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Abstract. This paper is devoted to introduce and study two new properties of completeness
in the setting of metric spaces. We will call them Bourbaki-completeness and cofinal Bourbaki-
completeness. These notions came from new classes of generalized Cauchy sequences appearing when
we try to characterize the so-called Bourbaki-boundedness in a similar way that Cauchy sequences
characterize the totally boundedness. We also study the topological problem of metrizability by
means of a Bourbaki-complete or a cofinally Bourbaki-complete metric. At this respect, we obtain
results in the line to the classical Čech theorem about the complete metrizability of a metric space X
in terms of its Stone–Čech compactification βX . Finally we give some relationships between these
kinds of completeness and some properties related to paracompactness and uniform paracompactness
in the framework of metrizable spaces.

1. Introduction

Some classes of metric spaces satisfying properties stronger than completeness
but weaker than compactness have been recently studied by many authors. A good
reference for this topic is the nice paper by Beer [5], entitled “Between compactness
and completeness”. Examples of these properties are the bounded compactness, the
uniform local compactness, the cofinal completeness, the strong cofinal completeness,
recently introduced by Beer in [6], as well as the so-called UC-ness for metric spaces.
The study of all these spaces have shown to be not only interesting by themselves but
also in connection with some problems in Convex Analysis, in Optimization Theory
and in the setting of Convergence Structures on Hyperspaces (see for instance [7] and
references therein).

The general aim of this paper is to introduce a new couple of these intermediate
properties in the context of metric spaces. First of all, note that a way to achieve a
property stronger than completeness for a metric space consists of asking for the clus-
tering of all the sequences belonging to some class bigger than the class of Cauchy
sequences. Thus, in Section 2, we define the class of Bourbaki–Cauchy sequences
and the class of cofinally Bourbaki–Cauchy sequences. These sequences appear when
we consider in a metric space the so-called Bourbaki-bounded sets. This notion of
boundedness was introduced by Atsuji in [2] in order to exhibit metric spaces where
every real-valued uniformly continuous function is bounded but they are not nec-
essarily totally bounded. The name of Bourbaki-bounded cames from the book of
Bourbaki [8], where these subsets in uniform spaces is considered. We prove here
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that the Bourbaki-bounded subsets of a metric space can be characterized in terms
of sequences in the same way that Cauchy sequences characterize total boundedness.
Thus, a new type of sequences appears that we call Bourbaki–Cauchy sequences.

Next, we generate another class of sequences which are cofinal with respect to
the previous ones, in the sense that the residuality of the indexes is replaced by the
cofinality. Then, we obtain what we call cofinally Bourbaki–Cauchy sequences. Recall
that the corresponding cofinal notion associated to the usual Cauchy sequences was
defined by Beer in [5], in the following way. A sequence (xn)n∈N in a metric space
(X, d) is called cofinally Cauchy if for every ε > 0 there exists an infinite subset Nε

of N such that for each i, j ∈ Nε we have d(xi, xj) < ε.
Now, if we ask for the clustering of Bourbaki–Cauchy sequences and cofinally

Bourbaki–Cauchy sequences, we have respectively what we will call Bourbaki-comple-
teness and cofinal Bourbaki-completeness of metric spaces. Thus, in Section 3, we
present a detailed study of both of these properties showing, in particular, that they
are stronger than the usual completeness but weaker than compactness, and also
that they are mutually different. We prove also that they are in fact weaker than
the property of uniform local compactness. And this will be interesting along the
paper, since we will see that the set of points in a metric space having no compact
neighborhood will play an important role in this context.

On the other hand, a property which is given in terms of sequences in metric
spaces, has to be reformulated in terms of nets and entourages when we want to
extend it to the more general setting of uniform spaces. For example, that happens
when we define a uniform space to be complete whenever every Cauchy net clusters
(converges). It is not difficult to see, and interesting to note here, that a metric space
is complete (by sequences) if, and only if, it is complete as a uniform space (i.e., by
nets) (see, for instance [34]). Thus, in Section 4, we introduce the corresponding
notions of Bourbaki–Cauchy net and Bourbaki–Cauchy completeness for uniform
spaces. We will see that also for Bourbaki-completeness is equivalent to use sequences
or nets for metrizable uniformities. The proof of this result (Theorem 19) is not
so elemental as for the usual completeness. We present here a proof that Hohti
and Junnila (University of Helsinki) have personally communicated to us after we
have had some discussions about this topic. Finally, note that the corresponding
result for cofinal Bourbaki-completeness is also true as we can see in the last section
(Theorem 28).

In sections 5 and 6, we consider the natural problem of metrization in this setting.
That is, we wonder when a metrizable space admits a Bourbaki-complete or a cofinally
Bourbaki-complete equivalent metric. At this respect, we obtain results (Theorems 23
and 34) in the line of the classical theorem by Čech saying that a a metric space is
completely metrizable if, and only if, it is a Gδ-set in its Stone–Čech compactification
([12]).

The rest of the paper is devoted to compare our completeness notions with some
properties of paracompactness and uniform paracompactness in the framework of
metrizable spaces. For this purpose the notion of cofinal completeness will be of
special relevance. Recall that a metric space is said to be cofinally complete when-
ever every cofinally Cauchy sequence clusters. Cofinal completeness was introduced
implicitly by Corson in [13] in the frame of uniform spaces in order to character-
ize paracompactness and Lindelöfness as filter properties. In fact, he proved that a
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topological space is paracompact if there exists some compatible uniformity for which
some kind of filters (weakly Cauchy) cluster. Afterwards, Howes [23] defined cofinal
completeness in uniform spaces by means of cofinally Cauchy nets. In parallel, Rice
[30] defines and studies some (equivalent) uniform extensions of paracompactness for
uniform spaces. According to this paper we say that a metric space (X, d) is uni-
formly paracompact if for every open cover U there exists an open refinement and
some δ > 0 such that for every x ∈ X the open ball Bδ(x) of center x ∈ X and radius
δ, meets only finitely many members of the refinement. But it was Smith [32], the
reviewer of Rice’s paper, who noticed that the property of uniform paracompactness
is in fact equivalent to cofinal completeness for uniform spaces. On the other hand,
cofinal completeness as well as uniform paracompactness have been considered in
the frame of metric spaces by authors like Rice [30], Hohti [22], and Romaguera [31].
More recently, Beer in [5] has studied cofinal completeness of metric spaces in terms of
sequences. In particular, he pointed out that sequential cofinal completeness and net
cofinal completeness are again equivalent for metric spaces, since both properties are
indeed equivalent to the condition given by Hohti [22] to uniform paracompactness
in this context.

Then, motivated by the mentioned equivalence between cofinal completeness and
uniform paracompactness, we study in the two last sections how our completeness
properties are related with different paracompactness notions for metric spaces. First
of all, we will see in Section 5 interesting relationships between Bourbaki-complete
metrizability with some other topological properties like strong paracompactness,
strong metrizability and also with the notion of δ-completeness given García-Máynez
in [16]. Finally, in Section 6, we will prove as a main result (Theorem 32) that
cofinal Bourbaki-completeness and the uniform version of strong paracompactness
introduced by Hohti in [22], are equivalent for metric spaces.

2. Bourbaki–Cauchy and cofinally Bourbaki–Cauchy sequences

We start with some notation. For a metric space (X, d), denote by Bε(x) the
open ball of center x ∈ X and radius ε > 0. And, for any subset A of X and ε > 0
we will write the ε-enlargement of A by,

Aε =
⋃

{Bε(x) : x ∈ A} = {y : d(y, A) < ε}.

Along the paper we will use the subsequent nth ε-enlargement of the open ball
Bε(x), defined as follows: B1

ε (x) = Bε(x) and for every n ≥ 2,

Bn
ε (x) :=

(

Bn−1
ε (x)

)ε
.

Finally, we define the ε-chainable component on x ∈ X by,

B∞

ε (x) :=
⋃

n∈N

Bn
ε (x).

Recall that in a metric space a subset is said to be (metric) bounded if it has finite
diameter, that is, when it is contained in some open ball. This notion of bounded-
ness is quite natural but it has some inconvenience. Namely, to be metric bounded is
not a uniform invariant, that is, it is not preserved under uniform homeomorphisms.
However, in the setting of normed spaces metric boundedness is a uniform property
and in fact the bounded subsets can be characterized by means of uniformly con-
tinuous functions. Indeed, it is easy to see that a subset B of a normed space X
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is bounded by the norm if, and only if, for every real-valued uniformly continuous
function f on X, we have that f(B) is bounded in R endowed with its usual metric.
As we have said in the introduction, it was Atsuji who introduced in [2] the notion of
Bourbaki-bounded metric space (under the name of finitely-chainable metric space)
and he showed that they are just the metric spaces having bounded image under
every real-valued uniformly continuous function defined on it. These spaces were
also considered in the frame of uniform spaces by Hejcman in [21] who called them
simply as bounded.

Definition 1. A subset B of a metric space (X, d) is said to be a Bourbaki-
bounded subset of X if for every ε > 0 there exist m ∈ N and a finite collection of
points p1, . . . , pk ∈ X such that,

B ⊂
k
⋃

i=1

Bm
ε (pi).

Note that the family B of all Bourbaki-bounded subsets of X forms a bornology in
X, that is, B satisfies the following conditions: (i) for every x ∈ X, the set {x} ∈ B;
(ii) if B ∈ B and A ⊂ B, then A ∈ B; and (iii) if A,B ∈ B then A ∪ B ∈ B.

On the other hand, if, in the above Definition 1, we have m = 1 (or even m ≤
m0, for some m0 ∈ N), for every ε > 0, then we recover the classical notion of
totally bounded subset. Thus, every totally bounded subset is in particular Bourbaki-
bounded. And, it is easy to see that any Bourbaki-bounded subset is in particular
bounded in the usual sense. For further information about the relationships among
these three different properties of boundedness we refer to [19] and [20], where we
study all of them into the general setting of the so-called bornological universes.

