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Abstract. A holomorphic map between closed Riemann surfaces is completely determined

by the induced homomorphism of the first homology groups with integer coefficients. This is a

consequence of Martens’ theorem proven in [6]. In this paper, We study holomorphic maps of

closed Riemann surfaces in the context of cohomology and extend Martens’ theorem.

1. Introduction

A classic theorem of Hurwitz [4] states that if an automorphism of a closed
Riemann surface of genus greater than one induces the identity on the first homology
group then the automorphism is the identity. Accola [1] and Gilman [3] generalized
this theorem.

They studied automorphisms of Riemann surfaces and proved several theorems
concerning rigidity of automorphisms in terms of homology groups. One of their
results interesting is the following which firstly proved by Accola and later Gilman
proved a theorem which includes it as a corollary. In the following theorem, χi · χj

denotes the intersection number of χi and χj .

Theorem 1.1. (Accola) Let X be a closed Riemann surface of genus greater than
one. Let T be an automorphism of X. Suppose that there exist four independent
cycles χ1, χ2, χ3, χ4 so that χ1 · χ3 = 1, χ2 · χ4 = 1, otherwise χi · χj = 0 and that
T (χi) = χi for i = 1, 2, 3, 4. Then T is the identity.

Martens [7] proposed several problems in the theory of closed Riemann surfaces
and one topic was about their results. He wrote that it would be interesting to try
and interpret their results in the context of Jacobian varieties.

Martens [6] himself generalized Hurwitz’ theorem for holomorphic maps between
closed Riemann surfaces of possibly different genera.

Theorem 1.2. (Martens) Let X̃, X1, X2 be closed Riemann surfaces of genera

≥ 1 and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps. Assume
that there exists a homomorphism H of the first homology groups from H1(X1,Z)

onto H1(X2,Z) which commutes with the induced homomorphisms fi∗ : H1(X̃,Z) →
H1(Xi,Z) (i = 1, 2), i.e., f2∗ = H ◦ f1∗. Then there exists a unique (modulo a
translation in genus 1) holomorphic map h : X1 → X2 which induces the given ho-
momorphism H , and h satisfies f2 = h ◦ f1.

Interpreting Theorem 1.1 and Theorem 1.2 in terms of H1(X,Z) (the dual for
H1(X,Z), that is to say in the context of dual Jacobian varieties rather than Jacobian
varieties), we can generalize these theorems for holomorphic maps of closed Riemann
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surfaces [10].

Theorem 1.3. Let X̃, X1, X2 be closed Riemann surfaces of genera greater than

one and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps. Assume that
there exist ai, bi ∈ H1(Xi,Z) (i = 1, 2) so that

´́

Xi

ai ∧ bi = 1 (i = 1, 2) and that

f ∗

1 a1 = f ∗

2 a2 and f ∗

1 b1 = f ∗

2 b2 in H1(X̃,Z). Then there exists a conformal map
h : X1 → X2 which satisfies f2 = h ◦ f1.

The purpose of this paper is to present the following Martens-type theorem which
is in the context of cohomology.

Theorem 1.4. Let X̃, X1, X2 be closed Riemann surfaces of genera greater
than one and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps and

f ∗
i : H

1(Xi,C) → H1(X̃,C) be the induced homomorphisms of the cohomology
groups. Assume that there exists a homomorphism τ : H1(X2,C) → H1(X1,C) such
that f ∗

2 = f ∗

1 ◦ τ holds. Then there exists a unique holomorphic map h : X1 → X2

such that h∗ = τ , and h satisfies f2 = h ◦ f1.

From Theorem 1.4, one can derive the following without much effort.

Corollary 1.5. Let X̃, X1, X2 be closed Riemann surfaces of genera greater

than one and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps and

f ∗

i : H
1(Xi) → H1(X̃) be the induced homomorphisms of the spaces of holomorphic

differential 1-forms. Assume that there exists a homomorphism τ : H1(X2) → H1(X1)
such that f ∗

2 = f ∗

1 ◦τ holds. Then there exists a unique holomorphic map h : X1 → X2

such that h∗ = τ , and h satisfies f2 = h ◦ f1.

