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Abstract. For p ≥ 1, the p-integrable Teichmüller space is the metric subspace of the Teich-

müller space composed of the Teichmüller equivalence classes with p-integrable Beltrami coefficient.

In this paper, for p ≥ 2, we introduce a complex structure on the p-integrable Teichmüller space of

an arbitrary Fuchsian group satisfying a certain geometric condition. As an application, we show

the coincidence of two canonical distances on the metric subspace.

1. Introduction

Let Γ be a Fuchsian group acting on the unit disk ∆ = {|z| < 1} of the complex
plane C and Bel(Γ) be the open unit ball of the Banach space of measurable (−1, 1)-
differentials on ∆ for Γ with finite L∞-norm

‖µ‖∞ = ess sup
z∈∆

|µ(z)|.

Here a function µ on ∆ is a (−1, 1)-differential for Γ if

(µ ◦ γ)
γ′

γ′
= µ

for every γ ∈ Γ. Each element of Bel(Γ) is called a Beltrami coefficient for Γ. For
µ, ν ∈ Bel(Γ), µ is Teichmüller equivalent to ν if

(1.1) fµ|∂∆ = f ν |∂∆,

where fµ is the quasiconformal self-mapping on ∆ with Beltrami coefficient µ and
fixes 1, i and −1. The Teichmüller space T (Γ) of Γ is the quotient space of Bel(Γ) by
the Teichmüller equivalence relation. Let ̟ be the quotient map of Bel(Γ) onto T (Γ)
and [µ] be the Teichmüller equivalence class represented by µ ∈ Bel(Γ). Especially,
the Teichmüller equivalence class represented by the zero function on ∆ is called the
base point of T (Γ), denoted by 0.

For p ≥ 1, a Beltrami coefficient µ ∈ Bel(Γ) is p-integrable if µ has a finite
hyperbolic Lp-norm

(1.2) ‖µ‖p =

(
¨

N

|µ(z)|pρ(z)2 dx dy

)
1
p

,

where N is a fundamental region on ∆ for Γ and ρ(z) = (1− |z|2)−1 is the Poincaré
metric on ∆. Let Aelp(Γ) be the set of p-integrable Beltrami coefficients. A Teichmül-
ler equivalence class τ ∈ T (Γ) is p-integrable if τ has a p-integrable Beltrami coefficient
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as its representative. The p-integrable Teichmüller space T p(Γ) of Γ is defined as the
subset of T (Γ) composed of p-integrable Teichmüller equivalence classes.

Let ∆∗ be the exterior of ∆ in the extended complex plane Ĉ. It is known that
for every Fuchsian group Γ, T (Γ) has a complex structure modeled on the Banach
space B(Γ) of holomorphic quadratic differentials on ∆∗ for Γ with finite hyperbolic
L∞-norm

‖ϕ‖∞ = sup
z∈∆∗

|ϕ(z)|ρ∗(z)
−2,

where ρ∗(z) = (|z|2 − 1)−1 is the Poincaré metric on ∆∗. This fact results from a
homeomorphism of T (Γ) into B(Γ) called the Bers embedding. In this paper, we
prove that the p-integrable Teichmüller space T p(Γ) has a complex structure if p ≥ 2
and Γ has a certain geometric condition.

Let Ap(Γ) be the Banach space of holomorphic quadratic differentials on ∆∗ for
Γ with finite hyperbolic Lp-norm

(1.3) ‖ϕ‖p =

(
¨

N∗

|ϕ(z)|pρ∗(z)
2−2p dx dy

)
1
p

.

Here N∗ is a fundamental region on ∆∗ for Γ. What we have to show is that the
Bers embedding is a homeomorphism of T p(Γ) into Ap(Γ). We prepare for the proof
in Section 2. Specifically, we characterize each point of T p(Γ) by its Douady–Earle
extension, which is a quasiconformal self-mapping on ∆ with conformal naturality
(see [6]). Originally, Cui [5] proved this result in the case of T 2(1) and Tang [20]
extended it to T p(1) for p ≥ 2, where 1 = {id∆} is the trivial group. In the proof, they
applied the Dirichlet integral of harmonic self-maps on ∆ obtained by the Poisson
integral (see [4]). We extend their arguments to the case of every Fuchsian group
by combining the invariant formula of the Bergmann kernel and a partition of the
integral in ∆, that is,

(1.4)

¨

∆

· · · dx dy =
∑

γ∈Γ

¨

γ(N)

· · · dx dy.

In Section 3, we prove the continuity of the Bers embedding β : T p(Γ)→ Ap(Γ).
The proof is composed of two steps. One is to compare between the distance on
Aelp(Γ) induced by norm (1.2) and the one on β(T p(Γ)) induced by norm (1.3). The
other is to show the continuity of the self-map of Aelp(Γ) that maps each µ ∈ Aelp(Γ)
to the Beltrami coefficient of the Douady–Earle extension with boundary value fµ|∂∆.
In Section 4, we show the continuity of the inverse map β−1 by the similar way to
the whole space T (Γ). Indeed, we construct a local continuous section for each point
in β(T p(Γ)). For the proof, we need to assume the geometric condition for Γ we
mentioned previously.

In Section 5, we introduce the right translation map for each point τ in the
Teichmüller space, which is a homeomorphism between two Teichmüller spaces and
switching τ to the base point (see [16], Chapter V.5.4). It is shown that the right
translation map for each point of T p(Γ) is a biholomorphic map, which is used in the
next section.

As an application of the main result, we will prove the coincidence of two canon-
ical distances on T p(Γ) in Section 6. One is the Teichmüller distance, which is the
distance proper to the Teichmüller space. The other is the Kobayashi distance, which
is defined on complex manifolds and a generalization of the hyperbolic distance on
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∆. It is known that for every Fuchsian group Γ, the Teichmüller distance on T (Γ)
coincides with the Kobayashi distance, which is proved by Gardiner [10]. Earle, Gar-
diner and Lakic [8] proved that the Teichmüller distance coincides with the Kobayashi
distance on the metric subspace of all Teichmüller equivalence classes represented by
asymptotically conformal maps. Hu, Jiang and Wang [13] showed this result more
directly in T (1). In connection with these facts, the author [21] gave a sufficient
condition for a metric subspace of T (1) under which the Teichmüller distance on
the subspace coincides with the Kobayashi distance. We will extend this result by
using a certain exhaustion for non-compact Riemann surfaces, which is used in the
triangulation of them.

2. Characterization of T p(Γ) by Douady–Earle extensions

Throughout this paper, we always assume that p ≥ 2 without any special men-
tion.

In this section, we characterize each point of T p(Γ) by the p-integrability of
the Beltrami coefficient of its Douady-extension. First, let us explain about the
Douady–Earle extension. Let h be a sense-preserving homeomorphism of ∂∆. The
Douady–Earle extension w = E(h)(z) is defined by the equation

Fh(z, w) =
1

2π

ˆ

∂∆

h(t)− w

1− w̄h(t)

1− |z|2

|z − t|2
|dt| = 0.

This extension has the conformal naturality, that is, for any two Möbius transforma-
tions g1, g2 preserving ∆, it follows that

(2.1) E(g1 ◦ h ◦ g2) = g1 ◦ E(h) ◦ g2.

If h is quasisymmetric, then E(h) is a diffeomorphism and a quasiconformal self-
mapping on ∆. Hence for τ ∈ T (Γ) and µ ∈ τ , E(fµ|∂∆) is a quasiconformal
self-mapping on ∆. By the definition of the Teichmüller equivalence relation (1.1),
the map E can be regarded as the map on T (Γ). We rewrite E(fµ|∂∆) as E(τ).
Furthermore, the conformal naturality (2.1) implies the Beltrami coefficient σ(τ) of
E(τ) is a (−1, 1)-differential for Γ. Then σ(τ) is a representative of τ . The Douady–
Earle extension has an effective estimate of its Jacobian, which is used many times
in this paper.

Proposition 2.1. [6, 21] Let K ≥ 1. There exists a constant C1, C2 > 0 depend-

ing only on K such that for every z ∈ ∆ and every K-quasiconformal Douady–Earle

extension f ,

C1ρ(z) ≤ (|∂f(z)| − |∂̄f(z)|)ρ(f(z))

≤ (|∂f(z)| + |∂̄f(z)|)ρ(f(z)) ≤ C2ρ(z).
(2.2)

Douady–Earle [6] proved this proposition first and the author [21] gave another
proof. Proposition 2.1 implies that there exists a constant C > 0 depending only on
K such that for any z ∈ ∆ and any K-quasiconformal Douady–Earle extension,

(2.3) Jf(z)ρ(f(z))
2 ≤ Cρ(z)2, Jf−1(z)ρ(f−1(z))2 ≤ Cρ(z)2,

where Jf is the Jacobian of f .
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Before the proof of the characterization of T p(Γ), let us define some notations.
For τ ∈ T (Γ) and µ ∈ τ , let

Γτ = Γµ = {γµ = fµ ◦ γ ◦ (fµ)−1|γ ∈ Γ}.

By the definition of the Teichmüller equivalence relation (1.1), it follows that Γµ = Γν

for any µ, ν ∈ τ , which implies Γτ is well-defined. Hereafter, we use these represen-
tations properly depending on the situation. Let µ−1 be the Beltrami coefficient of
(fµ)−1 and τ−1 be the point of T (Γτ ) represented by µ−1.

