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Abstract. Let k ≥ 2 be an integer, let h be a nonconstant elliptic function, and let f be a

nonconstant meromorphic function in C, all of whose zeros have multiplicity at least k + 1, except

possibly finitely many. If T (r, h) = o{T (r, f)} as r → ∞, then f (k) = h has infinitely many solutions

(including the possibility of infinitely many common poles of f and h).

1. Introduction and our result

Notation. Throughout C is the complex plane and D is a domain in C. For
z0 ∈ C, r > 0, ∆(z0, r) = {z | |z − z0| < r}, ∆′(z0, r) = {z | 0 < |z − z0| < r} and
∆ = ∆(0, 1). Let n(r, f) denote the number of poles of f(z) in ∆(0, r) (counting
multiplicity) and let n(∆(z0, r),

1
f
) denote the number of zeros of f(z) in ∆(z0, r)

(counting multiplicity). We write fn
χ

=⇒ f in D to indicate that the sequence {fn}
converges to f in the spherical metric uniformly on compact subsets of D and fn ⇒ f
in D if the convergence is in the Euclidean metric.

Let f be a meromorphic function,

f#(z) =
|f ′(z)|

1 + |f(z)|2
, S(D, f) =

1

π

¨

D

[f#(z)]2 dx dy and S(r, f) = S(∆(0, r), f).

The Ahlfors–Shimizu characteristic is defined by

T (r, f) =

ˆ r

0

S(t, f)

t
dt.

Suppose that h is a meromorphic function in C and there exist two non-zero
complex numbers ω1 and ω2 with ω1/ω2 not real such that h(z+ω1) = h(z+ω2) = h(z)
for all z in C. h is called to be an elliptic function [1].

In 1959, Hayman proved the following seminal result, which has come to be
known as Hayman’s alternative.

Theorem A. [5, Theorem 1] Let f be a transcendental meromorphic function
in C, a ∈ C, b ∈ C\{0}, k ∈ Z+. Then
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(i) f assumes each value a infinitely often, or
(ii) f (k) assumes each value b infinitely often for k = 1, 2, · · · .

Recently, researchers replaced the condition f 6= 0 which is related to a = 0 in
Theorem A with the assumption that all zeros of f have sufficiently high multiplicity.

Theorem B. [8, Theorem 3] Let f be a transcendental meromorphic function
in C, all of whose zeros have multiplicity at least 3. Then f ′ assumes each nonzero
complex value infinitely often.

In 2006, Nevo, Pang and Zalcman promoted Theorem B and obtained the fol-
lowing result.

Theorem C. [7, Theorem 1] Let f be a transcendental meromorphic function
in C, all but finitely many of whose zeros are multiple, and let R 6≡ 0 be a rational
function. Then f ′ − R has infinitely many zeros.

In 2013, Yang and Nevo proved the following result.

Theorem D. [11, Theorem] Let f be a nonconstant meromorphic function in C

and h be a nonconstant elliptic function. If all zeros of f are multiple except finitely
many and T (r, h) = o{T (r, f)} as r → ∞, then f ′ = h has infinitely many solutions
(including the possibility of infinitely many common poles of f and h).

Naturally, we ask a question: In Theorem D, whether f (k), k(≥ 2) ∈ Z+, has the
similar property? In this paper, we give a positive answer.

Theorem 1.1. Let k ≥ 2 be an integer, let h be a nonconstant elliptic function,
and let f be a nonconstant meromorphic function in C, all of whose zeros have
multiplicity at least k + 1, except possibly finitely many. If T (r, h) = o{T (r, f)}
as r → ∞, then f (k) = h has infinitely many solutions (including the possibility of
infinitely many common poles of f and h).

2. Preliminary results

In order to prove the Theorem, we need the following lemmas.

Lemma 2.1. [2, Corollary 2] If h(z) is a nonconstant elliptic function with
primitive periods ω1, ω2, where ω1/ω2 is not real, then T (r, h) = Ar2(1 + o(1))
as r → ∞, where A > 0 is a constant.

Lemma 2.2. [11, Lemma 3.6] Let {fn} be a sequence of meromorphic functions
in ∆(z0, r). Suppose that

(a) there exists M1>0 such that for each n ∈ N, n(∆(z0, r),
1
fn
)<M1,

(b) fn
χ

=⇒ f , in ∆′(z0, r), where f is a nonconstant meromorphic function or
f ≡ ∞ in ∆′(z0, r).

Then there exists M2 > 0 such that, for sufficiently large n,

S(∆(z0,
r

2
), fn) < M2.

Lemma 2.3. [9, Lemma 6] Let k, l be positive integers, and let R(z) be a rational
function, all of whose zeros have multiplicity at least k, satisfying R(k)(z) 6= z−l in
C. Then R(z) is a constant.
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Lemma 2.4. [3, Lemma 12] Let R be a nonconstant rational function satisfying
R′ 6= 0 in C. Then either R(z) = az + b or R(z) = a

(z+c)n
+ b, where n ∈ N and

a( 6= 0), b, c ∈ C.

Lemma 2.5. [6, Lemma 3] Let {fn} be a sequence of meromorphic functions in
∆(z0, r), and let {ψn} be a sequence of holomorphic functions in ∆(z0, r) such that

ψn ⇒ ψ, where ψ(z) 66= 0,∞ in ∆(z0, r). If fn(z) 6= 0 and f
(k)
n (z) 6= ψn(z) for all z

in ∆(z0, r), then {fn} is normal in ∆(z0, r).

Using the same proof method in [11, Lemma 3.4, Lemma 3.5], we can get the
following two results respectively.

Lemma 2.6. Let {fn} and {ψn} be two sequences of meromorphic functions in
D. Let f(z) and ψ(z) be two meromorphic functions in D. Suppose that

(a) fn(z)
χ

=⇒ f(z) and ψn(z)
χ

=⇒ ψ(z) in D,

(b) f
(k)
n (z) 6= ψn(z) in D.

