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Abstract. We study the Lipschitz property of a harmonic injective and sense-preserving

mapping F of the unit disk D onto a bounded convex domain Ω in the complex plane C. In

particular we show that F is bi-Lipschitz iff F is quasiconformal and Lipschitz. To this end we

establish some auxiliary properties of harmonic mappings dealing with the boundary radial limiting

values of the formal derivatives ∂F and ∂̄F .

Introduction

Let D(a, r) := {z ∈ C : |z − a| < r} and T(a, r) := {z ∈ C : |z − a| = r} for
a ∈ C and r > 0. In particular D := D(0, 1) and T := T(0, 1) are the unit disk and
unit circle, respectively.

In 2002 Pavlović proved that for a harmonic injective and sense-preserving map-

ping F : D → C if F (D) = D, then F is quasiconformal iff F is bi-Lipschitz; cf. [18]
and also [15, Thm. 3.3] for a more quantitative form. This equivalence was extended
by Kalaj in 2008 to the case where F maps D onto a convex domain Ω in C bounded
by a sufficiently smooth Jordan curve; cf. [9, Thm. 3.1 and Cor. 3.4] and also [11]. On
the other hand, it is easily seen that a conformal mapping F of D onto a rectangle
has the unbounded derivative F ′, and so F is not Lipschitz. Therefore Pavlović’s
equivalence is—in general—not valid in the case where F (D) is a convex domain.
This means that a harmonic injective and sense-preserving mapping F : D → C is bi-
Lipschitz provided F is quasiconformal and some additional property is postulated.
In this paper we show that for a harmonic injective and sense-preserving mapping

F : D → C if F (D) is a bounded convex domain, then F is quasiconformal and

Lipschitz iff F is bi-Lipschitz; cf. Theorem 3.4. This theorem provides also three
additional equivalent conditions. One of them gives a boundary description of such
F ; cf. the property (v) in Theorem 3.4. This property complements Kalaj’s results
[9, Thm. 3.1 and Cor. 3.4] as stated in Remark 4.2 and Corollary 4.3. The last
corollary generalizes Pavlović’s theorem from [18]. The equivalence (ii) ⇐⇒ (v) in
Theorem 3.4 also extends the authors result [12, Cor. 4.2].
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The basic tool for our considerations is the following lemma being a development
of the method from [13, pp. 25–26].

Lemma A. [16, Lem. 1.1] Given a harmonic function u : D → R and a, b ∈ R

satisfying a < b, assume that u(0) = 0 and

(0.1) a ≤ u(z) ≤ b, z ∈ D.

Then

(0.2) u(z) ≤ 2
b− a

π
arctan

|z|+ |p|
1 + |p||z| +

b+ a

2
, z ∈ D,

where

(0.3) p := −i tan
π

4

b+ a

b− a
.

In Section 1 we show some auxiliary properties of harmonic mappings dealing
with the boundary radial limiting values of the formal derivatives ∂F and ∂̄F , where
F is a harmonic mapping given by the Poisson integral P[f ] of a function f : T → C

of bounded variation; cf. Lemma 1.1, Lemma 1.2 and Corollary 1.3. In Section 2
we use Lemma A and Lemma 1.1 to prove Lemma 2.3, which yields Lemma 2.4
and Theorem 2.5 providing lower bounds for the boundary radial limiting values
of the Jacobian J[F ]. From Theorem 2.5 we infer Corollary 2.6 which gives lower
bounds of the Jacobian J[F ] in D. Theorem 2.5 and Corollary 2.6 considerably
extend Kalaj’s results [8, Thm. 2.8 and Cor. 2.9] as pointed out in Remark 2.7. From
Corollary 1.3 we infer in Section 3 useful estimations for the Lipschitz constant L(F )
of the mapping F in terms of some quantities determined by the function f ; cf.
Lemma 3.1 and Theorem 3.2. Next we apply Theorem 2.5, Theorem 3.2 and [17,
Thm. 3.8] to show Theorem 3.4, which is the main result in this paper. It extends
the results by Zhu [21, Thm. 3] and by Kalaj [8, Thm. 3.2] in the sense pointed out in
Remark 3.5. Section 4 contains applications of the results from the previous section.
Corollary 4.1 extends Zhu’s [21, Cor. 1]. Remark 4.2 and Corollary 4.3 complement
Kalaj’s results [9, Thm. 3.1 and Cor. 3.4].

1. Boundary properties of the Poisson integral

Given a function f : T → C and z = eiθ ∈ T we define

f ′(z) := lim
u→z

f(u)− f(z)

u− z
,(1.1)

ḟ(z) := lim
t→θ

f(eit)− f(eiθ)

t− θ
,(1.2)

provided the limits exist as well as f ′(z) := 0 and ḟ(z) := 0 otherwise. Obviously,

(1.3) ḟ(z) = izf ′(z) and |ḟ(z)| = |f ′(z)|.
If f is additionally integrable on T, then we denote by P[f ](z) the Poisson integral
of f at z ∈ D, i.e.,

(1.4) P[f ](z) :=
1

2π

ˆ

T

f(u) Re
u+ z

u− z
|du|, z ∈ D.

Here and in the sequel integrable means integrable in the sense of Lebesgue. The
Poisson integral P[f ] is the unique solution to the Dirichlet problem for the unit
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disk D provided the boundary function f is continuous; cf. e.g. [6, Thm. 2.11]. This
means that P[f ] is a harmonic mapping in D which has a continuous extension to
the closed disk cl(D) and its boundary limiting valued function is identical with f .
Here and subsequently, cl(A) stands for the closure of a set A ⊂ C in the Euclidian
topology. If f is a function of bounded variation, then we write P[df ](z) for the
Poisson–Stieltjes integral of f at z ∈ D, i.e.,

(1.5) P[df ](z) :=
1

2π

ˆ

T

Re
u+ z

u− z
df(u), z ∈ D.

We will use the standard notations ∂ := 1
2
(∂x − i∂y) and ∂̄ := 1

2
(∂x + i∂y) for the

so-called formal derivatives operators. Analyzing the proof of [12, Lem. 2.1] we state
the following lemma.

Lemma 1.1. Let f : T → C be a function of bounded variation and differen-

tiable at a point z ∈ T. If the limit limr→1−
d
dr

P[f ](rz) exists, then the remaining

limits in (1.6), (1.7) and (1.8) exist and

2z lim
r→1−

∂ P[f ](rz) = lim
r→1−

f(z)− P[f ](rz)

1− r
+ zf ′(z),(1.6)

2z lim
r→1−

∂̄ P[f ](rz) = lim
r→1−

f(z)− P[f ](rz)

1− r
− zf ′(z)(1.7)

as well as

(1.8) lim
r→1−

d

dr
P[f ](rz) = lim

r→1−

f(z)− P[f ](rz)

1− r
.