It is important to note here that to be a Bourbaki-bounded subset is not an
intrinsic property, i.e., it depends on the ambient space where we are. In fact, we
will see that a subset can be Bourbaki-bounded in X but not in itself (Example 6).
When X is a Bourbaki-bounded subset of itself, we say that X is a Bourbaki-bounded
metric space.

The next result collects (without proofs) some nice characterizations of Bourbaki-
boundedness, given by different authors. Recall that a cover A of a set X is star-finite
if every A ∈ A meets only finitely many A′ ∈ A.

Theorem 2. Let (X, d) be a metric space, the following statements are equiva-
lent:

(1) X is a Bourbaki-bounded metric space.
(2) (Atsuji, [2]) For every real uniformly continuous function f on X, f(X) is

bounded in R.
(3) (Hejcman, [21]) X is d ′-bounded, for every metric d ′ uniformly equivalent to

d.
(4) (Njåstad, [28]) Every star-finite uniform cover of X is finite.

Now we are going to give a characterization by sequences of the Bourbaki-
bounded subsets of a metric space. Firstly we need to introduce the announced
notions of Bourbaki–Cauchy and cofinally Bourbaki–Cauchy sequences.

Definition 3. Let (X, d) be a metric space. A sequence (xn)n∈N is said to be
Bourbaki–Cauchy in X if for every ε > 0 there exist m ∈ N and n0 ∈ N such that for
some p ∈ X we have that xn ∈ Bm

ε (p), for every n ≥ n0. On the other hand, (xn)n∈N



New types of completeness in metric spaces 737

is said to be cofinally Bourbaki–Cauchy in X if for every ε > 0 there exist m ∈ N

and an infinite subset Nε ⊂ N such that for some p ∈ X we have that xn ∈ Bm
ε (p),

for every n ∈ Nε.

Theorem 4. For a metric space (X, d) and B ⊂ X, the following statements are
equivalent:

(1) B is a Bourbaki-bounded subset in X.
(2) Every countable subset of B is a Bourbaki-bounded subset in X.
(3) Every sequence in B has a Bourbaki–Cauchy subsequence in X.
(4) Every sequence in B is cofinally Bourbaki–Cauchy in X.

Proof. (1) ⇒ (2) By definition it is clear that every subset of a Bourbaki-bounded
subset of X is also a Bourbaki-bounded subset of X.

(2) ⇒ (3) Let (xn)n∈N be a sequence in B. By the hypothesis, the set {xn : n ∈
N} is Bourbaki-bounded in X, and then for ε = 1 there exist m1 ∈ N and some
points p11, . . . , p

1
j1
∈ X such that,

{xn : n ∈ N} ⊂
⋃

{

Bm1

1 (p1i ) : i = 1, . . . , j1
}

.

Since the family {Bm1

1 (p1i ) : i = 1, . . . , j1} is finite, then some Bm1

1 (p1i1) contains
infinite terms of the sequence. Therefore, there exists a subsequence (x1n)n∈N of
(xn)n∈N inside to Bm1

1 (p1i1).
Repeating this process we have that, for every k ≥ 2 and ε = 1/k, there exist

some mk ∈ N and points pk1, . . . , p
k
jk

∈ X, such that {Bmk

1/k(p
k
i ) : i = 1, . . . , jk} is

a finite cover of {xk−1
n : n ∈ N}. Then there exist some Bmk

1/k(p
k
ik
) containing some

subsequence (xkn)n∈N of (xk−1
n )n∈N.

Finally, choosing the standard diagonal subsequence (xnn)n∈N we can check, in an
easy way, that it is the required Bourbaki–Cauchy subsequence of (xn)n∈N.

(3) ⇒ (4) Trivial.
(4) ⇒ (1) Suppose that B is not a Bourbaki-bounded subset of X. Then, there

exists ε0 > 0 such that, for every m ∈ N, the family {Bm
ε0
(x) : x ∈ X} does not

contain any finite subcover of B. Fix x0 ∈ X and for every m ∈ N choose xm ∈ B
such that xm /∈ Bm

ε0(xi), i = 0, .., m− 1. Then, the sequence (xm)m∈N constructed in
this way is not a cofinally Bourbaki–Cauchy sequence in X. Otherwise, for this ε0
there must exist m0 ∈ N and an infinite subset Nε0 ⊂ N such that for some p0 ∈ X
we have that xn ∈ Bm0

ε0
(p0), for every n ∈ Nε0. Then taking n0 ∈ Nε0, we have that

there are infinitely many terms of the sequence (xm)m∈N in B2·m0

ε0
(xn0

), which is a
contradiction. �

Recall the classical result saying that, in a metric space (X, d), a subset B ⊂ X
is totally bounded if, and only if, every sequence in B has a Cauchy subsequence
(see for instance [34]). Hence the equivalence between (1) and (3) in last result is
the analogous characterization for Bourbaki-boundedness. Moreover, in [5] Beer also
characterizes the totally bounded metric spaces as those in which every sequence is
cofinally Cauchy. Therefore, the above equivalence between (1) and (4) can be seen
as the corresponding result for Bourbaki-bounded metric spaces.

On the other hand, since every subsequence of a Bourbaki–Cauchy sequence in
X is also Bourbaki–Cauchy in X then, we can derive from the above Theorem 4
that every Bourbaki–Cauchy sequence is in particular a Bourbaki-bounded subset.
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Note that a similar result does not hold for cofinally Bourbaki–Cauchy sequences
(Example 5).

Finally, note that clearly every Cauchy sequence is Bourbaki–Cauchy, every co-
finally Cauchy sequence is cofinally Bourbaki–Cauchy and every Bourbaki–Cauchy
sequence is cofinally Bourbaki–Cauchy. But the reverse implications are not true, as
we can see in the following examples.

Example 5. In the real line R, with the usual metric, consider the sequence

q1, 1, q2, 2, q3, 3, . . . , qn, n, . . .

where {q1, q2, . . . , qn, . . .} is some enumeration of the set Q ∩ (0, 1). Then this se-
quence is not a bounded set, and then it is not a Bourbaki-bounded subset nor a
Bourbaki–Cauchy sequence in R. On the other hand, it is easy to check that it is a co-
finally Cauchy (not Cauchy) sequence and hence it is also cofinally Bourbaki–Cauchy
sequence in R.

The next example shows that also to be a Bourbaki–Cauchy sequence or a cofi-
nally Bourbaki–Cauchy sequence depends on the whole space. This is the reason for
which we must always specify the ambient space whenever we deal with any kind of
Bourbaki notion.

Example 6. Let (ℓ2, ‖ · ‖) be the classical Hilbert space of all the real square
summable sequences, and let B = {en : n ∈ N} its standard basis. It is easy to
see that B (and, in general, every bounded subset in a normed space) is Bourbaki-
bounded in the whole space. Indeed, for every ε > 0, let m > 1/ε, then B ⊂ Bm

ε (0).
Nevertheless, B is not a Bourbaki-bounded subset of itself, because it is an infinite
uniformly discrete metric space. In fact, in the metric space (B, ‖ · ‖B) and for
ε = 1 we have that Bm

ε (en) = {en}, for every m,n ∈ N. Therefore, the sequence
(en)n∈N is Bourbaki–Cauchy (not Cauchy) in ℓ2 but it is not Bourbaki–Cauchy in
itself. Moreover, this sequence is also cofinally Bourbaki–Cauchy in ℓ2 but it is not
cofinally Cauchy.

3. Bourbaki-completeness and cofinal Bourbaki-completeness

In this section we will introduce the completeness properties in metric spaces
associated to the new classes of sequences defined in the previous section. We will
start with the Bourbaki–Cauchy sequences.

Definition 7. A metric space (X, d) is said to be Bourbaki-complete if every
Bourbaki–Cauchy sequence in X clusters (i.e., it has some convergent subsequence).

It is clear that every Bourbaki-complete metric space is complete. And, in order
to see that the converse is not true, it is enough to take again the Hilbert space ℓ2.
Indeed, the standard basis is a Bourbaki–Cauchy sequence in ℓ2 that have not any
convergent subsequence (see Example 6).

Moreover every compact metric space is Bourbaki-complete since, in particular,
every sequence in a compact metric space clusters. So, as we announced in the
introduction, we can say that Bourbaki-completeness is an intermediate property
between compactness and completeness.

compact =⇒ Bourbaki-complete =⇒ complete

Next result gives some relationships among these three properties.
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Theorem 8. The following statements are equivalent for a metric space (X, d):

(1) X is compact.
(2) X is totally bounded and complete.
(3) X is Bourbaki-bounded and Bourbaki-complete.

Proof. It is well known the equivalence between (1) and (2) (see for instance [34]).
On the other hand, as we said before, if X is compact then it is Bourbaki-complete.
And since every compact space is totally bounded then it is also Bourbaki-bounded,
and hence (1) implies (3). Conversely, in order to see that (3) imply (1), take any
sequence of X. By Bourbaki-boundedness this sequence has a Bourbaki–Cauchy sub-
sequence and by Bourbaki-completeness this subsequence clusters. Therefore every
sequence in X clusters and then X is compact. �

Another useful relation between compactness and Bourbaki-completeness is the
following.

Theorem 9. A metric space is Bourbaki-complete if, and only if, the closure of
every Bourbaki-bounded subset is compact.

Proof. Fist of all, note that the closure B, of a Bourbaki-bounded set B is also
Bourbaki-bounded. Indeed, for every ε > 0 there exist m ∈ N and some points
p1, . . . , pk ∈ X such that B ⊂

⋃k
i=1B

m
ε (pi). Since B ⊂

⋃k
i=1B

m+1
ε (pi), we follows

that B is also Bourbaki-bounded in X. Now, let (X, d) be Bourbaki-complete and
B a Bourbaki-bounded subset of X. In order to see that B is compact, let (xn)n∈N
be a sequence of B. Then, according to Theorem 4, (xn)n∈N has a Bourbaki–Cauchy
subsequence in X. Then by Bourbaki-completeness this subsequence clusters in X.
But, B is closed and then (xn)n∈N clusters in B. Therefore B is compact.