Given w ∈ ∆ arbitrarily. Let γw(z) = (z−w)/(1− w̄z) and Hw be the harmonic
map on ∆ with boundary value γw ◦ fµ|∂∆ for µ ∈ Bel(Γ) and

D(Hw) =

¨

∆

(|∂Hw(z)|2 + |∂̄Hw(z)|2) dx dy

be the Dirichlet integral of Hw.
As the first step of the characterization of T p(Γ), we show the following proposi-

tion.

Proposition 2.2. Let τ ∈ T (Γ) arbitrarily. If τ−1 belongs to T p(Γτ ), then

σ(τ)−1 belongs to Aelp(Γτ ).

Proof. Assume that τ−1 ∈ T p(Γτ ). Then there exists ν ∈ τ−1 such that ν belongs
to Aelp(Γτ ). It follows from the proof of Theorem 2.1 in [20] that

(D(Hw)− π)sρ(w)2 ≤
C3

π

¨

∆

|ν(ζ)|p
dξ dη

|1− w̄ζ |4
,

where s = p/2 and C3 = (2π/(1 − ‖ν‖2∞))s. Set Ω = E(τ)(N). Recall that N is
a fundamental region on ∆ for Γ. Then Ω becomes a fundamental region on ∆ for
Γτ . Let K(ζ, w) = (1 − w̄ζ)−4 be the Bergman kernel on ∆. By formula (1.4) and
the invariant formula of the Bergman kernel valid for all Möbius transformations, we
have
¨

∆

|ν(ζ)|p|K(ζ, w)| dξ dη =
∑

γµ∈Γτ

¨

γµ(Ω)

|ν(ζ)|p|K(ζ, w)| dξ dη

=
∑

γµ∈Γτ

¨

Ω

|ν(γµ(z))|p|K(γµ(z), w)||(γµ)′(z)|2 dx dy

=

¨

Ω

|ν(z)|p
∑

γµ∈Γτ

|K(z, (γµ)−1(w))||((γµ)−1)′(w)|2 dx dy.

Hence by Fubini’s theorem and formula (1.4) again, we obtain that
¨

Ω

(D(Hw)− π)sρ(w)2 du dv

≤
C3

π

¨

Ω

|ν(z)|p
(
¨

∆

|K(z, w)| du dv

)

dx dy = C3‖ν‖
p
p.

(2.4)

Since σ(τ) ∈ Bel(Γ), σ(τ)−1 belongs to Bel(Γτ ). It follows from the proof of The-
orem 1 in [5] that there exists a constant C4 > 0 depending only on ‖σ(τ)‖∞ such
that

|σ(τ)−1(w)|2

1− |σ(τ)−1(w)|2
≤ C4(D(H

w)− π)
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for every w ∈ ∆. By inequality (2.4), we obtain

‖σ(τ)−1‖pp ≤

¨

Ω

(

|σ(τ)−1(w)|2

1− |σ(τ)−1(w)|2

)s

ρ(w)2 du dv

≤ C4

¨

Ω

(D(Hw)− π)sρ(w)2 du dv ≤ C3C4‖ν‖
p
p <∞.

Therefore σ(τ)−1 ∈ Aelp(Γτ ). �

The next lemma means the relation between σ(τ) and σ(τ)−1 in p-integrability.

Lemma 2.3. For every τ ∈ T (Γ), σ(τ) belongs to Aelp(Γ) if and only if σ(τ)−1

belongs to Aelp(Γτ ).

Proof. Assume σ(τ) ∈ Aelp(Γ). By inequality (2.3), it follows that
¨

E(τ)(N)

|σ(τ)−1(w)|pρ(w)2 du dv

=

¨

N

|σ(τ)−1(E(τ)(z))|pρ(E(τ)(z))2JE(τ)(z) dx dy

≤ C

¨

N

|σ(τ)(z)|pρ(z)2 dx dy <∞.

Thus it follows that σ(τ) ∈ Aelp(Γ). By the similar computation, the converse clearly
holds. �

Let us show the main result in this section.

Theorem 2.4. Let p ≥ 2. For every τ ∈ T (Γ), the following three conditions

are equivalent:

(1) τ ∈ T p(Γ);
(2) τ−1 ∈ T p(Γτ );
(3) σ(τ) ∈ Aelp(Γ).

Proof. It is sufficient to show that condition (1) implies condition (2). Assume
that condition (1) holds. Noting that (τ−1)−1 = τ , σ(τ−1)−1 belongs to Aelp(Γ) by
Proposition 2.2. It follows from Lemma 2.3 that σ(τ−1) belongs to Aelp(Γτ ). This
implies that τ−1 ∈ T p(Γτ ). �

3. Continuity of the Bers embedding

In this section, we show the continuity of the Bers embedding β of T p(Γ) into
Ap(Γ). Let us introduce a topology in Aelp(Γ) by the norm ‖ · ‖p,∞ = ‖ · ‖p + ‖ · ‖∞.
Define a distance on T p(Γ) as

ℓp,∞(Γ)(τ1, τ2) = inf

{

∥

∥

∥

∥

µ1 − µ2

1− µ1µ2

∥

∥

∥

∥

p,∞

|µk ∈ ̟
−1(τk) ∩ Aelp(Γ)

}

for τk ∈ T p(Γ) (k = 1, 2). We abbreviate ℓp,∞(Γ) as ℓp,∞ unless pointing out the
difference between Fuchsian groups. The proof of the continuity of β has two steps:
One is that the hyperbolic Lp-norm of the Bers embedding can be estimated from
above by that of σ and the other is that the map σ : (T p(Γ), ℓp,∞)→ (Aelp(Γ), ‖·‖p,∞)
is continuous.
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Let us prepare for the proof. For µ ∈ Bel(Γ), we extend µ to a measurable
function on C by setting 0 on ∆∗. Let fµ be the quasiconformal self-mapping on C
with extended µ satisfying

(3.1) lim
z→∞

(fµ(z)− z) = 0.

If f is a conformal map in an open neighborhood D of ∞ and fixes ∞, then f has a
power series expansion

(3.2) f(z) = Az + a0 +
a1
z

+
a2
z2

+ · · ·

for z ∈ D. Since fµ is conformal in ∆∗ and satisfies condition (3.1), fµ has a series
expansion

(3.3) fµ(z) = z +
b1
z
+
b2
z2

+ · · ·

for z ∈ ∆∗.
Let Sfµ be the Schwarzian derivative of fµ|∆∗, that is,

Sfµ(z) =

(

f ′′
µ(z)

f ′
µ(z)

)′

−
1

2

(

f ′′
µ(z)

f ′
µ(z)

)2

for z ∈ ∆∗. The map Φ : µ 7→ Sfµ is called the Bers projection of Bel(Γ) into B(Γ).
It follows that the Teichmüller equivalence relation (1.1) is equivalent to fµ|∆∗ =
fν |∆∗ . Thus Φ can be projected to the map T (Γ) into B(Γ), which is called the Bers

embedding.
Astala and Zinsmeister [2] showed an integral expression of Sfµ . We extend this

result.

Lemma 3.1. For every µ, ν ∈ Bel(1), let Ω = fν(∆), Ω∗ = fν(∆
∗). Define two

Möbius transformations as

κ(w) = −
(|f−1

ν (t)|2 − 1)f ′
µ(f

−1
ν (t))

w − fµ(f−1
ν (t))

, λ(w) = t−
(|f−1

ν (t)|2 − 1)f ′
ν(f

−1
ν (t))

w

for t ∈ Ω∗. Then

Sfµ◦f−1
ν
(t) = −

6

π
ρΩ∗(t)2

(

(f−1
ν )′(t)

|(f−1
ν )′(t)|

)2¨

λ−1(Ω)

∂̄G(ζ) dξ dη,

where G = κ ◦ fµ ◦ f
−1
ν ◦ λ and ρΩ∗ = (ρ∗ ◦ f

−1
ν )|(f−1

ν )′| is the Poincaré metric on Ω∗.

Proof. Let f = fµ, g = fν . Since f and g satisfies condition (3.1), the composite
map f ◦ g−1 also do so and has a series expansion of form (3.3). The function G is
said to be the Koebe transformation of f ◦ g−1. We claim that G has a power series
expansion

(3.4) G(z) = z + c0 +
c1
z
+
c2
z2

+ · · ·

for z ∈ λ−1(Ω∗). Indeed, since G is conformal in λ−1(Ω∗) and fixes∞, G has a power
series expansion of form (3.2). From a simple computation, we have

G′(z) = (f ◦ g−1)′(t)(f ◦ g−1)′(w)

(

w − t

f(g−1(w))− f(g−1(t))

)2

,
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where w = λ(z). Since w tends to t as z to ∞, it follows that

A = lim
z→∞

G′(z) = (f ◦ g−1)′(t)2 · (f ◦ g−1)′(t)−2 = 1,

and our claim holds. By Pompieu’s formula, it follows that

G(z)− z − c0 = −
1

π

¨

λ−1(Ω)

∂̄G(w)

w − z
du dv,

Then we have
¨

λ−1(Ω)

∂̄G(w) du dv = lim
z→∞

z2
¨

λ−1(Ω)

∂̄G(w)

(w − z)2
du dv

= −π lim
z→∞

z2(G′(z)− 1) = πc1 = −
π

6
lim
z→∞

z4SG(z).

