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Abstract. This paper generalizes the Aleksandrov problem, the Mazur–Ulam theorem and

Benz theorem on n-normed spaces. It proves that a one-distance preserving mapping is an n-

isometry if and only if it has the zero-distance preserving property, and two kinds of n-isometries

on n-normed spaces are equivalent.

1. Introduction

Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if it
satisfies dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote
the metrics in the spaces X and Y , respectively. For some fixed number r > 0,
assume that f preserves the distance r, i.e., for all x, y ∈ X with dX(x, y) = r, it
holds that dY (f(x), f(y)) = r. Then r is called a conservative (or preserved) distance
for the mapping f .

Mazur and Ulam [13] proved a theorem which tells that every isometry of a real
normed space onto a real normed space is a linear mapping up to a translation.

Aleksandrov [1] posed the following problem: Examine whether the existence of
a single conservative distance for some mapping f implies that f is an isometry.

Benz [2] proved the following result that is related to Mazur–Ulam theorem. Let
X and Y be real linear normed spaces such that dimX ≥ 2 and Y is strictly convex.
Suppose that ρ > 0 is a fixed real number and that N > 1 is a fixed integer. Finally,
let f : X → Y be a mapping such that for all x, y ∈ X ‖x−y‖ = ρ ⇒ ‖f(x)−f(y)‖ ≤
ρ, and ‖x− y‖ = Nρ ⇒ ‖f(x)− f(y)‖ ≥ Nρ. Then f is an affine isometry.

Rassias and Šemrl et al. [16, 8, 9] proved a series of results on the Aleksandrov
problem on normed spaces. Chu et al. and Park et al. [4, 5, 15] in linear n-normed
spaces, defined the concept of a w-n-isometry and n-isometry that are suitable to rep-
resent the notion of a volume-preserving mapping, and generalized the Aleksandrov
problem to n-normed spaces.

In this paper, we prove that all conditions given in [4, 5, 7, 10, 11, 12, 14, 15] are
equivalent; i.e., if f has the w-n-DOPP, then the following properties are equivalent:

(1) f preserves w-n-0-distance (n-collinear);
(2) f is a w-n-Lipschitz;
(3) f preserves 2-collinearity;
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(4) f is affine;

(5) f is an n-isometry;

(6) f is n-Lipschitz;

(7) f preserves n-0-distance;

(8) f is a w-n-isometry.

In the end, we generalize Benz’s theorem [3] to n-normed spaces.

2. Terminology

Definition 2.1. [5] Assume that X is a real linear space with dimX ≥ n and
‖·, . . . , ·‖ : Xn → R is a function which satisfies

(1) ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly dependent,
(2) ‖x1, . . . , xn‖ = ‖xj1, . . . , xjn‖ for every permutation (j1, . . . , jn) of (1, . . . , n),
(3) ‖αx1, . . . , xn‖ = |α|‖x1, . . . , xn‖,
(4) ‖x+ y, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖+ ‖y, x2, . . . , xn‖

for any α ∈ R and all x1, . . . , xn ∈ X. Then the function ‖·, . . . , ·‖ is called the
n-norm on X and (X, ‖·, . . . , ·‖) is called a linear n-normed space.

Remark 2.2. [5] Let X be a real linear n-normed space. Then

‖x1, . . . , xi, . . . , xj , . . . , xn‖ = ‖x1, . . . , xi + xj , . . . , xj, . . . , xn‖

for x1, . . . , xi, . . . , xj , . . . , xn ∈ X.

Definition 2.3. [6] Let X be a real linear n-normed space. A sequence {xk} is
said to converge to x ∈ X (in the n-norm) if

lim
k→∞

‖xk − x, y2, . . . , yn‖ = 0

for every y2, . . . , yn ∈ X.

Some concepts on w-n-distance:

Definition 2.4. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to be a w-n-isometry if

‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖ = ‖x1 − x0, . . . , xn − x0‖

for all x0, x1, . . . , xn ∈ X.

Definition 2.5. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to have the w-n-distance one preserving property (w-n-DOPP)
if ‖x1 − x0, . . . , xn − x0‖ = 1 implies ‖f(x1) − f(x0), . . . , f(xn) − f(x0)‖ = 1 for all
x0, x1, . . . , xn ∈ X.

Definition 2.6. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to be w-n-Lipschitz if

‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖ ≤ ‖x1 − x0, . . . , xn − x0‖

for all x0, x1, . . . , xn ∈ X.

Some concepts on n-distance:
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Definition 2.7. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to be an n-isometry if

‖f(x1)− f(y1), . . . , f(xn)− f(yn)‖ = ‖x1 − y1, . . . , xn − yn‖

for all x1, . . . , xn, y1, . . . , yn ∈ X.

