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ISOMETRY ON LINEAR n-NORMED SPACES
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Abstract. This paper generalizes the Aleksandrov problem, the Mazur—Ulam theorem and
Benz theorem on n-normed spaces. It proves that a one-distance preserving mapping is an n-
isometry if and only if it has the zero-distance preserving property, and two kinds of n-isometries
on n-normed spaces are equivalent.

1. Introduction

Let X and Y be metric spaces. A mapping f: X — Y is called an isometry if it
satisfies dy (f(z), f(y)) = dx(z,y) for all z,y € X, where dx(-,-) and dy(-,-) denote
the metrics in the spaces X and Y, respectively. For some fixed number r» > 0,
assume that f preserves the distance 7, i.e., for all z,y € X with dx(z,y) = r, it
holds that dy (f(z), f(y)) = r. Then r is called a conservative (or preserved) distance
for the mapping f.

Mazur and Ulam [13| proved a theorem which tells that every isometry of a real
normed space onto a real normed space is a linear mapping up to a translation.

Aleksandrov [1] posed the following problem: Examine whether the existence of
a single conservative distance for some mapping f implies that f is an isometry.

Benz |2] proved the following result that is related to Mazur—Ulam theorem. Let
X and Y be real linear normed spaces such that dimX > 2 and Y is strictly convex.
Suppose that p > 0 is a fixed real number and that N > 1 is a fixed integer. Finally,
let f: X — Y be a mapping such that forallz,y € X ||[zx—y| =p=|f(z)—f(y)| <
p, and ||lx —y|| = Np=||f(x) — f(y)|| > Np. Then f is an affine isometry.

Rassias and Semrl et al. [16, 8, 9] proved a series of results on the Aleksandrov
problem on normed spaces. Chu et al. and Park et al. [4, 5, 15] in linear n-normed
spaces, defined the concept of a w-n-isometry and n-isometry that are suitable to rep-
resent the notion of a volume-preserving mapping, and generalized the Aleksandrov
problem to n-normed spaces.

In this paper, we prove that all conditions given in [4, 5, 7, 10, 11, 12, 14, 15] are
equivalent; i.e., if f has the w-n-DOPP, then the following properties are equivalent:

(1) f preserves w-n-0-distance (n-collinear);

(2) fis a w-n-Lipschitz;

(3) f preserves 2-collinearity;
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f is affine;

f is an n-isometry;

f is n-Lipschitz;

7) f preserves n-0-distance;
8) f is a w-n-isometry.

In the end, we generalize Benz’s theorem [3]| to n-normed spaces.

2. Terminology

Definition 2.1. [5] Assume that X is a real linear space with dimX > n and
|I,...,]]: X™ — R is a function which satisfies

(1) ||z1,...,2,]| = 0 if and only if x4, ..., z, are linearly dependent,
(2) ||z1, - xnll = Iz, - - -z, || for every permutation (ji, ..., j,) of (1,...,n),
(3) |laxy, ...,z = |e]|z1, .., 24l
(4) ||Zl§' Ty, T2, .. ’an < ||[L’,£l§'2, s >$n|| + ||y,x2, s ’an
for any @« € R and all z4,...,2, € X. Then the function ||-,...,-| is called the
n-norm on X and (X, ||-,...,||) is called a linear n-normed space.

Remark 2.2. 5] Let X be a real linear n-normed space. Then
|1, oy, x| = 2, g, T |

for q, ...,z ... 25, 2, € XL
Definition 2.3. [6] Let X be a real linear n-normed space. A sequence {zj} is
said to converge to z € X (in the n-norm) if

lim ||xp — 2,92, ..., yn]| =0
k—oo

for every v, ...,y, € X.

Some concepts on w-n-distance:

Definition 2.4. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y is said to be a w-n-isometry if

||f(l’1) _f(xO)a"'af(xn) _f($0)|| = ||£L'1 — 2055 Tn _x0||

for all xg,x1,...,2, € X.

Definition 2.5. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y issaid to have the w-n-distance one preserving property (w-n-DOPP)

if |21 — xo, ..., 2 — x0|| = 1 implies ||f(x1) — f(z0), ..., f(xn) — f(z0)]| = 1 for all
X0, L1y, Ty € X.