Proof. Given z ∈ T assume that a function f is of bounded variation and
differentiable at z and the first limit in (1.8) exists. From (1.4) it follows that for
every r ∈ (0; 1),

∂ P[f ](rz) =
1

2π

ˆ

T

f(u)
u

(u− rz)2
|du|(1.9)

= − 1

2π

1

2irz

ˆ 2π

0

f(eit)
−2irzeit

(eit − rz)2
dt

= − 1

2π

1

2irz

ˆ 2π

0

f(eit)
d

dt

(

eit + rz

eit − rz

)

dt,

and consequently,

∂̄ P[f ](rz) = ∂P[f ](rz) = ∂ P[ f ](rz)

= − 1

2π

1

2irz

ˆ 2π

0

f(eit)
d

dt

(

eit + rz

eit − rz

)

dt.
(1.10)

Since f is a function of bounded variation, we may integrate by parts the last integrals
in (1.9) and (1.10). As a result we obtain

rz∂ P[f ](rz) =
1

4πi

ˆ 2π

0

eit + rz

eit − rz
df(eit)

rz∂̄ P[f ](rz) =
1

4πi

ˆ 2π

0

eit + rz

eit − rz
df(eit).

(1.11)
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By (1.11) we have

rz∂ P[f ](rz)− rz∂̄ P[f ](rz) =
1

2πi

ˆ 2π

0

Re

(

eit + rz

eit − rz

)

df(eit) =
1

i
P[df ](rz).(1.12)

By (1.2) we see that

(1.13) lim
r→1−

(

rz∂ P[f ](rz)− rz∂̄ P[f ](rz)
)

= lim
r→1−

1

i
P[df ](rz) =

1

i
ḟ(z) = zf ′(z);

cf. e.g. [2, Thm. 1.2] or [20, Thm. 11.12]. Since the limit limr→1−
d
dr

P[f ](rz) exists,
we conclude from (1.13) and

(1.14)
d

dr
P[f ](rz) = z∂ P[f ](rz) + z∂̄ P[f ](rz), 0 ≤ r < 1,

that the following limits exist and

2z lim
r→1−

∂ P[f ](rz) = lim
r→1−

d

dr
P[f ](rz) + zf ′(z),

2z lim
r→1−

∂̄ P[f ](rz) = lim
r→1−

d

dr
P[f ](rz)− zf ′(z).

(1.15)

Furthermore, the following limit exists and

lim
r→1−

1

1− r

ˆ 1

r

d

dt
P[f ](tz) dt = lim

r→1−

d

dr
P[f ](rz).

Hence and by the equality

f(z)− P[f ](rz)

1− r
=

1

1− r

ˆ 1

r

d

dt
P[f ](tz) dt, r ∈ [0; 1),

we see that the second limit in (1.8) exists and the equality (1.8) holds. Therefore
all the limits in (1.6) and (1.7) exist. Combining the equalities (1.15) and (1.8) we
derive the equalities (1.6) and (1.7), which completes the proof. �

We recall that the harmonic conjugate operator A is defined for a function f : T →
C integrable on T and z ∈ T as follows:

(1.16) A[f ](z) :=
1

2π
lim
r→1−

ˆ 2π

0

f(eit) Im
eit + rz

eit − rz
dt,

whenever the limit exists and A[f ](z) := 0 otherwise. It is known that for a.e. z ∈ T

the limit exists; cf. [5, Chap. III, Lem. 1.1]. If f is real valued, then the function

D ∋ z 7→ 1

2π

ˆ 2π

0

f(eit) Im
eit + z

eit − z
dt

is the harmonic conjugate function of P[f ], which justifies the name of the operator
A. Replacing P[f ] by the Poisson–Stieltjes integral P[df ] we may define the harmonic
conjugate operator A for every function f : T → C of bounded variation and z ∈ T

as follows:

(1.17) A[df ](z) :=
1

2π
lim
r→1−

ˆ 2π

0

Im
eit + rz

eit − rz
df(eit),

whenever the limit exists and A[df ](z) := 0 otherwise. Note that

(1.18) A[df ](z) = A[ḟ ](z) for a.e. z ∈ T,
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provided f is an absolutely continuous function.

Lemma 1.2. If f : T → C is a function of bounded variation, then for every

z ∈ T the limit limr→1−
d
dr

P[f ](rz) exists iff the limit in (1.17) exists, and the equality

(1.19) lim
r→1−

d

dr
P[f ](rz) = A[df ](z)

holds provided one of the limits exists.

Proof. Given a function f of bounded variation on T and z ∈ T we see, inte-
grating by parts, that for every r ∈ (0; 1),

2π
d

dr
P[f ](rz) =

d

dr

ˆ 2π

0

f(eit) Re
eit + rz

eit − rz
dt =

ˆ 2π

0

f(eit) Re
d

dr

eit + rz

eit − rz
dt

=

ˆ 2π

0

f(eit) Re
2eitz

(eit − rz)2
dt =

ˆ 2π

0

f(eit) Re
i

r

d

dt

eit + rz

eit − rz
dt

= −1

r

ˆ 2π

0

f(eit)
d

dt
Im

eit + rz

eit − rz
dt =

1

r

ˆ 2π

0

Im
eit + rz

eit − rz
df(eit).

Hence and by (1.17) we see that both the limits in (1.19) and (1.17) simultaneously
exist or not, and the equality

lim
r→1−

d

dr
P[f ](rz) = lim

r→1−
r
d

dr
P[f ](rz) = A[df ](z)

holds in the first case, which is our claim. �

For p > 0 let Hp(D) stand for the Hardy space of holomorphic functions in the

unit disk ; cf. e.g. [2, Sect. 1.1].

Corollary 1.3. If f : T → C is a function of bounded variation, then the deriv-

ative functions ∂ P[f ], ∂̄ P[f ] ∈ Hp(D) for p ∈ (0; 1) and for a.e. z ∈ T the following

limits exist and the equalities hold

A[df ](z) = lim
r→1−

d

dr
P[f ](rz) = lim

r→1−

f(z)− P[f ](rz)

1− r
(1.20)

= lim
r→1−

(z∂ P[f ](rz) + z∂̄ P[f ](rz))

as well as

lim
r→1−

∂ P[f ](rz) =
z

2
(A[df ](z) + zf ′(z)),(1.21)

lim
r→1−

∂̄ P[f ](rz) =
z

2
(A[df ](z)− zf ′(z)).(1.22)

Proof. Assume that f is a function of bounded variation on T. Then f is a
function of bounded variation on T with the same variation as f . From the equalities
(1.11) it follows that for every z ∈ D,

z∂ P[f ](z) =
1

4πi

ˆ 2π

0

eit + z

eit − z
df(eit) =

1

2πi

ˆ 2π

0

eit

eit − z
df(eit)

z∂̄ P[f ](z) =
1

4πi

ˆ 2π

0

eit + z

eit − z
df(eit) =

1

2πi

ˆ 2π

0

eit

eit − z
df(eit).
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Applying now the Smirnov theorem we conclude that ∂ P[f ] ∈ Hp(D) and ∂̄ P[f ] ∈
Hp(D) for p ∈ (0; 1); cf. [2, Thm. 3.5] and [19, p. 65]. Therefore the functions ∂ P[f ]

and ∂̄ P[f ] have radial limits a.e. on T; cf. [2, Thm. 2.2]. Hence and by (1.14) the
limit limr→1−

d
dr
P[f ](rz) exists for a.e. z ∈ T and

lim
r→1−

d

dr
P[f ](rz) = lim

r→1−
(z∂ P[f ](rz) + z∂̄ P[f ](rz)).