Definition 2.8. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to have the n-distance one preserving property (n-DOPP)
if ‖x1 − y1, . . . , xn − yn‖ = 1 implies ‖f(x1) − f(y1), . . . , f(xn)− f(yn)‖ = 1 for all
x1, . . . , xn, y1, . . . , yn ∈ X.

Definition 2.9. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to be n-Lipschitz if

‖f(x1)− f(y1), . . . , f(xn)− f(yn)‖ ≤ ‖x1 − y1, . . . , xn − yn‖

for all x1, . . . , xn, y1, . . . , yn ∈ X.

Definition 2.10. Let X and Y be two real linear n-normed spaces. A mapping
f : X → Y is said to preserve the 2-collinearity if for all x, y, z ∈ X, the existence
of t ∈ R with z − x = t(y − x) implies the existence of s ∈ R with f(z) − f(x) =
s(f(y)− f(x)).

Definition 2.11. [5] Let X and Y be two real linear n-normed spaces. The
points x0, x1, . . . , xn of X are called n-collinear if for every i, {xj−xi : 0 ≤ j 6= i ≤ n}
is linearly dependent.

Definition 2.12. [5] Let X and Y be two real linear n-normed spaces. A map-
ping f : X → Y is said to preserve the n-collinearity if n-collinearity of f(x0), f(x1),
. . . , f(xn) follows from the n-collinearity of x0, x1, . . . , xn.

Remark 2.13. Let X and Y be two real linear n-normed spaces. A mapping f

preserves the n-collinearity means that f preserves w-0-distance (‖x1 − x0, . . . , xn −
x0‖ = 0 implies ‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖ = 0).

3. Main results on two isometries

One of remarkable differences between normed spaces and n-normed spaces is
that ‖x − y‖ = 0 implies ‖f(x)− f(y)‖ = 0 for any mapping f from normed space
X to Y . However, it is not true for n-normed spaces.

Lemma 3.1. Let X and Y be two real n-normed spaces. Suppose that f satisfies
w-n-DOPP and ‖x1 − x0, x2 − x0, . . . , xn − x0‖ = 0 implies ‖f(x1)− f(x0), f(x2)−
f(x0), . . . , f(xn)− f(x0)‖ = 0. Then f preserves 2-collinearity.

Proof. We first show that f is injective. Let x0 and x1 be any distinct points in
X. Since dimX ≥ n, there are x2, . . . , xn ∈ X such that x1 − x0, . . . , xn − x0 are
linearly independent. Thus, ‖x1 − x0, . . . , xn − x0‖ 6= 0.

Set z2 = x0 +
x2−x0

‖x1−x0,...,xn−x0‖
. Then we have

‖x1 − x0, z2 − x0, x3 − x0, . . . , xn − x0‖ = 1.

Since f has the w-n-DOPP, we get

‖f(x1)− f(x0), f(z2)− f(x0), f(x3)− f(x0), . . . , f(xn)− f(x0)‖ = 1

and it follows that f(x0) 6= f(x1). Hence, f is injective.
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For n = 2, f is obviously 2-collinear by the condition that ‖x1 − x0, x2 − x0‖ = 0
implies ‖f(x1)− f(x0), f(x2)− f(x0)‖ = 0.

Let n > 2. Assume that x0, x1, x2 are distinct points of X which are 2-collinear.
Then x1 − x0, x2 − x0 are linearly dependent and f(x0), f(x1), f(x2) are also distinct
by the injectivity of f .

Since dimX ≥ n, there exist y1, y2, . . . , yn ∈ X such that y1−x0, y2−x0, . . . , yn−
x0 are linearly independent. Hence, it holds that

‖y1 − x0, y2 − x0, . . . , yn − x0‖ 6= 0.

Let z1 = x0 +
y1−x0

‖y1−x0,y2−x0,...,yn−x0‖
. Then we have

‖z1 − x0, y2 − x0, . . . , yn − x0‖ = 1.

Since f has the w-n-DOPP,

‖f(z1)− f(x0), f(y2)− f(x0), . . . , f(yn)− f(x0)‖ = 1.