This implies

Sf◦g−1(t) = lim
z→∞

SG(z)λ
′(z)−2

=
1

(|g−1(t)|2 − 1)2g′(g−1(t))2
lim
z→∞

z4SG(z)

= −
6

π
ρΩ∗(t)2

(

(g−1)′(t)

|(g−1)′(t)|

)2¨

λ−1(Ω)

∂̄G(w) du dv. �

Let us show the first step to the main theorem in this section.

Proposition 3.2. For every τ1, τ2 ∈ T p(Γ), there exists a constant C ′ > 0
depending only on ‖σ(τ1)‖∞ and ‖σ(τ2)‖∞ such that

(3.5) ‖β(τ1)− β(τ2)‖p ≤ C ′

∥

∥

∥

∥

∥

σ(τ1)− σ(τ2)

1− σ(τ1)σ(τ2)

∥

∥

∥

∥

∥

p

.

Proof. Given τ1, τ2 ∈ T p(Γ) arbitrarily. Let µ = σ(τ1) and ν = σ(τ2). By
Theorem 2.4, it follows that ν ∈ Aelp(Γ). Set f = fµ, g = fν , F = g(N), F ∗ =
g(N∗),Ω = g(∆) and Ω∗ = g(∆∗). Then we have

‖β(τ1)− β(τ2)‖
p
p =

¨

N∗

|Sf(z)− Sg(z)|
pρ∗(z)

2−2p dx dy

=

¨

F ∗

|Sf(g
−1(w))− Sg(g

−1(w))|pρ∗(g
−1(w))2−2p|(g−1)′(w)|2 du dv

=

¨

F ∗

|Sf◦g−1(w)|pρΩ∗(w)2−2p du dv,

where ρΩ∗ = (ρ∗ ◦ g
−1)|(g−1)′| is the Poincaré metric on Ω∗.

Take t ∈ F ∗ arbitrarily. It follows from Lemma 3.1 that there exist two Möbius
transformations κ, λ such that

|Sf◦g−1(t)| =
6

π
ρΩ∗(t)2

∣

∣

∣

∣

¨

λ−1(Ω)

∂̄G(ζ) dξ dη

∣

∣

∣

∣

,
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where G = κ ◦ f ◦ g−1 ◦ λ. If we set s = p/2, then by Schwarz’s inequality,

(π

6

)p

|Sf◦g−1(t)|pρΩ∗(t)−2p =

∣

∣

∣

∣

¨

λ−1(Ω)

∂̄G(ζ) dξ dη

∣

∣

∣

∣

p

=

(
¨

λ−1(Ω)

|µG(ζ)|
2

1− |µG(ζ)|2
dξ dη

)s(¨

λ−1(Ω)

JG(ζ) dξ dη

)s

,

SinceG is conformal on λ−1(Ω) with condition (3.1), it follows from the Area Theorem
that

¨

λ−1(Ω)

JG(ζ) dξ dη ≤ π.

By Hölder’s inequality, we have

(π

6

)p

|Sf◦g−1(t)|pρΩ∗(t)−2p ≤ πs
(
¨

Ω

|µG(λ
−1(w))|2

1− |µG(λ−1(w))|2
|(λ−1)′(w)|2 du dv

)s

= πs
(
¨

Ω

|µG(λ
−1(w))|2

1− |µG(λ−1(w))|2
ρΩ∗(t)−2

|w − t|4
du dv

)s

≤ πsρΩ∗(t)−p
(
¨

Ω

(

|α(w)|2

1− |α(w)|2

)s
du dv

|w − t|4

)(
¨

Ω

du dv

|w − t|4

)s−1

,

where α is the Beltrami coefficient of f ◦ g−1. Note that α is the Beltrami coefficient
for Γg = {γg = g ◦ γ ◦ g−1|γ ∈ Γ}. It follows that F is a fundamental region on Ω for

Γg. Hence Ω has a partition Ω =
⋃

γg∈Γg
γg(F ) and it follows that

(3.6)

¨

Ω

· · · dx dy =
∑

γg∈Γg

¨

γg(F )

· · · dx dy.

Moreover, there exists the following estimate (see [17], Section 3.4.5):

(3.7)

¨

Ω

du dv

|w − t|4
≤ 16πρΩ∗(t)2.

By the identity

γ′(w)γ′(t)

(γ(w)− γ(t))2
=

1

(w − t)2
,

valid for all Möbius transformations, we have

|Sf◦g−1(t)|pρΩ∗(t)2−2p ≤
24p

16π

¨

Ω

(

|α(w)|2

1− |α(w)|2

)s
du dv

|w − t|4

=
24p

16π

∑

γg∈Γg

¨

F

(

|α(γg(ζ))|
2

1− |α(γg(ζ))|2

)s |γ′g(ζ)|
2

|γg(ζ)− t|4
dξ dη

=
24p

16π

¨

F

(

|α(ζ)|2

1− |α(ζ)|2

)s





∑

γg∈Γg

|(γ−1
g )′(t)|2

|ζ − γ−1
g (t)|4



 dξ dη.
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Since Ω is the exterior of Ω∗, we can change the role between Ω and Ω∗ in formula
(3.6) and (3.7). Then we have

‖β(τ1)− β(τ2)‖
p
p =

¨

F ∗

|Sf◦g−1(z)|pρΩ∗(z)2−2p du dv

≤
24p

16π

¨

F ∗





¨

F

(

|α(ζ)|2

1− |α(ζ)|2

)s





∑

γg∈Γg

|(γ−1
g )′(z)|2

|ζ − γ−1
g (z)|4



 dξ dη



 dx dy

=
24p

16π

¨

F

(

|α(ζ)|2

1− |α(ζ)|2

)s(¨

Ω∗

dx dy

|ζ − z|4

)

dξ dη

≤ 24p
¨

F

(

|α(ζ)|2

1− |α(ζ)|2

)s

ρΩ(ζ)
2 dξ dη

=

(

24
√

1− ‖α‖2∞

)p
¨

N

∣

∣

∣

∣

∣

µ(w)− ν(w)

1− µ(w)ν(w)

∣

∣

∣

∣

∣

p

ρΩ(g(w))
2Jg(w)

2 du dv,

where ρΩ is the Poincaré metric on Ω.
Since g = fν = (fν ◦ (f

ν)−1) ◦ f ν and fν ◦ (f
ν)−1 is a conformal map of ∆ onto

Ω, it follows that
ρΩ(g(w))

2Jg(w) = ρ(f ν(w))2Jfν (w).

By inequality (2.3), we obtain

‖β(τ1)− β(τ2)‖p ≤
24C

1
p

√

1− ‖α‖2∞

∥

∥

∥

∥

µ− ν

1− µν

∥

∥

∥

∥

p

. �

This proposition and Theorem 2.4 implies where β(T p(Γ)) is contained.

Corollary 3.3. β(T p(Γ)) ⊂ β(T (Γ)) ∩Ap(Γ).

Proof. For every τ ∈ T p(Γ), β(τ) belongs to β(T (Γ)) clearly. It is sufficient to
show β(τ) ∈ Ap(Γ). By substituting τ1 = τ and τ2 = 0 in inequality (3.5), it follows
that

‖β(τ)‖p ≤ C ′‖σ(τ)‖p.

From Theorem 2.4, ‖σ(τ)‖p <∞ and the corollary holds. �

We prepare for the proof of the continuity of σ.

Lemma 3.4. Let µ ∈ Bel(Γ) and {µn} be a sequence of Bel(Γ) converging to µ.

For 0 < r < 1, set ∆r = {|z| < r}, Nr = N \∆r, Ωn,r = E([µn])(Nr). Then there

exists a positive function s1(r) with s1(r)→ 1 as r → 1 such that

tn(r) ≥ s1(r)

for all n ≥ 1, where tn(r) is the Euclidean distance between 0 and

Fn,r =
⋃

γµn∈Γµn

γµn(Ωn,r).

Proof. Let Ωr = E([µ])(Nr) and t(r) be the Euclidean distance between 0 and

Fr =
⋃

γµ∈Γµ γµ(Ωr). Note that both tn(r) and t(r) are increasing functions from

the interval (0, 1) to itself and tend to 1 as r → 1. By conformal naturality (2.1), it
follows that

γµ ◦E(fµ|∂∆) = E(fµ|∂∆) ◦ γ.
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Then we have

Fr =
⋃

γ∈Γ

E([µ])(γ(N r)).

By the similar computation, the equality

Fn,r =
⋃

γµn∈Γµn

E([µn])(γ(N r))

also holds. These expressions imply that there exist w,wn ∈ N r ∩ ∂∆r and γ, γn ∈ Γ
such that

|E([µ])(γ(w))| = t(r), |E([µn])(γn(wn))| = tn(r),

respectively. By taking a subsequence, we can assume that either tn(r) ≥ t(r) or
tn(r) ≤ t(r) holds for all n ≥ 1. When tn(r) ≥ t(r), it follows from the definition of
tn(r) that

0 ≤ tn(r)− t(r) ≤ |E([µn])(γ(w))| − |E([µ])(γ(w))| ≤ sup
w∈∆
|E([µn])(w)− E([µ])(w)|.