From Lemmas 1.1 and 1.2 it follows that the equalities (1.20) hold for a.e. z ∈ T.
Combining (1.20) with (1.6) and (1.7) we obtain for a.e. z ∈ T the equalities (1.21)
and (1.22) respectively, which completes the proof. �

2. Boundary behaviour of the Jacobian

Definition 2.1. We say that a point v ∈ C is linearly accessible from outside of
a set Ω ⊂ C if there exists ζ ∈ T such that

(2.1) Re(ζw) ≤ Re(ζv), w ∈ Ω.

Remark 2.2. The condition (2.1) means geometrically that there exists a closed
half-plane H such that its boundary line passes through the point v and Ω ⊂ H . In
particular, if Ω is a convex domain in C, Ω 6= C, then each point v ∈ C\Ω is linearly
accessible from outside of Ω. Indeed, suppose first that v /∈ cl(Ω). It is easy to check
that cl(Ω) is a convex set. Since cl(Ω) is also closed, there exists v′ ∈ cl(Ω) such that

(2.2) 0 6= |v′ − v| ≤ |z − v|, z ∈ cl(Ω).

Given z ∈ cl(Ω) we see that (1 − t)v′ + tz ∈ cl(Ω) for t ∈ [0; 1]. Hence and by (2.2)
we see that for every t ∈ (0; 1],

|v′ − v|2 ≤ |(1− t)v′ + tz − v|2 = |v′ − v|2 − 2tRe[(v′ − v)(v′ − z)] + t2|v′ − z|2,
and consequently

Re[(v − v′)(z − v′)] ≤ t

2
|v′ − z|2 → 0 as t → 0+.

Therefore Re[(v − v′)(z − v′)] ≤ 0, and setting ζ := (v − v′)/|v − v′| we see that
ζ ∈ T, Re[(z − v′)ζ ] ≤ 0 and

Re[vζ ]− Re[v′ζ ] = Re[(v − v′)ζ ] = |v − v′| > 0.

Combining these inequalities we obtain

Re[zζ ] ≤ Re[v′ζ ] < Re[vζ ], z ∈ cl(Ω),

and so the condition (2.1) holds in the case where v ∈ C \ cl(Ω). Suppose now that
v ∈ cl(Ω) \Ω. Choosing arbitrarily z0 ∈ Ω we see that vn := (1+ 1/n)(v− z0) + z0 /∈
cl(Ω) for n ∈ N. Then there exists a sequence N ∋ n 7→ ζn ∈ T such that

(2.3) Re[zζn] < Re[vnζn], z ∈ cl(Ω), n ∈ N.

Since T is a compact set, there exists a subsequence N ∋ k 7→ ζnk
∈ T and ζ ∈ T

such that ζnk
→ ζ as k → ∞. A passage to the limit in (2.3) implies that

Re[zζ ] = lim
k→∞

Re[zζnk
] ≤ lim

k→∞
Re[vnk

ζnk
] = Re[vζ ], z ∈ cl(Ω),

and so the condition (2.1) holds in the case where v ∈ cl(Ω) \ Ω. Therefore each
v ∈ C \ Ω is linearly accessible from outside of Ω, as claimed.
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Let J[F ] stand for the Jacobian of a differentiable mapping F : D → C, i.e.,

(2.4) J[F ](z) := |∂F (z)|2 − |∂̄F (z)|2, z ∈ D.

Lemma 2.3. Given a harmonic mapping F : D → C assume that F (0) = 0 6=
J[F ](0). If v ∈ C is a point linearly accessible from outside of Ω := F (D) and ζ ∈ T

satisfies the condition (2.1), then for every z ∈ T,

(2.5) lim inf
r→1−

Re
ζv − ζF (rz)

1− r
≥ a+ b

π
tan

(

π

2

min(a, b)

a+ b

)

≥ min(a, b)

2
,

where

(2.6) a := − inf
u∈D

Re(ζF (u)) and b := sup
u∈D

Re(ζF (u)).

Proof. Fix F : D → C and ζ ∈ T satisfying the assumptions. Then Fζ := ζF is
a harmonic mapping on D and Fζ(0) = 0. Since J[F ](0) 6= 0 = F (0) we see that 0 is
an inner point of Ω. Hence and by (2.6) it follows that −a < 0 < b and

−a ≤ Re(Fζ(u)) ≤ b, u ∈ D.

Applying now Lemma A we see that for arbitrarily fixed z ∈ T,

(2.7) ReFζ(rz) ≤ 2
b+ a

π
arctan

r + |p|
1 + |p|r +

b− a

2
, r ∈ [0; 1),

where

(2.8) p := −i tan
π

4

b− a

b+ a
.

Since v is a point linearly accessible from outside of Ω, we conclude from (2.1), (2.6)
and (2.7) that for every r ∈ [0; 1),

Re(ζv − Fζ(rz)) ≥ b− ReFζ(rz) ≥ b− 2
b+ a

π
arctan

r + |p|
1 + |p|r − b− a

2

=
b+ a

2

(

1− 4

π
arctan

r + |p|
1 + |p|r

)

=
2(b+ a)

π

(

π

4
− arctan

r + |p|
1 + |p|r

)

.

Hence

(2.9) lim inf
r→1−

Re
ζv − ζF (rz)

1− r
≥ lim inf

r→1−

2(b+ a)

π(1− r)

(

π

4
− arctan

r + |p|
1 + |p|r

)

.

Since
d

dr
arctan

r + |p|
1 + |p|r |r=1

=
1

2

1− |p|
1 + |p| ,

we conclude from (2.9) that

lim inf
r→1−

Re
ζv − ζF (rz)

1− r
≥ 2(b+ a)

π
lim
r→1−

1

1− r

(

π

4
− arctan

r + |p|
1 + |p|r

)

(2.10)

=
b+ a

π

1− |p|
1 + |p| .
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Setting α := π
4
b−a
b+a

we deduce from (2.8) that

1− |p|
1 + |p| =

1− tan |α|
1 + tan |α| =

cos |α| − sin |α|
cos |α|+ sin |α| =

sin(π
4
− |α|)

cos(π
4
− |α|) = tan

(π

4
− |α|

)

= tan

(

π

4

(

1− |b− a|
b+ a

))

= tan

(

π

4

b+ a− |b− a|
b+ a

)

= tan

(

π

2

min(b, a)

b+ a

)

≥ π

2

min(b, a)

b+ a
,

because tan t ≥ t for t ∈ [0; π/2). Combining this with (2.10) we derive the inequal-
ities (2.5), which completes the proof. �

Lemma 2.4. Let f : T → C be a function of bounded variation and differenti-

able at a point z ∈ T such that P[f ](0) = 0 6= J[P[f ]](0), the limit limr→1−
d
dr
P[f ](rz)

exists and

(2.11) lim inf
r→1−

J[P[f ]](rz) ≥ 0.

