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Abstract. In this note we consider the Hausdorff dimension of self-affine sets with random

perturbations. We extend previous work in this area by allowing the random perturbation to be

distributed according to distributions with unbounded support as long as the measure of the tails

of the distribution decay super polynomially.

1. Introduction

Calculating the Hausdorff dimension of self-affine sets has been an active area of
research since the work of Bedford and McMullen [B, M]. While a lot of progress
has been made in this time there are still several unresolved questions. Papers on
Hausdorff dimension of self-affine sets tend to come in one of two types; either they
calculate the Hausdorff dimension in some particular family as in [B] and [M] or they
obtain a result which holds for ‘generic’ self-affine sets, [F1]. The second approach
started with a paper by Falconer, [F1], in which the Hausdorff dimension of self-
affine sets was computed for almost all translations assuming the contraction rates
are sufficiently small.

It was shown in [JPS] that if suitably defined random perturbations are added
to a fixed self-affine set then an analogous result to Falconer’s is obtained with no
non-trivial assumption on the size of the contraction. However in [JPS] the random
perturbations were assumed to be compactly supported so for example perturbations
from a normal distribution could not be considered. In this note we show that
this condition can be relaxed and be replaced by an assumption that the densities
decay super polynomially, a natural assumption which is satisfied by the normal
distribution.

We consider a family F of affine contractions or iterated function system (IFS)

F := {fi(x) = Ti · x+ ai : i = 1, . . . , m}(1)

where Ti ∈ GLd(R) are such that ‖Ti‖ < 1 for 1 ≤ i ≤ m and ai are vectors in Rd.
The following definition is standard:
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Definition 1.1. Let B be any large enough ball in Rd such that fi(B) ⊆ B for
1 ≤ i ≤ m. Then the attractor of F is defined by the unique non-empty compact set
for which

Λ =

m
⋃

i=1

fi(Λ)

or alternatively,

Λ :=

∞
⋂

n=1

⋃

i0,...,in−1

fi0,...,in−1
(B)

where fi0,...,in−1
= fi0 ◦ · · · ◦ fin−1

for (i0, . . . , in−1) ∈ {1, . . . , m}n.

For an iterated function system (1) we denote

‖T‖ = max{‖Ti‖ : i = 1, . . . , m}

and

‖a‖ = max{|ai| : i = 1, . . . , m}.

We now introduce some notation and definitions in order to define the affinity
dimension d(T1, . . . , Tm) (In [JPS] this is referred to as the singularity dimension).
When studying the family of contractions of the form (1) we denote J∞ to be the
set of all infinite words where ij ∈ {1, . . . , m}, Jn to be the set of all finite words of
length n with ij ∈ {1, . . . , m}, J to be the set of all finite words with ij ∈ {1, . . . , m}.
For i, j ∈ J∞ we denote i ∧ j to be the truncation of i to the initial string that i and
j agree on. For a string i = (i0, . . . , in) ∈ J we denote

[i0, . . . , in] := {j ∈ J∞ : jm = im for all 0 ≤ m ≤ n}.

Finally, for i = (i0, i1, . . . , in) ∈ J we denote Ti = Ti0,...,in = Ti0 · · ·Tin .
Let T : Rd → Rd be a contracting, invertible, linear map, that is an invertible

d×d matrix with matrix norm strictly less than 1. We say that α is a singular value of
T if α is the positive square root of one of the eigenvalues of T ∗T , where T ∗ denotes
the transpose of T , or equivalently α is the length of one of the principal semi-axes
of T (B) where B is the unit ball centred at the origin. We adopt the convention of
denoting the d singular values as 0 < αd ≤ · · · ≤ α1 < 1. Sometimes, where it is not
clear which matrix a singular value relates to, we will denote

0 < αd(T ) ≤ . . . ≤ α1(T ) < 1

as the increasing singular values of the d× d matrix T .
Fix 0 ≤ s ≤ d and choose r ∈ Z such that r − 1 < s ≤ r. We then define the

singular value function as

φs(T ) = α1α2 · · ·αr−1α
s−r+1
r .

For s > d we define φs(T ) = (α1(T ) · · ·αd(T ))
s/d. We are now ready to define the

affinity dimension as follows:

Definition 1.2. For a self-affine IFS of the form (1) we define the affinity di-
mension to be

d(T1, . . . , Tm) := inf{s > 0:

∞
∑

n=0

∑

Jn

φs(Ti0 . . . Tin−1
) < ∞}
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or equivalently, the value of s such that

lim
n→∞

(
∑

Jn

φs(Ti0 . . . Tin−1
))

1

n = 1.

In [F1] Falconer gave the following almost sure result for the Hausdorff dimension
of the attractor Λ given that ‖Ti‖ < 1

3
, whilst in [S] Solomyak improved it to its

present form with the weaker assumption that ‖Ti‖ < 1
2
. Here almost sure is in terms

of md-dimensional Lebesgue measure λmd on the translation vectors (a1, . . . , am) ∈
Rdm.