By the similar method, the inequality

0 ≤ t(r)− tn(r) ≤ sup
w∈∆
|E([µn])(w)−E([µ])(w)|

holds when tn(r) ≤ t(r). Then we have

sup
r∈(0,1)

|tn(r)− t(r)| ≤ sup
w∈∆
|E([µn])(w)− E([µ])(w)|.

Since E([µn]) converges to E([µ]) uniformly on ∆ as n→∞,

(3.8) tn(r)→ t(r)

uniformly in r as n → ∞. Let us show tn(r) converges to 1 as r → 1 and n → ∞.
Take ε > 0 arbitrarily. Since t(r) converges to 1 as r → 1, there exists a real number
r0 ∈ (0, 1) such that 1 − t(r) < ε

2
for r ≥ r0. By the result (3.8), there exists a

number n0 ∈ N such that supr∈(0,1) |tn(r)− t(r)| <
ε
2

for n ≥ n0. Hence we have

1− tn(r) ≤ 1− t(r) + sup
r∈(0,1)

|tn(r)− t(r)| < ε

for r ≥ r0 and n ≥ n0. This implies that

(3.9) tn(r)→ 1

as r → 1 and n→∞.
Set

s1(r) = t(r)− sup
n∈N
|tn(r)− t(r)|.

We prove that s1 is the desired function. It clearly follows that s1(r) ≤ tn(r) for all
n ≥ 1, and it is sufficient to show that supn∈N |tn(r)− t(r)| converges to 0 as r → 1.
For any ε > 0, it follows from the definition of t(r) and the result (3.9) that there
exist numbers r′0 ∈ (0, 1) and n′

0 ∈ N such that

1− t(r) <
ε

2
, 1− tn(r) <

ε

2

for r ≥ r′0 and n ≥ n′
0. Then we have

(3.10) |tn(r)− t(r)| ≤ (1− t(r)) + (1− tn(r)) < ε



Introduction of a complex structure on the p-integrable Teichmüller space 957

for r ≥ r′0 and n ≥ n′
0. By taking a subsequence, we can assume that the inequality

(3.10) holds for all n ≥ 1. Hence supn∈N |tn(r) − t(r)| converges to 0 as r → 0 and
the lemma follows. �

Now let us show the continuity of σ.

Proposition 3.5. The map σ is a continuous map of (T p(Γ), ℓp,∞) into (Aelp(Γ),
‖ · ‖p,∞).

Proof. We use the notations in Lemma 3.4. Let σ̃ = σ ◦̟. Recall that ̟ is the
quotient map of Bel(Γ) onto T (Γ). Since ℓp,∞ is the quotient distance induced by
‖ · ‖p,∞, it is sufficient to show that σ̃ is a continuous map of (Aelp(Γ), ‖ · ‖p,∞) into
itself.

Take µ ∈ Aelp(Γ) arbitrarily. Let 0 < k < 1, k′ > 0 with

‖µ‖∞ < k, ‖µ‖p < k′

respectively, and let {µn} be a sequence of Aelp(Γ) converging to µ in Aelp(Γ). Since

(3.11) ‖µn‖∞ < k, ‖µn‖p < k′

for sufficiently large n, we can assume that this condition holds for all n ≥ 1.
For 0 < r < 1, set

εµ(r) =

¨

Nr

|µ(z)|pρ(z)2 dx dy.

Before we show the continuity of σ̃, we estimate εσ̃(µn)(r). By inequality (2.3), it
follows that

(3.12) εσ̃(µn)(r) ≤ C

¨

Ωn,r

|σ̃(µn)
−1(w)|pρ(w)2 du dv,

where C is a constant depending only on k. Set νn = σ̃(µ−1
n )−1. Noting that νn is

Teichmüller equivalent to µn, we have Γνn = Γµn and σ̃(µn) = σ̃(νn). From the proof
of Theorem 2.4, there exists a constant C5 > 0 depending only on k such that
¨

Ωn,r

|σ̃(νn)
−1(w)|pρ(w)2 du dv ≤ C5

¨

Ωn,r

(
¨

∆

(

|ν−1
n (z)|2

1− |ν−1
n (z)|2

)s
dx dy

|1− w̄z|4

)

du dv,

where s = p/2. Let Ωn = E([µn])(N). Since Ωn is a fundamental region for Γµn =
Γνn, it follows from the similar computation in the proof of Theorem 2.4 that

¨

Ωn,r

(
¨

∆

(

|ν−1
n (z)|2

1− |ν−1
n (z)|2

)s
dx dy

|1− w̄z|4

)

du dv

=

¨

Ωn

(

|ν−1
n (ζ)|2

1− |ν−1
n (ζ)|2

)s
(

¨

Fn,r

dx dy

|1− z̄ζ |4

)

dξ dη

≤
1

(1− ‖ν−1
n ‖

2
∞)s

¨

Ωn

|ν−1
n (ζ)|p

(

¨

∆\∆tn(r)

dx dy

|1− z̄ζ |4

)

dξ dη

=
1

(1− ‖ν−1
n ‖

2
∞)s

¨

Ωn

|ν−1
n (ζ)|p

(1− tn(r)
2)(1− tn(r)

2|ζ |4)

(1− tn(r)2|ζ |2)2
ρ(ζ)2 dξ dη,

Here the last equality follows from the identity
¨

∆\∆r

dx dy

|1− z̄ζ |4
=

(1− r2)(1− r2|ζ |4)

(1− r2|ζ |2)2
ρ(ζ)2,
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which holds by Parseval’s identity. We divide the domain Ωn of integration into Ωn,r′

and Ωn \ Ωn,r′ = E([µn])(N ∩∆r′). The first term implies that
¨

Ωn,r′

|ν−1
n (ζ)|p

(1− tn(r)
2)(1− tn(r)

2|ζ |4)

(1− tn(r)2|ζ |2)2
ρ(ζ)2 dξ dη ≤

¨

Ωn

|ν−1
n (ζ)|pρ(ζ)2 dξ dη.

Set the last term as εν−1
n
(r′). On the other hand, it follows from Lemma 3.4 that

¨

Ωn\Ωn,r′

|ν−1
n (ζ)|p

(1− tn(r)
2)(1− tn(r)

2|ζ |4)

(1− tn(r)2|ζ |2)2
ρ(ζ)2 dξ dη

≤ (1− s1(r)
2)

¨

Ωn

1 + |ζ |2

1− |ζ |2
|ν−1
n (ζ)|pρ(ζ)2 dξ dη ≤

1 +Mn(r
′)2

1−Mn(r′)2
‖ν−1

n ‖
p
p(1− s1(r)

2),

where

Mn(r
′) = max{|z| | z ∈ E([µn])(N ∩ ∂∆r′)}.

Set

M(r′) = max{|z| | z ∈ E([µ])(N ∩ ∂∆r′)}.

By the similar argument to the proof of Lemma 3.4, the function

L(r′) =M(r′) + sup
n∈N
|Mn(r

′)−M(r′)|

is less than 1 for the real number r′ ∈ (0, 1) sufficiently close to 1 and

(3.13) Mn(r
′) ≤ L(r′)

for n ≥ 1. By Proposition 7 in [6], there exists a constant 0 < c < 1 depending only
on k such that

(3.14) ‖ν−1
n ‖∞ = ‖σ̃(µ−1

n )‖∞ < c

Moreover it follows from the proof of Proposition 2.2 that there exists a constant
C6 > 0 depending only on k such that

(3.15) ‖ν−1
n ‖p ≤ C6‖µn‖p.

By inequalities (3.11), (3.13), (3.14), and (3.15), we have
¨

Ωn,r

|σ̃(µ−1
n )(w)|pρ(w)2 du dv

<
C5

(1− c2)s

(

εσ̃(µ−1
n )(r

′) +
1 + L(r′)2

1− L(r′)2
Cp

6k
′p(1− s1(r)

2)

)

.

(3.16)

Let us estimate εσ̃(µ−1
n )(r

′). By using inequality (2.3) again, it follows that

(3.17) εσ̃(µ−1
n )(r

′) ≤ C

¨

Nr′

|σ̃(µ−1
n )−1(w)|pρ(w)2 du dv.

Similarly to the way to obtain inequality (3.16), we have
¨

Nr′

|σ̃(µ−1
n )−1(w)|pρ(w)2 du dv

≤
C5

(1− c2)s

(

εµn(r
′′) +

1 + r′′2

1− r′′2
k′p(1− s2(r

′)2)

)

,

(3.18)
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where r′′ ∈ (0, 1) and s2(r
′) be the distance between 0 and

⋃

γ∈Γ γ(Nr′). Finally, we

estimate εµn(r
′′).

εµn(r
′′) ≤

¨

Nr′′

(|µ(z)|+ |µn(z)− µ(z)|)
pρ(z)2 dx dy(3.19)

≤ 2p−1(εµ(r
′′) + ‖µn − µ‖

p
p).

Now let us show the continuity of σ̃. Since σ̃ is continuous from (Bel(Γ), ‖ · ‖∞)
into itself (see [6]), it is sufficient to prove σ̃(µn) converges to σ̃(µ) in hyperbolic
Lp-norm. For every ε′ > 0, take r1 ∈ (0, 1) with

2p−1CC5

(1− k2)s
εµ(r1) <

ε′

2
.