Conversely, let (xn)n∈N be a Bourbaki–Cauchy sequence of X then {xn : n ∈ N}
is a Bourbaki-bounded subset of X, and by hypothesis {xn : n ∈ N} is compact.
Hence (xn)n∈N clusters, and therefore (X, d) is Bourbaki-complete. �

Then last result says that a metric space is Bourbaki-complete if, and only if,
every closed and Bourbaki-bounded subset is compact. According to this fact, we are
going to see that only finite dimensional Banach spaces can be Bourbaki-complete. In
particular, that means that in some sense completeness and Bourbaki-completeness
are very far from one another. Recall that an analogous result exists for cofinal
completeness (see Beer [5]).

Corollary 10. A Banach space is Bourbaki-complete if, and only if, it is finite
dimensional.

Proof. It is clear that every finite dimensional Banach space is Bourbaki-complete
since every closed and bounded subset is compact. Conversely, if the Banach space
is a Bourbaki-complete metric space, then according last result, its unit closed ball
must be compact since in normed spaces bounded subsets are also Bourbaki-bounded.
Finally, if the unit ball of a normed space is compact, then it is well known that it
must have finite dimension. �

Next, we introduce the completeness notion associated to the cofinally Bourbaki–
Cauchy sequences.

Definition 11. A metric space is said to be cofinally Bourbaki-complete if every
cofinally Bourbaki–Cauchy sequence clusters.
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It is clear that cofinal Bourbaki-completeness implies both Bourbaki-completeness
and cofinal completeness. In order to see that the reverse implications do not hold,
we will see that in fact there exist Bourbaki-complete metric spaces that are not
cofinally complete (Example 15) and also cofinally complete metric spaces that are
not Bourbaki-complete (Example 16).

Note that this new kind of completeness is again a property between compactness
and completeness. Moreover, we can easily obtain an analogous result to Theorem 8
in this context, whose proof follows at once from Theorems 4 and 8.

Theorem 12. The following statements are equivalent for a metric space (X, d):

(1) X is compact.
(2) X is totally bounded and cofinally complete.
(3) X is Bourbaki-bounded and cofinally Bourbaki-complete.

Recall that the equivalence between (1) and (2) was pointed by Beer in [5]. On the
other hand, according to Theorem 8, it is clear that in above condition (3) cofinal
Bourbaki-completeness should be paired with a weaker boundedness notion corre-
sponding to the property that each sequence has a cofinally Bourbaki–Cauchy sub-
sequence. But note that, this weaker notion would be again Bourbaki-boundedness,
as we can deduce easily from Theorem 4.

Now, it is interesting to see that our completeness properties are not only weaker
than compactness but also weaker that uniform local compactness. Recall that a
metric space (X, d) is said to be uniformly locally compact whenever there exists
some δ > 0 such that the set Bδ(x) is compact, for every x ∈ X.

Proposition 13. Every uniformly locally compact metric space is cofinally Bour-
baki-complete.

Proof. Firstly, let δ > 0 such that, for every x ∈ X, Bδ(x) is compact. We can
see that if K ⊂ X is compact, then Kδ/2 is also compact. Indeed, from the open
cover of K ⊂

⋃

y∈K Bδ/2(y), we can take a finite subcover K ⊂
⋃n

i=1Bδ/2(yi). Since

Kδ/2 ⊂
n
⋃

i=1

(

Bδ/2(yi)
)δ/2

⊂
n
⋃

i=1

Bδ(yi)

and
⋃n

i=1Bδ(yi) is compact, it follows that Kδ/2 is compact, as we wanted. And that
means that, in particular, for every x ∈ X and every m ∈ N, the set Bm

δ/2(x) is
compact.

Now, if (xn)n∈N is a cofinally Bourbaki–Cauchy sequence, then there exist x ∈ X

and m ∈ N such that {xn : n ∈ N} is cofinally contained in Bm
δ/2(x). Therefore, by

compactness of Bm
δ/2(x), we have that (xn)n∈N clusters. �

According to the above, we have the following diagram:

uniformly locally compact =⇒ cofinally Bourbaki-complete =⇒ cofinally complete

Now, from a result by Rice [30], we know that in the frame of cofinally com-
plete metric spaces, the local compactness and the uniform local compactness are
equivalent (see also Beer [5]). Then clearly the same happens for cofinally Bourbaki-
complete metric spaces. In fact, we can improve slightly this result. For that, we
need to introduce the next natural notions. Similarly to local compactness, we say
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that a metric space (X, d) is locally Bourbaki-bounded (resp., locally totally bounded),
if for every x ∈ X, there exists a neighborhood of x which is a Bourbaki-bounded
(resp., totally bounded) subset of X.

Theorem 14. For a metric space (X, d) the following statements are equivalent:

(1) X is uniformly locally compact.
(2) X is locally totally bounded and cofinally complete.
(3) X is locally Bourbaki-bounded and cofinally Bourbaki-complete.

Proof. That (1) ⇒ (3) follows at once from Proposition 13.
(3) ⇒ (2) This implication can be obtained easily taking into account that, in

particular, condition (3) implies that X is in addition locally compact. Indeed, let
x ∈ X and let V be a Bourbaki-bounded neighborhood of x. Take B any closed
ball around x contained in V . Now it is easy to check that B is both Bourbaki-
bounded (since this property is hereditary) and cofinally Bourbaki-complete (since
this property is inherited by closed sets). Then, from Theorem 12, B is a compact
neighborhood of x.

(2) ⇒ (1) Firstly note that, as in the above implication, we can see that (2)
implies also the local compactness of X. Next, suppose by contradiction that X
is not uniformly compact, then for every n ∈ N, there exists xn ∈ X such that
B1/n(xn) is not compact. Then, by local compactness of X, we can assert that the
sequence (xn)n∈N does not cluster. Now, for every n ∈ N, let (ynk )k∈N be a sequence
in B1/n(xn) without cluster points. Next, consider a partition of N into a countable
family of infinite subsets {Mn, n ∈ N}. Finally, defining the sequence zk = ynk , if
k ∈ Mn, it is easy to check that (zk)k∈N is a cofinally Cauchy sequence which does
not cluster. �

We present now two examples in order to clarify the relationships among the
above properties.

Example 15. Let ℓ2 be the Hilbert space, and let X ⊂ ℓ2 the discrete subspace,
X =

⋃

n∈NAn, where

An = {en} ∪
{

en +
1

n
ek : k ∈ N

}

and {en : n ∈ N} is the standard basis of ℓ2. Then X is locally compact since,
for every n ∈ N, the open ball of radius 1/n and center en or en + 1

n
ek is just the

center point. But it is not uniformly locally compact. Indeed, for every n ∈ N,
the closed ball of radius 1/n and center en is the infinite discrete space An which
is clearly not compact. On the other hand, X is Bourbaki-complete because every
Bourbaki–Cauchy sequence is eventually constant. Therefore, by Theorem 14, X is
not cofinally Bourbaki-complete neither cofinally complete since it is not uniformly
locally compact.

Example 16. For a infinite cardinal number m, let X = J (m) the hedgehog
space of spininess m (see for instance [15]). That is, for a set S with cardinal m, the
space X is just the disjoint union

⋃

s∈S

(

[0, 1]× {s}
)

, after identifying all the points
of the form (0, s) to one only point 0 ≡ [(0, s)], endowed with the metric:

d([(x, s1)], [(y, s2)]) =

{

|x− y| if s1 = s2,
x+ y if s1 6= s2.
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It is easy to see that this space is complete and not compact (note that the infinite
closed set {[(1, s)] : s ∈ S} is discrete). Besides, X is Bourbaki-bounded. In fact, for
every ε > 0, X is contained in the set Bm

ε (0), for m > 1/ε. Then, from Theorem
8, X is not Bourbaki-complete. We are going to prove that this space is cofinally
complete. Let ([(xn, sn)])n∈N be a cofinally Cauchy sequence. Then for every ε > 0
there exists Nε ⊂ N such that d([(xi, si)], [(xj , sj)]) < ε, for all i, j ∈ Nε. If for
some ε > 0 there exists an infinite subset C ⊂ Nε such that for every i, j ∈ C, we
have si = sj , then ([(xn, sn)])n∈N clusters because any sequence in the Euclidean unit
interval [0, 1] clusters. Otherwise, for every k ∈ N, we can choose [(xnk

, snk
)] such that

d([(xnk
, snk

)], 0)) < 1/k, for some nk ∈ N1/k. Then, the subsequence ([(xnk
, snk

)])k∈N
converges to 0 and then the initial sequence clusters, as we wanted. In particular, we
have seen that cofinal completeness does not imply Bourbaki-completeness as well as
cofinal completeness does not imply cofinal Bourbaki-completeness.

We finish this section just linking Bourbaki and cofinal Bourbaki-completeness
with the well known class of UC-spaces. In this line, we are going to see that every UC
metric space is cofinally Bourbaki-complete, and hence Bourbaki-complete. Recall
that a metric space (X, d) is called UC or Atsuji when every real continuous function
on X is uniformly continuous. There are several characterizations of these spaces,
as we can see in the nice paper by Jain and Kundu [26]. In spite of there exists
a sequential characterization of UC-spaces given by Toader in [33] that involves a
Cauchy-like condition, we will use the characterization given by Hueber in terms the
so-called isolation functional. Namely, if I : X → [0,∞) is the functional defined by
I(x) = d(x,X −{x}), then it is proved in [25] that a metric space is UC when every
sequence (xn)n with limn→∞ I(xn) = 0 clusters.

Proposition 17. Every UC metric space is cofinally Bourbaki-complete.

Proof. Let (xn)n be a cofinally Bourbaki–Cauchy sequence, that we can suppose
has no constant subsequence. According to the above characterization by Hueber, we
are going to see that (xn)n has a subsequence along which the isolation functional goes
to zero. Indeed, for every j ∈ N there exist mj ∈ N and pj ∈ X such that {xn : n ∈
N} is cofinally contained in B

mj

1/j(pj). Since every x ∈ B
mj

1/j(pj) satisfies I(x) < 1/j,
then we can construct a subsequence (xnj

)j of (xn)n such that limj→∞ I(xnj
) = 0, as

we wanted. �

In order to see that the converse of last result is not true, it is enough to consider
the real line R with the usual metric.