Theorem 1.3. (Falconer) Let

F := {fi(x) = Ti · x+ ai : i = 1, . . . , m}

be an affine iterated function system with attractor Λ. If

‖Ti‖ < 1
2

∀ 1 ≤ i ≤ m,

then for λmḋ-almost all vectors a := (a1, . . . , am) ∈ Rmḋ, the Hausdorff dimension of
the attractor in Definition 1.1 is

dimHΛ = d(T1, . . . , Tm)

where d(T1, . . . , Tm) is as in Definition 1.2.

In [JPS] it was shown that if a small random translation was allowed at each
stage of the application of the contractions then the Hausdorff dimension of the re-
sulting perturbed attractor will almost surely be equal to the affinity dimension. In
particular, no restrictions on the norms of the maps was necessary. More precisely,
it is assumed that at each application of the maps from the IFS we make a random
additive error where these errors have distribution κ where κ is an absolutely con-
tinuous distribution with bounded density supported on a bounded disk D which is
centred at the origin. In particular, for in = (i0, . . . , in−1) ∈ Jn we denote

f
xin

in
:= (fi0 + xi0) ◦ (fi1 + xi0,i1) ◦ . . . ◦ (fin−1

+ xi0,...,in−1
)

where the elements of

xin := (xi0 , . . . , xi0,...,in−1
) ∈ D × . . .×D

are independently and identically distributed with distribution κ. Let ϕ(k) be the
k-th element of the countable sequence

{1, 2, . . . , m, (1, 1), (1, 2), . . . , (m,m), (1, 1, 1), . . .}

so that we can label the perturbations by the natural numbers xk = xin if ϕ(k) = in.
Then we can write the sequence of all random errors that perturb the attractor Λ as
x = {xk}k∈N ∈ D∞. This suggests the following definition.

Definition 1.4.

Λx :=
∞
⋂

n=1

⋃

in

f
xin

in
(B)

where B is a ball, centred at the origin, which is sufficiently large such that f
xin

in
(B) ⊂

B for all x ∈ D∞ and i ∈ J∞.

Letting µ denote the infinite product measure µ = κ × κ × . . . on D∞ we can
state the main result in [JPS].
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Theorem 1.5. (Jordan–Pollicott–Simon) For a self-affine IFS of the form (1),
and for µ-almost all x ∈ D∞, we have:

(1) If d(T1, . . . , Tm) ≤ d, then dimHΛx = d(T1, . . . , Tm).
(2) If d(T1, . . . , Tm) > d, then λd(Λx) > 0, where λd denotes d-dimensional

Lebesgue measure.

In this note we build on the result of [JPS], in that perturbations are no longer
assumed to be taken from a bounded disk D.

Definition 1.6. Let η be an absolutely continuous distribution with bounded
density supported on the space Y = Rd which satisfies the following condition: for
every k ∈ N there exists a constant ck such that for all t > 0, η{|X| > t} ≤ ckt

−k (η
decays super-polynomially).

Such a measure η will also have the following property: There exists a constant
K > 0 such that for any 1 ≤ n ≤ d−1 and set of orthonormal basis {z1, . . . , zn} if we
let πn be a projection to the n-dimensional space spanned by {z1, . . . , zn} then the
push-forward measure πn∗η must have some density f with respect to n-dimensional
Lebesgue measure, where f ∈ L∞ and ‖f‖∞ ≤ K.

Let

f
yin

in
:= (fi0 + yi0) ◦ (fi1 + yi0,i1) ◦ . . . ◦ (fin−1

+ yi0,...,in−1
)

where the elements of

yin := (yi0 , . . . , yi0,...,in−1
) ∈ Y × . . .× Y

are independently and identically distributed with distribution η. Define a random
perturbation of the attractor Λ as y = {yk}k∈N ∈ Y ∞, numbered naturally as before,
and put P as the infinite product measure P = η×η× . . . on Y ∞. Clearly, we can no
longer define the attractor of this system in the same way as in Definition 1.4 since
there does not exist a large enough ball B, as the distribution η is not supported
on a bounded disk. For the self-affine IFS of the form (1) and the infinite word
i = (i0, i1, . . .) ∈ J∞ set

Πy(i) := lim
r→∞

(fi0 + yi0) ◦ (fi1 + yi0,i1) ◦ · · · ◦ (fir + yi0,...,ir)(0)(2)

= ai0 + yi0 +

∞
∑

r=1

Ti0,...,ir−1
(air + yi0,...,ir)(3)

if this limit exists. In Lemma 2.2 we prove that for P-almost all y ∈ Y ∞ this series
converges for all i ∈ J∞ thus we can define the attractor for P-almost all y ∈ Y ∞ by

Definition 1.7. For a self-affine IFS of the form (1), if for y ∈ Y ∞ we have that
Πy(i) is well defined for all i ∈ J∞ then the associated attractor is defined to be

Λy := {Πy(i) : i ∈ J∞}.

