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Abstract. In this paper a variational approach is taken to study a doubly nonlinear parabolic

equation. We consider energy estimates for parabolic minimizers related to this equation. These

energy estimates play a fundamental role in obtaining Harnack estimates. Our treatment is done

in general metric measure spaces with a doubling measure and a Poincaré inequality.

1. Introduction

This paper is a continuation to a recent paper [4]. We study parabolic minimizers
which are related to the doubly nonlinear parabolic equation

(1.1)
∂(|u|p−2u)

∂t
−∇ · (|∇u|p−2∇u) = 0, 1 < p < ∞.

Our study is carried out in the context of a general complete metric measure space
(X, d, µ) with a doubling measure µ. We shall also assume that X supports a weak
Poincaré inequality [1].

A real-valued function u on Ω × (0, T ), where Ω is a non-empty open set in X,
is a parabolic minimizer if it satisfies the inequality

p

ˆ

supp(φ)

|u|p−2u
∂φ

∂t
dµ dt+

ˆ

supp(φ)

gpu dµ dt ≤

ˆ

supp(φ)

gpu+φ dµ dt,

for every compactly supported φ ∈ Lip(Ω × (0, T )). Here we write gu for the min-
imal p-weak upper gradient of u [1]. In the Euclidean case, we can take gu to be
|∇u| almost everywhere, and it can be shown that every weak solution to (1.1) is
a parabolic minizer and, conversely, every parabolic minimizer is a weak solution of
(1.1). Parabolic minimizers have been studied in [6] and [7]. The regularity theory
for parabolic minizers on metric measure spaces has been considered in [3], [4], and
[5].

In [4] it is shown, that if X is a complete metric space equipped with a doubling
measure µ such that the space supports also a weak Poincaré inequality, then a
positive parabolic minimizer which is both bounded and bounded away from zero
satisfies certain Caccioppoli type energy estimates and, moreover, Harnack estimates
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hold if X is assumed to be geodesic. In the present note, we remove these extra
technical assumptions concerning the lower and upper bound of a positive minimizer.
More precisely, we show that any positive parabolic minimizer u satisfies the same
fundamental energy estimates which are used in the article [4] as a basis for proving
the Harnack inequality. The approach is purely variational and, in particular, does
not base on equation (1.1).

More importantly, our technique for removing the extra assumptions bases on
the dampening of the growth rate of powers of a minimizer. The traditional trunca-
tion argument is problematic in the context of parabolic (quasi)minimizers. Indeed,
it is not known whether parabolic super- or subminimizers are produced by trun-
cating minimizers. The dampening technique presented here circumvents this, and
therefore, seems to be interesting in its own right and new.

Lastly, we mention that it seems feasible that the technical assumption u ≥ ρ > 0
in the estimates for weak super- and subsolutions to the doubly nonlinear equation
in Kinnunen–Kuusi [2] can be removed by using the dampening technique presented
in the present note.

Acknowledgements. Work partially done during the second author’s visit to the
Institut Mittag-Leffler (Djursholm, Sweden) in September–December, 2013. Support
by the institute, by the Academy of Finland, and by the Väisälä Foundation are
gratefully acknowledged.

2. Energy estimates

The notation and parabolic setting in this paper are as in [4]. We refrain from
giving a detailed discussion on the metric measure space context (doubling condition,
upper gradients, weak Poincaré inequalities etc.) and content ourselves with refering
to [4] or for a detailed study to a recent monograph [1]. Our standing assumptions
in this paper are the following. By the triplet (X, d, µ) we denote a complete metric
space X, where d is the metric and µ a Borel measure on X. The measure µ is
supposed to be doubling. We also assume that X supports a weak (1, p)-Poincaré
inequality, where 1 < p < ∞. For any open set Ω of X we write ΩT = Ω × (0, T ),
for T > 0, and the product measure dµ dt is written as dν. A minimal p-weak upper
gradient of a real-valued function u on X is written as gu. The reader not familiar
with the metric space set-up may consider gu to be the modulus of the distributional
gradient |∇u| and the Newtonian space N1,p to be the classical Sobolev space W 1,p.

