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Abstract. We prove a generalization of a Hardy type inequality for negative exponents valid

for non-negative functions defined on [0, 1). As an application we find the exact best possible range

of p such that 1 < p ≤ q such that any non-decreasing φ which satisfies the Muckenhoupt Aq

condition with constant c upon all open subintervals of [0, 1) should additionally satisfy the Ap

condition for another possibly real constant c′. The result have been treated in [9] based on [1], but

we give in this paper an alternative proof which relies on the above mentioned inequality.

1. Introduction

During his efforts to simplify the proof of Hilbert’s double series theorem, Hardy
[5] first proved in 1920 the most famous inequality which is known in the literature
as Hardy’s inequality (see also [8], Theorem 3.5). This is stated as

Theorem A. If p > 1, an > 0, and An = a1 + a2 + · · ·+ an, n ∈ N, then

(1.1)
∞
∑

n=1

(

An

n

)p

<

(

p

p− 1

)p ∞
∑

n=1

apn.

Moreover, inequality (1.1) is best possible, that is, the constant on the right side
cannot be decreased.

In 1926, Copson generalized in [2] Theorem A by replacing the arithmetic mean
of a sequence by a weighted arithmetic mean. More precisely, he proved the following

Theorem B. Let p > 1, an, λn > 0, for n = 1, 2, . . .. Further, suppose that

Λn =
n
∑

i=1

λi and An =
n
∑

i=1

λiai. Then

(1.2)

∞
∑

n=1

λn

(

An

Λn

)p

≤

(

p

p− 1

)p ∞
∑

n=1

λna
p
n,

where the constant involved in (1.2) is best possible.

In [2], Copson proves also a second weighted inequality which as Hardy noted in
[6] can be derived from Theorem B. From then and until now several generalizations
have been given of the above two inequalities. The first one is given by Hardy and
Littlewood who generalized in a specific direction Theorem 1.2 (see [7]). This was
generalized further by Leindler in [12], and by Nemeth in [15]. Also in [14] one can
see further generalizations of Hardy’s and Copson’s series inequalities by replacing
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means by more general linear transforms. For the study of Copson’s inequality one
can also see [3]. Additionally, in [4] Elliot has already proved inequality (1.2) by
similar methods to those that appear in [2].

There is a continued analogue of Theorem 1.1 (see [8]) which can be stated as

Theorem C. If p > 1, f(x) ≥ 0 for x ∈ [0,+∞), then

(1.3)

ˆ

∞

0

(

1

x

ˆ x

0

f(t) dt

)p

dx <

(

p

p− 1

)p ˆ ∞

0

f p(x) dx.

Further generalizations of (1.3) can be seen in [6]. Other authors have also studied
these inequalities in more general forms as it may be seen in [13] and [17]. Landau
has also studied the above inequality and his work appears in [11]. For a complete
discussion of the topic one can consult [10] and [16].

There is an analogue of (1.3) for negative exponents which is presented in [9]
without proof. This is the following

Theorem D. Let f : [a, b] → R
+. Then the following is true when every p is

positive

(1.4)

ˆ b

a

(

1

x− a

ˆ x

a

f(y) dy

)

−p

dx ≤

(

p+ 1

p

)p ˆ b

a

f−p(x) dx,

Moreover, (1.4) is best possible.

In this paper we generalize (1.4) by proving the following

Theorem 1. Let p ≥ q > 0 and f : [a, b] → R
+. The following inequality is

true and sharp

(1.5)

ˆ b

a

(

1

x− a

ˆ x

a

f(y) dy

)

−p

dx ≤

(

p+ 1

p

)qˆ b

a

(

1

x− a

ˆ x

a

f(y) dy

)

−p+q

f−q(x) dx.

In fact more is true as can be seen in

Theorem 2. Let p ≥ q > 0 and an ≥ 0, λn > 0 for n = 1, 2, . . . . Define An and
Λn as in Theorem B. Then

(1.6)
∞
∑

n=1

λn

(

An

Λn

)

−p

≤

(

p+ 1

p

)q ∞
∑

n=1

(

An

Λn

)

−p+q

a−q
n .

Theorem 2 implies easily Theorem 1, by setting λn = 1, for every n ∈ N, and by
using an approximation argument of any f by simple functions on [a, b].