We can now state our main theorem.

Theorem 1.8. For a self-affine IFS of the form (1) and the attractor Λy defined
in 1.7, we have:

(1) If d(T1, . . . , Tm) ≤ d, then P-almost surely, dimH(Λ
y) = d(T1, . . . , Tm).

(2) If d(T1, . . . , Tm) > d, then P-almost surely λd(Λ
y) > 0.
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In contrast to Theorem 2 in [JPS] this theorem holds when the random perturba-
tions yi0,...,in−1

are distributed according to a multivariate normal distribution. There
are a couple of papers with similar results for random self-similar sets and measures,
[K] and [PSS] which look at a similar model of randomness for self-similar sets and
measures. In [K] random self-similar sets are considered where the translations are
fixed but both the contraction rate and the amount of rotation varies randomly. In
[PSS] measures which contract on average are considered, in this case the transla-
tion is fixed and the rate of contraction or expansion varies randomly according to
a non-compactly supported distribution. In this case a different form of randomness
is considered where there is less independence, the contraction or expansion rates
at the nth level, τi0,...,in−1

, only depend on in−1. There are also several papers on
self-affine sets where the maps which form the iterated function system are chosen
randomly at each level, usually based on a discrete distribution. This includes [GL],
[FM] and [JJKKSS]. The work in [GL] can be considered to be random analogues
of Bedford–McMullen sets whereas in [FM] and [JJKKSS] the results are random
versions of the almost everywhere results in [F1].

The following sections are organised as follows: In Section 2 we show that P-
almost surely the attractor Λy in Definition 1.7 is well defined. The rest of that section
is dedicated to getting a P-almost sure upper bound for the Hausdorff dimension of
the attractor. In Section 3 we use potential theoretic methods which follow from
ideas of Falconer [F1] in order to calculate a P-almost sure lower bound. In Section 4
we comment on some other possible applications of the methods in this note.

2. Proof of the upper bound for Theorem 1.8

To prove the upper bound for Theorem 1.8 we first need to show that Λy is well
defined for P almost all y. We then need to provide a suitable cover for such Λy. We
start with the following lemma which is important for both parts.

Lemma 2.1. For all 0 < θ < 1, there exists a subset X ⊂ Y ∞ such that X has
full measure and for all y ∈ X and n sufficiently large we have

|yi0,...,in−1
| ≤

1

θn

for all (i0, . . . , in−1) ∈ Jn.

Proof. We fix y ∈ Y ∞ and fix 0 < θ < 1. Put the event An to be

An :=

{

|yi0,...,in−1
| >

1

θn
for some (i0, . . . , in−1) ∈ Jn

}

and observe that

P(An) ≤ mnη{y ∈ Rd : |y| > θ−n}.

Fix k such that θk < m−1. Then since η satisfies Definition 1.6,

mnη

{

|X| >
1

θn

}

≤ ck
(

mθk
)n

.

Thus
∞
∑

n=1

P(An) < ck

∞
∑

n=1

(

mθk
)n

< ∞
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since mθk < 1. Thus by the Borel–Cantelli lemma, for P-almost every y ∈ Y ∞ the
events An occurs only finitely often, that is, there exists an N ∈ N such that for
n ≥ N ,

|yi0,...,in−1
| ≤

1

θn
. �

We first apply Lemma 2.1 to deduce that for P-almost all y ∈ Y ∞ the attractor
Λy in Definition 1.7 is well defined.

Lemma 2.2. For P-almost all y ∈ Y ∞ and all i ∈ J∞ the series (3) converges,
thus the attractor in Definition 1.7 is well defined.

Proof. We want to show that

Πy(i) = ai0 + yi0 +

∞
∑

r=1

Ti0,...,ir−1
(air + yi0,...,ir)

is convergent for P-almost all y ∈ Y ∞, and all i ∈ J∞. It is sufficient to show that

|Π|y(i) := |ai0 + yi0|+

∞
∑

r=1

|Ti0,...,ir−1
(air + yi0,...,ir)|

converges. Fix ‖T‖ < θ < 1. Then by Lemma 2.1 there exists N ∈ N such that
for n ≥ N , (i0, . . . , in−1) ∈ Jn and for P-almost all y ∈ Y ∞ then |yi0,...,in−1

| < 1
θn

, in
particular

|Ti0,...,in−1
(ain + yi0,...,in)| ≤ ‖T‖n

(

‖a‖+
1

θn+1

)

.