We say that u ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) is a parabolic minimizer related to the doubly

nonlinear equation if the inequality

(2.1) p

ˆ

supp(φ)

|u|p−2u
∂φ

∂t
dν +

ˆ

supp(φ)

gpu dν ≤

ˆ

supp(φ)

gpu+φ dν,

holds for all φ ∈ Lip0(ΩT ) = {f ∈ Lip(ΩT ) : supp(f) ⊂ ΩT }. If (2.1) holds for all
nonnegative φ ∈ Lip0(ΩT ) a function u ∈ Lp

loc(0, T ;N
1,p
loc (Ω)) is a parabolic supermin-

imizer ; and a parabolic subminimizer if (2.1) holds for all nonpositive φ ∈ Lip0(ΩT ).
Obtaining energy estimates for parabolic minimizers is based on testing u with a

suitably chosen test function which depends on u itself, and then performing various
basic techniques from analysis to obtain an estimate of the desired form. One of
these techniques is partial integration with respect to time. In order to be able to do
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this later on, we use a certain time regularization procedure to alter inequality (2.1)
to a more convenient form for our purposes.

Let u be a nonnegative parabolic (sub- or super)minimizer, and let φ ∈ Lip0(ΩT )
be a valid test function. For sufficiently small δ > 0, we take a standard mollifier
ξδ ∈ C∞

0 (R) satisfying supp(ξδ) ⊂ [−δ, δ], ξδ ≥ 0, and ‖ξδ‖L1(R) = 1, and denote

(φ)δ(x, t) :=
´ δ

−δ
φ(x, t− s)ξδ(s)ds in ΩT .

We test u with φ(x, t + s), where s is small enough. By (2.1), after conducting
a change of variable in the first integral on the left hand side, then multiplying both
sides of the obtained inequality with the standard mollifyer ξδ(s), and integrating
the resulting expression with respect to s gives us, after using Fubini’s theorem, the
inequality

p

ˆ

supp(φ)

(
up−1

)
δ

∂φ

∂t
dν +

ˆ

supp(φ)

(gpu)δ dν ≤

ˆ

supp(φ)

(
gpu(x,t−s)+φ(x,t)

)
δ
dν.(2.2)

As will be seen below, this inequality is now in a more convenient form for establishing
energy estimates.

Strictly speaking, in order to use Fubini’s theorem above, one needs to know that
the parabolic minimal p-weak upper gradient gu(x, t) of a parabolic minimizer u is
measurable on ΩT with respect to the product measure ν. In the metric measure
space case it seems uncertain if one can prove this. In the Euclidean space product
measurablility is known, and hence the difficulty is not present. Also, in the metric
space setting one can bypass a use of mollification and Fubini’s theorem by assuming
more time regularity on a parabolic minimizer u. Since in this paper we do not make
any additional assumptions on the time regularity of u and, on the other hand, the
underlying space is a general metric measure space, the reader should keep in mind
that in our treatment the difficulty related to the product measurability is in fact
omitted.

We shall next conduct further general preparative work for establishing energy
estimates, by studying how a cutoff in time affects the estimate in (2.2).

We replace in (2.2) the test function φ ∈ Lip0(ΩT ) with the function

φ(x, t)(ηh,σ(t)− ηh,τ (t)) ∈ Lip0(ΩT ),

where 0 < σ < τ < T and the function ηh,τ is the piecewise linear cutoff function

ηh,τ (t) =





0 if 0 < t ≤ τ,

(t− τ)/h if τ < t < τ + h,

1 if τ + h ≤ t ≤ T.

After letting h → 0+, we obtain by Lebesgue’s differentiation theorem and by inte-
grating by parts

−p

ˆ τ

σ

ˆ

Ω

∂ (up−1)δ
∂t

φ dµ dt+

ˆ τ

σ

ˆ

Ω

(gpu)δ dµ dt ≤

ˆ τ

σ

ˆ

Ω

(
gpu(x,t−s)+φ(x,t)

)
δ
dµ dt,(2.3)

for every valid test function φ ∈ Lip0(ΩT ) and almost every 0 < σ < τ < T .
We are now ready to prove the energy estimates for parabolic super- and submini-

mizers. It is not obvious to see how the interplay between the time regularization and
the dampening function Hλ(u) defined below should be organized for parabolic min-
imizers related to the doubly nonlinear equation. That is why instead of presenting
only a formal proof, we also take into account the time regularization.
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We begin by proving the estimate for positive superminimizers; cp. Lemma 3.1
in [4].