4. Bourbaki-completeness by nets

Recall that a property which is given in terms of sequences in the frame of
metric spaces, can be also reformulated in terms of nets and entourages in order to
generalize it to the setting of uniform spaces. For example that happens when we
define a uniform space to be complete when every Cauchy net clusters (converges).
Then, we give the following definition.

Definition 18. A net (xλ)λ∈Λ in a uniform space (X,U), is said to be Bourbaki–
Cauchy in X if for every entourage U ∈ U there exist λ0 ∈ Λ and m ∈ N such that
for some x ∈ X, xλ ∈ Um[x] = U◦ (m). . . ◦U [x], for every λ ≥ λ0.
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Hence, in the case of a metric space (X, d), a net (xλ)λ∈Λ will be Bourbaki–
Cauchy in X if, for every ε > 0 there exist m ∈ N and λ0 ∈ Λ such that for some
x ∈ X, xλ ∈ Bm

ε (x), for every λ ≥ λ0.
Clearly, we can generalize the notion of Bourbaki-completeness for uniform spaces,

saying that a uniform space is Bourbaki-complete if every Bourbaki–Cauchy net in
it, clusters. We are not interested here in the study of this property in this general
setting. In fact, such study will be done in a forthcoming paper which is still in
preparation and where we will compare different kind of completeness in uniform
spaces. For instance we will see there that Bourbaki-completeness of uniform spaces
is equivalent to the so-called δ-completeness introduced by García-Máynez in [16].

Now, we are going to prove the announced result saying that for metrizable spaces
is equivalent to be Bourbaki-complete by sequences and by nets. As we mentioned
in the introduction the following proof is due to Hohti and Junnila (University of
Helsinki) and it has been communicated privately to the authors.

Theorem 19. Let (X, d) be a metric space. Then X is Bourbaki-complete if
and only if every Bourbaki–Cauchy net in X clusters.

Proof. We only need to prove sufficiency. Suppose that (xλ)λ∈Λ is a Bourbaki–
Cauchy net that does not have a cluster point. Then each point x ∈ X has an open
neighborhood V x such that (xλ)λ∈Λ is not cofinally in V x. By paracompactness, the
open cover V = {V x : x ∈ X} has an open locally finite refinement A, which is in par-
ticular point-finite. We will inductively construct a Bourbaki–Cauchy subsequence
(xn)n∈N of (xλ)λ∈Λ which does not have any cluster point.

Let x0 ∈ X an arbitrary point. As A is point-finite, there are only finitely many
A1, . . . , Ak ∈ A such that x0 ∈ Ai, i = 1, . . . , k. Let A0 denote the finite subfamily
of A consisting of all Ai, i = 1, . . . , k. For each Ai, (xλ)λ∈Λ is residually in X − Ai,
so it is residually in X −

⋃

A0. Thus, we can select some λ1 ∈ Λ such that for every
λ ≥ λ1, xλ ∈ X −

⋃

A0 and xλ ∈ Bm1

1/2(y1), for some y1 ∈ X and m1 ∈ N. Now,
take the finite subfamily A1 = A0 ∪ {A ∈ A : xλ1

∈ A}. The net (xλ)λ∈Λ is again
residually in X −

⋃

A1 and we can find some λ2 ≥ λ1 such that for every λ ≥ λ2,
xλ ∈ X−

⋃

A1 and xλ ∈ Bm2

1/22(y2), for some y2 ∈ X andm2 ∈ N. In general, for every
n ≥ 3, there is some λn ≥ λn−1 such that for every λ ≥ λn, xλ ∈ X −

⋃

An−1, where
An−1 = An−2 ∪ {A ∈ A : xλn−1

∈ A} is a finite subfamily of A and xλ ∈ Bmn

1/2n(yn),
for some yn ∈ X and mn ∈ N. Note that the sequence (xλn)n∈N obtained in this way
is Bourbaki–Cauchy. However, (xλn)n∈N does not have a cluster point. Indeed, for
any y ∈ X, V y is a neighborhood of y such that (xλn)n∈N is residually in X − V y,
because by the construction of the sequence, xλn ∈ V y implies xλm ∈ X − V y, for all
m > n. �

5. Bourbaki-completely metrizable spaces

This section is devoted to study the (topological) problem of metrization by
means of a Bourbaki-complete metric. Thus, we say that a metrizable space X is
Bourbaki-completely metrizable when there exists a Bourbaki-complete metric on X
giving its topology. We are interested here in obtaining a result in the line of the
well known given by Čech ([12]) saying that a metrizable space X is completely
metrizable if and only if it is Čech complete, i.e., X is a Gδ-set in its Stone–Čech
compactification, βX.
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First of all we need to establish some properties about Bourbaki-completeness.
Note that to be metrizable by a Bourbaki-complete metric is a topological property
that is hereditary with respect to closed subsets. Moreover, as it happens to complete
metrizability, we are going to prove that it is also a countable productive property.
As a consequence of that, we will see that it would be also hereditary with respect
to Gδ-sets.

Theorem 20. Let (Xn, dn)n∈N be a countable family of metric spaces. Let
X =

∏

n∈NXn be the product space endowed with the metric

ρ(x, y) =
∑

n∈N
d∗n(xn,yn)

2n

where d∗n = min{dn, 1}. Then, (X, ρ) is Bourbaki-complete if, and only if, (Xn, dn)
is Bourbaki-complete, for every n ∈ N.

Proof. One implication is clear since every (Xn, dn) is homeomorphic to a closed
subspace of (X, ρ). Conversely, suppose that (Xn, dn) is Bourbaki-complete, for ev-
ery n ∈ N. Since the metrics dn and d∗n are uniformly equivalent, we have that
(Xn, d

∗
n) is also a Bourbaki-complete metric space, for every n ∈ N. Let (xn)n∈N be

a Bourbaki–Cauchy sequence in (X, ρ). Observe that, for every i ∈ N, we get that
(xni )n∈N is a Bourbaki–Cauchy sequence of (Xi, d

∗
i ). Therefore for i = 1, there exists a

subsequence (xn1 )n∈N1
of (xn1 )n∈N, N1 ⊂ N, which converges to some y1 ∈ X1. Now,

the sequence (xn2 )n∈N1
of (X2, d

∗
2), is a Bourbaki–Cauchy subsequence of (xn2 )n∈N

since every subsequence of a Bourbaki–Cauchy sequence is also Bourbaki–Cauchy.
Again, by Bourbaki-completeness of (X2, d

∗
2) there exists a subsequence (xn2 )n∈N2

of
(xn2 )n∈N1

, N2 ⊂ N1, which converges to some y2 ∈ X2. If we proceed in this way,
for every i ≥ 2, there exists a subsequence (xni )n∈Ni

of (xni )n∈Ni−1
, Ni ⊂ Ni−1 which

converges to some yi ∈ Xi. Next, let y = (yi)i∈N ∈ X, we are going to check that y
is a cluster point of the sequence (xn)n∈N.

Indeed, let ε > 0 and N ∈ N large enough to satisfy that
∑

∞

N+1
1
2i
< ε/2. Since

yi is a limit point of (xni )n∈Ni
, for every i ∈ N, we can choose some nε such that, for

every i = 1, . . . , N ,

d∗i (x
n
i , yi) <

ε · 2i

2N

when n ∈ NN , n ≥ nε. Computing, we have that

ρ(xn, y) =
∑

i∈N

d∗i (x
n
i , yi)

2i
=

N
∑

i=1

d∗i (x
n
i , yi)

2i
+

∞
∑

i=N+1

d∗i (x
n
i , yi)

2i
< N ·

ε

2N
+
ε

2
= ε

for every n ∈ NN , n > nε. Therefore for every ε > 0 the sequence (xn)n∈N is cofinally
contained in the neighborhood Bε(y) of y. Hence, y is a cluster point for (xn)n∈N. �

As a consequence of last result we obtain the following.

Theorem 21. AGδ-set in a Bourbaki-complete metric space is Bourbaki-comple-
tely metrizable.

Proof. Firstly let G be an open subspace of a Bourbaki-complete metric space
(X, d). Consider the real-valued continuous function given by f(x) = 1/d(x,X−G),
for x ∈ G. By continuity of f , the metric defined on G by

ρ(x, y) = d(x, y) + |f(x)− f(y)|
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is topologically equivalent to the metric d on G. And it is clear that if a sequence
(xn)n∈N is Bourbaki–Cauchy in (G, ρ) then it is also Bourbaki–Cauchy in (G, d). So,
let (xn)n∈N be a Bourbaki–Cauchy sequence in (G, ρ) and fix some ε > 0. Then there
exist m,n0 ∈ N such that xn ∈ Bm

ε (xn0
), for every n ≥ n0. In particular we have,

that
|f(xn)− f(xn0

)| < ρ(xn, xn0
) < m · ε

And then f(xn) < m ·ε+f(xn0
), for all n ≥ n0. Hence d(xn, X−G) > 1

m·ε+f(xn0
)
> 0,

for every n ≥ n0. Thus, we can choose some λ > 0 such that

{xn : n ∈ N} ⊂ Xλ = {x ∈ X : d(x,X −G) ≥ λ} ⊂ G.

Since Xλ is a closed subset of (X, d), which is Bourbaki-complete, we have that the
sequence (xn)n∈N clusters in Xλ and hence in G. Consequently, (G, ρ) is Bourbaki-
complete and G is Bourbaki-completely metrizable.