For such r1, there exists a real number r2 ∈ (0, 1) such that

CC5

(1− k2)s
1 + r21
1− r21

k′p(1− s2(r2)
2) <

ε′

2
.

Then it follows from (3.17), (3.18) and (3.19) that

εσ̃(µ−1
n )(r2) ≤

CC5

(1− k2)s

(

εµn(r1) +
1 + r21
1− r21

k′p(1− s2(r2)
2)

)

< ε′ +
CC5

(1− k2)s
‖µn − µ‖

p
p.

Set ε = (2p+2CC5ε
′)/(1− c2)s. For such ε, there exists a real number r3 ∈ (0, 1) such

that
CC5

(1− c2)s
1 + L(r2)

2

1− L(r2)2
Cp

6k
′p(1− s1(r)

2) <
ε

2p+2
,

for r ≥ r3. By (3.12) and (3.16), we have

εσ̃(µn)(r) ≤
CC5

(1− c2)s

(

εσ̃(µ−1
n )(r2) +

1 + L(r2)
2

1− L(r2)2
Cp

6k
′p(1− s1(r)

2)

)

<
ε

2p+1
+

C2C2
5

(1− k2)s(1− c2)s
‖µn − µ‖

p
p.

By the similar method, there exists a real number r4 ∈ (0, 1) such that

εσ̃(µ)(r) <
ε

2p+1

for r ≥ r4. Take max{r3, r4} ≤ r0 < 1. Recall that µn converges µ in ‖ · ‖p,∞ and
that σ̃ is continuous in ‖ · ‖∞. Hence for such r0, there exists a number nr0 ∈ N such
that

Area(N ∩∆r0)‖σ̃(µn)− σ̃(µ)‖
p
∞ <

ε

4

for n ≥ nr0 , where Area(N ∩ ∆r0) is the hyperbolic area of N ∩ ∆r0. On the other
hand, there exists a number n′ ∈ N such that

2p−1C2C2
5

(1− k2)s(1− c2)s
‖µn − µ‖

p
p <

ε

4
.
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for n ≥ n′. Set n0 = max{nr0 , n
′}. Therefore we obtain

‖σ̃(µn)− σ̃(µ)‖
p
p =

(

¨

Nr0

+

¨

N∩∆r0

)

|σ̃(µn)(z)− σ̃(µ)(z)|
pρ(z)2 dx dy

≤ 2p−1(εσ̃(µn)(r0) + εσ̃(µ)(r0)) + Area(N ∩∆r0)‖σ̃(µn)− σ̃(µ)‖
p
∞

< 2p−1

(

ε

2p
+

C2C2
5

(1− k2)s(1− c2)s
‖µn − µ‖

p
p

)

+
ε

4
< ε.

for n ≥ n0. Since ε is taken arbitrarily, the proposition holds. �

By Proposition 3.2 and 3.5, we obtain the main result in this section:

Proposition 3.6. Let p ≥ 2. Then the Bers embedding is a continuous map of

(T p(Γ), ℓp,∞) into (Ap(Γ), ‖ · ‖p).

This proposition implies that the Bers projection Φ: Aelp(Γ)→ Ap(Γ) is a con-
tinuous map.

Remark. Recall that 1 is the trivial group. For every Fuchsian group Γ, Bel(Γ)
and B(Γ) are contained in Bel(1) and B(1), respectively. By this fact, we can apply
the proof of the continuity of the Bers embedding on the universal Teichmüller space
T (1) to the case of T (Γ) (see Theorem V.4.8 in [16]). However, we cannot take
the similar way for p-integrable Teichmüller spaces in general. Indeed, Aelp(Γ) and
Ap(Γ) are contained in Aelp(1) and Ap(1), respectively if and only if Γ is a finite
group. Hence Proposition 3.6 is a non-trivial result for every Fuchsian group with
infinitely many elements.

4. Continuity of the inverse map of the Bers embedding

In this section, we prove the continuity of the inverse map of the Bers embedding.
Note that some results in this section holds for p ≥ 1. We apply the argument in
the case of the whole space T (Γ). In other words, for every ϕ ∈ β(T (Γ)), there exist
a open neighborhood Uϕ of ϕ and a continuous map sϕ of Uϕ into Bel(Γ) such that
β−1 = ̟ ◦ sϕ on Uϕ (see Chapter III.4.2 in [16]). In the proof, the following result is
used:

Proposition 4.1. [1] Let A be a K-quasidisc and ρA be the Poincaré metric

on A. Then there exists a constant ε > 0 depending only on K, such that every

meromorphic function f in A with the property

‖Sf‖A = sup
z∈A
|Sf(z)|ρA(z)

−2 ≤ ε

is univalent in A and can be extended to a quasiconformal mapping of C whose

complex dilatation µ satisfies the inequality

(4.1) |µ(w)| ≤
1

ε
|Sf (ψ(w))|ρA(ψ(w))

−2 (w ∈ Ĉ \ A).

Here ψ is a quasiconformal reflection in ∂A, continuously differentiable in A and

Ĉ \ A.

Let us explain about some notations in this proposition. A K-quasidisc is the
image of ∆ by a K-quasiconformal mapping. Let c be a Jordan curve bounding
the domains A1 and A2. A sense-reversing quasiconformal involution of the extended



Introduction of a complex structure on the p-integrable Teichmüller space 961

complex plane Ĉ which maps A1 onto A2 is a quasiconformal reflection in c if it keeps
every point of c fixed. From [1], for every K-quasidisc A, there exist constants c1, c2 >
0 depending only on K and a c1-quasiconformal reflection ψ in ∂A, continuously
differentiable in A and Ĉ \ A, such that

∣

∣

∣

∣

dψ(z)

dz

∣

∣

∣

∣

≤ c2

at every point z ∈ A. This fact is used in the proof of Proposition 4.1.
The next proposition means that we can compare two norms ‖ · ‖p and ‖ · ‖∞

under a geometric condition for Γ.

Proposition 4.2. Let p ≥ 1 and Γ be a Fuchsian group acting on ∆. If the

infimum ℓ of the lengths of all simple closed geodesics in the Riemann surface ∆/Γ
is positive, then there exists a constant Cp = Cp(ℓ) > 0 depending on p and ℓ such

that

(4.2) ‖ϕ‖∞ ≤ Cp‖ϕ‖p

for all ϕ ∈ Ap(Γ). Especially, Ap(Γ) ⊂ B(Γ).

Proof. By Theorem 1 in [15], it follows that inequality (4.2) holds for p = 1.
The main theorem in [19] says that if inequality (4.2) holds for some p ≥ 1, then the
inequality also holds for every p ≥ 1. Hence the proposition follows. �

Let us call this geometric condition for Γ Lehner’s condition. We list some ex-
amples of Fuchsian groups with respect to Lehner’s condition.

(1) If Γ is a lattice, that is, if some Dirichlet region for Γ has a finite hyperbolic
area, then Γ satisfies Lehner’s condition clearly. In this case, Ap(Γ) coincides
with B(Γ).

(2) If Γ is a finitely generated Fuchsian group, then Γ satisfies Lehner’s condition.
Indeed, the number of hyperbolic generators in Γ is finite. Then there exists
a minimum of the traces of such elements, and its value is greater than 2.

(3) If Γ is an infinitely generated Fuchsian group and if the infimum of the traces
of hyperbolic generators in Γ is 2, then Γ does not satisfy Lehner’s condition.

In fact, since Niebur and Sheingorn [18] proved the converse of Theorem 1 in [15],
we see that Lehner’s condition is equivalent to condition (4.2).

Now let us show the continuity of the inverse map β−1.

Proposition 4.3. Let p ≥ 1. If a Fuchsian group Γ satisfies Lehner’s condition,

then the inverse map of the Bers embedding is a continuous map of (β(T p(Γ)), ‖ · ‖p)
onto (T p(Γ), ℓp,∞).

Proof. Take µ ∈ Aelp(Γ) arbitrarily. Let Dp(β([µ]), r) = {ϕ ∈ Ap(Γ)|‖ϕ −
β([µ])‖p < r} for r > 0. It follows from Proposition 4.2 that there exists a constant
Cp > 0 such that

‖ϕ− β([µ])‖∞ ≤ Cp‖ϕ− β([µ])‖p < Cpr

for any ϕ ∈ Dp(β([µ]), r). Since ϕ is a holomorphic function on ∆∗, there exists a
meromorphic function h such that Sh = ϕ (cf. [16], Theorem II.1.1). Then we have
‖ϕ− β([µ])‖∞ = ‖Sh◦f−1

µ
‖∞. Set g = h ◦ f−1

µ .

Let K([µ]) be the smallest maximal dilatation of all representatives in [µ]. Since
fµ(∆

∗) is K([µ])-quasidisc, it follows from Proposition 4.1 that there exists a constant
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ε > 0 depending only on K([µ]) such that every meromorphic function f on fµ(∆
∗)

satisfying ‖Sf‖∞ < ε is univalent in fµ(∆
∗) and has a quasiconformal extension to

the complex plane. By taking r = ε/Cp, it follows that ‖Sg‖∞ = ‖ϕ− β([µ])‖∞ < ε.
Hence g is univalent in fµ(∆

∗) and has a quasiconformal extension to the complex

plane, denoted by g̃. If we set h̃ = g̃◦fµ, then h̃ is quasiconformal on ∆ and coincides
with h on ∆∗. Then ϕ = Sh̃ belongs to β(T (Γ)). This implies Dp(β([µ]), r) ⊂
β(T (Γ)) ∩Ap(Γ).