Lemma 2.1. Let u be a positive parabolic superminimizer and 0 < ε 6= p − 1.
Then

ess sup
0<t<T

ˆ

Ω

up−1−εϕp dµ+

ˆ

supp(ϕ)

gpuu
−1−εϕp dν

≤
(
1 +

p

ε

)(
C1

ˆ

supp(ϕ)

up−1−εgpϕ dν + C2

ˆ

supp(ϕ)

up−1−ε|(ϕp)t| dν
)(2.4)

for every ϕ ∈ Lip0(ΩT ), 0 ≤ ϕ ≤ 1, where

C1 =
(p
ε

)p−1

and C2 =
p− 1

|p− 1− ε|
.

Proof. For λ > 0 we define the function Hλ(s) for nonnegative s by setting

Hλ(s) =

{
λ−ε + ελ−ε−1(λ− s) if 0 ≤ s ≤ λ,

s−ε if s > λ.

Then Hλ is continuously differentiable, and

H ′
λ(s) =

{
−ελ−ε−1 if 0 ≤ s ≤ λ,

−εs−ε−1 if s > λ.

We note that |H ′(s)| ≤ ελ−ε−1. We set α = 1
ε
λε+1, and so α|H ′(s)| ≤ 1 for all

s ≥ 0. Moreover, in order to be handle the time regularization below, we define

H̃λ(s) = Hλ(s
1/(p−1)). We also define the function hλ(s) for s ≥ 0 by setting

hλ(s) =

{
´ s

0
H̃λ(r) dr if ε < p− 1,

´∞

s
H̃λ(r) dr if ε > p− 1,

and let ι = sgn(p− 1− ε).
Let ϕ be a function in Lip0(ΩT ) such that 0 ≤ ϕ ≤ 1. We choose the nonnegative

function φ = αH̃λ((u
p−1)δ)ϕ

p in (2.3), and note that defined this way φ is a valid test
function. The first term on the left hand side of (2.3) becomes, after integrating by
parts

− p

ˆ τ2

τ1

ˆ

Ω

∂ (up−1)δ
∂t

φ dµ dt = −ιαp

ˆ τ2

τ1

ˆ

Ω

∂ hλ((u
p−1)δ)

∂t
ϕp dµ dt

= −ιαp

[
ˆ

Ω×{t}

hλ((u
p−1)δ)ϕ

p dµ

]τ2

t=τ1

+ ιαp

ˆ τ2

τ1

ˆ

Ω

hλ((u
p−1)δ)(ϕ

p)t dµ dt.

Letting then δ → 0, it can shown by Fubini’s theorem and the properties of time
mollifications that

lim
δ→0

∣∣∣∣ιαp
ˆ τ2

τ1

ˆ

Ω

hλ((u
p−1)δ)(ϕ

p)t dµ dt

∣∣∣∣ ≤ αp

ˆ τ2

τ1

ˆ

Ω

|hλ(u
p−1)||(ϕp)t| dµ dt,

lim
δ→0

(
−ιαp

[
ˆ

Ω×{t}

hλ((u
p−1)δ)ϕ

p dµ

]τ2

t=τ1

)
= −ιαp

[
ˆ

Ω×{t}

hλ(u
p−1)ϕp dµ

]τ2

t=τ1

.
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For the upper gradient terms in (2.3) we have

lim
δ→0

ˆ τ2

τ1

ˆ

Ω

(gpu)δ dµ dt =

ˆ τ2

τ1

ˆ

Ω

gpu dµ dt,

and

lim sup
δ→0

ˆ τ2

τ1

ˆ

Ω

(
gp
u(·,·−s)+αH̃λ((up−1)δ)ϕp

)
δ
dµ dt

≤

ˆ τ2

τ1

ˆ

Ω

gp
u+αH̃λ(up−1)ϕp

dµ dt =

ˆ τ2

τ1

ˆ

Ω

gpu+αHλ(u)ϕp dµ dt.