Thus,

|Π|y(i) ≤
N−2
∑

n=1

‖T‖n(‖a‖+ |yi0,...,in |) +
∞
∑

n=1

‖T‖n
(

‖a‖+
1

θn+1

)

≤
N−2
∑

n=1

‖T‖n(‖a‖+ |yi0,...,in |) +
∞
∑

n=1

‖T‖n‖a‖+
1

θ

∞
∑

n=1

(

‖T‖

θ

)n

which converges since ‖T‖
θ

< 1. Thus the series (3) is absolutely convergent, thus
convergent and the attractor is well defined for almost every y ∈ Y ∞. �

Throughout the remainder of this section we work with a self-affine IFS of the
form (1) and assume that the perturbation y is taken from the set of full measure
in which the series (3) converges and thus the attractor Λy in Definition 1.7 is well
defined.

Lemma 2.3. Let 0 < ǫ < 1 − ‖T‖. We then have for all ‖T‖ + ǫ ≤ θ < 1 and
for P-almost every y ∈ Y ∞ there exists an N ∈ N such that for n ≥ N , any finite
word (i0, . . . , in−1) ∈ Jn and any i ∈ [i0, . . . , in−1] then Πy(i) ∈ Ti0,...,in−1

(Bθ,n) where
Bθ,n is a ball of radius C

θn
where C is independent of n and θ.

Proof. By Lemma 2.1 there exists a set of full measure X ⊂ Y ∞ such that
for some N ∈ N and all n ≥ N , and all y ∈ X, then |yi0,...,in−1

| < 1
θn

for all
(i0, . . . , in−1) ∈ {1, . . . , m}n. Fix n ≥ N and a cylinder [i0, . . . , in−1]. Suppose
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i, j ∈ [i0, . . . , in−1] and let Πy

i,j := |Πy(i)− Πy(j)|. We then get

Πy
i,j =

∣

∣

∣

∣

(

ai0 + yi0 +

∞
∑

k=0

Ti0,...,ik(aik+1
+ yi0,...,ik+1

)

)

−

(

aj0 + yj0 +

∞
∑

k=0

Ti0,...,ik(aik+1
+ yj0,...,jk+1

)

)
∣

∣

∣

∣

=

∣

∣

∣

∣

Ti0,...,in−1

((

ain + yi0,...,in +

∞
∑

k=n

Tin,...,ik(aik+1
+ yi0,...,ik+1

)

)

−

(

ajn + yj0,...,jn +

∞
∑

k=n

Tjn,...,jk(ajk+1
+ yj0,...,jk+1

)

))
∣

∣

∣

∣

.

Observe that since ‖T‖ < θ,
∣

∣

∣

∣

(

ain + yi0,...,in +

∞
∑

k=n

Tin,...,ik(aik+1
+ yi0,...,ik+1

)

)

−

(

ajn + yj0,...,jn +

∞
∑

k=n

Tjn,...,jk(ajk+1
+ yj0,...,jk+1

)

)
∣

∣

∣

∣

≤ 2(‖a‖+
1

θn+1
) + 2‖T‖(‖a‖+

1

θn+2
) + · · ·

=
2‖a‖

1− ‖T‖
+

2

θn+1
(1 +

‖T‖

θ
+ · · · )

≤
2‖a‖

1− ‖T‖
+

2

θn+1

1

1− ‖T‖
θ

≤
2‖a‖

1− ‖T‖
+

2

θn+1

1

1− ‖T‖
‖T‖+ǫ

≤
2‖a‖

1− ‖T‖
+

2

θn
1

‖T‖(1− ‖T‖
‖T‖+ǫ

)
.(4)

Thus we can fix i ∈ [i0, . . . , in−1], and then for any j ∈ [i0, . . . , in−1] we have
Πy(j) ∈ Ti0,...,in−1

(B) where B = B(Πy(i), rθ,n), where rθ,n is given by (4). Put

C ′ = max

{

2

‖T‖(1− ‖T‖
‖T‖+ǫ

)
,

2‖a‖

1− ‖T‖

}

which is clearly independent of θ and n. Then

rθ,n ≤ C ′

(

1 +
1

θn

)

= C ′

(

θn + 1

θn

)

≤ 2C ′ 1

θn
.

Putting C = 2C ′ and setting Bθ,n = B(Πy(i), C
θn
) proves the result. �

In Proposition 4.1 in [F1] it is shown that the limit

lim
n→∞

(

∑

Jn

φs(Ti)

)
1

n

is continuous in s and decreasing. This enables us to make the following definition.
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Definition 2.4. Suppose d(T1, . . . , Tm) < d. Then

lim
n→∞

(

∑

Jn

φd(Ti)

)
1

n

= t < 1,

so we can define a monotone increasing sequence {θk}k∈N where limk→∞ θk = 1 such
that max{‖T‖+ ǫ, t} < θk < 1 for all k. Then define {sk}k∈N to be the monotone
decreasing sequence where for each k, d(T1, . . . , Tm) < sk < d is defined to be such
that

lim
n→∞

(

∑

Jn

φsk(Ti)

)
1

n

= θdk.

Lemma 2.5. The limit of the sequence {sk}k∈N exists and lim
k→∞

sk = s =

d(T1, . . . , Tm).