We believe that the above two theorems should have many applications especially
in the theory of weights and other fields. In this paper we give such an application
of Theorem 1. More precisely we give a proof of a result that appears in [9] based
on that in [1]. This is described as follows:

Let f : [0, 1) → R
+ be non-decreasing such that it satisfies the Aq condition for

some q > 1 upon all subintervals of [0, 1] with constant M ≥ 1. That is the following
hold:

(1.7)

(

1

b− a

ˆ b

a

f(y) dy

)(

1

b− a

ˆ b

a

f−1/(q−1)(y) dy

)q−1

≤M,

for every (a, b) ⊆ [0, 1].
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Let now p0 ∈ [1, q] be defined as the solution of the following equality

(1.8)
q − p0
q − 1

(Mp0)
1/(q−1) = 1.

We want to describe the Ap properties of f for any p < q. This is proved in [3]. More
precisely the following is true:

Theorem E. Let f : [0, 1) → R
+ be non-decreasing satisfying (1.7). Then

for every p ∈ (p0, q] we have that f ∈ L−1/(p−1)([0, 1)), where p0 is defined by (1.8).
Moreover, the following inequality is true

(1.9)

(

1

b− a

ˆ b

a

f(y) dy

)(

1

b− a

ˆ b

a

f−1/(p−1)(y) dy

)p−1

≤ M ′,

for any (a, b) ⊆ [0, 1], p ∈ (p0, q] where M ′ = M ′(p, q,M). Additionally, the result is
best possible. That is, we cannot decrease p0.

To be more precise we are interested in those p such that 1 < p ≤ q for which
f ∈ L−1/(p−1)([0, 1)) whenever f satisfies (1.7) for some M ≥ 1. In fact this is
equivalent to an inequality of the form of (1.9) for every such p. The exact best
possible range of those p is provided by the above theorem. Our aim in this paper is
to provide an alternative proof of the above fact by proving the following:

Theorem 3. Let f : [0, 1) → R
+ be non-decreasing satisfying (1.7) for all

subintervals of the form (0, t), t ∈ (0, 1]. That is, the following hold:

(1.10)

(

1

t

ˆ t

0

f(y) dy

)(

1

t

ˆ t

0

f−1/(q−1)(y) dy

)q−1

≤M,

for any t ∈ (0, 1]. Then, the following is true: For any p ∈ (p0, q], where p0 is defined
by (1.8), there exists M ′ =M ′(p, q,M) such that

(

1

t

ˆ t

0

f(y) dy

)(

1

t

ˆ t

0

f−1/(p−1)(y) dy

)p−1

≤M ′, for every t ∈ (0, 1].

Additionally, the result is best possible.

The analogue then of Theorem 3 for the class of intervals of the form (t, 1],
t ∈ [0, 1) can be proved in a similar way. The following now is true as can be seen in
[9].

Theorem F. If f : [0, 1) → R
+ satisfies (1.7) upon all subintervals of [0, 1) of

the form (0, t) and (t, 1), for t ∈ (0, 1], and if additionally f is monotone then (1.7)
is implied for the class of all subintervals (a, b) ⊆ [0, 1).

Thus Theorem 3 and it’s analogue that was mentioned above imply Theorem E.
The paper is organized as follows: In Section 2 we prove Theorem 2 and a

generalization of it named as Theorem 4, while in Section 3 we prove the application
mentioned above.



890 Eleftherios N. Nikolidakis

2. The Hardy inequality

Proof of Theorem 2. Let an, λn > 0 for every n = 1, 2, . . .. We are going to prove
for every N ∈ N, p > 0 and q ∈ (0, p] that the following inequality holds

(2.1)

N
∑

n=1

λn

(

An

Λn

)

−p

≤

(

p + 1

p

)q N
∑

n=1

λn

(

An

Λn

)

−p+q

a−q
n .

We will use the following well known elementary inequality

(2.2) pyp+1 − (p+ 1)yp ≥ −1,

for every u ≥ 0 and p > 0.
For its proof we consider the function F (y) = pyp+1 − (p + 1)yp, for y ≥ 0 and

find easily that its minimum is attained for y = 1. From (2.2) we deduce that

y−p + py ≥ p+ 1, for any y, p > 0.

We apply the last inequality for y = y1/y2, thus

(2.3) y−p
1 + py1y

−p−1
2 − (p+ 1)y−p

2 ≥ 0,

whenever y1, y2 > 0. For any fixed n ∈ N we define

y1 =

(

p

p+ 1

)1+q/p

· aq/pn ·

(

An

Λn

)1−q/p

, y2 =

(

p

p+ 1

)

An

Λn

.

Then

y−p
2 =

(

p

p+ 1

)

−p(
An

Λn

)

−p

, y−p
1 =

(

p

p+ 1

)

−p−q

a−q
n

(

An

Λn

)

−p+q

, and

y1y
−p−1
2 =

(

p

p+ 1

)

−p+q/p

aq/pn ·

(

An

Λn

)

−p−q/p

.