Definition 2.6. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y is said to be w-n-Lipschitz if

1f (1) = f(x0), -, flwn) = flwo)|| < oy = @0, -, 2 — o]

for all g, x1,...,2, € X.

Some concepts on n-distance:
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Definition 2.7. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y is said to be an n-isometry if

1f(@1) = f(yr)s - f(@n) = flun)ll = llor =1, 20 — vl
forall z1,..., 2,0, y1,...,yn € X.

Definition 2.8. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y is said to have the n-distance one preserving property (n-DOPP)

if |21 —y1, ..., xn — ynl| = 1 implies ||f(x1) — f(y1),..., f(zn) — f(yn)|| = 1 for all
xla"'>$n>yla-">yn€X~

Definition 2.9. [15] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y is said to be n-Lipschitz if

1 (1) = f(yn), - fan) = flun) | < ley — w1, 20 — |
forall zq,..., 2z, y1,...,yn € X.

Definition 2.10. Let X and Y be two real linear n-normed spaces. A mapping
f: X — Y is said to preserve the 2-collinearity if for all x,y,2 € X, the existence
of t € R with z — z = t(y — ) implies the existence of s € R with f(z) — f(x) =
s(f(y) — f(x)).

Definition 2.11. [5] Let X and Y be two real linear n-normed spaces. The
points xg, x1, . . ., &, of X are called n-collinear if for every i, {z; —z;: 0 < j #1i < n}
is linearly dependent.

Definition 2.12. [5] Let X and Y be two real linear n-normed spaces. A map-
ping f: X — Y is said to preserve the n-collinearity if n-collinearity of f(xo), f(z1),
..., f(z,) follows from the n-collinearity of =g, x1,..., x,.

Remark 2.13. Let X and Y be two real linear n-normed spaces. A mapping f
preserves the n-collinearity means that f preserves w-0-distance (||z1 — xg, ..., T, —

ol = 0 implies ||f(z1) = f(zo), ..., f(zn) = f(20)[| = 0).

3. Main results on two isometries

One of remarkable differences between normed spaces and n-normed spaces is
that ||z — y|| = 0 implies ||f(x) — f(y)|| = 0 for any mapping f from normed space
X to Y. However, it is not true for n-normed spaces.

Lemma 3.1. Let X andY be two real n-normed spaces. Suppose that f satisfies
w-n-DOPP and ||z1 — zg, X2 — Xo, . .., Ty — xo|| = 0 implies || f(x1) — f(xo), f(x2) —
f(zo), ..., f(xn) — f(xo)|| = 0. Then f preserves 2-collinearity.

Proof. We first show that f is injective. Let x¢ and x; be any distinct points in
X. Since dim X > n, there are xs,...,z, € X such that 1 — z¢,...,x, — 2o are
linearly independent. Thus, ||z1 — x,...,z, — zo|| # 0.

Set zo = z¢ + ”xl_xf)?:?r%”. Then we have

||[L’1 — Lo, 22 — Lo, T3 — Lo, -..,Lnp —ZL'QH = 1.
Since f has the w-n-DOPP, we get

1f (21) = f (o), f(22) = f(@o), f(ws5) — flwo), .., fan) = flzo)l| =1
and it follows that f(xg) # f(z1). Hence, f is injective.
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For n =2, f is obviously 2-collinear by the condition that ||z1 — z¢, z3 — xo|| = 0
implies || f(z1) — f(zo), f(22) — f(zo)|| = 0.

Let n > 2. Assume that xg, z1, o are distinct points of X which are 2-collinear.
Then 1 — g, x2 — x¢ are linearly dependent and f(xg), f(z1), f(z2) are also distinct
by the injectivity of f.

Since dim X > n, there exist y1, v, ..., y, € X such that y; —zg, yo—x0, ..., yn—
xo are linearly independent. Hence, it holds that

||y1—x073/2_5507---72/n_$0|| ;éo

Let 21 = 29 + YL=%0 . Then we have
ly1—20,y2—20,--,yn—20 |

||Z1 —Zo,Y2 — Zo,-- -3 Yn _xOH =L
Since f has the w-n-DOPP,

1£(z1) — f(x0), Fy2) — f(xo), -, Flyn) — flmo)| = 1.