(2.5)

To verify that the inequality in (2.5) holds, we refer to [5, Section 6]. In order not
to stray away from our main focus, we omit the proof. Combining the above results
into (2.3), we obtain the inequality

− ιαp

[
ˆ

Ω×{t}

hλ(u
p−1)ϕp dµ

]τ2

t=τ1

+

ˆ τ2

τ1

ˆ

Ω

gpu dµ dt

≤

ˆ τ2

τ1

ˆ

Ω

gpu+αHλ(u)ϕp dµ dt+ αp

ˆ τ2

τ1

ˆ

Ω

|hλ(u
p−1)||(ϕp)t| dµ dt.

(2.6)

for almost every 0 < τ1 < τ2 < T . Issues related to time regularity have now been
dealt with, and we can continue proving the energy estimate. We begin by observing
that

gu+αHλ(u)ϕp ≤ (1 + αH ′
λ(u)ϕ

p)gu + αpϕp−1Hλ(u)gϕ.(2.7)

That (2.7) holds is not evident, but since |αH ′
λ(u)| < 1, the inequality can be shown

to be true using the pathwise properties of upper gradients, completely analogously
to what is done in the proof of Lemma 3.1 in [4]. The inequality in (2.7) can be
rewritten as

gu+αHλ(u)ϕp ≤ (1− α|H ′
λ(u)|ϕ

p)gu + α|H ′
λ(u)|ϕ

p pHλ(u)

ϕ|H ′
λ(u)|

gϕ,

and since 0 ≤ α|H ′
λ(u)|ϕ(x, t)

p ≤ 1, we get by the convexity of t 7→ tp:

gpu+Hλ(u)ϕp ≤ (1− α|H ′
λ(u)|ϕ

p)gpu + αpp
Hλ(u)

p

|H ′
λ(u)|

p−1
gpϕ.

Plugging this into (2.6) gives us

− ιαp

[
ˆ

Ω×{t}

hλ(u
p−1)ϕp dµ

]τ2

t=τ1

+ α

ˆ τ2

τ1

ˆ

Ω

|H ′
λ(u)|ϕ

pgpu dµ dt

≤ αpp
ˆ τ2

τ1

ˆ

Ω

Hλ(u)
p

|H ′
λ(u)|

p−1
gpϕ dµ dt+ αp

ˆ τ2

τ1

ˆ

Ω

|hλ(u
p−1)||(ϕp)t| dµ dt.

(2.8)

The inequality in (2.8) is independent of the scaling factor α so we can divide it out.
Since the constants on the right hand side of the estimate (2.8) do not depend on
the choice of τ , the inequality (2.8) implies

ess sup
0<t<T

p

ˆ

Ω

hλ(u(x, t)
p−1)ϕ(x, t)p dµ

≤ pp
ˆ

ΩT

Hλ(u)
p

|H ′
λ(u)|

p−1
gpϕ dν + p

ˆ

ΩT

|hλ(u
p−1)||(ϕp)t| dν.

(2.9)
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On the other hand, the inequality (2.8) gives us also
ˆ

ΩT

|H ′
λ(u)|ϕ

pgpu dν ≤ pp
ˆ

ΩT

Hλ(u)
p

|H ′
λ(u)|

p−1
gpϕ dν + p

ˆ

ΩT

|hλ(u
p−1)||(ϕp)t| dν.(2.10)

Inequalities (2.9) and (2.10) are valid for all 0 < ε 6= p−1. Letting λ decrease to 0, we
see that Hλ(u), |H

′
λ(u)| and hλ(u) converge pointwise in a monotonously increasing

way. In particular, we check by using a change of variable and then the theorem of
dominated convergence that in the case ε < p− 1

lim
λ→0

hλ(u
p−1) = lim

λ→0

ˆ up−1

0

Hλ(r
1

p−1 ) dr = lim
λ→0

(p− 1)

ˆ u

0

sp−2Hλ(s) ds

= (p− 1)

ˆ u

0

sp−2−ε ds =
p− 1

p− 1− ε
up−1−ε,

and by a similar reasoning in the case ε > p− 1

lim
λ→0

hλ(u
p−1) = −

p− 1

p− 1− ε
up−1−ε.

Thus, by the monotone convergence theorem, we have

lim
λ→0

ess sup
0<t<T

p

ˆ

Ω

hλ(u
p−1)ϕp dµ = ess sup

0<t<T

p(p− 1)

|p− 1− ε|

ˆ

Ω

up−ε−1ϕp dµ,

lim
λ→0

ˆ

ΩT

|H ′
λ(u)|ϕ

pgpu dν = ε

ˆ

ΩT

gpuu
−1−εϕp dν,

lim
λ→0

p

ˆ

ΩT

|hλ(u
p−1)||(ϕp)t| dν =

p(p− 1)

|p− 1− ε|

ˆ

ΩT

up−1−ε|(ϕp)t| dν.