Thus from (2.3) we have that

(

p

p+ 1

)

−p−q

a−q
n

(

An

Λn

)

−p+q

+ p

(

p

p + 1

)

−p+q/p

aq/pn

(

An

Λn

)

−p−q/p

− (p+ 1)

(

p

p+ 1

)

−p(
An

Λn

)

−p

≥ 0 =⇒

(

p+ 1

p

)q

a−q
n

(

An

Λn

)

−p+q

+ p

(

p

p+ 1

)q/p

aq/pn

(

An

Λn

)

−p−q/p

≥ (p+ 1)

(

An

Λn

)

−p

.(2.4)

We multiply (2.4) by λn and sum the respective inequalities for n = 1, 2, . . . , N . As
a result we obtain the following

(

p + 1

p

)q N
∑

n=1

λna
−q
n

(

An

Λn

)

−p+q

+ p

(

p+ 1

p

)

−q/p N
∑

n=1

λna
q/p
n

(

An

Λn

)

−p−q/p

≥ (p+ 1)

N
∑

n=1

λn

(

An

Λn

)

−p

.(2.5)
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Suppose now that we have shown that

(2.6)

N
∑

n=1

λna
q/p
n

(

An

Λn

)

−p−q/p

≤

(

p+ 1

p

)q/p N
∑

n=1

λn

(

An

Λn

)

−p

.

Then immediately from (2.5) and (2.6) we conclude (2.1). Thus we just need to prove
the following inequality

(2.7)
N
∑

n=1

λna
ε
n

(

An

Λn

)

−p−ε

≤

(

p+ 1

p

)ε N
∑

n=1

λn

(

An

Λn

)

−p

,

for any ε ∈ (0, 1].
We first prove (2.7) for ε = 1. We state it as

Lemma 2.1. Let an, λn > 0, for n = 1, 2, . . . and An, Λn defined as above. Then
the following inequality is true for any N ∈ N

N
∑

n=1

λnan

(

An

Λn

)

−p−1

≤

(

p+ 1

p

) N
∑

n=1

λn

(

An

Λn

)

−p

.

Proof. We prove inductively the following inequality

(2.8)

N
∑

n=1

λn

(

An

Λn

)

−p

−

(

p

p+ 1

) N
∑

n=1

λnan

(

An

Λn

)

−p−1

≥
ΛN

p+ 1

(

AN

ΛN

)

−p

.

For N = 1 (2.8) is obviously an equality.
Let us suppose that (2.8) is true with N − 1, in place of N . Then we define

SN =

N
∑

n=1

[

λn

(

An

Λn

)

−p

−

(

p

p+ 1

)

λnan

(

An

Λn

)

−p−1]

=

N−1
∑

n=1

[

λn

(

An

Λn

)

−p

−

(

p

p+ 1

)

λnan

(

An

Λn

)

−p−1]

+ λN

(

AN

ΛN

)

−p

−

(

p

p+ 1

)

(AN − AN−1)

(

AN

ΛN

)

−p−1

.(2.9)

Using the induction step (2.9) becomes

SN ≥
ΛN−1

p+ 1

(

AN−1

ΛN−1

)

−p

+ λN

(

AN

ΛN

)

−p

−

(

p

p + 1

)

(AN − AN−1)

(

AN

ΛN

)

−p−1

=
ΛN−1

p+ 1

(

AN−1

ΛN−1

)

−p

+ λN ·

(

AN

ΛN

)

−p

−
p

p + 1
ΛN ·

(

AN

ΛN

)

−p

+
ΛN−1

p+ 1
· p ·

AN−1

ΛN−1

(

AN

ΛN

)

−p−1

.(2.10)
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Using now inequality (2.3) in the last term in (2.10) we conclude that

SN ≥
ΛN−1

p+ 1

(

AN−1

ΛN−1

)

−p

+ λN

(

AN

ΛN

)

−p

−
p

p+ 1
ΛN

(

AN

ΛN

)

−p

+
ΛN−1

p+ 1

(

(p + 1)

(

AN

ΛN

)

−p

−

(

AN−1

ΛN−1

)

−p)

=

(

AN

ΛN

)

−p(

λN −
p

p+ 1
ΛN + ΛN−1

)

=
ΛN

p+ 1

(

AN

ΛN

)

−p

.