Hence, the set A = {f(x)− f(x0) : x ∈ X} contains n linearly independent vectors.
Since for any x3, . . . , xn ∈ X

‖x1 − x0, x2 − x0, x3 − x0, . . . , xn − x0‖ = 0

and f preserves the n-collinearity, we have

(3.1) ‖f(x1)− f(x0), f(x2)− f(x0), f(x3)− f(x0), . . . , f(xn)− f(x0)‖ = 0,

i.e., f(x1) − f(x0), f(x2) − f(x0), f(x3) − f(x0), . . . , f(xn) − f(x0) are linearly de-
pendent. If there exist x3, . . . , xn−1 such that f(x1) − f(x0), f(x2) − f(x0), f(x3) −
f(x0), . . . , f(xn−1)− f(x0) are linearly independent, then

A = {f(xn)− f(x0) : xn ∈ X}

⊂ span{f(x1)− f(x0), f(x2)− f(x0), f(x3)− f(x0), . . . , f(xn−1)− f(x0)},

which contradicts the fact that A contains n linearly independent vectors.
Then, for any x3, . . . , xn−1, f(x3) − f(x0), . . . , f(xn−1) − f(x0)} are linearly de-

pendent. If there exist x3, . . . , xn−2 such that f(x1) − f(x0), f(x2) − f(x0), f(x3) −
f(x0), . . . , f(xn−2)− f(x0) are linearly independent, then

A = {f(xn−1)− f(x0) : xn−1 ∈ X}

⊂ span{f(x1)− f(x0), f(x2)− f(x0), f(x3)− f(x0), . . . , f(xn−2)− f(x0)},

which contradicts the fact that A contains n linearly independent vectors.
And so on, f(x1) − f(x0) and f(x2) − f(x0) are linearly dependent, i.e., f(x0),

f(x1), f(x2) are 2-collinear. Therefore, f preserves the 2-collinearity. �

Corollary 3.2. Let X and Y be two real linear n-normed spaces. If f is w-n-
Lipschitz and satisfies w-n-DOPP, then f preserves 2-collinearity.

Proof. Because f is w-n-Lipschitz, then ‖x1 − x0, x2 − x0, . . . , xn − x0‖ = 0
implies ‖f(x1) − f(x0), f(x2) − f(x0), . . . , f(xn) − f(x0)‖ = 0. Hence f preserves
2-collinearity by Lemma 3.1. �

Lemma 3.3. [11] Let X and Y be two real n-normed spaces. Suppose that
f : X → Y satisfies n-DOPP and preserves 2-collinearity, then f preserves w-n-
distance 1

k
for each k ∈ N.
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Lemma 3.4. Let X and Y be two real n-normed spaces. If f : X → Y satisfies
w-n-DOPP and preserves 2-collinearity, then f is affine.

Proof. (1) Let x = y+z

2
for distinct x, y, z ∈ X. Then y − x = −(z − x). Since f

is injective and preserves 2-collinearity, there exists an s 6= 0 such that

(3.2) f(y)− f(x) = s(f(z)− f(x)).

Since dimX ≥ n, there exist x1, x2, . . . , xn−1 ∈ X with ‖y−x, x1−x, x2−x, . . . , xn−1−
x‖ 6= 0. Set w = x+ x1−x

‖y−x,x1−x,x2−x,...,xn−1−x‖
. Then

(3.3) ‖y − x, w − x, x2 − x, . . . , xn−1 − x‖ = 1

and
‖f(y)− f(x), f(w)− f(x), f(x2)− f(x), . . . , f(xn−1)− f(x)‖ = 1.

Clearly, it follows from (3.2) that

(3.4) ‖f(z)− f(x), f(w)− f(x), f(x2)− f(x), . . . , f(xn−1)− f(x)‖ =
1

|s|
.

Since y − x = x− z, (3.3) yields

‖z − x, w − x, x2 − x, . . . , xn−1 − x‖ = 1,

and hence we have

(3.5) ‖f(z)− f(x), f(w)− f(x), f(x2)− f(x), . . . , f(xn−1)− f(x)‖ = 1.

Because f is injective, and comparing (3.4) with (3.5) we conclude that s = −1.
Thus, f(y)− f(x) = f(x)− f(z) and

f(
y + z

2
) =

f(y) + f(z)

2
.

(2) Let g(x) = f(x) − f(0). It is obvious that for any x ∈ X and all rational
numbers r, p, we have

(3.6) g(rx) = rg(x), g(rx+ py) = rg(x) + pg(y).

(3) Next we show that g preserves any rational number n-distance. Suppose that

‖x1 − y1, x2 − y2, . . . , xn − yn‖ =
t

m

for integers t,m. Then
∥

∥

∥

1

t
x1 − y1, x2 − y2, . . . , xn − yn

∥

∥

∥
=

1

m
,

according to Lemma 3.3 and (3.6), we have
∥

∥

∥

1

t
(g(x1)− g(y1)), g(x2)− g(y2), . . . , g(xn)− g(yn)

∥

∥

∥
=

1

m
.