Proof. Since {sk}k∈N is a monotone decreasing sequence that is bounded below
by d(T1, . . . , Tm) it converges, so its limit exists. Now, let ǫ > 0 and define δ > 0 to
satisfy

lim
n→∞

(

∑

Jn

φs+ǫ(Ti)

)
1

n

= 1− δ.

Choose N such that for k ≥ N then |1−θdk| < δ which is possible since limk→∞ θk = 1
and thus limk→∞ θdk = 1. By the definition of sk

lim
n→∞

(

∑

Jn

φsk(Ti)

)
1

n

= θdk > 1− δ = lim
n→∞

(

∑

Jn

φs+ǫ(Ti)

)
1

n

.

Since

lim
n→∞

(

∑

Jn

φr(Ti)

)
1

n

is decreasing in r, it follows that sk < s+ ǫ, that is, |sk − s| < ǫ. �

Lemma 2.6. Consider a self-affine IFS of the form (1) and the attractor Λy as
in Definition 1.7. Then P-almost surely dimH(Λ

y) ≤ d(T1, . . . , Tm).

Proof. First of all we note that if d(T1, . . . , Tm) ≥ d then trivially dimH(Λ
y) ≤ d.

So we just consider the case where d(T1, . . . , Tm) < d. Take the sequences {θk}k∈N
and {sk}k∈N as in Definition 2.4. By Lemma 2.1 we can find a set Yk ⊆ Y ∞ of full
measure such that |yi0,...,in−1

| < θnk for all (i0, . . . , in−1) ∈ Jn where n is sufficiently
large. Put

Y =
∞
⋂

k=1

Yk

which is therefore also a set of full measure. Next fix k, and y ∈ Y and let n be
sufficiently large so that yi0,...,in−1

< θnk for all i = (i0, . . . , in−1) ∈ Jn. We know by
Lemma 2.3 that for all j ∈ [i0, . . . , in−1], Π

y(j) is contained in the ball Ti0,...,in−1
(Bθk,n)

which is contained in a parallelepiped with sides of length 4C
θn
k

α1(Ti), . . . ,
4C
θn
k

αd(Ti).

We let r = inf{z ∈ Z : z ≥ sk}. We can thus divide this parallelepiped into at most
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α1(Ti)
αr(Ti)

· · · αr−1(Ti)
αr(Ti)

cubes of side αr(Ti)
4C
θn
k

. Thus we take such a collection of cubes for

each i ∈ Jn as a cover for Λy where y ∈ Yk. Putting δn = maxi∈Jn{αr(Ti)
4C
θn
k

} we get

that

Hsk
δn
(Λy) ≤

∑

i∈Jn

(4C)sk

θnskk

α1(Ti) · · ·αr−1(Ti)(αr(Ti))
sk−r+1

=
∑

i∈Jn

(4C)sk

θnskk

φsk(Ti) ≤
∑

i∈Jn

(4C)sk

θndk
φsk(Ti)

since sk ≤ d. Letting n → ∞ we get

Hsk(Λy) ≤ lim
n→∞

(4C)sk

θndk

∑

i∈Jn

φsk(Ti) = lim
n→∞

(4C)sk

θndk
θndk

by definition of sk. So
Hsk(Λy) ≤ (4C)sk < ∞

and thus dimH(Λ
y) ≤ sk for y ∈ Yk. This means that for any y ∈ Y dimH(Λ

y) ≤ sk
and since sk is a decreasing sequence it follows that dimH(Λ

y) ≤ inf{sk : k ∈ N} =
limn→∞ sk = s. Thus dimH(Λ

y) ≤ d(T1, . . . , Tm) P-almost surely. �

3. Proof of the lower bound for Theorem 1.8

The proof of the lower bound for Theorem 1.8 is fairly similar to the proof of
Theorem 1.5 given in [JPS]. In particular we use the same method of showing that
the self-affine transversality condition holds. However there are some differences in
the argument since the perturbations are now distributed according to a measure
which may not be compactly supported. In particular, Lemmas 3.4 is proved in the
same way as Lemma 4.5 in [JPS] and 3.5 and 3.6 can be deduced from Lemma 3.3
in the same way as Proposition 4.4 is proved in [JPS], we give the details here for
completeness. One difference is that the projection may not be convergent for all
y ∈ Y ∞. To overcome this problem we assume random perturbations are in the
space X = Xθ defined in the statement of Lemma 2.1 where θ > ‖T‖ rather than the
whole space Y ∞. In this way it follows by Lemma 2.1 that this set has full measure
and by Lemma 2.2 that Πy is well defined for all y ∈ X. This definition also ensures
that there are no issues with measurability when we apply Fubini’s Theorem.

Lemma 3.1. There exists a finite measure µ supported on J∞ and a constant
c′ such that if s < d(T1, . . . , Tm), then

µ([ω]) ≤ c′φs(Tω)

for every finite word ω ∈ J .