If v := f(z) is a point linearly accessible from outside of Ω := P[f ](D) and ζ ∈ T

satisfies the condition (2.1), then the following limits exist and

lim
r→1−

J[P[f ]](rz) = |f ′(z)| lim
r→1−

Re
ζf(z)− ζ P[f ](rz)

1− r
(2.12)

≥ |f ′(z)|a + b

π
tan

(

π

2

min(a, b)

a+ b

)

≥ |f ′(z)|min(a, b)

2
,

where

(2.13) a := − inf
u∈D

Re(ζ P[f ](u)) and b := sup
u∈D

Re(ζ P[f ](u)).

Proof. Fix f : T → C and z, ζ ∈ T satisfying the assumptions. Then Fζ := ζ P[f ]
is a harmonic mapping in D and Fζ(0) = 0. Since J[Fζ ](0) 6= 0 we see that 0 is an
inner point of Fζ(D). Hence and by (2.13) it follows that −a < 0 < b and

(2.14) −a ≤ Re(Fζ(u)) ≤ b ≤ Re(ζf(z)), u ∈ D.

The function f is bounded as a function of bounded variation. Therefore there
exists the radial limit limr→1− P[f ](ru) = f(u) for a.e. u ∈ T. Hence and by (2.14),
Re(ζf(eit)) ≤ Re(ζf(eiθ)) for a.e. t ∈ R, where z = eiθ. Since the function f is
differentiable at z we have

0 =
d

dt
Re(ζf(eit)|t=θ = Re(iζzf ′(z)),

and consequently

(2.15) Im(ζzf ′(z)) = 0.
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From (1.6) and (1.7) of Lemma 1.1 it follows that the mapping F := P[f ] satisfies
the following equalities

lim
r→1−

(|∂F (rz)|2 − |∂̄F (rz)|2) = lim
r→1−

Re

(

zf ′(z)
f(z)− F (rz)

1− r

)

= lim
r→1−

Re

(

ζzf ′(z)
ζf(z)− ζF (rz)

1− r

)

= ζzf ′(z) lim
r→1−

Re
ζf(z)− ζF (rz)

1− r
.

Hence and by (2.11) we obtain

(2.16) 0 ≤ lim inf
r→1−

J[F ](rz) = lim
r→1−

J[F ](rz) = ζzf ′(z) lim
r→1−

Re
ζf(z)− ζF (rz)

1− r
.

From Lemma 2.3 it follows that

lim
r→1−

Re
ζf(z)− ζF (rz)

1− r
= lim inf

r→1−
Re

ζf(z)− ζF (rz)

1− r
≥ min(a, b)

2
> 0.

Combining this with (2.16) we see that ζzf ′(z) ≥ 0, and so ζzf ′(z) = |f ′(z)|. Hence
and by (2.16) we deduce the equality in (2.12). Applying now Lemma 2.3 once more
we derive from (2.13) the inequalities in (2.12), which completes the proof. �

Theorem 2.5. Let f : T → C be a function of bounded variation and differenti-

able at a point z ∈ T such that P[f ](0) = 0 6= J[P[f ]](0), the limit limr→1−
d
dr
P[f ](rz)

exists and the inequality (2.11) holds. If f(z) is a point linearly accessible from

outside of P[f ](D), then the following limit exists and

(2.17) lim
r→1−

J[P[f ]](rz) ≥ |f ′(z)|R1 +R2

π
tan

(

π

2

R1

R1 +R2

)

≥ |f ′(z)|R1

2

for all R1, R2 > 0 satisfying the condition

(2.18) D(0, R1) ⊂ P[f ](D) ⊂ D(0, R2).

Proof. Fix R1, R2 > 0 satisfying the condition (2.18). Since f(z) is a point
linearly accessible from outside of Ω := P[f ](D), there exists ζ ∈ T satisfying the
condition (2.1). From Lemma 2.4 it follows that (2.12) holds. By (2.13) and (2.18) we
have R1 ≤ a ≤ R2 and R1 ≤ b ≤ R2. Hence max(a/b, b/a) ≤ R2/R1. Since (0; π/2) ∋
t 7→ t−1 tan t is an increasing function, we derive from (2.12) the inequalities (2.17),
which is our assertion. �

Corollary 2.6. Let f be a sense-preserving homeomorphism of T onto the

boundary Γ of a bounded convex domain Ω in C. If P[f ](0) = 0, then for all

R1, R2 > 0 satisfying the condition (2.18),

(2.19) J[P[f ]](z) ≥ df
R1 +R2

π
tan

(

π

2

R1

R1 +R2

)

≥ df
R1

2
, z ∈ D,

where

(2.20) df := ess inf
z∈T

|ḟ(z)|.
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Proof. Given f satisfying the assumptions we see that Γ is a rectifiable Jordan
curve ([4]), and thus f is a function of bounded variation. By Radó–Kneser–Choquet
Theorem F := P[f ] is a sense-preserving injective harmonic mapping of D onto Ω;
cf. [3, Sect. 3.1]. Furthermore, by Remark 2.2 for every z ∈ T, f(z) is a point linearly
accessible from outside of Ω. Fix R1, R2 > 0 satisfying the condition (2.18). From
Theorem 2.5 and Corollary 1.3 it follows that the inequalities (2.17) hold for a.e.
z ∈ T, and so

(2.21) lim
r→1−

J[F ](rz) ≥ λ := df
R1 +R2

π
tan

(

π

2

R1

R1 +R2

)

for a.e. z ∈ T.

If df = 0, then the inequalities in (2.19) are obvious. Therefore we can assume that
df > 0, i.e., λ > 0. Setting Ga := (∂F )2 + a(∂F )2 for a ∈ C, we see that

|Ga(z)| = |(∂F (z))2 + a(∂F (z))2| ≥ |∂F (z)|2 − |a||∂̄F (z)|2(2.22)

= (1− |a|)|∂F (z)|2 + |a| J[F ](z) ≥ (1− |a|)|∂F (z)|2, a, z ∈ D.

By Kalaj’s theorem,

|∂F (z)|2 ≥ R2
1

32
, z ∈ D;

cf. [7, Thm. 2.5] and also [16, Thm. 2.2 and Cor. 3.1] for a stronger inequality.
Combining this with (2.22) we see that 1/Ga is a bounded holomorphic function in
D for each a ∈ D. Applying now [2, Thm. 1.3] we see that for a given a ∈ D \ {0}
there exists a function ga : T → C such that

ga(z) = lim
r→1−

1

Ga(rz)
for a.e. z ∈ T.

Hence, by (2.21) and by (2.22) it follows that for a.e. z ∈ T,

|ga(z)| = lim
r→1−

1

|Ga(rz)|
≤ lim

r→1−

1

|a| J[F ](rz)
≤ 1

λ|a| .

Therefore, for every z ∈ D,

1

|Ga(z)|
= |P[ga](z)| ≤ P[|ga|](z) ≤ P

[ 1

λ|a|
]

(z) =
1

λ|a| ,

and consequently,

(2.23) |Ga(z)| ≥ λ|a|, a, z ∈ D.