Hence, the set A = {f(z) — f(x): © € X} contains n linearly independent vectors.
Since for any z3,...,x, € X
|x1 — xo, T2 — 20, 3 — X0, . .., Ty — To|| =0
and f preserves the n-collinearity, we have
(1) f(e) = fl@o), fx2) = f(wo), f2s) = f(o), ..., f(an) — f(zo)]| = 0,

ie., f(x1) = f(xo), f(x2) — f(xo), f(x3) — (o), ..., f(2a) — f(20) are linearly de-
pendent. If there exist xs,...,z,-1 such that f(z1) — f(zo), f(z2) — f(20), f(x3) —
f(zo), ..., f(xn_1) — f(zo) are linearly independent, then

A={f(zn) = f(20): zn € X}

C span{f(z1) = f(zo), f(z2) — f(20), f(x3) = f(20), .., f(n1) — f(z0)},
which contradicts the fact that A contains n linearly independent vectors.

Then, for any zs,...,2,-1, f(x3) — f(x0),..., f(xn-1) — f(x0)} are linearly de-
pendent. If there exist xs,...,x,_o such that f(z1) — f(x0), f(x2) — f(x0), f(x3) —
f(zo), ..., f(xn_2) — f(zo) are linearly independent, then

A={f(zn-1) = f(@0): Tp—1 € X}

C span{ f(z1) = f(zo), f(z2) — f(20), f(x3) = f(20), .., f(Tn—2) — f(m0)},

which contradicts the fact that A contains n linearly independent vectors.
And so on, f(z1) — f(zo) and f(x9) — f(zo) are linearly dependent, i.e., f(zo),
f(z1), f(z2) are 2-collinear. Therefore, f preserves the 2-collinearity. O

Corollary 3.2. Let X and Y be two real linear n-normed spaces. If f is w-n-
Lipschitz and satisfies w-n-DOPP, then f preserves 2-collinearity.

Proof. Because f is w-n-Lipschitz, then |x; — zo, 22 — xg,..., 2, — xo|]| = 0
implies ||f(z1) — f(xo), f(x2) — f(z0),..., f(xn) — f(zo)|| = 0. Hence f preserves
2-collinearity by Lemma 3.1. U

Lemma 3.3. [11| Let X and Y be two real n-normed spaces. Suppose that
f: X — Y satisfies n-DOPP and preserves 2-collinearity, then f preserves w-n-
distance % for each k € N.
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Lemma 3.4. Let X and Y be two real n-normed spaces. If f: X — Y satisfies
w-n-DOPP and preserves 2-collinearity, then f is affine.

Proof. (1) Let z = ¥3= for distinct z,y,z € X. Then y — z = —(z — z). Since f

is injective and preserves 2-collinearity, there exists an s # 0 such that

(3.2) fly) = f@) = s(f(2) — flz)).

Since dim X > n, there exist z1, s, ..., x,—1 € X with ||y—z, z1—x, 20—, ..., 21—
x| #0. Set w=z+ ||y—m,m1—m,$21::f ..... r— B Then

(3.3) ly —x,w—x, 29 —x,..., 201 — x| =1

and

1f(y) = (), f(w) = f(x), f(22) = f(@), .., flena) = f2)]| = 1.
Clearly, it follows from (3.2) that

(3.4) 1f(z) = f(2), f(w) = f(x), f(22) = f(2),.., flana) = fl2)] =

Since y —x = x — z, (3.3) yields

1
|s|

||Z—x,w—x’x2 —Ty,...,Tp-1 —,j(,"“ = 17
and hence we have

(3.5) 1 (2) = f(2), f(w) = f(z), fx2) = f(x),.., f(2na) = fl2)]| = 1.