Proof. See, for example, Lemma 3 in [JPS]. �

The following definition was used in [JPS] to introduce a self-affine transversality
condition.

Definition 3.2. For fixed i, j ∈ J∞ define Zi∧j : [0,∞) → [0, 1] by

Zi∧j(ρ) :=

d
∏

k=1

min{ρ, αk(Ti∧j)}

αk(Ti∧j)
.
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Lemma 3.3. The self-affine transversality condition from [JPS] holds for the
measure P. That is, there exists C > 0 such that for all i, j ∈ J∞,

(5) P{y ∈ X : |Πy(i)− Πy(j)| < ρ} < C · Zi∧j(ρ).

Proof. Let |i ∧ j| = n. We start by noting that

P{y ∈ X : |Πy(i)− Πy(j)| < ρ} = P{y ∈ X : |Ti∧j(yi0,...,in + qn(i, j,y))| < ρ}

where

qn(i, j,y) = ain + Tin(ain+1
+ yi0,...,in+1

) + · · ·

− (ajn + yi0,...,jn + Tjn(ajn+1
+ yi0,...,jn+1

) + · · · ).

Note that qn(i, j,y) is independent of yi0,...,in. Thus we can fix all of y except yi0,...,in
and for convenience from now on we write y = yi0,...,in, and q = qn(i, j,y). Then it is
enough to prove the condition for

η{y ∈ Y : y ∈ T−1
i∧jB(Ti∧jq, ρ)}.

Denote

Boxρ := [a1 − ρ, a1 + ρ]× · · · × [ad − ρ, ad + ρ]

= [π1(Ti∧j(q))− ρ, π1(Ti∧j(q)) + ρ]× · · · × [πd(Ti∧j(q))− ρ, πd(Ti∧j(q)) + ρ]

where πk are the projections to the xk axes. Then

η{y ∈ X : y ∈ T−1
i∧jB(Ti∧jq, ρ)} ≤ η{y ∈ T−1

i∧j Boxρ}.

Let {xϕ(1), . . . , xϕ(d)} be the orthonormal elements in the new basis given by the

rotation in T−1
i∧j , such that the axes xϕ(k) correspond to αk in the following way: the

principal semi axes of Ti∧j(B) of length αk lies along the axis xϕ(k). Let πθ(k) denote
the projection to the k-dimensional plane that lies along the {xϕ(1), . . . , xϕ(k)} axes.
Denote α0 = ∞ and αd+1 = 0. Then for αk+1 ≤ ρ ≤ αk, where 0 ≤ k ≤ d, estimate

η{y ∈ T−1
i∧j Boxρ} ≤ ηθ(k){πθ(k)T

−1
i∧j Boxρ}

where ηθ(k) is the pushforward measure πθ(k)∗η. Since ηθ(k) is by assumption absolutely
continuous with respect to λk (where this time λk is the Lebesgue measure on a k-
dimensional subspace of Rd) and has bounded density with respect to λk we have

ηθ(k){πθ(k)T
−1
i∧j Boxρ} ≤ Kλk{πθ(k)T

−1
i∧j Boxρ}

≤ Kλk{πθ(k)T
−1
i∧j [−ρ, ρ]d} ≤ 2kK

ρk

α1 . . . αk

where K is a constant defined directly below Definition 1.6. Putting C = 2dK we
get that C is a constant independent of i and j and

P{y ∈ X : |Πy(i)− Πy(j)| < ρ} < C · Zi∧j(ρ).

�

We use the self-affine transversality condition in order to derive the following
inequality, towards finding a lower bound for the Hausdorff dimension.

Lemma 3.4. We have that for all non-integral t ∈ (0, d) and for any i, j ∈ J∞,
ˆ

y∈X

|Πy(i)− Πy(j)|−t dP <
c

φt(Ti∧j)
.
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Proof. We can write
ˆ

y∈X

|Πy(i)−Πy(j)|−t dP = t

ˆ ∞

ρ=0

P{y ∈ X : |Πy(i)− Πy(j)| < ρ}ρ−t−1 dρ.

Thus, by the self-affine transversality condition, (5), it is enough to show that

ˆ ∞

ρ=0

Zi∧j(ρ)ρ
−t−1 dρ ≤

c

φt(Ti∧j)
.

Let k be such that k − 1 < t < k and write
ˆ ∞

ρ=0

Zi∧j(ρ)ρ
−t−1 dρ =

ˆ αk

ρ=0

Zi∧j(ρ)ρ
−t−1 dρ+

ˆ ∞

ρ=αk

Zi∧j(ρ)ρ
−t−1 dρ.