Given now z ∈ D we can choose α, β ∈ R such that (∂F (z))2 = eiα|∂F (z)|2 and
(∂F (z))2 = eiβ |∂̄F (z)|2. Setting a := −ei(α−β) we conclude from (2.23) that

| J[F ](z)| = |eiα J[F ](z)| = |Ga(z)| = lim
r→1−

|Gra(z)| ≥ lim
r→1−

λ|ra| = λ,

which yields the first inequality in (2.19). The second one follows directly from the
inequality λ ≥ dfR1/2, which completes the proof. �

Remark 2.7. Let f be a sense-preserving homeomorphism of T onto the bound-
ary of a bounded convex domain Ω in C such that P[f ](0) = 0, and let R > 0 satisfy
the inclusion D(0, R) ⊂ P[f ](D). Then Theorem 2.5 and Corollary 2.6 imply in
particular the following Kalaj’s inequalities:

(2.24) lim
r→1−

J[P[f ]](rz) ≥ dfR

2
for a.e. z ∈ T,
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as well as

(2.25) J[P[f ]](z) ≥ dfR

2
, z ∈ D,

respectively. In 2004 Kalaj proved them under the additional assumption that the
function f is absolutely continuous; cf. [8, Thm. 2.8 and Cor. 2.9]. Therefore, Theo-
rem 2.5 and Corollary 2.6 considerably extend Kalaj’s results.

3. The Lipschitz property for harmonic mappings

Given a nonempty set Ω ⊂ C and a function F : Ω → C we denote by L(F ) the
Lipschitz constant of F , i.e.,

(3.1) L(F ) := sup

{

∣

∣

∣

F (z)− F (w)

z − w

∣

∣

∣
: z, w ∈ Ω, z 6= w

}

.

Note that F is a Lipschitz function iff L(F ) < +∞. If the last condition holds, then
F is a L-Lipschitz function for every L ≥ L(F ), i.e.,

(3.2) |F (w)− F (z)| ≤ L|w − z|, w, z ∈ Ω.

For any Lebesgue measurable function f : T → C we set

‖f‖∞ := ess sup
z∈T

|f(z)|.

Let L∞(T) denote the class of all such functions f with ‖f‖∞ < +∞.

Lemma 3.1. If f : T → C is a function of bounded variation, then F := P[f ]
satisfies the following inequalities

(3.3)
1

2

∥

∥|A[df ]|2 + |ḟ |2
∥

∥

∞
≤ L(F )2 ≤

∥

∥|A[df ]|2 + |ḟ |2
∥

∥

∞
.

Proof. Given a function of bounded variation f : T → C we know by Corollary 1.3
that all the limits in (1.20), (1.21) and (1.22) exist for a.e. z ∈ T. Choosing arbitrarily
such a z we deduce from (1.21) and (1.22) that

(3.4) 2 lim
r→1−

(|∂ P[f ](rz)|2 + |∂̄ P[f ](rz)|2) = |A[df ](z)|2 + |f ′(z)|2 for a.e. z ∈ T.

Since

(3.5) F (w)− F (u) = ∂F (u)(w − u) + ∂̄F (u)(w − u) + o(w − u), w, u ∈ D,

we conclude from (3.1) that

(3.6) sup
u∈D

(

|∂F (u)|+ |∂̄F (u)|
)

= L(F ).

Assume first that F is a Lipschitz function, i.e., L(F ) < +∞. Then the equality
(3.6) leads to

(3.7) |∂F (u)|2 + |∂̄F (u)|2 ≤ L(F )2, u ∈ D.

Combining this with (3.4) we obtain the first inequality in (3.3). On the other hand

from (3.7) it follows that both the functions ∂F and ∂̄F are holomorphic and bounded
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in D. Moreover, from (1.21) and (1.22) we see that there exist bounded functions
f1, f2 : T → C such that for a.e. z ∈ T,

lim
r→1−

∂ P[f ](rz) = f1(z) =
z

2
(A[df ](z) + zf ′(z)),

lim
r→1−

∂̄ P[f ](rz) = f2(z) =
z

2
(A[df ](z)− zf ′(z)).

Thus, applying the Schwarz integral inequality, we obtain

|∂F (u)|2 + |∂̄F (u)|2 = |P[f1](u)|2 + |P[f2](u)|2 ≤ P[|f1|2](u) + P[|f2|2](u)

= P[|f1|2 + |f2|2](u) =
1

2
P
[

|A[df ]|2 + |f ′|2
]

(u), u ∈ D.

Combining this with (3.6) we get

L(F )2 ≤ 2 sup
u∈D

(

|∂F (u)|2 + |∂̄F (u)|2
)

≤ sup
u∈D

P
[

|A[df ]|2 + |f ′|2
]

(u)

≤
∥

∥|A[df ]|2 + |f ′|2
∥

∥

∞
,

and so the second inequality in (3.3) holds.
It remains to consider the case where F is not a Lipschitz function, i.e., L(F ) =

+∞. Then the first inequality in (3.3) is obvious. In order to show the second

inequality in (3.3) suppose that
∥

∥|A[df ]|2 + |f ′|2
∥

∥

∞
< +∞. Then ḟ ∈ L∞(T) and

A[df ] ∈ L∞(T). Hence and by (1.21) and (1.22) we see that both the functions ∂ P[f ]

and ∂̄ P[f ] have essentially bounded radial limiting valued functions. Furthermore,

by Corollary 1.3, ∂ P[f ], ∂̄ P[f ] ∈ H1/2(D). Therefore both the functions ∂ P[f ] and

∂̄ P[f ] are uniquely determined by the Poisson integral operator from their radial

limiting values, and so ∂ P[f ], ∂̄ P[f ] ∈ H∞(D). Hence and by the equality (3.6) we
deduce that L(F ) < +∞, which contradicts our assumption. Therefore

∥

∥|A[df ]|2 +
|f ′|2

∥

∥

∞
= +∞, and so the second inequality in (3.3) holds, which completes the

proof. �

The following theorem generalizes and improves the equivalence (i) ⇐⇒ (iv) in
[14, Thm. 2.2].

Theorem 3.2. Let F : D → C be a harmonic mapping. If F is a Lipschitz

mapping, then F has the continuous extension to the closure cl(D) and its bound-

ary limiting valued function f is absolutely continuous and satisfies the following

condition

(3.8) ‖A[ḟ ]‖∞ ≤
√
2L(F ), ‖ḟ‖∞ ≤ L(F ) and L(f) ≤ L(F ).

Conversely, if F has the continuous extension to cl(D) and its boundary limiting

valued function f is absolutely continuous, A[ḟ ] ∈ L∞(T) and ḟ ∈ L∞(T), then F is

a Lipschitz mapping with

(3.9) L(F ) ≤
√

‖A[ḟ ]‖2∞ + ‖ḟ‖2∞.

Proof. Fix a harmonic mapping F : D → C. Assume that F is a Lipschitz
mapping. Then F is uniformly continuous, and so it has the unique continuous
extension F ∗ to cl(D). A passage to the limit implies that f := F ∗

|T is a Lipschitz

function with L(f) ≤ L(F ∗) = L(F ). Therefore the third and—consequently—the
second inequalities in (3.8) hold. In particular, f is an absolutely continuous function,



Quasiconformal and Lipschitz harmonic mappings of the unit disk onto bounded convex domains 823

and so the equality (1.18) holds. Since F = P[f ], we infer from Lemma 3.1 the first
inequality in (3.8).