As an application of Theorem 1.4, we have the following which is an extension of
Theorem 1.2. We assume here that the genera of Riemann surfaces are greater than
one, although Theorem 1.2 does not exclude the case where genus is one.

Corollary 1.6. Let X̃, X1, X2 be closed Riemann surfaces of genera greater

than one and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps. Assume
that there exists a homomorphism of the first homology groups with Q-coefficients
H : H1(X1,Q) → H1(X2,Q) which commutes with the induced homomorphisms

fi∗ : H1(X̃,Q) → H1(Xi,Q) (i = 1, 2), i.e., f2∗ = H ◦ f1∗. Then there exists a unique
holomorphic map h : X1 → X2 which induces the given homomorphism H , and h
satisfies f2 = h ◦ f1.

In [6] Martens made mention of the following problem: Given a holomorphic

map of closed Riemann surfaces f : X̃ → X and an automorphism T of X̃, find a
condition for the existence of an automorphism τ of X with τ ◦ f = f ◦ T .

If the induced homomorphism

f∗ : H1(X̃,Z) → H1(X,Z)

is represented by a matrix N and

T∗ : H1(X̃,Z) → H1(X̃,Z)

is represented by a matrix M , the existence of such τ is equivalent to the existence of
an integer matrix M ′ such that M ′N = NM by Theorem 1.2. But by Corollary 1.6,
the problem is just to find a solution of M ′N = NM in Q-coefficient matrices so
now it is a problem of linear algebra.
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Another application of Theorem 1.4 is about divisors of meromorphic functions.

Corollary 1.7. Let X be a closed Riemann surface of genus greater than one
and let n be an integer greater than one. There are at most finitely many pairs of
points (p, q) ∈ X × X such that nq − np is a principle divisor, i.e., there exists a
meromorphic function f on X with (f) = nq − np.

From the Weierstrass gap Theorem, if we drop the assumption of the zero divisor,
for an arbitrary p ∈ X and an arbitrary n ≥ 2g where g is the genus of X, there
exits a meromorphic function whose polar divisor is np.

The proof of Theorem 1.4 uses Jacobian varieties and the canonical map from a
closed Riemann surface to a projective space. First, we will obtain a relation between
homomorphisms of Jacobian varieties under the theorem’s assumption. Then we will
observe their actions on embedded Riemann surfaces in Jacobians to compare with
the canonical map from a Riemann surface to a projective space.

2. Preliminaries

First, we recall some notions from complex tori (for details, see e.g. [5]). Let V
be a complex vector space of dimension n and Γ a lattice in V . The quotient T = V/Γ

is called a complex torus of dimension n. Denote by T̂ = V ∗/Γ̂ the dual where V ∗

is the space of C-antilinear functionals on V and Γ̂ = {l ∈ V ∗ : Im l(Γ) ⊆ Z} is the
dual lattice of Γ. We have

̂̂
T = T.

Let f be a homomorphism between two complex tori T = V/Γ and T ′ = V ′/Γ′. Then,
there is a unique C-linear map F : V → V ′ with F (Γ) ⊆ Γ′ inducing f. We call F
the analytic representation of f. For the analytic representation F : V → V ′ of a
homomorphism f : T → T ′, the dual map tF : V ′∗ → V ∗ associating to an antilinear
functional l ∈ V ′∗ the antilinear functional l ◦ F ∈ V ∗ induces a homomorphism

f̂ : T̂ ′ → T̂ , since tF (Γ̂′) ⊆ Γ̂. We call f̂ the dual map of f. We note

̂̂
f = f.

If h : T ′ → T ′′ is another homomorphism of complex tori, then

ĥf = f̂ ĥ.

For any positive integer n define an endomorphism of a complex torus

nT : T → T

by
x 7→ nx.