Inequality (2.8) is proved. �

We now prove inequality (2.6). If we fix q ∈ (0, p), then using Lemma 2.1 and

applying Holder’s inequality with the exponents r =
p

q
and r′ =

r

r − 1
=

p

p− q
, we

get

N
∑

n=1

λna
q/p
n

(

An

Λn

)

−q−q/p(
An

Λn

)

−p+q

≤

{ N
∑

n=1

λnan

(

An

Λn

)

−p−1}q/p{ N
∑

n=1

λn

(

An

Λn

)

−p}1−q/p

≤

(

p+ 1

p

)q N
∑

n=1

λn

(

An

Λn

)

−p

.

In this way we derived the proof of equality (2.6). The proof of Theorem 2 is now
complete. �

We state now the following as

Corollary 2.1. If (an)n is a sequence of positive real numbers and p > 0, then
for every q ∈ (0, p], the following inequality is true

∞
∑

n=1

(

1

n

n
∑

k=1

ak

)

−p

≤

(

p+ 1

p

)q( ∞
∑

k=1

ak

)

−p+q

a−q
n .

Proof. Immediate from Theorem 2, if we set λn = 1 for every n ∈ N. �

From Corollary 2.1 and a standard approximation argument we obtain as a con-
sequence Theorem 1. It’s sharpness is easily verified and is proved as the sharpness
of (1.2). For it’s proof we just need to consider functions of the form f(x) = (x−a)d,

with d →
1

p

−

. Then the fraction of the integrals in (1.2) tends to the constant
(p+ 1

p

)q

.

Before we end this section we will give another one

Theorem 4. Let an, λn > 0 and An, Λn defined as in Theorem 2. Then for every
0 < q1 ≤ q2 ≤ p the following inequality holds

(2.11)
∞
∑

n=1

λn

(

An

Λn

)

−p+q1

aq1n ≤

(

p + 1

p

)q2−q1 ∞
∑

n=1

λn

(

An

Λn

)

−p+q2

a−q2
n .
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Proof. Fix N ∈ N. As in Lemma 1 we set for any q ∈ [0, p],

Jq =

N
∑

n=1

λn

(

An

Λn

)

−p+q

a−q
n .

Then using Hölder’s inequality and Theorem 2, we obtain

Jq1 ≤ Jq1/q2
q2

· J
1−q1/q2
0 ≤

(

p+ 1

p

)q2−q1

Jq2.

So the proof of inequality (2.11) is complete. �

3. Muckenhoupt weights on R

We will give now an application of the results in Section 2. More precisely we
will give the proof of Theorem 3. For this purpose we will use the following

Lemma 3.1. Let ψ : (0, 1] → [0,∞) such that limt→0 t ·ψ(t)
a = 0, where a is a

real constant greater than 1 and ψ(t) is a function that is continuous and monotone
on (0, 1]. Then the following is true for any u ∈ (0, 1]:

a

ˆ u

0

ψa−1(t)(t · ψ(t))′ dt = uψa(u) + (a− 1)

ˆ u

0

ψa(t) dt.

Proof. By our hypothesis the following integration by parts formula holds

a

ˆ u

0

tψa−1(t)ψ′(t) dt = uψa(u)−

ˆ u

0

ψa(t) dt.

We obtain the required identity now, by adding a
´ u

0
ψa(t) dt to both sides of the

above equation. �

We are now ready to continue with the

Proof of Theorem 3. Let f : [0, 1) → R
+ be non-decreasing which satisfies the

following inequality
(

1

t

ˆ t

0

f

)(

1

t

ˆ t

0

f−1/(q−1)

)q−1

≤M,

for any t ∈ (0, 1], where q is fixed such that q > 1.
Additionally, we suppose that there exists a constant ε = εf > 0 such that

f(t) ≥ ε, ∀ t ∈ [0, 1). We define now the following function h : [0, 1) → R
+ by

h(t) = f−1/(q−1)(t), for any t ∈ [0, 1). Thus, h is bounded on [0, 1) by ε−1/(q−1).

We apply now Lemma 3.1 for a =
q − 1

p− 1
, which is greater than 1 whenever

p ∈ [1, q) and for ψ defined by: ψ(t) =
1

t

t́

0

f−1/(q−1). Note that, since f is non-

decreasing and h is bounded above the hypothesis of Lemma 3.1 are satisfied. As a
consequence we have the following identity

q − 1

q − p

ˆ t

0

f−1/(q−1)(s)

(

1

s

ˆ s

0

f−1/(q−1)

)(q−p)/(p−1)

ds−

ˆ t

0

(

1

s

ˆ s

0

f−1/(q−1)

)(q−1)/(p−1)

ds

=
p− 1

q − p

1

t(q−p)/(p−1)

(
ˆ t

0

f−1/(q−1)

)(q−1)/(p−1)

.
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Moreover, we define the following function hy(x) with variable x, for any constant
y > 0 by

hy(x) =
q − 1

q − p
yx(q−p)/(p−1) − x(q−1)/(p−1), for x ≥ y.