Conversely, assume that F has the continuous extension F ∗ to cl(D) and f is

absolutely continuous, A[ḟ ] ∈ L∞(T) and ḟ ∈ L∞(T). Since F = P[f ], we conclude
from Lemma 3.1 that F is a Lipschitz mapping with L(F ) satisfying the inequality
(3.9), which completes the proof. �

Given a simply connected domain Ω in C and a harmonic mapping F : Ω → C

there exist holomorphic functions H and G in Ω such that F = H+G. The functions
H and G are determined up to the constant. Any such function H (resp. G) is said
to be a holomorphic part of F (resp. an anti-holomorphic part of F ). We recall that a
domain Ω in C is said to be linearly connected if there exists a constant M ≥ 1 such
that any points z, w ∈ Ω can be connected by a path γ with length |γ|1 ≤ M |z−w|.
Write Zp,q := {n ∈ Z : p ≤ n ≤ q} for any p, q ∈ R.

Lemma 3.3. If Ω is a linearly connected domain and F : Ω → C is a bi-Lipschitz

mapping, then F (Ω) is a linearly connected domain.

Proof. Given a, b ∈ R, a < b, suppose that γ : [a; b] → Ω is a rectifiable path.
Then for arbitrarily fixed ε > 0 there exist n ∈ N and an increasing sequence
Z0,n ∋ k 7→ tk ∈ [a; b] such that t0 = a, tn = b and

n
∑

k=1

|F ◦ γ(tk)− F ◦ γ(tk−1)| > |F ◦ γ|1 − ε.

Since F is a Lipschitz mapping, we see that

|F ◦ γ|1 <
n

∑

k=1

|F ◦ γ(tk)− F ◦ γ(tk−1)|+ ε

≤ L(F )
n

∑

k=1

|γ(tk)− γ(tk−1)|+ ε ≤ L(F )|γ|1 + ε.

Therefore |F ◦ γ|1 ≤ L(F )|γ|1, because ε > 0 can be arbitrarily small. Since F−1 is
also a Lipschitz mapping, we may apply the above reasoning, with replacing F by
F−1 and γ by F ◦ γ, to obtain |γ|1 = |F−1 ◦ (F ◦ γ)|1 ≤ L(F−1)|F ◦ γ|1. Thus

(3.10)
1

L(F−1)
|γ|1 ≤ |F ◦ γ|1 ≤ L(F )|γ|1.

Assume now that Ω is a linearly connected domain and fix z, w ∈ F (Ω). Then there
exists a path γ : [a; b] → Ω such that γ(a) = F−1(z) and γ(b) = F−1(w), such that

|γ|1 ≤ M |F−1(z)− F−1(w)| ≤ M L(F−1)|z − w|,
where M ≥ 1 is a constant which depends on Ω only. Combining this with the second
inequality in (3.10) we have

(3.11) |F ◦ γ|1 ≤ L(F )|γ|1 ≤ M L(F ) L(F−1)|z − w|.
Since F ◦γ : [a; b] → F (Ω) is a path connecting the points z and w, we conclude from
(3.11) that F (Ω) is a linearly connected domain, because the constant M L(F ) L(F−1)
does not depend on the choice of the points z, w ∈ F (Ω). This is the desired conclu-
sion. �
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Theorem 3.4. Let F : D → C be a sense-preserving injective harmonic mapping

such that F (D) is a bounded convex domain in C. Then the following conditions

are equivalent to each other:

(i) F is a quasiconformal and Lipschitz mapping;

(ii) F is a quasiconformal mapping and its boundary limiting valued function f
is a Lipschitz mapping;

(iii) F is a quasiconformal mapping and a holomorphic part H of F is a bi-

Lipschitz mapping;

(iv) F is a bi-Lipschitz mapping;

(v) F has a continuous extension to the closure cl(D) and its boundary limiting

valued function f is absolutely continuous and satisfies the following condition

(3.12) 0 < df , ‖ḟ‖∞ < +∞ and ‖A[ḟ ]‖∞ < +∞,

where df is defined by (2.20).

Proof. Given a sense-preserving injective harmonic mapping F = H+G : D → C

suppose that Ω := F (D) is a bounded convex domain in C, where H and G are a
holomorphic part of F and an anti-holomorphic part of F , respectively. We may
assume additionally that H(0) = 0 = G(0). Since Ω is convex, the mapping H is
injective; cf. [1, Cor. 5.8] or [17, Cor. 2.2].

First suppose that the condition (i) holds. From Theorem 3.2 it follows that
the boundary limiting valued function f of F is a Lipschitz mapping, and so the
implication (i) =⇒ (ii) holds.

Next suppose that the condition (ii) holds. From [15, Lem. 2.3] it follows that

|∂F (z)| ≤ K + 1

2
L(f), z ∈ D,

where K is the maximal dilatation of F . Thus for all z, w ∈ D we see, setting
[0; 1] ∋ t 7→ γ(t) := (1− t)z + tw ∈ D, that

|H(w)−H(z)| =
ˆ 1

0

∣

∣

∣

d

dt
(H ◦ γ)(t)

∣

∣

∣
dt ≤

ˆ 1

0

|H ′(γ(t))||γ′(t)| dt

≤
ˆ 1

0

|∂F (γ(t))| dt · |w − z| ≤ K + 1

2
L(f)|w − z|.

Therefore H is a Lipschitz mapping with L(H) ≤ K+1
2

L(f).
From [17, Thm. 3.8] it follows that H ◦ F−1 is a bi-Lipschitz mapping. By the

equality H = (H ◦ F−1) ◦ F we obtain

(3.13) H(D) = H ◦ F−1(F (D)) = H ◦ F−1(Ω).

Since Ω is a convex domain, Ω is linearly connected with respect to a constant M := 1.
Therefore from Lemma 3.3 it follows that H(D) is a linearly connected domain with
a new constant M ≥ 1. As 0 = F (0) ∈ Ω, there exists R > 0 such that D(0, R) ⊂ Ω,
where D(a, r) := {z ∈ C : |z − a| < r} for a ∈ C and r > 0. Applying now [16,
Cor. 3.1] we see that

(3.14) |H ′(z)| = |∂F (z)| ≥ R

4
, z ∈ D.

Fix distinct points z, w ∈ D. Since the domain H(D) is linearly connected, there
exists a path γ : [0; 1] → H(D) connecting the points γ(0) = H(z) and γ(1) = H(w)
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such that |γ|1 ≤ M |H(w)−H(z)|. Since γ is an uniformly continuous mapping, the
image γ([0; 1]) is a compact subset of the domain H(Ω), and consequently there exist
r > 0 and δ > 0 such that

(3.15) γ([t− δ; t+ δ] ∩ [0; 1]) ⊂ D(γ(t), r) ⊂ H(Ω), t ∈ [0; 1].