(2.11)

It remains to verify the convergence of the last integral in (2.9) and (2.10) as λ → 0.
If the integral

ˆ

supp(φ)

up−1−εgpφ dν(2.12)

was infinite, then the estimate in (2.4) is trivially true and the proof is complete.
Assume thus that the integral in (2.12) is finite. At the points (x, t) ∈ ΩT where
0 < u(x, t) < λ, we have

Hλ(u)
p

|H ′
λ(u)|

p−1
=

{(
ε

1

p
−1λ1− ε+1

p + ε
1

p (λ− u)λ− ε+1

p

)p
, 0 < u(x, t) < λ,

ε1−pup−1−ε, u(x, t) ≥ λ.

From this expression we see by the theorem of dominated convergence that

lim
λ→0

pp
ˆ

ΩT

Hλ(u)
p

|H ′
λ(u)|

p−1
gpϕ dν = ppε1−p

ˆ

ΩT

up−1−εgpϕ dν.(2.13)

Indeed, if ε < p − 1 then we can use H1(u)
p/|H ′

1(u)|
p−1gpϕ to dominate, and in the

case in which ε > p− 1 the term ε1−pup−1−εgpϕ dominates the integrand. Combining
(2.11) with (2.13) through (2.9) and (2.10), and summing up the resulting inequalities
completes the proof. �

We then prove the energy estimate for positive subminimizers; cp. Lemma 4.1 in
[4].
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Lemma 2.2. Let u be a nonnegative parabolic subminimizer and let ε ≥ 1.
Then

ess sup
0<t<T

ˆ

Ω

up−1+εϕp dµ+

ˆ

supp(ϕ)

gpuu
−1+εϕp dν

≤
(
1 +

p

ε

)(
C1

ˆ

supp(ϕ)

up−1+εgpϕ dν + C2

ˆ

supp(ϕ)

up−1+ε|(ϕp)t| dν
)

for every ϕ ∈ Lip0(ΩT ), 0 ≤ ϕ ≤ 1, where

C1 =
(p
ε

)p−1

and C2 =
p− 1

|p− 1 + ε|
.

Proof. For λ > 0 we define the function Hλ(s) by setting

Hλ(s) =

{
sε if 0 ≤ s ≤ λ,

λε + ελε−1(s− λ) if s > λ.

Then Hλ(s) is continuously differentiable, and we note that H ′
λ(s) ≤ ελε−1, and we

define the scaling factor α = 1
ε
λ−ε+1; whence αH ′(u) ≤ 1 for all u ≥ 0. In order to

handle the time regularization, we define H̃λ(s) = Hλ(s
1/(p−1)). We also define the

function hλ by setting

hλ(s) =

ˆ s

0

H̃λ(r) dr.

Let ϕ be a function in Lip0(ΩT ) such that 0 ≤ ϕ ≤ 1. As a nonpositive test func-

tion in (2.3) we choose φ = −αH̃λ((u
p−1)δ)ϕ

p. After handling the time regularization
as in the proof of Lemma 2.1, we arrive to

− ιαp

ˆ

Ω×{τ}

hλ(u
p−1)ϕp dµ+

ˆ τ

0

ˆ

Ω

gpu dµ dt

≤

ˆ τ

0

ˆ

Ω

gpu+αHλ(u)ϕp dµ dt+ αp

ˆ T

τ

ˆ

Ω

|hλ(u
p−1)||(ϕp)t| dµ dt.

(2.14)

Since 0 ≤ α|H ′
λ(u)|ϕ

p ≤ 1, as in the proof of Lemma 3.1 in [4], we can show by using
the pathwise properties of upper gradients and convexity that

gpu−Hλ(u)ϕp ≤ (1− αH ′
λ(u)ϕ

p)gpu + αpp
Hλ(u)

p

H ′
λ(u)

p−1
gpϕ.