Thus

‖g(x1)− g(y1), g(x2)− g(y2), . . . , g(xn)− g(yn)‖ =
t

m
.

(4) For any r ∈ R, since g(0), g(x), g(rx) are also 2-collinear from f(0), f(x),
f(rx) are 2-collinear and g(0) = 0. There exists a real number s such that

g(rx) = sg(x).
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Let {rk} be a sequence of rational numbers with limi→∞ rk = s. Then for any
y2, . . . , yn ∈ Y ,

lim
k→∞

‖rkg(x)− sg(x), y2, . . . , yn‖ = lim
k→∞

|rk − s|‖g(x), y2, . . . , yn‖ = 0.

So g(rx) = limk→∞ rkg(x). This yields

lim
k→∞

‖g(rkx)− g(rx), y2, . . . , yn‖ = 0.

Then for x 6= 0 and any k, we can find xk
2, . . . , x

k
n which satisfy ‖x, xk

2, . . . , x
k
n‖ > 1

and |r − rk|‖x, x
k
2, . . . , x

k
n‖ is a rational number. This implies that

|r − rk|‖x, x
k
2, . . . , x

k
n‖ = ‖(r − rk)x, x

k
2, . . . , x

k
n‖

= ||rx− rkx, x
k
2, . . . , x

k
n‖

= ‖g(rx)− g(rkx), g(x
k
2), . . . , g(x

k
n)‖.

Moreover, limk→∞ ‖g(rkx) − g(rx), g(xk
2), . . . , g(x

k
n)‖ = 0 and ‖x, xk

2, . . . , x
k
n‖ > 1

imply that limi→∞ rk = r. Thus r = s, and hence g is linear and f is affine. �

Lemma 3.5. Let X and Y be two real n-normed spaces. Suppose that f : X →
Y satisfies w-n-DOPP and f is affine. Then

(1) f preserves n-0-distance;

(2) f preserves n-1-distance (n-DOPP);

(3) f is an n-isometry.

Proof. Set g(x) = f(x)− f(0). Then g(x) is linear.
(a) Suppose that

‖y1 − x1, . . . , yn − xn‖ = 0.

Then {y1 − x1, . . . , yn − xn} are linearly dependent. There are a1, a2, . . . , an which
are not all zero such that

a1(y1 − x1) + a2(y2 − x2 . . . ,+an(yn − xn) = 0,

and
a1(g(y1)− g(x1)) + a2(g(y2)− g(x2)) . . . ,+ang((yn)− g(xn)) = 0.

Clearly, we have
‖g(y1)− g(x1), . . . , g(yn)− g(xn)‖ = 0,

which deduces
‖f(y1)− f(x1), . . . , f(yn)− f(xn)‖ = 0.

(b) Suppose that for x1, . . . , xn, y1, . . . , yn ∈ X,

‖y1 − x1, . . . , yn − xn‖ = 1.

For any x0 ∈ X, set zi = x0 + yi − xi. Then

‖z1 − x0, . . . , zn − x0‖ = 1.

Since f satisfies w-n-DOPP, we have

‖f(z1)− f(x0), . . . , f(zn)− f(x0)‖ = 1.

Clearly,
‖g(z1)− g(x0), . . . , g(zn)− g(x0)‖ = 1,
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and g is linear, which means

‖g(y1)− g(x1), . . . , g(yn)− g(xn)‖ = 1.

This implies
‖f(y1)− f(x1), . . . , f(yn)− f(xn)‖ = 1.

(c) Suppose that for x1, . . . , xn, y1, . . . , yn ∈ X,

‖y1 − x1, . . . , yn − xn‖ 6= 0,

and set

(3.7) y = x1 +
y1 − x1

‖y1 − x1, . . . , yn − xn‖
.

This implies that ‖y−x1, . . . , yn−xn‖ = 1 and ‖f(y)−f(x1), . . . , f(yn)−f(xn)‖ = 1.
Hence, it holds that

(3.8) ‖g(y)− g(x1), g(y2)− g(x2), . . . , g(yn)− g(xn)‖ = 1.

Since g is linear, it follows from (3.7) and (3.8) that
∥

∥

∥

∥

g(y1)− g(x1)

‖y1 − x1, . . . , yn − xn‖
, g(y2)− g(x2), . . . , g(yn)− g(xn)

∥

∥

∥

∥

= 1.

This implies that
∥

∥

∥

∥

f(y1)− f(x1)

‖y1 − x1, . . . , yn − xn‖
, f(y2)− f(x2), . . . , f(yn)− f(xn)

∥

∥

∥

∥

= 1.