Let us consider n ∈ N and an increasing sequence Z0,n ∋ k 7→ tk ∈ [a; b] such that
t0 = 0, tn = 1 and tk − tk−1 < δ for k ∈ Z1,n. Hence and by (3.15), the mappings

[0; 1] ∋ s 7→ γk(s) := H−1
(

sγ(tk) + (1− s)γ(tk−1)
)

∈ D, k ∈ Z1,n,

are well defined. Moreover, each mapping γk is a regular path in D connecting the
points H−1(γ(tk−1)) and H−1(γ(tk)). By (3.14) we have

|γ|1 ≥
n

∑

k=1

|γ(tk)− γ(tk−1)| =
n

∑

k=1

|H(H−1(γ(tk)))−H(H−1(γ(tk−1)))|

=
n

∑

k=1

ˆ 1

0

∣

∣

∣

d

dt
(H ◦ γk)(t)

∣

∣

∣
dt =

n
∑

k=1

ˆ 1

0

|H ′(γk(t))||γ′
k(t)| dt

≥ R

4

n
∑

k=1

ˆ 1

0

|γ′
k(t)| dt ≥

R

4

∣

∣

∣

n
∑

k=1

ˆ 1

0

γ′
k(t) dt

∣

∣

∣
=

R

4

∣

∣

∣

n
∑

k=1

(γk(1)− γk(0))
∣

∣

∣

=
R

4

∣

∣

∣

n
∑

k=1

(H−1(γ(tk))−H−1(γ(tk−1)))
∣

∣

∣
=

R

4
|H−1(γ(tn))−H−1(γ(t0))|

=
R

4
|H−1(γ(1))−H−1(γ(0))| = R

4
|w − z|.

Combining this with the inequality |γ|1 ≤ M |H(w)−H(z)| we conclude that

|H(w)−H(z)| ≥ 1

M
|γ|1 ≥

R

4M
|w − z|, w, z ∈ D.

Thus H is a co-Lipschitz mapping. Since H is also a Lipschitz mapping, we conclude
that H is a bi-Lipschitz one. This proves the implication (ii) =⇒ (iii).

Suppose now that the condition (iii) holds. Then [17, Thm. 3.8] shows that the
composite mapping F ◦H−1 is bi-Lipschitz. Hence F is a bi-Lipschitz mapping since
the mapping H is so and F = (F ◦H−1) ◦H , which yields the implication (iii) =⇒
(iv).

Supposing that the condition (iv) holds, we see that L(F ) < +∞ and L(F−1) <
+∞. Then by Theorem 3.2, F has the continuous extension to the closure cl(D)
and its boundary limiting valued function f is absolutely continuous and satisfies the
condition (3.8). Setting L := L(F−1) we see that

1

L
|w − z| ≤ |F (w)− F (z)|, w, z ∈ D.

Hence for all t, s ∈ R and r ∈ [0; 1),

|eit − eiθ| = lim
r→1−

|reit − reiθ| ≤ L lim
r→1−

|F (reit)− F (reiθ)| = L|f(eit)− f(eiθ)|.

Given θ ∈ R assume that there exists the derivative ḟ(z) at the point z := eiθ. Then

|ḟ(z)| =
∣

∣

∣
lim
t→θ

f(eit)− f(eiθ)

t− θ

∣

∣

∣
≥ 1

L

∣

∣

∣
lim
t→θ

eit − eiθ

t− θ

∣

∣

∣
=

1

L
|ieiθ| = 1

L
.
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Thus |ḟ(z)| ≥ 1/L for a.e. z ∈ T, and so df ≥ 1/L. Combining this with (3.8) we
obtain (3.12), which completes the proof of the implication (iv) =⇒ (v).

Suppose finally that the condition (v) holds. Then f is an absolutely continuous
function and F = P[f ]. Since F is a sense-preserving injective harmonic mapping,
we conclude from Levy’s theorem that the Jacobian J[F ] is positive in D; cf. [10].
Therefore

(3.16) |∂F (z)|2 − |∂̄F (z)|2 = J[F ](z) > 0, z ∈ D,

and so the second dilatation

(3.17) D ∋ z 7→ ω(z) :=
∂̄F (z)

∂F (z)
=

G′(z)

H ′(z)

of F is well defined as well as

(3.18) |ω(z)| < 1, z ∈ D.

Applying now [2, Thm. 1.3] we see that there exists a function ω∗ : T → C such that

(3.19) ω∗(z) = lim
r→1−

ω(rz) for a.e. z ∈ T.

From (1.3) and Corollary 1.3 it follows that for a.e. z ∈ T,

2 lim
r→1−

∂F (rz) = z
(

A[ḟ ](z)− iḟ(z)
)

,

and consequently

4| lim
r→1−

∂F (rz)|2 =
∣

∣A[ḟ ](z)− iḟ(z)
∣

∣

2 ≤ 2
∣

∣A[ḟ ](z)
∣

∣

2
+ 2

∣

∣ḟ(z)
∣

∣

2
.

Combining this with (3.12) we obtain

(3.20) | lim
r→1−

∂F (rz)|2 ≤ Mf :=
1

2

∥

∥A[ḟ ]
∥

∥

2

∞
+

1

2

∥

∥ḟ
∥

∥

2

∞
< +∞ for a.e. z ∈ T.

As 0 = F (0) ∈ Ω and Ω is a bounded domain in C, there exist R1, R2 > 0 satisfying
the condition (2.18). Since additionally Ω is a convex domain, we conclude from
Remark 2.2 that each point f(z), z ∈ T, is linearly accessible from outside of Ω.
Corollary 1.3 and Theorem 2.5 now show that the inequalities (2.17) hold for a.e.
z ∈ T. Hence and by (3.12),

lim
r→1−

J[F ](rz) ≥ |f ′(z)|R1

2
≥ R1df

2
> 0 for a.e. z ∈ T.

Combining this with (3.16), (3.17), (3.19) and (3.20) we see that for a.e. z ∈ T,

Mf (1− |ω∗(z)|2) ≥ lim
r→1−

|∂F (rz)|2(1− |ω(rz)|2) = lim
r→1−

J[F ](rz) ≥ R1df
2

.

Hence

‖ω∗‖2∞ ≤ 1− R1df
2Mf

< 1.

This implies, by (3.17) and (3.18), that

(3.21)
∣

∣

∣

∂̄F (z)

∂F (z)

∣

∣

∣
= |ω(z)| = |P[ω∗](z)| ≤ ‖ω∗‖∞ ≤

√

1− R1df
2Mf

< 1, z ∈ D.

Therefore F is a quasiconformal mapping. By Theorem 3.2, F is also a Lipschitz
mapping. This leads to the implication (v) =⇒ (i), which completes the proof. �
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Remark 3.5. Suppose that Ω ⊂ C is a bounded convex domain and that f is
a sense-preserving homeomorphism of T onto the boundary of Ω. Then by Radó–
Kneser–Choquet Theorem F := P[f ] is a sense-preserving injective harmonic map-
ping of D onto Ω. Under these assumptions Zhu has shown recently the equivalence
of the conditions (iv) and (v) in our Theorem 3.4; cf. [21, Thm. 3]. Suppose ad-
ditionally that the function f is absolutely continuous on T. Then from Kalaj’s
theorem [8, Thm. 3.2] it follows that the conditions (i) and (ii) in our Theorem 3.4
are equivalent. In this sense, Theorem 3.4 is a generalization of both results by Zhu
and Kalaj.