Because f is injective, and comparing (3.4) with (3.5) we conclude that s = —1.
Thus, f(y) — f(x) = f(x) = f(2) and
A fly) + f(=)

2 2

(2) Let g(x) = f(z) — f(0). It is obvious that for any x € X and all rational
numbers 7, p, we have

(3.6) glrz) =rg(z), g(rz+py)=rg(z)+pg(y).
(3) Next we show that g preserves any rational number n-distance. Suppose that
t
|21 — Y1, 22 — Y2,y T — Yl = —
m
for integers t,m. Then
1 1
H;xl_y17x2_y27”’7xn_yn =

according to Lemma 3.3 and (3.6), we have
1

|5 06e2) — g00)), 92) = 9la). - 9() — (3]
Thus t
lg(1) = 9(y1): 9(@2) = 9(y2), -+ g(an) = glyn)ll = —.

(4) For any r € R, since ¢(0), g(z), g(rz) are also 2-collinear from f(0), f(x),
f(rz) are 2-collinear and g(0) = 0. There exists a real number s such that

g(re) = sg(x).
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Let {rx} be a sequence of rational numbers with lim; ,,.7, = s. Then for any
Yo,y Yn €Y,

Jim {reg(z) = sg(2),y2, - -yl = Him [ri = s[llg(2), y2, - gl = 0.

—00 k—o0

So g(rx) = limg_,o rrg(z). This yields
khm ||g(7°kx) - g(’l“l’), Ya, - - >yn|| =0.
—00

Then for z # 0 and any k, we can find 5, ... 2% which satisfy ||z, 25,..., 28| > 1
and |r — ri|||z, 25, ..., 2¥]|| is a rational number. This implies that
|T - ’I“MH:L’,:L’S, s 7:1:]:;” = ||(T - Tk)x>zl2€> s axfz”
= ||re — rpx, 25, .. 2k

= llg(re) = g(riz), g(a3), ..., g(zp)ll.

Moreover, limy_,o [|g(rrz) — g(rz), g(a5), ..., g(xF)|| = 0 and ||z, 25, ... 2% > 1
imply that lim; ,, 7. = r. Thus r = s, and hence g is linear and f is affine. O

Lemma 3.5. Let X and Y be two real n-normed spaces. Suppose that f: X —
Y satisfies w-n-DOPP and f is affine. Then

(1) f preserves n-O-distance;

(2) f preserves n-1-distance (n-DOPP);

(3) f is an n-isometry.

Proof. Set g(z) = f(z) — f(0). Then g(x) is linear.

(a) Suppose that

ly1 — 21, . yn — x| = 0.
Then {y; — x1,...,y, — x,} are linearly dependent. There are aq,as,...,a, which
are not all zero such that
a1(yr — x1) + as(ys — 22 . .., +an(yn — x,) =0,

and

ar(g(y1) — 9(x1)) + a2(g(y2) — g(22)) -, +ang((yn) — g(2n)) = 0.
Clearly, we have

lg(y1) — g(z1), ..., 9(yn) — g(xn)]| = 0,
which deduces

1f (1) = f(@1)s -, f(ya) — flan)l| = 0.
(b) Suppose that for z1,...,zn,y1, ..., yn € X,

||y1 _xlv”’vyn_an =L
For any zy € X, set z; = xg + y; — z;. Then

||Zl —SL’(],...,Zn—LU()H =1.
Since f satisfies w-n-DOPP, we have

I f(z1) = f(x0),..., f(zn) — f(xo)| = 1.

Clearly,
l9(21) — g(x0), ..., 9(2n) — g(z0)|| = 1,
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and ¢ is linear, which means

1g(y1) — g(z1), ., 9(yn) — g(zn)[| = 1.
This implies
1f(y1) = f(@1), o fyn) — flaa)] = 1.

(c) Suppose that for z1,..., 2., y1,...,Yn € X,
||y1 _xla"'ayn_an 7&07
and set
Y1 — I

||y1 — X1y Yn — .flan
This implies that ||y —x1,...,yp—z,|| = Land || f(y)— f(z1), ..., f(yn) — f(zn)] = 1.
Hence, it holds that
(3.8) l9(y) — 9(z1), 9(y2) — g(2), ..., 9(yn) — g(zn)| = 1.
Since g is linear, it follows from (3.7) and (3.8) that

(3.7) Y=z +

9(y1) — g(21)
lyr — 21, Y — @]
This implies that

fly1) = fz) . ~ el =
I ) — e ) — S| <1

Hence, [f(y1) = f(@1), -, Fn) = F@n)ll = 1y =1, . Y — 2|, which shows that
f is an n-isometry. OJ

9(y2) — g(w2), ..., 9(yn) — g(2n)

Theorem 3.6. Let X and Y be two real n-normed spaces. Suppose that f sat-
isfies w-n-DOPP. Then the following properties are equivalent for f: w-n-Lipschitz,
n-collinear (w-n-0-distance), 2-collinear, affine, n-isometry, n-Lipschitz, n-0-distance,
w-n-isometry.