Then
n̂T = n

T̂
.

Now we turn to Riemann surfaces. General references for the theory of Riemann
surfaces are Farkas and Kra [2], Springer [9], and Miranda [8] for the language of
algebraic geometry. Let X be a closed Riemann surface of genus g > 1. Denote by
H1(X) the space of holomorphic differential 1-forms on X.

(1) H1(X,Z) →֒ H1(X,C) ∼= H1(X)⊕H1(X)

holds.
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Set Ω = Hom(H1(X),C). The Jacobian variety J(X) := Ω/H1(X,Z) is a com-

plex torus of dimension g, and considering H := H1(X) of C-antilinear forms on Ω,

we will denote by Ĵ(X) = H/H1(X,Z) the dual Jacobian variety.
Let {ζ1, · · · , ζg} be a basis for H1(X). Identify Ω = Cg. Then the Abel–Jacobi

map
ϕX : X → Cg/H1(X,Z)

is given by

ϕX(p) =
t
(ˆ p

p0

ζ1, · · · ,

ˆ p

p0

ζg

)
,

where p0 ∈ X is fixed. This map is an embedding. For any given holomorphic map
between closed Riemann surfaces

f : X̃ → X,

there exists a homomorphism between Jacobians

f : J(X̃) → J(X)

with
f ◦ ϕ

X̃
= ϕX ◦ f.

The canonical map for X
φX : X → Pg−1

is defined by φX(P ) = (ζ1(P ), · · · , ζg(P )) in homogeneous coordinates. The following
is well known (see e.g. [2], [8]).

Theorem 2.1. The canonical map is an embedding if and only if X is not
hyperelliptic. For a hyperelliptic X, the canonical map is a composition of the double
covering map X → P1 and an embedding P1 → Pg−1.

3. Proofs of Theorem 1.4 and its corollaries

Now we will prove Theorem 1.4. The given homomorphism τ maps H1(X2) to
H1(X1). Indeed, for an arbitrary α ∈ H1(X2) we can write

τα = β1 + β2, β1, β2 ∈ H1(X1)

by the decomposition (1), so

f ∗

1 ◦ τ(α) = f ∗

1 (β1 + β2) = f ∗

1β1 + f ∗

1β2 = f ∗

2α.

The homomorphisms f ∗

1 , f
∗

2 are compatible with the decomposition (1) since f1 and
f2 are holomorphic maps. Thus we have f ∗

1β2 = 0 which is equivalent to β2 = 0.

Similarly, τ maps H1(X2) to H1(X1).
Let α ∈ H1(X2,Z). Then τα must be in H1(X1,Q) since f ∗

1 ◦ τ (α) = f ∗

2α ∈

H1(X̃,Z). Thus there exists a positive integer n such that n · τα ∈ H1(X1,Z) for
any α ∈ H1(X2,Z) since the cohomology groups are of finite rank. This implies that
n · τ defines a homomorphism of the dual Jacobian varieties and we denote it by

nτ : Ĵ(X2) → Ĵ(X1).

We denote by fi the homomorphisms of Jacobians induced from fi (i = 1, 2). Then
we have a relation between homomorphisms of the dual Jacobians

f̂2 ◦ nĴ(X2)
= f̂1 ◦ nτ,
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and considering the dual of these maps, we have a relation between homomorphisms
of Jacobians

(2) nJ(X2) ◦ f2 = n̂τ ◦ f1.

Let {ζ1, · · · , ζγ2} be a basis for H1(X2). For any given local coordinate z around
p ∈ X2, we express the differential as

ζj = ωj(z) dz.

We put
X ′ = nJ(X2)(ϕX2

(X2)).

The restricted map
nJ(X2)|ϕX2

(X2) : ϕX2
(X2) → X ′

is unramified. Thus we can view z as a local coordinate around

p′ := nJ(X2)(ϕX2
(p)) ∈ X ′

(although X ′ may have singularities as a subvariety of J(X2)). Then p′ can be written
as

p′ = t
(
n

ˆ p

p0

ζ1, · · · , n

ˆ p

p0

ζγ2

)
.