Let δ and ω be the Beltrami coefficients of g̃ and h̃, respectively. By Proposition
4.1, δ has the following estimate:

(4.3) |δ(ζ)| ≤
1

ε
|Sg(ψ(ζ))|ρfµ(∆∗)(ψ(ζ))

−2

for ζ ∈ fµ(∆), where ψ is a quasiconformal reflection in ∂fµ(∆), continuously differ-

entiable in fµ(∆) and Ĉ \ fµ(∆). If we set ζ = fµ(z), then it follows that

|δ(fµ(z))| =

∣

∣

∣

∣

∣

ω(z)− µ(z)

1− ω(z)µ(z)

∣

∣

∣

∣

∣

.

This formula and inequality (4.3) imply that
∥

∥

∥

∥

ω − µ

1− ωµ

∥

∥

∥

∥

p

p

=

¨

N

∣

∣

∣

∣

∣

ω(z)− µ(z)

1− ω(z)µ(z)

∣

∣

∣

∣

∣

p

ρ(z)2 dx dy

≤

¨

N

1

εp
|Sg(fµ(z̄

−1))|pρfµ(∆∗)(fµ(z̄
−1))−2pρ(z)2 dx dy

=

¨

N∗

1

εp
|Sg(fµ(w))|

pρfµ(∆∗)(fµ(w))
−2pρ(w̄−1)2

du dv

|w|2

Noting that Sg = (Sfω ◦ f
−1
µ −Sfµ ◦ f

−1
µ )((f−1

µ )′)2 and ρfµ(∆∗) = (ρ∗ ◦ f
−1
µ )|(f−1

µ )′|, we
have
∥

∥

∥

∥

ω − µ

1− ωµ

∥

∥

∥

∥

p

p

≤
1

εp

¨

N∗

|Sfω(w)− Sfµ(w)|
pρ∗(w)

2−2p du dv =

(

‖β([ω])− β([µ])‖p
ε

)p

.

This implies clearly that ω ∈ Aelp(Γ). Recall that ε is depending only on K([µ]).
Since ℓp,∞ is the quotient distance induced by ‖ · ‖p,∞, [ω] converges to [µ] in ℓp,∞ as
β([ω])→ β([µ]) in ‖ · ‖p and the inverse map of β is continuous. �

From Proposition 3.6 and 4.3, we obtain the main result of this paper.

Theorem 4.4. Let p ≥ 2. If a Fuchsian group Γ satisfies Lehner’s condition,

then the Bers embedding is a homeomorphism of (T p(Γ), ℓp,∞) into (Ap(Γ), ‖ · ‖p).

5. Biholomorphically equivalent complex structure

In this section, we introduce a biholomorphic map between p-integrable Teich-
müller spaces, which is used in the next section.

Let ν ∈ Bel(Γ) fixed and R̃ν(µ) be the Beltrami coefficient of fµ ◦ (f ν)−1, or, in
more explicit terms, by

R̃ν(µ) =

(

µ− ν

1− µν̄

(

∂f ν

|∂f ν |

)2
)

◦ (f ν)−1.
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for µ ∈ Bel(Γ). Then R̃ν is a biholomorphic isometry of (Bel(Γ), ‖ · ‖∞) onto

(Bel(Γν), ‖·‖∞) and maps ν to the origin of Bel(Γν). Let us call the map R̃ν the right

translation map for ν. Let R[ν] be the projection of Rν by the canonical projection
̟ : Bel(Γ)→ T (Γ), that is,

R[ν]([µ]) = [Rν(µ)]

for [µ] ∈ T (Γ). By the definition of the Teichmüller equivalence relation (1.1), R[ν] is
well-defined. It follows that for each τ ∈ T (Γ), Rτ is a biholomorphic map of T (Γ)
onto T (Γτ ). We also call the map Rτ the right translation map for τ .

Let us show the homeomorphy of right translation maps in T p(Γ). Note that we
do not need to assume that Γ satisfies Lehner’s condition.

Proposition 5.1. For each τ ∈ T p(Γ), the right translation map Rτ is a home-

omorphism of (T p(Γ), ℓp,∞(Γ)) onto (T p(Γτ ), ℓp,∞(Γτ )).

Proof. Given τ ∈ T p(Γ), let ν = σ(τ). For every τ1, τ2 ∈ T p(Γ), take µk ∈
̟−1(τk) ∩Aelp(Γ) arbitrarily for k = 1, 2. From Theorem 2.4, ν belongs to Aelp(Γ).
By a simple computation, we have

∣

∣

∣

∣

∣

Rν(µ1)−Rν(µ2)

1− Rν(µ1)Rν(µ2)

∣

∣

∣

∣

∣

◦ f ν =

∣

∣

∣

∣

µ1 − µ2

1− µ1µ̄2

∣

∣

∣

∣

.

If we set τ2 = τ and µ2 = ν, then we have Rτ (τ1) belongs to T p(Γ), that is, Rτ maps
T p(Γ) into T p(Γτ ). It follows from formula (2.3) that

∥

∥

∥

∥

∥

Rν(µ1)− Rν(µ2)

1− Rν(µ1)Rν(µ2)

∥

∥

∥

∥

∥

p

p

=

¨

N

∣

∣

∣

∣

∣

µ1(w)− µ2(w)

1− µ1(w)µ2(w)

∣

∣

∣

∣

∣

p

ρ(f ν(w))2Jfν (w) du dv

≤ C

∥

∥

∥

∥

µ1 − µ2

1− µ1µ2

∥

∥

∥

∥

p

p

.

Since Rν is an isometry in ‖ · ‖∞, we obtain

ℓp,∞(Γτ )(Rτ (τ1), Rτ (τ2)) ≤

∥

∥

∥

∥

∥

Rν(µ1)−Rν(µ2)

1−Rν(µ1)Rν(µ2)

∥

∥

∥

∥

∥

p,∞

≤ max{C
1
p , 1}

∥

∥

∥

∥

µ1 − µ2

1− µ1µ2

∥

∥

∥

∥

p,∞

.

Recall that µk is taken arbitrarily in̟−1(τk)∩Ael
p(Γ) for k = 1, 2 and C depends only

on ‖ν‖∞. Hence Rτ is a continuous map of T p(Γ) into T p(Γτ ). Noting that R−1
τ =

R[ν−1], it follows immediately that Rτ is bijective and that R−1
τ is also continuous. �

In order to prove the biholomorphy of right translation maps, we use the following
lemma that indicates two equivalent conditions for the holomorphy of maps between
Banach spaces.

Lemma 5.2. Let E, F be two Banach spaces and U ⊂ E be a open set. Then

a map f : U → F is holomorphic if and only if it satisfies one of the following two

conditions:

(1) The map f : U → F is continuous and for every x ∈ U and e ∈ E, the map

w 7→ f(x+we) is a holomorphic map on an open neighborhood of the origin

in C with values in F ;

(2) The map f : U → F is continuous and there exists a total subset A of the dual

F ∗ such that, for every α ∈ A, the function α ◦ f : U → C is holomorphic.

Here a subset A ⊂ F ∗ is called total if α(x) = 0 for every α ∈ A implies x = 0.
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It is used in the proof of the biholomorphy of right translation maps on T (Γ) (cf.
Chapter V.5 in [16]). For the detail of this lemma, refer to Chapter 3.3 in [3].

Proposition 5.3. Let p ≥ 2 and Γ be a Fuchsian group satisfying Lehner’s

condition. Then for each τ ∈ T p(Γ), the right translation map Rτ is a biholomorphic

map of T p(Γ) onto T p(Γτ ). Moreover, T p(Γτ ) is biholomorphically equivalent to

T p(Γ).

Proof. Fix τ, η ∈ T p(Γ) and ϕ ∈ Ap(Γτ ). Let βτ be the Bers embedding of T p(Γτ )
into Ap(Γτ ) and H = βτ ◦ Rτ ◦ β

−1. Since H−1 = β ◦ Rτ−1 ◦ β−1
τ , it is sufficient to

show that H is holomorphic from (β(T p(Γ)), ‖ · ‖p) into (Ap(Γτ ), ‖ · ‖p).
For z ∈ ∆∗ and ψ ∈ Ap(Γτ ), define αz(ψ) = ψ(z). By Proposition 4.2,

sup
ψ∈Ap(Γτ )

|αz(ψ)|

‖ψ‖p
≤ ρ(z)2 sup

ψ∈Ap(Γτ )

‖ψ‖∞
‖ψ‖p

≤ Cpρ(z)
2 <∞.

Hence αz is a bounded linear functional on Ap(Γτ ) and the set A = {αz|z ∈ ∆∗} is a
total subset in the dual space of Ap(Γτ ). Since β(T p(Γ)) is open in Ap(Γ), there exists
a positive number r > 0 such that β(η)+wϕ lies in β(T p(Γ)) for every w ∈ {|ζ | < r}.
We apply condition (2) of Lemma 5.2 to the function

w 7→ Ĥ(w) = H(β(η) + wϕ).