On the other hand, let H be a Gδ-set in X, then H =
⋂

∞

n=1Gn where Gn is
an open subset of X, for every n ∈ N. According to the above paragraph, we
have that every Gn is completely-Bourbaki metrizable. Now, from Theorem 20, the
product space

∏

∞

n=1Gn is also Bourbaki-completely metrizable. And we finish taking
into account that H is homeomorphic to a closed subspace of

∏

∞

n=1Gn, namely the
diagonal subspace of

∏

∞

n=1Gn. �

Next, let P0(X) be the family of non-empty subset of X. We are going to define
a couple of functionals on P0(X) in order to obtain in this frame results of type
Cantor’s Theorem and Kuratowski’s Theorem known for complete metric spaces (see
[8]).

Firstly, we define γ : P0(X) → [0,∞] by,

γ(A) = inf
{

ε > 0: A ⊂ Bm
ε (x) for some m ∈ N and x ∈ X

}

.

Clearly γ(A) = ∞ if and only if A is not bounded by the metric. In some sense γ
is a generalization of the radius (or diameter) of a set. The functional γ satisfies the
following properties:

(i) If A ⊂ B, then γ(A) ≤ γ(B).
(ii) γ(A) = γ(A). In fact, for any ε > 0 such that A ⊂ Bm

ε (x), for some m ∈ N

and x ∈ X, we have that A ⊂ Bm+1
ε (x).

(iii) γ(A) = 0 if and only if A is a uniformly chainable subset of X.
Recall that A is uniformly chainable in X if for every ε > 0 there exists m ∈ N such
that each two points in A can be joined by an ε-chain in X of length at most m (see
Beer [4]).

Now let η : P0(X) → [0,∞] defined by,

η(A) = inf
{

ε > 0 : A ⊂
k
⋃

i=1

Bm
ε (xi) for some m ∈ N and finite xi ∈ X, i = 1, . . . , k

}

.

Again η(A) = ∞ if, and only, if A is not bounded. Note that, in some sense, η
is a generalization of the so-called Hausdorff measure of non-compactness (see [8])
defined by,

α(A) = inf
{

ε > 0: A ⊂
k
⋃

i=1

Bε(xi) for some finite xi ∈ X, i = 1, . . . , k
}

.
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The functional η satisfies the following properties:

(i) If A ⊂ B, then η(A) ≤ η(B).
(ii) η(A) = η(A).
(iii) η(A) = 0 if and only if A is a Bourbaki-bounded subset of X.
(iv) η(A ∪ B) = max{η(A), η(B)}.

Thus, next result characterizes the Bourbaki-completeness in terms of the above
functionals.

Theorem 22. For a metric space (X, d) the following statements are equivalent:

(1) X is Bourbaki-complete.
(2) For every decreasing sequence (An)n∈N of non-empty closed subsets of X

which satisfies that limn→∞ η(An) = 0, then K =
⋂

n∈NAn is a non-empty
compact set.

(3) For every decreasing sequence (An)n∈N of non-empty closed subsets of X
which satisfies that limn→∞ γ(An) = 0, then K =

⋂

n∈NAn is a non-empty
compact set.

Proof. (1) ⇒ (2) Assume that (X, d) is Bourbaki-complete and, for every
n ∈ N, let xn ∈ An. Clearly the set {xn : n ∈ N} is a Bourbaki-bounded subset
of X and hence, from Theorem 4, the sequence (xn)n∈N has a Bourbaki–Cauchy
subsequence which clusters by Bourbaki-completeness. Then, K =

⋂

n∈NAn ⊃
⋂

n∈N {xm : m ≥ n} 6= ∅. Finally, applying Theorem 8, we follow that K is com-
pact. Indeed, K is Bourbaki-bounded subset of X since η(K) = 0, and it is also
Bourbaki-complete since K is closed in X.

(2) ⇒ (3) This is clear, because η(A) ≤ γ(A), for every A ⊂ X.
(3) ⇒ (1) Let (xn)n∈N be a Bourbaki–Cauchy sequence in X and define the

decreasing sequence of non-empty closed sets, An = {xm : m ≥ n}. Now, since
γ(An) = 0, for every n ∈ N, condition (3) says that the set K =

⋂

n∈NAn is non-
empty. And then we finish since K is just the set of cluster points of the sequence
(xn)n∈N. �

Now, we have all the ingredients to give the desired result of Bourbaki-complete
metrization. We will use the well-known metrization theorem by Dugunji [14], saying
that “If X is a metrizable space and {An : n ∈ N} is a family of open covers of X,
then X can be metrizable by a metric such that the family of its open balls of radius
1/n, {B1/n(x) : x ∈ X}, refines An, for all n ∈ N.”

Theorem 23. Let X be a metrizable space. The following statements are equiv-
alent:

(1) X is Bourbaki-completely metrizable.
(2) X =

⋂

∞

n=1Gn where each Gn is an open and paracompact subspace of βX.
(3) There exists some compactification cX of X such that X =

⋂

∞

n=1Gn where
each Gn is an open and paracompact subspace of cX.

Proof. (1) ⇒ (2) Let (X, d) be a Bourbaki-complete metric space. For ε > 0,
define the following equivalence relation: x ∼ε y if, and only if, y ∈ B∞

ε (x). This
equivalence relation determines a partition Pε = {[x] : x ∈ X} of X, where clearly
[x] = B∞

ε (x) is a clopen subset of X.
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For every i ∈ N take only one x ∈ X for each equivalence class B∞

1/i(x) ∈ P1/i,
and let V m

x,i a cozero subset of βX such that

V m
x,i ∩X = Bm

1/i(x).

Note that, by density of X in βX, we have V m
x,i ∩ V

n
y,i 6= ∅ if, and only if, Bm

1/i(x) ∩

Bn
1/i(y) 6= ∅. Thus, for every i ∈ N, the family {Bm

1/i(x) : B
∞

1/i(x) ∈ P1/i, m ∈ N} is
a star-countable cover of X. Hence, for each i ∈ N, we have that {V m

x,i : B
∞

1/i(x) ∈

P1/i, m ∈ N} is a cozero star-countable family of βX which cover X. For every
i ∈ N, let Gi =

⋃

B∞

1/i
(x)∈P1/i

⋃

m∈N
V m
x,i. Recall that countable unions of cozero sets

are cozero sets too, hence for x 6= y (i.e., [x] 6= [y]), we have that
⋃

m∈N
V m
x,i and

⋃

m∈N
V m
y,i are disjoint cozero sets. Then every Gi is a free union of open Fσ-sets of

βX, that is, a free union of open Lindelöf subspaces of βX. Consequently, every Gi

is open and paracompact, since every regular Lindelöf space is paracompact and a
free union of paracompact spaces is also paracompact.

Trivially X ⊂
⋂n

i=1Gi. We have to prove the reverse inclusion. Suppose there
is some z ∈

⋂

∞

i=1Gi − X. Thus, for every i ∈ N, there exists some xi ∈ X such
that z ∈

⋃

m∈N
V m
xi,i

. Hence for every i ∈ N there exists some mi ∈ N such that
z ∈ V mi

xi,i
and clearly V mi

xi,i
is a neighborhood of z in βX. Let us write V mi

xi,i
= Ui.

Thus, {Ui}i∈N is a sequence of neighborhoods of z that, without loss of generality
we can suppose decreasing and with the property that γ(Ui ∩X) ≤ 1

i
. Now, we can

apply Theorem 22 to the sequence of closed sets,

U1 ∩X
X
⊃ U2 ∩X

X
⊃ . . . ⊃ Ui ∩X

X
⊃ . . .

and then K =
⋂

i∈N Ui ∩X
X

is a non-empty compact set in X. By regularity of
βX there exists a closed neighborhood W z of z such that W z ∩ K = ∅. But, by
density W z∩Ui∩X 6= ∅ and γ(W z ∩ Ui ∩X

X
) ≤ 1

i
, for every i ∈ N. Applying again

Theorem 22, it follows that

W z ∩K = W z ∩ (
⋂

i∈N

Ui ∩X
X
) =

⋂

i∈N

W z ∩ (Ui ∩X)
X
⊃

⋂

i∈N

W z ∩ Ui ∩X
X
6= ∅

which is a contradiction. Therefore z ∈ X.
(2) ⇒ (3) is trivial.
(3) ⇒ (1) Let X =

⋂

∞

n=1Gn where each Gn is an open and paracompact subspace
of cX. By regularity of cX and for every z ∈ Gn, there exists an open neighborhood
Uz
n of z in cX such that

z ∈ Uz
n ⊂ Uz

n

cX
⊂ Gn.

Then Un = {Uz
n : z ∈ Gn} is an open cover of Gn. Since Gn is paracompact let Vn be

an open locally finite refinement of Un. For every n ∈ N, let

An = {V ∩X : V ∈ Vn}.

Then A = {An : n ∈ N} is a countable family of open covers of X. Since X is
metrizable, by the Dugundji’s theorem, there exists an admissible metric d such that
{B1/n(x) : x ∈ X} refines An, for every n ∈ N.

We are going to prove that (X, d) is Bourbaki-complete. Let (xn)n∈N be a
Bourbaki–Cauchy sequence in (X, d). Then (xn)n∈N clusters in cX by compactness.
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Thus, let

z ∈
⋂

n∈N

{xj : j ≥ n}
cX
.

Now, for every i ∈ N, there exist n0 ∈ N and m ∈ N such that for some x ∈ X,
xn ∈ Bm

1/i(x) for every n ≥ n0. Since Bm
1/i(x) =

⋃
{

B1/i(y) : y ∈ Bm−1
1/i (x)

}

, then

z ∈ {xn : n ≥ n0}
cX

⊂ Bm
1/i(x)

cX
⊂

⋃

{Vy,i : y ∈ Bm−1
1/i (x)}

cX

where B1/i(y) ⊂ Vy,i, for some Vy,i ∈ Vi. Since Vi is a locally finite family sets of cX
then

z ∈
⋃

{Vy,i : y ∈ Bm−1
1/i (x)}

cX

=
⋃

{Vy,i
cX

: y ∈ Bm−1
1/i (x)}

⊂
⋃

{Uy,i
cX

: y ∈ Bm−1
1/i (x)} ⊂ Gi

where Vy,i ⊂ Uy,i, for some Uy,i ∈ Ui. Consequently, z ∈ Gi for every i ∈ N and
hence z ∈ X, as we wanted. �

As an easy consequence of last result, we have that every locally compact metric
space is Bourbaki-completely metrizable, since in fact it is open and paracompact
in every of its compactifications. Moreover, according to Theorem 20, every metric
space homeomorphic to a closed subset of a countable product of locally compact
metric spaces will be also Bourbaki-completely metrizable. This is the case, for
example, of NN or RN.

