. For
further discussion, we refer to [19]. Uniform fatness is usually defined in terms of
Riesz capacities, [1, 26]. In case of closed sets, there is an equivalent definition—
in terms of Hausdorff content—that we adopt. This equivalence is based on the
self-improving properties of closed uniformly fat sets, [16].

Recall that the λ-Hausdorff content of a set E ⊂ Rd is

Hλ
∞(E) = inf

{ ∞
∑

i=1

rλi : E ⊂
∞
⋃

i=1

B(xi, ri), ri > 0

}

.
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As is easily seen, we may allow also finite coverings in the infimum above. Let
1 < p < ∞ and 0 < s < d/p. We say that the boundary ∂D is (s, p)-uniformly fat,
if there is d− sp < λ ≤ d and a constant C > 0 such that

(4.2) Hλ
∞(B(x,R) ∩ ∂D) ≥ CRλ

for all x ∈ ∂D and R > 0.
Note that ∂D and D have to be unbounded if the boundary is (s, p)-uniformly fat.

Remark 2.3 in [19] shows that dimA(∂D) is the supremum of all λ ≥ 0 for which (4.2)
holds for every x ∈ ∂D and 0 < R < diam(∂D). Below, for the convenience of the
reader, we provide a detailed treatment of certain consequences of this statement—
that are needed for Corollary 4.

Proposition 8. Suppose D is an open set in Rd so that ∂D is (s, p)-uniformly
fat for 1 < p < ∞ and 0 < s < d/p. Then D satisfies condition (F1) for some
d−sp < λ ≤ d and, as a consequence, we have a strict inequality dimA(∂D) > d−sp.

Proof. By assumption, there is d− sp < λ ≤ d and C > 0 such that (4.2) holds
for all x ∈ ∂D and R > 0. Let us fix x ∈ ∂D and 0 < r < R. Suppose that
B1, . . . , BN is a cover of B(x,R) ∩ ∂D by balls Bj = B(ωj, r) with ωj ∈ ∂D. Then,
by (4.2),

Nrλ =
N
∑

j=1

rλ ≥ Hλ
∞(B(x,R) ∩ ∂D) ≥ CRλ.

Thus, N ≥ C(R/r)λ, as required. �

As we have observed, uniform fatness is a convenient notion in case of unbounded
open sets. In case of a bounded open set D in Rd, it is natural to assume that ∂D
is (s, p)-locally uniformly fat. That is, there is d− sp < λ ≤ d and a constant C > 0
such that inequality (4.2) holds for all x ∈ ∂D and 0 < R < 2 diam(∂D) < ∞.

The following result is analogous to Proposition 8.

Proposition 9. Let D be a bounded open set in Rd such that the boundary
∂D is (s, p)-locally uniformly fat for 1 < p < ∞ and 0 < s < d/p. Then D satisfies
condition (F1) for some d − sp < λ ≤ d and, as a consequence, we have a strict
inequality dimA(∂D) > d− sp.

Example 4.1. Consider the Koch snowflake domain D ⊂ R2. It is a bounded
κ-plump domain and ∂D is (s, p)-locally uniformly fat whenever 1 < p < ∞ and
2− log 4/ log 3 < sp < 2, see e.g. [16].

5. Thin boundary

The main result in this section is the following.

Proposition 10. Let D 6= ∅ be an unbounded κ-plump open set in Rd, D 6= Rd.
Then D satisfies condition DC(a, λ, d) for a = 2 and λ > dimA(∂D). The associated
constant M depends only on d, κ, λ and the constant C appearing in (T1) below.

Before the proof, let us clarify the assumptions. Under the assumptions of Propo-
sition 10, the following two conditions (T1) and (T2) hold.

(T1) there is a constant C > 0 as follows. Assuming that 0 < r < R and x ∈
∂D, there is a cover of B(x,R) ∩ ∂D by using balls B(ωj, r) with ωj ∈ ∂D,
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j = 1, . . . , N , such that the number of these balls satisfies inequality N ≤
C(R/r)λ.

(T2) for each 0 < r and each x ∈ ∂D, there is a point z ∈ B̄(x, r) such that
B(z, κr) ⊂ D.

We note that in Definition 2.2 the restriction R < 2 diam(E) may be removed,
resulting in no such restriction in (T1).

5.1. Construction of families B
(n). Let τ > 1 be defined by (4.1). For n ∈ Z,

we define

B(n) := B(n)
2 := {B(n)

j } := {Q ∈ W(D) : τ−1 ≤ 2−nd|Q| ≤ τ}.

For properties of cubes in these families and definition of y
(n)
j , see §4.1. Recall also

that W(D) is a Whitney decomposition of D, we refer to §2.

5.2. Families V (B
(n)
j , k) with k > 0. Let us fix a cube B

(n)
j ∈ B(n). By

condition (T2), there is a point z
(n)
j ∈ B̄(y

(n)
j , 2n+k) such that

B(z
(n)
j , κ2n+k) ⊂ D.