We express nJ(X2)|ϕX2
(X2) in terms of the local coordinate z and differentiate this

with respect to z to define
π : X ′ → Pγ2−1

by
π(p′) = t(n ζ1(p), · · · , n ζγ2(p))

in homogenous coordinates and this is expressed as

π(z) = t(nω1(z), · · · , n ωγ2(z))

in terms of the local coordinate. (Strictly speaking, π is defined away from singular-
ities if they exist.) From Theorem 2.1, π(X ′) ≃ X2 or π(X ′) ≃ P1.

If π(X ′) ≃ X2, then X ′ ≃ X2. By (2),

nJ(X2) ◦ f2 ◦ ϕX̃
= n̂τ ◦ f1 ◦ ϕX̃

.

Thus we have

nJ(X2) ◦ ϕX2
◦ f2 = n̂τ ◦ ϕX1

◦ f1 : X̃ → X ′ ≃ X2,

and we see that there exists a holomorphic map h : X1 → X2 which satisfies f2 =
h ◦ f1. Observing the construction of h, we see that the homomorphism h : J(X1) →
J(X2) with ϕX2

◦ h = h ◦ ϕX1
satisfies h(x) = n−1 · n̂τ (x) for all x ∈ J(X1). Thus

the analytic representation of ĥ must be τ |
H1(X2)

and this implies that h∗ = τ . We

will show the uniqueness of h such that h∗ = τ . Suppose that another holomorphic
map h1 : X1 → X2 satisfies h∗

1 = τ. Then the homomorphism h1 : J(X1) → J(X2)

induced from h1 satisfies ĥ1 = τ |
H1(X2)

, hence ĥ1 = ĥ. Thus h1 = h and by ϕX2
◦ h =

h ◦ ϕX1
= ϕX2

◦ h1, we see that h1 = h holds.
If π(X ′) ≃ P1, then X ′ ≃ X2 or X ′ ≃ P1 since deg (π ◦ ϕX2

) = 2. But X ′ ≃ P1

cannot happen because no projective line can be contained in an abelian variety.
Thus we have X ′ ≃ X2 and repeating the argument given above we complete the
proof. �



946 Masaharu Tanabe

Proof of Corollary 1.5. By the decomposition (1), any α ∈ H1(X,C) can be writ-
ten as α = α1 + α2, where α1, α2 ∈ H1(X). Thus we can extend the homomorphism
τ : H1(X2) → H1(X1) to

τ̃ : H1(X2,C) → H1(X1,C)

by
τ̃α = τα1 + τα2.

The extended homomorphism τ̃ also satisfies f ∗

1 ◦ τ̃ = f ∗

2 : H
1(X2,C) → H1(X̃,C),

hence we can apply Theorem 1.4. �

Proof of Corollary 1.6. Taking the tensor product with C, we have a homomor-
phism of the first homology groups with C-coefficients H : H1(X1,C) → H1(X2,C)

which commutes with the induced homomorphisms fi∗ : H1(X̃,C) → H1(Xi,C) (i =
1, 2), i.e., f2∗ = H ◦ f1∗. Considering the dual of the maps, we have

tH : H1(X2,C) → H1(X1,C)

with
f ∗

2 = f ∗

1 ◦ tH : H1(X2,C) → H1(X̃,C).

Applying Theorem 1.4 to tH , we complete the proof. �

Proof of Corollary 1.7. From the proof of Theorem 1.4, we see that the degree of
nJ(X)|ϕX(X) : ϕX(X) → nJ(X) ◦ ϕX(X) is one. Thus a pair of points (p, q) ∈ X ×X
with n · ϕX(p) = n · ϕX(q) corresponds to a singular point of nJ(X) ◦ ϕX(X), and
hence the number of such pairs (p, q) is finite. Applying Abel’s theorem to such pairs
of points, we obtain the result. �
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