It is clear that if a metric space is not completely metrizable (for instance, the ra-
tional numbers with the usual metric) then it cannot be Bourbaki-completely metriz-
able. The next example shows that, assuming the existence of measurable cardinals,
not every completely metrizable space is Bourbaki-completely metrizable.

Example 24. For a measurable cardinal number m, let X = J (m) be the hedge-
hog space of spininess m (see Example 16). Then we know that X is a complete
metric space. On the other hand, Comfort and Negrepontis in [11] prove that for
every open paracompact subspace Y such that J (m) ⊂ Y ⊂ βJ (m), the realcom-
pactification υJ (m) satisfy that J (m) ⊂ υJ (m) ⊂ Y . Therefore, since X is not
realcompact, then it cannot be the (countable) intersection of open paracompact
subspaces of βX.

Recall that a metrizable space X is completely metrizable if, and only if, it is
a Gδ-set in every compactification cX (see [15]). However, from the above theorem
we cannot assure that if X =

⋂

∞

n=1Gn, where Gn are open paracompact subspaces
of some compactification cX, then the same is true in every compactification of X.
If we carefully review the proof of last Theorem 23, we can see that the Stone-
Čech compactification in condition (2) can be replaced by any compactification of
X where X is z-embedded. We say that X is z-embedded in Y when X ⊂ Y and
every zero-set in X is the intersection with X of a zero-set in Y . On the other
hand, it is well known that every metric space (X, d) is z-embedded in its Samuel
compactification sdX. In fact, as Woods proves in [35], sdX is characterized uniquely
(up to equivalence) as the compactification where for every closed subset A of X,
the function gA(x) = min{d(x,A), 1} extends continuously to g∗A ∈ C(sdX) and
A

sdX = Z(g∗A). So, we can assert that X is completely-Bourbaki metrizable if, and
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only if, X is a countable intersection of open paracompact subspaces of cX, for every
compactification cX ≥ sdX. But the question is: what happens with the rest of
compactifications of X? We do not know the general answer. But, in this line, we
can say that it is possible for a metric space (X, d) to find a compactification cX
satisfying last condition (3) and with cX ≤ sdX. For instance, if (X, d) is a metric
space locally compact but not separable (for example, R endowed with the discrete
metric), then X is open and paracompact in any compactification, and in particular
in its one-point compactification X∞. But, in this case X∞ < sdX since, according
to a result by Woods in [35], for a locally compact metrizable space X, there exists
some admissible metric d such that the one point compactification of X is equivalent
to sdX if, and only if, X is second countable.

At this point, it is interesting to take into account the class of δ-complete topolog-
ical spaces introduced and studied by García-Máynez in [16] (see also [18] and [17]).
These spaces, considered in the general frame of uniform spaces, can be characterized
as those spaces X that are the intersection of all the open and paracompact subsets
of βX containing it. Then, it is clear that every Bourbaki-completely metrizable
space is δ-complete. We do not know whether or not every completely metrizable
space X which is also δ-complete is Bourbaki-completely metrizable. Note that, for
instance, the space X in Example 24 is not δ-complete neither.

We finish this section, by linking Bourbaki-complete metrizability with other
properties in the context of metrizable spaces. Recall that a metrizable space X is
said to be strongly metrizable if, and only if, X has a base which is the union of
countably many star-finite open covers, or equivalently X can be embedded into a
space of the form κN × [0, 1]N, where we consider the cardinal κ endowed with the
discrete metric (see for instance Pears [29]).

The following topological notion, as well as its uniform version, will be interesting
in what follows.

Definition 25. A topological space X is strongly paracompact if every open cover
of X has an open star-finite refinement.

It is known that every regular Lindelöf space is strongly paracompact, that every
metrizable strongly paracompact space is strongly metrizable and that every strongly
metrizable space is paracompact. There exist examples of metric spaces which do
not satisfy the reverse implications. Thus, the product space ℵN

1 × [0, 1]N, where ℵ1

is the first uncountable cardinal, is a strongly paracompact metric space which is not
separable. On the other hand, ℵN

1 × (0, 1) is strongly metrizable but not strongly
paracompact. Finally the metric hedgehog J (ℵ1) is paracompact but not strongly
metrizable [29].

Theorem 26. Every strongly paracompact (more generally, every strongly metriz-
able) completely metrizable space is Bourbaki-completely metrizable.

Proof. Suppose the general case where X is strongly metrizable and completely
metrizable. Then X is a subspace of the Bourbaki-completely metrizable space κN×
[0, 1]N, for some cardinal κ. Since Bourbaki-complete metrizability is hereditary
with respect to Gδ-sets, then every space homeomorphic to a Gδ-subset of κN ×
[0, 1]N is Bourbaki-completely metrizable. But finally recall that a metrizable space
is completely metrizable if, and only if, it is a Gδ-set in every metric embedding (see
[11]). �
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Note that from last result, every separable completely metrizable space is Bour-
baki-completely metrizable, since in particular it is strongly paracompact. Thus,
every separable infinite dimensional Banach space as well as the metric hedgehog
of countable many spininess J (ℵ0) are examples of non Bourbaki-complete spaces
that can be metrized by an admissible Bourbaki-complete metric. We do not know
if every Bourbaki-complete metric space is strongly metrizable or not. Note that,
for every (non-measurable) uncountable cardinal m, J (m) is not strongly metrizable,
so we ask if in this case J (m) is Bourbaki-completely metrizable. Finally, note that
Bourbaki-completely metrizable together with strongly metrizable does not implies
strongly paracompact. For that consider again X = ℵN

1 × (0, 1).

6. Cofinally Bourbaki-completely metrizable spaces

This last section will be devoted to obtain more properties of the cofinally
Bourbaki-complete metric spaces, as well as to study when a metrizable space admits
an equivalent cofinal Bourbaki-complete metric, that is, when it is cofinally Bourbaki-
completely metrizable. Recall that the analogous problem for cofinal completeness of
metrizable spaces was solved by Romaguera in [31]. He obtains there, for a metriz-
able space X, the equivalence between the cofinal complete metrizability and the
compactness of the set

nlc(X) = {x ∈ X : x has no compact neighborhood in X}.

Next, we are going to give a characterization of cofinal Bourbaki-completeness in
metric spaces by means of the above mentioned set nlc(X), and with the help of the
functional ν : P0(X) → [0,∞] defined by

ν(A) = sup{ν(x) : x ∈ A}.

where ν(x) = sup{ε > 0: Bε(x) is compact} if x has a compact neighborhood,
and ν(x) = 0, otherwise (see [5]). Moreover, we will see that cofinal Bourbaki-
completeness by sequences are equivalent to the corresponding notion for nets. For
that, we will use the fact that for cofinal completeness a result like that is true as we
mentioned in the introduction (Beer [5]).

Definition 27. A net (xλ)λ∈Λ in a uniform space (X,U), is said to be cofinally
Bourbaki–Cauchy in X if for every entourage U ∈ U there exists m ∈ N such that
for some x ∈ X, (xλ)λ∈Λ is cofinally contained in Um[x] = U◦ (m). . . ◦U [x].

Thus, when the uniform space is a metric space (X, d), a net (xλ)λ∈Λ will be
cofinally Bourbaki–Cauchy in X if for every ε > 0 there exists m ∈ N, such that for
some x ∈ X, (xλ)λ∈Λ is cofinally contained in Bm

ε (x).
Next result also contains some conditions for a complete or a cofinally complete

space to be cofinally Bourbaki-complete.

Theorem 28. For a metric space (X, d) the following statements are equivalent:

(1) X is cofinally Bourbaki-complete.
(2) X is cofinally complete and, for every ε > 0 there exists δ > 0 such that

γ(A) < δ implies α(A) < ε, for A ∈ P0(X).
(3) X is complete and, for every ε > 0 there is δ > 0 such that max{ν(A), γ(A)} <

δ implies α(A) < ε, for A ∈ P0(X).
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(4) Either X is uniformly locally compact or nlc(X) is a non-empty compact
set such that, for every ε > 0, X − nlc(X)ε is uniformly locally compact in
its relative topology, and there exists δ > 0 with α(Bn

δ (x)) < ε, whenever
x ∈ nlc(X), n ∈ N.

(5) Every cofinally Bourbaki–Cauchy net clusters.

Proof. (1) ⇒ (2) Since every cofinally Bourbaki-complete metric space is cofinally
complete, only the continuity condition in (2) is necessary to prove. Suppose, by
contradiction, that there is some ε0 > 0 such that for every δ > 0 there exists
Aδ ∈ P0(X) such that γ(Aδ) < δ but α(Aδ) ≥ ε0. In particular, for every n ∈ N,
it is possible to find a countable subset {xnj : j ∈ N} of A1/n such that it is ε0-
discrete. Now, consider a partition of N into a countable family of infinite subsets
{Mn, n ∈ N}, and define the sequence yj = xnj if j ∈ Mn. Then (yj)j∈N is a cofinally
Bourbaki–Cauchy sequence of X which does not cluster.

(2) ⇔ (3) This equivalence follows at once using the result by Beer in [5], saying
that a complete metric space is cofinally complete if, and only if, for every ε > 0
there exists δ > 0 such that for every A ∈ P0, if ν(A) < δ then α(A) < ε.

(2) ⇒ (4) Firstly, note that condition (2) implies that, for every ε > 0 there
exists δ > 0 such that, for every x ∈ X and n ∈ N, we have α(Bn

δ/2(x)) < ε, since
γ(Bn

δ/2(x)) ≤ δ/2 < δ. On the other hand, if nlc(X) = ∅ then X is locally compact
and by cofinal completeness it is uniformly locally compact (see Theorem 14). The
rest of condition (4) follows immediately from the characterization of cofinal com-
pleteness given by Beer in [5], saying that a metric space is cofinally complete if, and
only if, nlc(X) is compact and for every ε > 0, the set X − nlc(X)ε is uniformly
locally compact in its relative topology.