Hence, ‖f(y1)−f(x1), . . . , f(yn)−f(xn)‖ = ‖y1−x1, . . . , yn−xn‖, which shows that
f is an n-isometry. �

Theorem 3.6. Let X and Y be two real n-normed spaces. Suppose that f sat-
isfies w-n-DOPP. Then the following properties are equivalent for f : w-n-Lipschitz,
n-collinear (w-n-0-distance), 2-collinear, affine, n-isometry, n-Lipschitz, n-0-distance,
w-n-isometry.

Proof. w-n-DOPP and w-n-Lipschitz ⇒ w-n-DOPP and n-collinear ⇒ w-n-
DOPP and 2-collinear ⇒ w-n-DOPP and affine ⇒ n-DOPP and n-0-distance ⇒
n-isometry ⇒ n-DOPP and n-Lipschitz or w-n-isometry ⇒ w-n-DOPP and w-n-
Lipschitz. �

Corollary 3.7. Let X and Y be two real n-normed spaces. A mapping f : X →
Y is a w-n-isometry if and only if f is an n-isometry.

Proof. Obviously, if f is a w-n-isometry, then f preserves w-n-DOPP. �

Corollary 3.8. Let X and Y be two real n-normed spaces. Suppose that f

preserves w-ρ-distance for some fixed ρ > 0. Then the following properties are
equivalent for f : w-n-Lipschitz, n-collinear (w-n-0-distance), 2-collinear, affine, n-
isometry, n-Lipschitz, n-0-distance, w-n-isometry.

Remark 3.9. Let X and Y be two real n-normed spaces. Suppose that f

satisfies n-DOPP. Then the following properties are equivalent for f : w-n-Lipschitz,
n-collinear (w-n-0-distance), 2-collinear, affine, n-isometry, n-Lipschitz, n-0-distance,
w-n-isometry.
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4. Main result on Benz Theorem

Theorem 4.1. Let X and Y be two real linear n-normed spaces, x0, x1, . . . , xn ∈
X, ρ > 0, N = 1, 2, . . ., and f : X → Y be a function satisfying the conditions

(1) ‖x1 − x0, . . . , xn − x0‖ = ρ implies ‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖ ≤ ρ,

(2) ‖x1−x0, . . . , xn−x0‖ = Nρ implies ‖f(x1)−f(x0), . . . , f(xn)−f(x0)‖ ≥ Nρ,

(3) f is 2-collinear (or one of the equivalent conditions of Corollary 3.8 holds).

Then f is an n-isometry.

Proof. We only need to show that f preserves w-ρ-distance. Let

‖x1 − x0, . . . , xn − x0‖ = ρ.

Set pi = x0 + i(x1 − x0), i = 0, 1, . . . , N . Clearly, we have p1 = x1, p0 = x0, pi − x0 =
i(x1 − x0), pi − pi−1 = x1 − x0 = pi − x0, and

‖pi − pi−1, x2 − x0, . . . , xn − x0‖ = ‖x1 − x0, . . . , xn − x0‖ = ρ.

It follows from Remark 2.2 that ‖pi − pi−1, x2 − pi, . . . , xn − pi‖ = ‖pi − pi−1, x2 −
x0, . . . , xn − x0‖ = ρ, and

(4.1) ‖pN − x0, . . . , xn − x0‖ = Nρ.

By condition (1)

‖f(pi−1)− f(pi), f(x2)− f(pi), . . . , f(xn)− f(pi)‖ ≤ ρ.

As pi, pi−1, x0 are 2-collinear, f(pi), f(pi−1), f(x0) are 2-collinear, it is necessary from
Remark 2.2 that

‖f(pi)− f(pi−1), f(x2)− f(x0), . . . , f(xn)− f(x0)‖

= ‖f(pi)− f(pi−1), f(x2)− f(pi) + f(pi)− f(x0), . . . , f(xn)− f(pi) + f(pi)− f(x0)‖

= ‖f(pi)− f(pi−1), f(x2)− f(pi), . . . , f(xn)− f(pi)‖ ≤ ρ.

By (4.1) and condition (2),

Nρ ≤ ‖f(pN)− f(x0), . . . , f(xn)− f(x0)‖

≤

N
∑

1

‖f(pi)− f(pi−1), f(x2)− f(x0), . . . , f(xn)− f(x0)‖ = Nρ.

Thus
‖f(pi)− f(pi−1), f(x2)− f(x0), . . . , f(xn)− f(x0)‖ = ρ.

This implies

‖f(x1)− f(x0), f(x2)− f(x0), . . . , f(xn)− f(x0)‖ = ρ.

It proves that f is an affine n-isometry by the Corollary 3.8. �
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