4. Applications

We recall that a function f : T → C is said to be Dini-smooth if f is differentiable
on T and the derivative ḟ is not vanishing and Dini-continuous on T, i.e., its modulus
of continuity

ω(δ) := sup{|ḟ(eit)− ḟ(eis)| : t, s ∈ R, |t− s| ≤ δ}, δ ∈ [0; π],

satisfies the following condition

(4.1) Df :=

ˆ π

0

ω(t)

t
dt < +∞.

Corollary 4.1. Let f : T → C be a Dini-smooth and injective function. If f(T)

is the boundary curve of a convex domain Ω in C, then df > 0, ‖ḟ‖∞ < +∞ and

F := P[f ] is a bi-Lipschitz mapping of D onto Ω with

(4.2) L(F ) ≤
√

4

π2
D2

f + ‖ḟ‖2∞
and

(4.3)
1

L(F−1)
≥ df

L(F )
· R1 +R2

π
tan

(

π

2

R1

R1 +R2

)

≥ dfR1

2 L(F )
,

provided R1, R2 > 0 satisfy

(4.4) D(F (0), R1) ⊂ Ω ⊂ D(F (0), R2).

In particular, if additionally J[F ](0) > 0, then F is L(F ) L(F−1)-quasiconformal.

Proof. Fix a function f : T → Γ satisfying the assumption. Then f is differen-
tiable at every point of T and the derivative ḟ is not vanishing and Dini-continuous
on T. Therefore ḟ is continuous on T, and so

(4.5) df = min
z∈T

|ḟ(z)| > 0 and ‖ḟ‖∞ = max
z∈T

|ḟ(z)| < +∞,

because T is a compact set. From (4.1) it follows that for every θ ∈ R and ε ∈ (0; π),
∣

∣

∣

ˆ

ε<|t−θ|≤π

cot
θ − t

2
ḟ(eit) dt

∣

∣

∣
=

∣

∣

∣

ˆ

ε<|t−θ|≤π

cot
θ − t

2

(

ḟ(eit)− ḟ(eiθ)
)

dt
∣

∣

∣

≤
ˆ

ε<|t−θ|≤π

∣

∣

∣
cot

θ − t

2

∣

∣

∣

∣

∣ḟ(eit)− ḟ(eiθ)
∣

∣ dt

≤
ˆ

ε<|t−θ|≤π

ω(|θ − t|)
∣

∣

∣
cot

θ − t

2

∣

∣

∣
dt
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= 2

ˆ π

ε

ω(t)

t
· t cot t

2
dt ≤ 4

ˆ π

ε

ω(t)

t
dt ≤ 4Df ,

because x cot x ≤ tanx · cot x = 1 for x ∈ (0; π/2). Applying now [5, Chap. III,
Lem. 1.2] we see that for a.e. eiθ ∈ T,

|A[ḟ ](eiθ)| = lim
ε→0+

1

2π

∣

∣

∣

ˆ

ε<|t−θ|≤π

cot
θ − t

2
ḟ(eit) dt

∣

∣

∣
≤ 2

π
Df .

Therefore,

(4.6) ‖A[ḟ ]‖∞ ≤ 2

π
Df .

Applying the classical Lagrange’s mean value theorem to the real and imaginary
parts of the function R ∋ t 7→ f(eit) we conclude from (4.5) that

|f(eit)− f(eis)| ≤
√
2‖ḟ‖∞|t− s|, t, s ∈ R,

and consequently f is absolutely continuous. In particular, f is continuous, and hence
the mapping F has a continuous extension F ∗ to the closed disk cl(D) and f = F ∗

|T.

Since f is additionally injective on T, f is a homeomorphism of T onto Γ := f(T).
Furthermore, Γ is the boundary curve of the convex domain Ω. Then the classical
Radó–Kneser–Choquet theorem implies that F is an injective harmonic mapping of
D onto Ω; cf. [3, Sect. 3.1]. Consequently, by the Lewy theorem J[F ](z) 6= 0 for
z ∈ D. Therefore J[F ](z) > 0 for z ∈ D provided J[F ](0) > 0. Assume now that
J[F ](0) > 0. Then Theorem 3.4 shows that the mapping F is simultaneously bi-
Lipschitz and quasiconformal. Furthermore, from Theorem 3.2 and (4.6) we obtain
the inequality (4.2). Since Ω is a convex domain we can follow the proof of [15,
Thm. 3.3] to obtain the following estimation

|F (z)− F (w)| ≥ inf
u∈D

|∂F (u)|2 − |∂̄F (u)|2
|∂F (u)|+ |∂̄F (u)| |z − w|

≥ infu∈D J[F ](u)

supu∈D(|∂F (u)|+ |∂̄F (u)|)|z − w|, z, w ∈ D.

If F (0) = 0, then the condition (4.4) becomes (2.18). Applying now Corollary 2.6 and
the equality (3.6) we infer the inequality (4.3). If F (0) 6= 0, then we can adopt this
reasoning to the mapping F − F (0) in place of the mapping F . Since the mapping
F is bi-Lipschitz, it is also L(F ) L(F−1)-quasiconformal.

In the case where J[F ](0) < 0 we have J[F ](z) < 0 for z ∈ D. Then J[F ](z) > 0
for z ∈ D. Since P[f ] = F , we may follow the above reasoning with f replaced by
f . As a result we see that F is a bi-Lipschitz mapping. Then the mapping F is also
bi-Lipschitz and the inequalities (4.2) and (4.3) hold, which completes the proof. �

Let us recall that a function f : T → C is said to be Hölder-smooth if f is
differentiable on T and the derivative ḟ is not vanishing and Hölder-continuous on
T, i.e., there exist L ≥ 0 and α ∈ (0; 1] such that

(4.7) |ḟ(eit)− ḟ(eis)| ≤ L|t− s|α, t, s ∈ R.
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Remark 4.2. It is clear that each Hölder continuous function is a Dini-continuous
one. Therefore Corollary 4.1 remains true if the assumption f : T → C is a Dini-

smooth and injective function is replaced by the one that f : T → C is a Hölder-

smooth and injective function. Moreover, from (4.7) it follows that Df ≤ Lπα/α,
and so (4.2) leads to

(4.8) L(F ) ≤
√

4(L/α)2π2(α−1) + ‖ḟ‖2∞.

Applying Theorem 3.4 we may also complement Kalaj’s results; cf. [9, Thm. A,
Thm. 3.1 and Cor. 3.4] and also [11].

Corollary 4.3. Let h : T → C be a Hölder-smooth and injective function such

that h(T) is the boundary curve of a convex domain Ω in C. Then for every sense-

preserving injective harmonic mapping F of D onto Ω the following conditions are

equivalent to each other:

(i) F is a quasiconformal mapping;

(ii) F is a bi-Lipschitz mapping;

(iii) F has a continuous extension to the closure cl(D) and its boundary limiting

valued function f is absolutely continuous and satisfies the condition (3.12).

Proof. The equivalence (i) ⇐⇒ (ii) is stated by [9, Cor. 3.4]; cf. also [11]. The
equivalence (ii) ⇐⇒ (iii) (resp. (i) ⇐⇒ (iii)) follows from Theorem 3.4 (resp. [9,
Thm. 3.1]). �
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