The set U in condition (2) is now the neighborhood {|ζ | < r}. Furthermore, let
F = Ap(Γ) and α = αz. Since Rτ is holomorphic on T (Γ), it follows from Lemma 5.2
that the function

w 7→ αz ◦ Ĥ(w) = H(β(η) + wϕ)(z)

is holomorphic in U for every z ∈ ∆∗. By Theorem 4.4 and Proposition 5.1, the
function Ĥ is continuous from (U, dE) into (Ap(Γτ ), ‖ · ‖p), where dE is the Euclidean

metric on C. Hence condition (2) of Lemma 5.2, the function Ĥ is holomorphic
from (U, dE) into (Ap(Γτ ), ‖ · ‖p). Using this fact, we conclude from condition (1) of
Lemma 5.2 that H is holomorphic in β(T p(Γ)). �

6. Coincidence of two canonical distances on T p(Γ)

In this section, we show the coincidence of two canonical distances on the p-
integrable Teichmüller space of a Fuchsian group satisfying Lehner’s condition, which
is an application of Theorem 4.4.

For the proof, let us introduce another representation of the Teichmüller space.
For a Fuchsian group Γ acting on ∆, let R = ∆/Γ and π : ∆ −→ R be the canonical
projection. It is known that a function on ∆ is a (−1, 1)-differential for Γ if and only if
its projection to R is a (−1, 1)-differential on R (see [16], Chapter IV.3.6). We iden-
tify Bel(Γ) with the set of measurable (−1, 1)-differentials on R. Denote QC(Γ) as
the set of quasiconformal mappings on R. There exists a one-to-one correspondence

Bel(Γ) ∋ µ←→ f̂µ ∈ QC(Γ),

where f̂µ is the quasiconformal mapping on R with Beltrami coefficient µ. Then
T (Γ) can be regarded as the quotient space of QC(Γ) by the homotopy relative to
the boundary, that is, two quasiconformal mappings f, g ∈ QC(Γ) is equivalent if
there exists a conformal map h : f(R)→ g(R) such that

(6.1) h ◦ f ∼ g
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with fixing their boundary values. A point of T (Γ) represented by f ∈ QC(Γ) is
denoted by [f ].

For f ∈ QC(Γ), let

K(f) =
1 + ‖µ‖∞
1− ‖µ‖∞

.

Then K(f) is said to be the maximal dilatation of f . The Teichmüller distance

between the points p and q of T (Γ) is defined as

dT (Γ)(p, q) =
1

2
inf logK(g ◦ f−1),

where the infimum is taken over all f ∈ p and g ∈ q. Then (T (Γ), dT (Γ)) is a complete
and contractible metric space (cf. [16], Section V.3). The Teichmüller distance on
T p(Γ) means that the restriction of dT (Γ) to T p(Γ).

Let M be a complex manifold and let H(∆,M) be the set of holomorphic maps
from ∆ into M . For p, q ∈M , let

d1(p, q) =
1

2
log

1 + r

1− r
,

where r denotes the infimum of s ≥ 0 such that there exists f ∈ H(∆,M) satisfying
f(0) = p and f(s) = q. If no such f exists in H(∆,M), then we define d1(p, q) =∞.
Let

dn(p, q) = inf
n
∑

i=1

d1(pi−1, pi),

where the infimum is taken over all chains of points p0 = p, p1, . . . , pn = q in M .
Clearly, dn+1 ≤ dn for all n > 0. The Kobayashi pseudo-distance on M is defined as

dK(p, q) = lim
n→∞

dn(p, q).

If dK is non-degenerate, i.e. if dK(p, q) = 0 implies p = q, then dK is called the
Kobayashi distance on M .

The Kobayashi pseudo-distance has an important property in terms of the con-
traction of the distance.

Proposition 6.1. Let M and M ′ be two complex manifolds and dK,M and dK,M ′

denote the Kobayashi pseudo-distances on M and M ′, respectively. Then for every

holomorphic map F from M into M ′ and every two points p, q ∈M ,

dK,M ′(F (p), F (q)) ≤ dK,M(p, q).

If F is a biholomorphic map between M and M ′, then F is an isometry in the Ko-
bayashi pseudo-distance. Furthermore, if bothM andM ′ are ∆, then Proposition 6.1
is nothing but the Schwarz–Pick lemma.

We write the fact about these two canonical distances on the Teichmüller space,
which we mentioned in Section 1:

Theorem 6.2 ([10]). For every Fuchsian group Γ, the Teichmüller distance on

T (Γ) coincides with the Kobayashi distance.

Next, we need to modify the preparation in [21], Section 3. For every τ ∈ T (Γ),
there always exists a quasiconformal mapping of τ that has the smallest maximal
dilatation in τ , which is called extremal in τ . If τ has the property as in Theorem 6.4
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below, then the extremal mapping is uniquely determined and can be represented
concretely.

Definition 6.3. For τ ∈ T (Γ), let f0 be an extremal quasiconformal mapping
of τ . An element f1 of τ is called a frame mapping for τ if f1 satisfies the following
condition: There exists a compact subset E ⊂ R such that

K(f1|R\E) < K(f0).

If there exists a frame mapping in τ , then τ is called a Strebel point.

The set of Strebel points is open and dense in T (Γ) (see p.106 in [12]).

Theorem 6.4. (Strebel’s Frame Mapping Theorem, Teichmüller’s Uniqueness
Theorem) If a point τ ∈ T (Γ) is a Strebel point, then it has the unique extremal

mapping f0 with Beltrami coefficient of the form

(6.2) k
ϕ

|ϕ|

where 0 < k < 1 and ϕ is a holomorphic quadratic differential on R with
¨

R

|ϕ(z)| dx dy = 1.

The proof can be found in [12]. A quasiconformal mapping with Beltrami coeffi-
cient of form (6.2) is said to be a Teichmüller mapping.

The next theorem states that the maximal dilatation of each Teichmüller mapping
can be estimated by every representative in its Teichmüller equivalence class.

Proposition 6.5. (Fundamental Inequality) Let f0 be a Teichmüller mapping

with Beltrami coefficient k0ϕ0/|ϕ0|, where 0 < k0 < 1 and ϕ0 is a holomorphic

quadratic differential on R with
˜

R
|ϕ0(z)| dx dy = 1. Then for every f̂ ν ∈ [f0],

K(f0) ≤

¨

R

∣

∣1 + ν(z) ϕ0(z)
|ϕ0(z)|

∣

∣

2

1− |ν(z)|2
|ϕ0(z)| dx dy.

The proof can be found in [11] and [12].
An example of frame mappings is the asymptotically conformal map. A quasi-

conformal mapping f on a Riemann surface R is called asymptotically conformal if
for every ε > 0, there exists a compact subset E of R such that

K(f |R\E) < 1 + ε.

It follows immediately that for µ ∈ Bel(Γ), f̂µ is asymptotically conformal if and
only if for every ε > 0, there exists a compact subset E of R such that

‖µ|π−1(R\E)‖∞ < ε.

If µ satisfies this condition, it is said that µ vanishes at infinity. Let Bel0(Γ) be the
set of Beltrami coefficints vanishing at infinity.

We call a Teichmüller equivalence class τ of T (Γ) asymptotically conformal if
τ has an asymptotically conformal map of ∆ onto itself. Let T0(Γ) be the set of
asymptotically conformal classes of T (Γ). For ϕ ∈ B(Γ), it is said that ϕ vanishes at

infinity if for every ε > 0, there exists a compact subset E ⊂ R such that

‖ϕ|π−1(R\E)‖∞ < ε.
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Let B0(Γ) be the set of bounded holomorphic quadratic differentials vanishing at
infinity. Since B0(Γ) is a closed subspace of B(Γ), B0(Γ) is a Banach space. In [7],
it is shown that β(T0(Γ)) = β(T (Γ)) ∩ B0(Γ). Thus T0(Γ) has a complex structure
modeled on B0(Γ), that is, T0(Γ) is a closed submanifold of T (Γ). It is known that
the Teichmüller distance on T0(Γ) coincides with the Kobayashi distance (cf. [8]).

It follows that there exists the following inclusion relation:

Proposition 6.6. Let p ≥ 1. If a Fuchsian group Γ satisfies Lehner’s condition,

then

Ap(Γ) ⊂ B0(Γ).

Proof. Let Lp(Γ) be the Banach space of measurable quadratic differentials on
∆∗ with finite hyperbolic Lp-norm ‖·‖p and Lc(Γ) be the set of measurable quadratic
differentials with compact support. It clearly follows that Lc(Γ) is dense in Lp(Γ).
The Bergmann projection

Pϕ(z) =
12

π

¨

∆∗

ρ∗(ζ)
−2 ϕ(ζ)

(zζ̄ − 1)4
dξ dη (z ∈ ∆∗)

is a bounded liner operator of Lp(Γ) onto Ap(Γ) (see [14], Theorem III.3.2). Hence
P (Lc(Γ)) is dense in Ap(Γ). Similarly, P (Lc(Γ)) is also dense in B0(Γ). Noting that
B0(Γ) is closed in B(Γ), it follows from these two densenesses and Proposition 4.2
that Ap(Γ) ⊂ B0(Γ). �

This proposition implies that T p(Γ) ⊂ T0(Γ).
Let A(R) be the Banach space of integrable holomorphic quadratic differentials

on a Riemann surface R and A1(R) be the unit ball of A(R). If a sequence {En}
of relatively compact domains of R satisfies the following four conditions, then the
sequence is called an exhaustion of R:

(1) En ⊂ En+1 for all n ≥ 1;
(2)

⋃∞
n=1En = R;

(3) The boundary of En is the disjoint union of analytic Jordan curves of R;
(4) Each connected component of R \ En is non-compact.