Observe how the unboundedness of D is visible here, as k > 0 is arbitrary. Let

Qj ∈ W(D) be a Whitney cube such that z
(n)
j ∈ Qj . Then

κ · 2n+k ≤ dist(z
(n)
j , ∂D) ≤ 5 diam(Qj) ≤ 5 dist(z

(n)
j , ∂D) ≤ 5 · 2n+k.

By definition of (4.1) of τ , we then have Qj = B
(n+k)
i ∈ B(n+k) for some index i. We

define

V (B
(n)
j , k) = {i}.

5.3. Proof of Proposition 10. We need an auxiliary estimate analogous to
[19, Lemma 4.3]; condition (T1) is our primary tool. For m ∈ Z, ω ∈ ∂D, and R > 0,
we denote

Wm(D;B(ω,R)) = {Q ∈ Wm(D) : Q ⊂ B(ω,R)}.
Lemma 11. Let 0 < 2−m ≤ R, where m ∈ Z, and let λ > dimA(∂D). Then for

every ω ∈ ∂D,

♯Wm(D;B(ω,R)) ≤ C(14
√
d)d+λ

(

R

2−m

)λ

,

where C is as in condition (T1).

Proof. Suppose B1, . . . , BN is a cover of B(ω, 6
√
dR) ∩ ∂D by balls Bj =

B(ωj, 2
−m) that are centred in ∂D, see condition (T1). Consider a cube Q ∈

Wm(D;B(ω,R)), and fix a point yQ ∈ ∂D such that |xQ − yQ| = dist(xQ, ∂D). Here
xQ denotes the midpoint of Q. By inequalities (2.1) and the fact that Q ⊂ B(ω,R),

|yQ − ω| ≤ |yQ − xQ|+ |xQ − ω| < 5 diam(Q) +R ≤ 6
√
dR.

By the covering property, there is j = j(Q) such that yQ ∈ Bj . We can infer that

Wm(D;B(ω,R)) =
N
⋃

j=1

Qj ,
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where Qj = {Q ∈ Wm(D;B(ω,R)) : yQ ∈ Bj}. Let Q ∈ Qj . Then, for every x ∈ Q,

|x− ωj | ≤ |x− xQ|+ |xQ − yQ|+ |yQ − ωj|
< diam(Q) + dist(xQ, ∂D) + 2−m ≤ 7

√
d2−m.

Since the interiors of cubes in the family Qj are disjoint, there are at most

|B(ωj, 7
√
d2−m)|

2−md
≤ (14

√
d)d

cubes in this family. Hence,

♯Wm(D;B(ω,R)) ≤
N
∑

j=1

♯Qj ≤ (14
√
d)dN ≤ C

(

6
√
dR

2−m

)λ

· (14
√
d)d.

This concludes the proof. �

We are ready to prove the main result in this section.

Proof of Proposition 10. The properties (B1) and (B2) are clear. In order to

verify condition (B3), let us fix k > 0 and a cube B
(n)
j . Consider i ∈ V (B

(n)
j , k), and

points x ∈ B
(n)
j and z ∈ B

(n+k)
i . Then, by the construction above,

|z − x| ≤ |z − z
(n)
j |+ |z(n)j − y

(n)
j |+ |y(n)j − x

(n)
j |+ |x(n)

j − x|
≤ diam(B

(n+k)
i ) + 2n+k + dist(x

(n)
j , ∂D) + diam(B

(n)
j ) < 8

√
dτ 1/d2n+k.

This is condition (B3).

In order to verify the last condition (B4), we fix cubes B
(n+k)
i and B

(n)
j such that

i ∈ V (B
(n)
j , k). Then ♯V (B

(n)
j , k) = 1. Moreover,

B
(n)
j ⊂ B(y

(n+k)
i , 13

√
dτ 1/d2n+k).

Indeed, for any x ∈ B
(n)
j ,

|x− y
(n+k)
i | ≤ |x− x

(n+k)
i |+ |x(n+k)

i − y
(n+k)
i | < 13

√
dτ 1/d2n+k.

We still need another auxiliary estimate, namely, if m ∈ Z is such that B
(n)
j ∈

Wm(D), then τ−1/d ≤ 2m+n ≤ τ 1/d. We can finally proceed as follows
∑

j:i∈V (B
(n)
j ,k)

1

♯V (B
(n)
j , k)

= ♯{j : i ∈ V (B
(n)
j , k)}

=
∑

m

♯{j : i ∈ V (B
(n)
j , k) and B

(n)
j ∈ Wm(D)}

≤
∑

m

♯Wm(D;B(y
(n+k)
i , 13

√
dτ 1/d2n+k))

≤
∑

m

C(14
√
d)d+λ

(

13
√
dτ 1/d2n+k

2−m

)λ

,

where m ranges over indices −n − log2 τ
1/d ≤ m ≤ −n + log2 τ

1/d. This yields
condition (B4). �
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