Then h′y(x) =
q−1
p−1

x(q−1)/(p−1)−1(y − x) ≤ 0, for any x ≥ y. Thus hy is decreasing on

[y,+∞). So if y ≤ x ≤ w we must have that hy(x) ≥ hy(w). We set now for any
s ∈ (0, t]

x =
1

s

ˆ s

0

f−1/(q−1), y = f−1/(q−1)(s), c =M1/(q−1), z =

(

1

s

ˆ s

0

f

)

−1/(q−1)

.

Then, by our hypothesis we have that y ≤ x ≤ w = cz, since f is non-decreasing and
(1.10) is satisfied for f . Thus hy(x) ≥ hy(w), that is

q − 1

q − p
f−1/(q−1)(s)

(

1

s

ˆ s

0

f−1/(q−1)

)(q−p)/(p−1)

−

(

1

s

ˆ s

0

f−1/(q−1)

)(q−1)/(p−1)

≥
q − 1

q − p
f−1/(q−1)(s)

(

1

s

ˆ s

0

f

)

−1/(p−1)+1/(q−1)

cq−p/(p−1) − c(q−1)/(p−1)

(

1

s

ˆ s

0

f

)

−1/(p−1)

.

Integrating the inequality just mentioned over (0, t) and using the equality that is
presented above we have after canceling a suitable power of c, the following inequality

q − 1

q − p

ˆ t

0

f−1/(q−1)(s)

(

1

s

ˆ s

0

f

)

−1/(p−1)+1/(q−1)

ds

≤ c

ˆ t

0

(

1

s

ˆ s

0

f

)

−1/(p−1)

ds+
p− 1

q − p
M1/(p−1)t

(

1

t

ˆ t

0

f

)

−1/(p−1)

·
1

c(q−p)/(p−1)
.(3.1)

We use now Theorem 1 with
1

p− 1
in place of p and

1

q − 1
in place of q, so we have

that

(3.2)

ˆ t

0

(

1

s

ˆ s

0

f

)

−1/(p−1)

ds ≤ p1/(q−1)

ˆ t

0

(

1

s

ˆ s

0

f

)

−1/(p−1)+1/(q−1)

f−1/(q−1) ds.

Combining now (3.1) and (3.2) we see immediately that
[

1− p1/(q−1) q − p

q − 1
c

]

1

t

ˆ t

0

f−1/(q−1)(s)

(

1

s

ˆ s

0

f

)

−1/(p−1)+1/(q−1)

ds

≤ M1/(p−1) p− 1

q − 1

1

c(q−p)/(p−1)

(

1

t

ˆ t

0

f

)

−1/(p−1)

.(3.3)

If we restrict now p to the interval (p0, q] where p0 ∈ [1, q] is the unique root of the
equation q−p0

q−1
(Mp0)

1/(q−1) = 1, we must have that for such p the following constant

K = K(p, q, c) = 1− p1/(q−1) q−p
q−1

· c is positive, and if we note that

(

1

s

ˆ s

0

f

)

−1/(p−1)+1/(q−1)

≥ f−1/(p−1)+1/(q−1)(s)

which is true since p < q and f is non-decreasing, we must have by (3.3) that

1

t

ˆ t

0

f−1/(p−1)(s) ds ≤ Λ

(

1

t

ˆ t

0

f

)

−1/(p−1)

,
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where Λ = Λ(p, q, c) is a positive real constant.
In this way we derived our result, for functions f : [0, 1) → R

+ bounded below
by a constant ε > 0. A truncation argument give the result for arbitrary f .

At last we need to prove that our result is sharp. We search for a function of the
form

f(t) = ta, with 0 < a < q − 1.

For any such a we have that
(

1

t

ˆ t

0

f

)(

1

t

ˆ t

0

f−1/(q−1)

)

=
1

a + 1

(

p− 1

q − 1− a

)q−1

=M(q, a)

for any t ∈ (0, 1], as can be easily seen.
Thus, f satisfies the Aq condition for any q > a+ 1. If we set a = p0 − 1, where

p0 is defined as above we have that f satisfies the Ap condition for any p > p0, while
for p = p0 it is no longer satisfied. Thus our theorem is sharp and by this way we
end it’s proof. �
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