We begin by dealing with the first integral. For each i ≥ k + 1 note that ρ < αi

implies that ρi

α1...αi
=

ρi−1 ρ
αi

α1...αi−1
αi
αi

< ρi−1

α1...αi−1
since ρ < αi ⇔

ρ
αi

< 1. Since αi+1 < ρ < αi

implies that ρ < αj for all k + 1 ≤ j ≤ i it follows that

Zi∧j(ρ) <
ρk

α1 . . . αk

for all ρ < αk. Inserting this into the first integral we get

ˆ αk

ρ=0

Zi∧j(ρ)ρ
−t−1 dρ <

ˆ αk

ρ=0

ρk

α1 . . . αk

ρ−t−1 dρ =
1

k − t
[α1 . . . α

t−(k−1)
k ]−1

=
1

k − t

1

φt(Ti∧j)
.

Next, we move onto finding an upper bound for the second integral,

ˆ ∞

ρ=αk

Zi∧j(ρ)ρ
−t−1 dρ =

ˆ αk−1

ρ=αk

Zi∧j(ρ)ρ
−t−1 dρ+ · · ·+

ˆ ∞

ρ=α1

Zi∧j(ρ)ρ
−t−1 dρ

=

k−1
∑

l=0

ˆ αl

ρ=αl+1

Zi∧j(ρ)ρ
−t−1 dρ

where as usual we take α0 = ∞. Integrating we get

1

t
(α−t

1 − α−t
0 )

+
1

t− 1

1

α1

(α1−t
2 − α1−t

1 )

+
1

t− 2

1

α1α2
(α2−t

3 − α2−t
2 )

...

+
1

t+ 1− k

1

α1α2 . . . αk−1

(αk−1−t
k − αk−1−t

k−1 ).
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Noting that the second term in each line will always be greater than the first term
in the previous line, we use a diagonal argument to deduce that

ˆ ∞

ρ=αk

Zi∧j(ρ)ρ
−t−1 dρ <

1

t + 1− k

1

α1α2 . . . αk−1

(αk−1−t
k )

=
1

t + 1− k
(α1α2 . . . αk−1α

t−k+1
k )−1

=
1

t + 1− k

1

φt(Ti∧j)
.

Thus we get
ˆ ∞

ρ=0

Zi∧j(ρ)ρ
−t−1 dρ <

1

(k − t)(t+ 1− k)

1

φt(Ti∧j)

where clearly 1
(k−t)(t+1−k)

is independent of i and j, which proves the result. �

Lemma 3.5. Consider the self-affine IFS of the form (1) and attractor Λy as in
Definition 1.7. Then P-almost surely dimH(Λ

y) ≥ d(T1, . . . , Tm).

Proof. We use the potential theoretic characterisation of Hausdorff dimension.
Let t < s < d(T1, . . . , Tm) be chosen such that t /∈ Z. We need to show that there
exists a finite measure µ supported on J∞ such that for P-almost all y ∈ X,

¨

(i,j)∈J∞×J∞

|Πy(i)−Πy(j)|−t dµ(i) dµ(j) < ∞

Equivalently, we need to show that the triple integral
ˆ

y∈X

¨

(i,j)∈J∞×J∞

|Πy(i)− Πy(j)|−t dµ(i) dµ(j) dP(y) < ∞

Take µ that satisfies Lemma 3.1. By Fubini’s theorem and Lemma 3.4 it suffices to
show that the following is finite:

¨

(i,j)∈J∞×J∞

ˆ

y∈X

|Πy(i)−Πy(j)|−t dP(y) dµ(i) dµ(j)

< c

¨

(i,j)∈J∞×J∞

1

φt(Ti∧j)
dµ(i) dµ(j).

Rewriting i∧j = ω and recalling that the measure µ was chosen to satisfy Lemma 3.1,
we get that the above is equal to

c

∞
∑

k=0

∑

|ω|=k

¨

i∧j=ω

1

φt(Tω)
dµ(i) dµ(j) ≤ c

∞
∑

k=0

∑

|ω|=k

µ([ω])2
1

φt(Tω)

≤ cc′
∞
∑

k=0

∑

|ω|=k

µ([ω])φs(Tω)
1

φt(Tω)
.(6)

Now, we use some properties of the singular value function to bound this above.
Choose a, b such that for all i ∈ {1, . . . , m} we have

0 < a ≤ αd(Ti) ≤ · · · ≤ α1(Ti) ≤ b < 1.
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In particular, since the singular value function is submultiplicative it follows that for
all finite words i ∈ Jn we have

(7) φs(Ti) = φs(Ti1 ◦ · · · ◦ Tin) ≤ φs(Ti1) · · ·φ
s(Tin) ≤ bn = b|i|.