It is well-known that every non-compact Riemann surface R has an exhaustion (cf.
[?, ?]).

Lemma 6.7. Let {En} be an exhaustion ofR and ϕn be a holomorphic quadratic

differential of A1(En) for each n. Then there exists a subsequence of {ϕn} that

converges locally uniformly to a holomorphic quadratic differential ϕ ∈ A1(R) in R.

This lemma clearly holds by changing A1(∆) to A1(R) in the proof of Lemma 3.5
in [21].

Now let us show the main theorem in this section.

Theorem 6.8. Let p ≥ 2 and Γ be a Fuchsian group satisfying Lehner’s condi-

tion. Then the Teichmüller distance on T p(Γ) coincides with the Kobayashi distance.

Proof. Let dT p(Γ) = dT (Γ)|T p(Γ) and dKp(Γ) be the Kobayashi pseudo-distance on
T p(Γ). The inclusion map ι : T p(Γ) −→ T (Γ) is holomorphic. Indeed, by Propo-
sition 4.2, the identity map idβ(T p(Γ)) = β−1 ◦ ι ◦ β is a continuous liner map of
(β(T p(Γ)), ‖ · ‖p) into (B(Γ), ‖ · ‖∞). Then the holomorphy of ι clearly holds. Hence
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it follows from Proposition 6.1 and Theorem 6.2 that

dT p(Γ)(τ1, τ2) = dT (Γ)(τ1, τ2) = dK(Γ)(ι(τ1), ι(τ2)) ≤ dKp(Γ)(τ1, τ2)

for every τ1, τ2 ∈ T
p(Γ), where dK(Γ) is the Kobayashi distance on T (Γ). Hence we

have dT p(Γ) ≤ dKp(Γ).
Let us show that the opposite inequality holds. From Proposition 5.3, Rτ is a

biholomorphic map from T p(Γ) onto T p(Γτ ) for every τ ∈ T p(Γ). Hence by Proposi-
tion 6.1, it is sufficient to show that for each non-base point τ ∈ T p(Γ),

dKp(Γ)(0, τ) ≤ dT p(Γ)(0, τ).

Recall that σ(τ) is the Beltrami coefficient of the Douady–Earle extension E(τ)
for τ . By Theorem 2.4, σ(τ) belongs to Aelp(Γ). Since T p(Γ) is contained in T0(Γ), it
follows from Theorem 4 in [9] that σ(τ) also belongs to Bel0(Γ). Let f and µ be the
projection of E(τ) and σ(τ) by π, respectively. By Strebel’s frame mapping theorem,
τ has a unique extremal mapping f0 on R. Note that 1 < K0 = K(f0) < K(f).

Let {En} denote an exhaustion of R. Since f is a frame mapping, there exists a
number N ∈ N such that

(6.3) K(f |R\En
) < K0

for each n ≥ N . For such n, we consider the Teichmüller space of En, denoted by
T (En). Similarly to T (Γ), it is defined as the quotient space of the set of quasicon-

formal mappings on En by the homotopy relative to ∂En. Let f̃n be an extremal
mapping in [f |En

] ∈ T (En). Then K(f̃n) ≥ K0. Indeed, suppose to the contrary. Set

fn(z) =

{

f̃n(z), z ∈ En,

f(z), z ∈ R \ En.

Since f̃n belongs to [f |En
], f̃n agrees with f on ∂En. Hence fn is a homeomorphism

of R. Moreover, f and f̃n are quasiconformal and ∂En has zero measure. Hence fn
is a quasiconformal mapping on R and fn ∈ τ . Thus we have K0 ≤ K(fn). However,
from inequality (6.3), we have

K(fn) = max{K(f |R\En
), K(f̃n)} < K0.

This contradicts the assumption. From this result, we have

K(f |En\EN
) ≤ K(f |R\EN

) < K0 ≤ K(f̃n).

Thus f |En
is a frame mapping for [f |En

] ∈ T (En). By Strebel’s frame mapping

theorem, f̃n is the Teichmüller mapping with Beltrami coefficient knϕn/|ϕn| where
0 < kn < 1 and ϕn is a quadratic differential on En with

˜

En
|ϕn| = 1. Let µn be

the Beltrami coefficient of fn and Kn = K(fn). Then it is easily seen that

(a) Kn > K0,
(b) [µn] = [µ],
(c) for every t ∈ ∆, [tµn] ∈ T

p(Γ)

for each n.
Let g(t) = [tµn/‖µn‖∞] for t ∈ ∆. It follows from condition (c) that g maps ∆

into T p(Γ). Furthermore, g is holomorphic on ∆ and g(0) = 0, g(‖µn‖∞) = [µn]. By
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formula (b) and the definition of the Kobayashi pseudo-distance,

dKp(Γ)(0, τ) ≤ d1(0, τ) = d1(0, [µn]) ≤
1

2
log

1 + ‖µn‖∞
1− ‖µn‖∞

=
1

2
logKn.

Let us show that there exists a subsequence of {Kn} tending to K0. From Proposition
6.7, there exists a subsequence of {ϕn} which converges locally uniformly in R to a
holomorphic quadratic differential ϕ∗ ∈ A1(R). We write this subsequence as {ϕn}
again.

To show ‖ϕ∗‖1 > 0, suppose to the contrary that ‖ϕ∗‖1 = 0. Then {ϕn} converges
locally uniformly to 0 in R. Take ε > 0 arbitrarily. Since limn→∞

˜

EN
|ϕn| = 0, there

exists a number N ′ ∈ N such that
¨

EN

|ϕn| < ε

for n > N ′. Let Ñ = max{N,N ′}. For any n > Ñ , the fundamental inequality
implies that

K(f̃n) ≤

¨

En

∣

∣1 + µ ϕn

|ϕn|

∣

∣

2

1− |µ|2
|ϕn| dx dy.

We estimate the right-hand integral by dividing En into EN and En \ EN .

¨

EN

∣

∣1 + µ ϕn

|ϕn|

∣

∣

2

1− |µ|2
|ϕn| dx dy ≤

¨

EN

1 + |µ|

1− |µ|
|ϕn| dx dy

≤
1 + ‖µ‖∞
1− ‖µ‖∞

¨

EN

|ϕn| dx dy < Kε;

¨

En\EN

∣

∣1 + µ ϕn

|ϕn|

∣

∣

2

1− |µ|2
|ϕn| dx dy ≤

1 + ‖µ|R\EN
‖∞

1− ‖µ|R\EN
‖∞

¨

En\EN

|ϕn| dx dy

≤ K(f |R\EN
).

Recall that K = K(f) = (1 + ‖µ‖∞)/(1 − ‖µ‖∞). It follows from these inequalities

that K(f̃n) < Kε+K(f |R\EN
). Taking ε→ 0, we obtain

lim sup
n→∞

K(f̃n) ≤ K(f |R\EN
).

By inequality (6.3), we have

lim sup
n→∞

Kn ≤ max{lim sup
n→∞

K(f̃n), K(f |R\EN
)} < K0.

However, this contradicts inequality (a). Therefore, ‖ϕ∗‖1 > 0.
Since 0 < kn < 1 for all n, {kn} has a convergent subsequence. Let k∗ be

the limit of this subsequence and µ∗ = k∗ϕ∗/|ϕ∗|. Since ‖ϕ∗‖1 > 0, µ∗ is well-
defined and {µn} converges pointwise to µ∗ on R. Because K(fn) = Kn ≤ K for
every n, we have ‖µn‖∞ ≤ ‖µ‖∞ < 1. It follows from Lemma V.3.1 in [16] that
[µ∗] = [µ]. From the uniqueness of extremal mappings, we have k∗ = k0. Noting that
K0 = (1 + k0)/(1− k0), this implies that {Kn} has a subsequence converging to K0.
Therefore, dT p(Γ) = dKp(Γ). �

The essential point of this proof is that the projection of the Douady–Earle
extension for each point of T p(Γ) is a frame mapping, which follows from that T p(Γ)
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is contained in T0(Γ). Recall that for every Fuchsian group Γ, T0(Γ) is a closed
submanifold of T (Γ). It is known that the right translation map Rτ for each τ ∈ T0(Γ)
is biholomorphic of T0(Γ) onto T0(Γ

τ ). Therefore, the following result holds similarly
to the above theorem:

Theorem 6.9. For every Fuchsian group Γ, the Teichmüller distance on T0(Γ)
coincides with the Kobayashi distance.

As we mentioned previously, this result is shown in [8]. Hence we obtained
another proof.

Remark. Recall that the Teichmüller distance dT p(Γ) on T p(Γ) is the restriction
of the Teichmüller distance on T (Γ) to T p(Γ). On the other hand, the Kobayashi
distance dKp(Γ) on T p(Γ) is determined by d1-lengths of paths on T p(Γ), that is,
(T p(Γ), dKp(Γ)) is a path metric space. These facts imply that the topology induced
by dT p(Γ) is weaker than or equal to the one induced by dKp(Γ). Theorem 6.8 means
that these topologies coincide and that (T p(Γ), dT p(Γ)) is a path metric space.
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