(4) ⇒ (2) If X is uniformly locally compact, we already know that X is cofinally
complete. Moreover, let δ > 0 be such that Bδ(x) is compact for every x ∈ X. Then,
it is easy to check that Bn

δ/2(x) is also compact, for every n ∈ N and x ∈ X (see the
proof of Theorem 13). Hence, for every ε > 0 and A ∈ P0(X) with γ(A) < δ/2, we
have that A must be totally bounded and then α(A) = 0 < ε.

Now suppose that nlc(X) 6= ∅. Using again the result by Beer mentioned in
the above implication, it is clear that condition (4) implies the cofinal completeness
of X. Now let ε > 0 and x ∈ X. If there exists δ > 0 such that x ∈ Bm

δ (y)
for some y ∈ nlc(X) and some m ∈ N, then trivially α(Bn

δ (x)) < ε for every
n ∈ N. Otherwise, suppose that x ∈ X − B∞

δ (y) for every y ∈ nlc(X). Then
Bn

δ (x) ⊂ X−nlc(X)δ for every n ∈ N. SinceX−nlc(X)δ is uniformly locally compact

in its relative topology there exists ξ > 0 such that Bξ(z) ∩ (X − nlc(X)δ)
X−nlc(X)δ

is compact, for every z ∈ X − nlc(X)δ. Let ν < min{δ, ξ}. Then, using the same
argument as before, we have that

Bn
ν/2(x) ∩ (X − nlc(X)δ)

X−nlc(X)δ

= Bn
ν/2(x)

X−nlc(X)δ

is also compact, for every n ∈ N. Hence α(Bn
ν/2(x)) < ε, as we wanted.

(2) ⇒ (5) Let (xλ)λ∈Λ be a cofinally Bourbaki–Cauchy net. From the hypothesis,
for every ε > 0 there exists δ > 0 such that if x ∈ X, we have Bn

δ/2(x) ⊂ Bε(x1) ∪

. . . ∪ Bε(xk), for every n ∈ N and some points xi ∈ X, i = 1, . . . , k. By definition
of cofinally Bourbaki–Cauchy net, there exist x ∈ X and n ∈ N such that (xλ)λ∈Λ
is cofinally contained in Bn

δ/2(x). Hence (xλ)λ∈Λ is cofinally contained in Bε(xj),
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for some j ∈ {1, . . . , k}. We have just proved that, in this case, every cofinally
Bourbaki–Cauchy net is in fact cofinally Cauchy. Hence, since cofinal completeness
by sequences and nets are equivalent in metric spaces (Beer [5]), we deduce that this
net clusters.

(5) ⇒ (1) It is clear. �

The property of continuity type in the above condition (2) was also suggested by
Hohti and Junnila. Note that it is equivalent to say that for all ε > 0 there exists
δ > 0 such that for every x ∈ X and n ∈ N we have α(Bn

δ (x)) < ε. In order to
see that cofinal completeness together with Bourbaki-completeness is not equivalent
to cofinal Bourbaki-completeness, an example of cofinally complete and Bourbaki-
complete metric space which does not satisfy the previously mentioned property
would be needed. But until now we have not succeeded to find such a space. On
the other hand, if we drop the completeness in condition (3), we have a necessary
and sufficient condition for a metric space to have a cofinally Bourbaki-complete
completion. Note, that the completion of a metric space (X, d) is Bourbaki-complete
if, and only if, every Bourbaki-bounded subset of X is totally bounded. Finally, a
geometric characterization of cofinal Bourbaki-completeness nicer than (4) would be
better.

Contrary to what happens with Bourbaki-completeness, cofinal Bourbaki-comple-
teness is not countably, neither finitely, productive. In fact we have the following
result that is analogous to the obtained by Hohti in [22] for uniformly paracompact
metric spaces. Recall that, as we mentioned in the introduction, cofinal completeness
was shown to be equivalent to the notion of uniform paracompactness defined by Rice
in [30].

Theorem 29. Let (X, d) and (Y, ρ) two cofinally Bourbaki-complete metric
space. Then X × Y is cofinally Bourbaki-complete if and only if one of the following
conditions holds:

(1) Either X or Y is compact.
(2) Both X and Y are locally compact.

Proof. The proof follows using the analogous result by Hohti [22] for uniform
paracompactness (i.e., for cofinal completeness), together with our last Theorem 28.
Indeed, the necessary condition is clear. For the sufficiency, suppose first that both
spaces are locally compact. Since, by the hypothesis, they are cofinally complete
then they must be uniformly locally compact (Theorem 14). In this case X × Y is
also uniformly locally compact and, by Theorem 13, it is cofinal Bourbaki-complete.

Suppose now that Y is compact and X is cofinally Bourbaki-complete but not
locally compact. We are going to apply condition (2) of last theorem. Note that
it is only necessary to check the continuity property in (2), or equivalently that for
all ε > 0 there exists δ > 0 such that for every (x, y) ∈ X × Y and n ∈ N we
have α(Bn

δ (x, y)) < ε. Indeed, let ε > 0. By compactness of Y , for every δ > 0
and y ∈ Y we have that α(Bn

δ (y)) = 0 < ε, for every n ∈ N. Since X is cofinally
Bourbaki-complete, given ε > 0 there is δε > 0 such that for every x ∈ X and n ∈ N

we have that α(Bn
δε
(x)) < ε. And then for every (x, y) ∈ X × Y and n ∈ N we have

that α(Bn
δε
(x, y)) ≤ α(Bn

δε
(x)) < ε. �

Now, and before studying the problem of the cofinal Bourbaki-complete metriza-
tion, we are going to see the relationships between this property and some other of
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uniform paracompactness type. At this point, we think that a uniform version of
the strong paracompactness will be useful for our purposes, since cofinal complete-
ness is equivalent to uniform paracompactness and, as we have seen in Theorem 26,
strong paracompactness implies Bourbaki-completeness. Indeed, we are going to see
that now we can obtain not only some implication but in fact that cofinal Bourbaki-
completeness and uniformly strong paracompactness are equivalent (Theorem 32 be-
low). We will do that in the setting of metric spaces but the same works for uniform
spaces. Next definition is the metric version of the uniform notion given by Hohti in
[22] under the name of uniform hypocompactness. Note that there is another defini-
tion of uniform strong paracompactness that was given by Musaev in [27]. In spite
of they are different from the point of view of uniform spaces, they are nevertheless
topologically equivalent.

Definition 30. A metric space (X, d) is uniformly strongly paracompact if for
every open cover G of X there exists an open refinement A for which there is some
δ > 0 such that, for every A ∈ A, the set Aδ meets at most finitely many A′ ∈ A.
Such a family A is said to be an open uniformly star-finite refinement of G.

For a family G we denote by Gf the family of finite unions of elements in G. Recall
that a cover G of X is called directed when Gf refines G. A cover G of a metric space
(X, d) is said to be uniformly directed if there is some δ > 0 such that the cover Gδ

f

refines G, where Gδ
f = {Hδ : H ∈ Gf}.

In order to obtain one of the main results in this section, we will use the following
metric version of a theorem given by Hohti in [22] for uniform spaces.

Theorem 31. (Hohti [22]) A metric space (X, d) is uniformly strongly paracom-
pact if and only if every directed open cover of X has a uniformly directed refinement.

Theorem 32. A metric space is uniformly strongly paracompact if and only if
it is cofinally Bourbaki-complete.

Proof. First, suppose (X, d) is a cofinally Bourbaki-complete metric space, and
let G = {Gλ : λ ∈ Λ} be a directed open cover of X. If X = Gλ for some λ ∈ Λ then G
is a uniformly directed refinement of itself. So assume that Fλ = X−Gλ 6= ∅ for each
λ ∈ Λ. Put E = {(Fλ, x) : λ ∈ Λ, x ∈ Fλ} and for each λ let <λ be a well ordering
of Fλ. Then (E,<) is a directed set where < is defined on E by (Fλ, x) < (Fν , y) if
λ 6= ν then Fλ ⊇ Fν or if λ = ν then x <λ y. For each (Fλ, x) put ψ(Fλ, x) = x.
Then ψ : E → X is a net in X. Since G is a cover of X, ψ cannot cluster in X,
so ψ cannot be cofinally Bourbaki–Cauchy. Therefore, there exists ε > 0 such that
if y ∈ X then for every m ∈ N there exists (Fλ0

, x0) ∈ E (depending of m) with
ψ(Fλ, x) ∈ X − Bm

ε (y) for each (Fλ, x) ≥ (Fλ0
, x0). But Fλ0

= {ψ(Fλ0
, x) : x ∈ Fλ0

},
so Bm

ε (y) ⊂ Gλ0
. Let P the collection of all finite subsets ofX. Then, as G is directed,

the cover V = {
⋃

y∈P B
m
ε (y) : P ∈ P, m ∈ N} is a uniformly directed refinement of

G, since clearly Vε
f refines V. And therefore, by Theorem 31, X is uniformly strongly

paracompact.
Conversely, suppose that there exists a cofinally Bourbaki–Cauchy net (xλ)λ∈Λ in

the uniformly strongly paracompact metric space (X, d) that does not cluster. Then
⋂

λ∈Λ Fλ = ∅, where Fλ = {xν : ν ≥ λ}, for λ ∈ Λ. Now taking Gλ = X − Fλ, for
λ ∈ Λ, we have that G = {Gλ : λ ∈ Λ} is a directed open cover of X. Again, by
Theorem 31, this cover G has a uniformly directed refinement V, for which there is
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δ > 0 with Vδ
f refining V. On the other hand, since (xλ)λ∈Λ is a cofinally Bourbaki–

Cauchy net, there exists m ∈ N and a cofinal subset C ⊂ Λ such that for some
x ∈ X, xλ ∈ Bm

δ (x) for every λ ∈ C. Let V ∈ V such that x ∈ V . Since Vδ
f refines V,

we have that Bm
δ (x) ⊂ V ′ for some V ′ ∈ V (note that {x}δ = Bδ(x) ⊂ V δ). Hence

xλ ∈ Bm
δ (x) ⊂ Gλ0

for every λ ∈ C and some Gλ0
∈ G because V refines G. But

this contradicts the fact that {xλ : λ ≥ λ0} ⊂ Fλ0
= X − Gλ0

. So the net (xλ)λ∈Λ
clusters, and therefore X is cofinally Bourbaki-complete. �

Note that from above result, we can say that condition (4) in Theorem 28 gives
a characterization of uniformly strongly paracompactness in the setting of metric
spaces by means of the set of points with no locally compact neighborhood, question
that was proposed by Hohti in [22].