Proof. w-n-DOPP and w-n-Lipschitz = w-n-DOPP and n-collinear = w-n-
DOPP and 2-collinear = w-n-DOPP and affine = n-DOPP and n-0-distance =
n-isometry = n-DOPP and n-Lipschitz or w-n-isometry = w-n-DOPP and w-n-
Lipschitz. O

Corollary 3.7. Let X and Y be two real n-normed spaces. A mapping f: X —
Y is a w-n-isometry if and only if f is an n-isometry.

Proof. Obviously, if f is a w-n-isometry, then f preserves w-n-DOPP. O

Corollary 3.8. Let X and Y be two real n-normed spaces. Suppose that f
preserves w-p-distance for some fixed p > 0. Then the following properties are
equivalent for f: w-n-Lipschitz, n-collinear (w-n-0-distance), 2-collinear, affine, n-
isometry, n-Lipschitz, n-0-distance, w-n-isometry.

Remark 3.9. Let X and Y be two real n-normed spaces. Suppose that f
satisfies n-DOPP. Then the following properties are equivalent for f: w-n-Lipschitz,
n-collinear (w-n-0-distance), 2-collinear, affine, n-isometry, n-Lipschitz, n-0-distance,
w-n-isometry.
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4. Main result on Benz Theorem

Theorem 4.1. Let X and Y be two real linear n-normed spaces, xo, X1, ...,T, €
X,p>0,N=1,2,...,and f: X — Y be a function satisfying the conditions

(1) [ler = o, .., @ — xol| = p implies || f(z1) = f(z0), ..., fzn) = f(zo)ll < p,

(2) l[x1 =m0, ..., 2n — ol = Np implies | f(z1) = f(xo), ..., f(xn) = f(z0)] = Np,

(3) f is 2-collinear (or one of the equivalent conditions of Corollary 3.8 holds).
Then f is an n-isometry.

Proof. We only need to show that f preserves w-p-distance. Let
|x1 — xo, ...,z — 20| = p-
Set p; = xg + i(x1 — xp), i = 0,1,..., N. Clearly, we have p; = x1,py = xo, p; — o =
i(21 — o), pi — Pi-1 = T1 — Tg = p; — T, and
lpi — pic1, 2 — X, - ., Ty — To|| = ||X1 — 0, - - ., TH — Tol| = p-

It follows from Remark 2.2 that ||p; — pi—1, 22 — pis -, Tn — il = ||Ps — Diz1, T2 —
Zo, ..., Ty — To|| = p, and

(4.1) lpn — xo, ..., Ty — 30|l = Np.
By condition (1)
1f (i) = f(pi), flz2) = f(pi), - -, flan) = f(p)]l < p-

As p;, pi_1, o are 2-collinear, f(p;), f(pi—1), f(zo) are 2-collinear, it is necessary from
Remark 2.2 that

1/ (pi) = f(piz1), fl22) = f(@o), .- flan) = f(20)]]

= [[f(pi) = f(pi-a), f(w2) = F(pi) + f(pi) = (o), -, fwn) = f(pi) + f(pi) = f o)
= [1f(pi) = f(Pi-1), [(@2) = f(pi), - -, [@n) = f(Ri)]| < p.

By (4.1) and condition (2),

Np < |[f(pn) = f(z0), -, fzn) — f(x0)]]
<D M) = Fpic1), f(@2) = f(wo)s -, () = f(wo)|| = Np.

Thus
1f(pi) = f(piz1), f22) = f(@0), -, f(an) = f(z0) || = p-
This implies

[ (z1) = f (o), f(x2) = f (o), ..., flan) = flao)ll = p.
It proves that f is an affine n-isometry by the Corollary 3.8. U
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