Secondly, note that since for any s, h > 0 and matrix T we have φs+h(T ) ≤ φs(A)αh
1(T ),

then dividing this through by φs(T ), fixing h = s− t > 0 and T = Tω we get that

(8)
φs(Tω)

φt(Tω)
=

φt+(s−t)(Tω)

φt(Tω)
≤ αs−t

1 (Tω) ≤ b|ω|(s−t)

by (7). We put this into (6) to get

cc′
∞
∑

k=0

∑

|ω|=k

µ([ω])φs(Tω)
1

φt(Tω)
≤ cc′

∞
∑

k=0

∑

|ω|=k

µ([ω])bk(s−t)

= cc′
∞
∑

k=0

bk(s−t) < ∞

since bs−t < 1 whenever s > t thus this geometric progression converges. Since
we can put t arbitrarily close to s which in turn we can place arbitrarily close to
d(T1, . . . , Tm), by the potential theoretic characterisation of Hausdorff dimension it
follows that dimH(Λ

y) ≥ t for any non-integer t < d(T1, . . . , Tm), in other words,
dimH(Λ

y) ≥ d(T1, . . . , Tm). �

Lemma 3.6. Consider the self-affine IFS of the form (1) and the attractor Λy

as in Definition 1.7. If d(T1, . . . , Tm) > d, then for P-almost all y then λd(Λ
y) > 0.

Proof. Let Πy
⋆µ be the natural projection of the measure µ defined in 3.1. It is

clearly enough to show that Πy
⋆µ is absolutely continuous with respect to λd for P-

almost all y. We follow a standard approach (introduced by Peres and Solomyak in
[PS]) to show absolute continuity of Πy

⋆µ for P-almost all y. In particular it suffices
to show that

I :=

ˆ

X

ˆ

lim inf
r→0

Πy
⋆µ(B(x, r))

rd
dΠy

⋆µ dP(y) < ∞.

By Fatou’s lemma

I ≤ lim inf
r→0

1

rd

ˆ

X

ˆ

Πy
⋆µ(B(x, r)) dΠy

⋆µ dP(y)

= lim inf
r→0

1

rd

ˆ

X

¨

χB((x,r))(x
′) dΠy

⋆µ(x
′) dΠy

⋆µ(x) dP(y)

= lim inf
r→0

1

rd

ˆ

X

¨

χ{(i,j) : |Πy(i)−Πy(j)|<r} dµ(i) dµ(j) , dP(y)

≤ lim inf
r→0

1

rd

¨

P{y ∈ X : |Πy(i)− Πy(j)| < r} dµ(i) dµ(j)

by Fubini’s theorem. Next note that by definition

Zi∧j(ρ) :=
d
∏

k=1

min{ρ, αk(Ti∧j)}

αk(Ti∧j)
≤

ρd

α1(Ti∧j) · · ·αd(Ti∧j)
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so that by Lemma 3.3,

P{y ∈ X : |Πy(i)− Πy(j)| < r} < C ·
rd

α1(Ti∧j) · · ·αd(Ti∧j)
.

Thus

I ≤ C lim inf
r→0

1

rd

ˆ ˆ

rd

α1(Ti∧j) · · ·αd(Ti∧j)
dµ(i) dµ(j)

≤ C
∞
∑

k=0

∑

|ω|=k

µ([ω])2

φd(Tω)
≤ c′C

∞
∑

k=0

∑

|ω|=k

φs(Tω)

φd(Tω)
µ([ω])

≤ c′C

∞
∑

k=0

∑

|ω|=k

φs(Tω)

φd(Tω)
µ([ω]) ≤ c′C

∞
∑

k=0

bk(s−d)
∑

|ω|=k

µ([ω])

by the choice of µ in Lemma 3.1 and by (8). Thus I < ∞ since s > d. This proves
the result. �

Proof of Theorem 1.8: This is a direct consequence of Lemmas 2.6, 3.5 and
3.6. �

4. Comments and questions

We conclude this note by making a few comments about possible extensions of
this work.

1. In Theorem 3 in [JPS] a result on the dimension and absolute continuity of the
projection of an ergodic measure from the shift space is considered. The same result
should hold where the random perturbations are distributed independently according
to a measure η satisfying Definition 1.6.

2. The conditions on η in Definition 1.6 can be relaxed if a different model of
randomness is used. If rather than allowing each term yi0,...,in−1

to be distributed
according to η we assume that yi0,...,in−1

= yj0,...,jn−1
whenever in−1 = jn−1 we can

relax the conditions on η. In particular this means that the condition on η required
is that for all θ < 1 we have

∑∞
n=1mη{y ∈ Rd : |y| ≥ θ−n} < ∞ and thus we can

consider distributions with a much weaker condition on the rate of the decay of the
tails than in Definition 1.6. This comes from the fact that with this new model we’ll
have that if An is defined as in the proof of Lemma 2.1 then

P(An) ≤ mη{y ∈ Rd : |y| ≥ θ−n}

since there are only m distinct perturbations on the n-th level, and, for the Borel-
Cantelli argument to work we need the infinite sum of probabilities

∑∞
n=1P(An) to

be finite.
3. In [F3] generalised dimensions of self-affine measures with random perturba-

tions are considered. The random perturbations in this paper are defined in the same
way as in [JPS]. It should be possible to extend the results in [F3] to non-compactly
supported perturbations satisfying the assumptions in Definition 1.6.
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