Next, we will give our first result about cofinal Bourbaki-complete metrization,
for metrizable spaces. We will use again the set nlc(X) of points with no locally
compact neighborhood in order to obtain a theorem in the line of the given by
Romaguera in [31] for cofinal complete metrization.

Theorem 33. For a metrizable space X, the following statements are equivalent:

(1) X is cofinally Bourbaki-complete metrizable.
(2) The set nlc(X) is compact and X is strongly paracompact.

Proof. (1) ⇒ (2) It is clear that if X is cofinally Bourbaki-complete metrizable,
then it is cofinally complete metrizable and then nlc(X) is compact (Romaguera
[31]). Moreover, from Theorem 32, X is uniformly strongly paracompact, and then
strongly paracompact.

(2) ⇒ (1) Suppose that nlc(X) is empty. Then X is locally compact and, for
every x ∈ X, let V x be an open neighborhood of x with compact closure. Applying
the Dugundji’s metrization theorem, there exists a compatible metric d on X such
that, for every x, the open ball B1(x) is contained in some compact set. Then (X, d)
is uniformly locally compact, and hence cofinally Bourbaki-complete (Theorem 13).

Otherwise, assume that nlc(X) is non-empty. Since nlc(X) is compact, there
exists a countable family of open sets {W1, . . . ,Wk, . . .} inX such that, for every open
subset A ofX containing nlc(X) there exists k ∈ N satisfying that nlc(X) ⊂Wk ⊂ A.
For example, consider Wk = nlc(X)1/k, k ∈ N. Now, for every x /∈ nlc(X) take V x

an open neighborhood of x ∈ X with compact closure. For every k ∈ N, let Ωk be the
open cover of X given by Ωk = {V x : x /∈ Wk} ∪ {Wk}. By strong paracompactness
of X, let Υk be a star-finite refinement of Ωk, k ∈ N. Using again the result by
Dugundji, there exists a metric d compatible with the topology of X such that the
cover of the open balls {B1/k(x) : x ∈ X} refines Υk, for every k ∈ N. Now, let
x ∈ X and k ∈ N, we are going to see that, for every m ∈ N, we can choose a finite
number of members in Ωk, whose union contains Bm

1/k(x). Indeed, this is clear for
m = 1 since the cover {B1/k(x) : x ∈ X} also refines Ωk. Now, for m = 2, we have
that

B2
1/k(x) =

⋃

{

B1/k(y) : y ∈ B1/k(x)
}

⊂
⋃

{

G ∈ Υk : G ∩B1/k(x) 6= ∅
}

.

Since B1/k(x) is contained in some element of the star-finite cover Υk, we follows that
the number of elements G in Υk such that G ∩ B1/k(x) 6= ∅ must be finite. Then,
we can select a finite number of members in Ωk whose union contains B2

1/k(x). Next,
reasoning by induction, we can get the same result for Bm

1/k(x), for every m ∈ N.
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Let (xn)n∈N be a cofinally Bourbaki–Cauchy sequence in (X, d), that is, for every
k ∈ N there exist mk ∈ N and some infinite Nk ⊂ N such that for some pk ∈ X,
xn ∈ Bmk

1/k(pk), for every n ∈ Nk. Then, if the sequence (xn)n∈N is cofinally contained
in some V x with compact closure, then the sequence clusters. Otherwise, from the
above, we follows that for every k ∈ N, the subsequence (xn)n∈Nk

must be eventually
contained in Wk. Thus, if (xn)n∈N does not cluster, then

⋂

n∈N Fn = ∅, where
Fn = {xj : j ≥ n}, n ∈ N. Now if, for each n ∈ N, we consider Gn = X − Fn, then
G = {Gn : n ∈ N} is a open cover of X. Since nlc(X) is compact there exists a finite
collection Gn1

, . . . , Gnr ∈ G such that nlc(X) ⊂ Gn1
∪ · · · ∪ Gnr . Hence, for some

k ∈ N we have that nlc(X) ⊂ Wk ⊂ Gn1
∪ · · · ∪ Gnr , and this implies that (xn)n∈N

must be cofinally contained in some Gni
, i ∈ {1, . . . , r}. But this is impossible, and

therefore (xn)n∈N clusters. �

According to last theorem, together with the above mentioned result of Roma-
guera in [31], we can say that a metrizable space is cofinally Bourbaki-completely
metrizable if, and only if, it is cofinally completely metrizable and strongly para-
compact. In particular, we deduce that the cofinal complete metric hedgehog J (m)
is cofinally Bourbaki-completely metrizable if, and only if, m is a countable cardi-
nal. On the other hand, none infinite dimensional Banach space is cofinally com-
pletely metrizable nor cofinally Bourbaki-completely metrizable, even in the case
they are separable in spite of we know that they can be metrizable by a Bourbaki-
complete metric. Similarly, the space of irrational numbers I with the usual topology
is Bourbaki-completely metrizable, since it is homeomorphic to NN, but it is not co-
finally Bourbaki-completely metrizable, neither cofinally completely metrizable since
it is nowhere locally compact.

Now we ask if we can weaken the condition of strongly paracompactness in last
theorem and put strongly metrizable. That is, we wonder if every strongly metrizable
space for which nlc(X) is compact, is strongly paracompact or equivalently, metriz-
able by a cofinally Bourbaki-complete metric. Recall that, as Balogh and Gruenhage
show in [3], if a space X is strongly metrizable then there exists an admissible metric
d such that for every ε > 0 the cover {Bε(x) : x ∈ X} is star-finite. Then if with
this metric d the space X is also cofinally complete, then it is easy to see that X is
cofinally Bourbaki-complete. But we do not know if for a strongly metrizable space
satisfying that nlc(X) is compact, it is possible to find a cofinally complete metric
satisfying also that for every ε > 0 the cover {Bε(x) : x ∈ X} is star-finite. For a
similar topological result see Yasui [36].

We finish this section, with a result of cofinal Bourbaki-complete metrization
in the same line of Theorem 23, that is, showing how these spaces are placed into
their Stone-Čech compactification. For that, recall that Buhagiar and Yoshioka have
studied in [10] the class of spaces, called ultracomplete, having countable character
in their Stone-Čech compactification. That is, spaces X for which there exists a
countable family {Gn : n ∈ N} of open subsets of βX containing X, and such that
if G is an open subset of βX containing X then X ⊂ Gk ⊂ G, for some k ∈
N. In particular they have proved that, for a space X, it is equivalent to have
countable character in βX that in some compactification cX, or even in all of its
compactifications. On the other hand, Yoshioka pointed out in [37] that this property
is, for metrizable spaces, equivalent to cofinal complete metrizability. Then using all
these results together with Theorem 33, as well as some characterizations of strongly
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paracompactness contained in the book of Arkhangel′skii and Ponomarev [1], we can
obtain the desired result.

Theorem 34. For a metrizable space X the following conditions are equivalent:

(1) X is metrizable by a cofinal Bourbaki-complete metric.
(2) There is a countable family {Gn : n ∈ N} of open paracompact subspaces of

βX containing X, such that if G is an open subset of βX containing X then
X ⊂ Gk ⊂ G, for some k ∈ N.

(3) There exist some compactification cX of X and a countable family {Gn : n ∈
N} of open paracompact subspaces of cX containing X, such that if G is an
open subset of cX containing X then X ⊂ Gk ⊂ G, for some k ∈ N.

Proof. (1) ⇒ (2) It is clear that (1) implies that X is cofinally completely
metrizable and then, as we can said before, X has countable character in βX (see
Yoshioka [37]). Then there is a countable family {Ĝn : n ∈ N} of open sets in βX,
that are a basis for those open sets in βX that contains X. On the other hand, since
X is also strongly paracompact (Theorem 33), then the family of open and strongly
paracompact subsets of βX containing X is also a basis for the open sets in βX
containing X (see this characterization of strongly paracompactness in [1]). Now,
taking for every n ∈ N, an open and strongly paracompact (and hence paracompact)
Gn in βX with X ⊂ Gn ⊂ Ĝn, condition (2) follows.

(2) ⇒ (3) is obvious.
(3) ⇒ (1) Clearly condition (3) implies that X has countable character in some

compactification, and then X is cofinally completely metrizable (Yoshioka [37]).
Then, by Theorem 33, we only need to see that X is also strongly paracompact.
For that we will use (twice) the following characterization of strongly paracompact-
ness that can be seen in [1]: “Let cX be a compactification of X, then X is strongly
paracompact if, and only if, for every compact K in cX −X there exists a star finite
cover of X by open sets in cX whose closures does not meet K”. So, let K a compact
set in cX − X, then G = cX − K is an open set in cX containing X. By the hy-
pothesis, there is an open and paracompact Gk, such that X ⊂ Gk ⊂ G. Note that
Gk is in particular locally compact and paracompact, and then it must be strongly
paracompact (see for instance [11]). Now, since cX is also a compactification of Gk

and K ⊂ cX−Gk, then applying again the above result to the strongly paracompact
Gk, we get a star finite cover of Gk, and in particular of X, by open sets in cX whose
closures does not meet K, and that complete the proof. �

As in the previous section, we do not know if last result is true for each compact-
ification cX.
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