From (2.14) we get the result in the same way as in Lemma 2.1, since it is easily
verified that Hλ(u)

pH ′
λ(u)

1−p ≤ ε1−pup−1+ε. �

We prove the following logarithmic energy estimate for positive superminimizers
which covers the case ε = p− 1 in Lemma 2.1; cp. Lemma 5.1 in [4].

Lemma 2.3. Let u be a positive parabolic superminimizer. Then the inequality

− p

[
ˆ

Ω×{t}

(log u)ϕp dµ

]τ2

t=τ1

+

ˆ τ2

τ1

ˆ

Ω

gploguϕ
p dµ dt

≤

(
p

p− 1

)p ˆ τ2

τ1

ˆ

Ω

gpφ dµ dt+ p

ˆ τ2

τ1

ˆ

Ω

| log u||(ϕp)t| dµ dt

holds for every ϕ ∈ Lip0(ΩT ), 0 ≤ ϕ ≤ 1, and almost every 0 < τ1 < τ2 < T .
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Proof. As in the preceding proofs, for λ > 0 we define the function Hλ(s) as

Hλ(s) =

{
λ1−p + (p− 1)λ−p(λ− s) if 0 ≤ s ≤ λ,

s1−p if s > λ,

and the scaling factor α = 1
p−1

λp. Hence α|H ′(s)| ≤ 1 for all s ≥ 0. Lastly, we define

H̃λ(s) = Hλ(s
1/(p−1)) and the function hλ by setting

hλ(s) =

ˆ s

1

H̃λ(r) dr.

The function hλ(s) is negative for 0 ≤ s < 1. The positive and the negative part are
written as hλ(s)+ and hλ(s)−. Let ϕ be a function in Lip0(ΩT ) such that 0 ≤ ϕ ≤ 1.

As a nonnegative test function in (2.3) we choose φ = αH̃λ((u
p−1)δ)ϕ

p, and proceed
as in the proof of Lemma 2.1. We obtain

− p

[
ˆ

Ω×{t}

hλ(u
p−1)ϕp dµ

]τ2

t=τ1

+

ˆ τ2

τ1

ˆ

Ω

|H ′
λ(u)|ϕ

pgpu dµ dt

≤ pp
ˆ τ2

τ1

ˆ

Ω

Hλ(u)
p

|H ′
λ(u)|

p−1
gpϕ dµ dt+ p

ˆ τ2

τ1

ˆ

Ω

|hλ(u
p−1)||(ϕp)t| dµ dt.

(2.15)

Consider the integrals
ˆ

Ω×{t}

hλ(u
p−1)ϕp dµ =

ˆ

Ω×{t}

hλ(u
p−1)+ϕ

p dµ−

ˆ

Ω×{t}

hλ(u
p−1)−ϕ

p dµ

= (p− 1)

ˆ

Ω×{t}

(log u)+ϕ
p dµ−

ˆ

Ω×{t}

hλ(u
p−1)−ϕ

p dµ.

The first term on the right-hand side is finite for almost all t ∈ (τ1, τ2). As for the
second term, we have the monotone convergence

0 ≤ hλ(u
p−1)− ր (p− 1)(log u)−

as λ ց 0. Hence we may conclude that

lim
λ→0

ˆ

Ω×{t}

hλ(u
p−1)ϕp dµ = (p− 1)

ˆ

Ω×{t}

(log u)ϕp dµ.

From this it is straightforward to verify that the desired estimate holds. �

With these revised energy estimates at our disposal, we are able to carry out an
iteration procedure similar to the one presented in [4]. We obtain, in particular, the
weak Harnack inequality for positive parabolic superminimizers without the technical
assumption, cp. [4, Lemma 6.1]. Finally, the following Harnack inequality for positive
parabolic minimizers is obtained, cp. [4, Theorem 6.6].

Theorem 2.4. Suppose that 1 < p < ∞ and the measure µ in a geodesic metric

space X is doubling with doubling constant Cµ, and the space supports a weak (1, p)-
Poincaré inequality with constants Cp and Λ. Then a parabolic Harnack inequality is

valid as follows: Let u be a positive parabolic minimizer in Qr ⊂ ΩT . Let 0 < δ < 1.
Then

ess sup
δQ−

u ≤ C ess inf
δQ+

u,

where 0 < C(Cµ, Cp,Λ, p, δ, T ) < ∞.
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