Then, either f (k)(z) ≡ ψ(z) or f (k)(z) 6= ψ(z) in D.

Proof. Suppose that f (k)(z) 6≡ ψ(z) in D. Set A = f−1(∞) ∪ ψ−1(∞) ∪ (f (k) −
ψ)−1(0). By (a) and (b), we have

∞ 6=
1

f
(k)
n − ψn

=⇒
1

f (k) − ψ
in D\A.

Since 1

f
(k)
n −ψn

is holomorphic in D and A has no accumulation points in D, we have

(2.6.1)
1

f
(k)
n − ψn

=⇒
1

f (k) − ψ
in D.

Thus, 1
f(k)−ψ

is a holomorphic function in D and then f (k) − ψ 6= 0 in D.

In order to show that f (k) 6= ψ in D, we need only show that f and ψ have no
common poles in D. Otherwise, we assume that z0 ∈ D is a pole of order m1 of f
and a pole of order m2 of ψ. Let m = max{m1 + k,m2}. Obviously, z0 is a zero of

1
f(k)−ψ

of order at most m.

By (a) and Hurwitz’s Theorem, there exists δ∗ such that ∆(z0, 2δ
∗) ⊂ D and for

each δ ∈ (0, δ∗), fn and bn have at least m1 and m2 (counting multiplicities) poles
respectively in ∆(z0, δ) for sufficiently large n. By (b), fn and ψn have no common

poles in ∆(z0, δ), and hence f
(k)
n − ψn has at least m1 + k + m2 poles (counting

multiplicities) in ∆(z0, δ). Since δ can be made arbitrarily small, z0 is a zero of
1

f(k)−ψ
of order at least m1 + k +m2 by (2.6.1). Thus, m1 + k +m2 > m. This is a

contradiction. �

Lemma 2.7. Let k, l be positive integers, and let {fn} be a sequence of mero-
morphic functions in ∆, all of whose zeros have multiplicity at least k + 1. Let {bn}
be a sequence of holomorphic functions in ∆ such that bn ⇒ 1, and suppose that

(a) f
(k)
n (z) 6= zlbn(z) in ∆,

(b) there exist points zn → 0 such that fn(zn) = 0,

(c) fn(z)
χ

=⇒ f(z) in ∆′, where f(z) is a meromorphic function in ∆′.

Then f (k)(z) ≡ zl in ∆′.
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Proof. Let Fn(z) =
f
(k)
n (z)
zl

. Since bn ⇒ 1 in ∆ and (a), we have for sufficiently

large n, f
(k)
n (0) 6= 0 and hence Fn(0) = ∞. Without loss of generality, we may assume

that for all n, f
(k)
n (0) 6= 0 and Fn(0) = ∞. Since all zeros of {fn(z)} have multiplicity

at least k + 1, we have fn(0) 6= 0. Hence we have zn 6= 0 and Fn(zn) = 0.

We claim that {Fn(z)} is not normal at 0 and hence { f
(k)
n (z)
zlbn(z)

− 1} is also not

normal at 0. Indeed, since Fn(zn) = 0 and Fn(0) = ∞, the family {Fn(ζ)} is not
equicontinuous at 0 and hence cannot be normal at 0.

By (a) and (c), we have

0 6=
f
(k)
n (z)

zlbn(z)
− 1 =⇒

f (k)(z)

zl
− 1, z ∈ ∆′\f−1(∞).

By Hurwitz’s Theorem, either f(k)(z)
zl

− 1 ≡ 0 in ∆′, or f(k)(z)
zl

− 1 6= 0 in ∆′. Suppose

that f(k)(z)
zl

− 1 6= 0 in ∆′. Since f(z) is a meromorphic function, then there exists

δ > 0 such that f(z) has no poles on Γ(0, δ) and f
(k)
n (z) converges uniformly to

f (k)(ζ) on Γ(0, δ). Now, we have

∞ 6=
1

f
(k)
n (z)
zlbn(z)

− 1
=⇒

1
f(k)(z)
zl

− 1
, z ∈ Γ(0, δ).

Since the function in the left hand side is holomorphic, we have by the maximum

principle that this holds throughout ∆(0, δ). So { f
(k)
n (z)
zlbn(z)

− 1} is normal at 0. A

contradiction. Thus, f(k)(z)
zl

− 1 ≡ 0 in ∆′. Obviously, f (k)(z) ≡ zl in ∆′. �

Lemma 2.8. Let {ak} be a sequence in D which has no accumulation points in
D. Let {ψn} be a sequence of holomorphic functions in D such that ψn⇒ψ in D,
where ψ 6= 0,∞ in D. Let {fn} be a sequence of meromorphic functions in D, all of
whose zeros are of multiplicity at least k + 1. Suppose that

(a) fn(z)
χ

=⇒ f(z) in D\{aj}
∞
j=1,

(b) no subsequence of {fn} is normal at a1,

(c) for all n ∈ N, f
(k)
n (z) 6= ψn(z) in D.

Then

(d1) there exists δ > 0 such that for all sufficiently large n, fn has a single (multi-
ple) zero in ∆(a1, δ),

(d2) there exists η0 > 0 such that for each 0 < η < η0, fn has a single simple pole
in ∆(a1, η) for all sufficiently large n, and

(e) f(z) =
´ z

a1

´ ζ1

a1
· · ·
´ ζk−1

a1
ψ(ζk) dζk dζk−1 · · ·dζ1. Equivalently, f extends to an

analytic function in D\{aj}
∞
j=2 such that f (k) = ψ(z) and f (j)(a1) = 0, j =

0, 1, 2, · · · , k − 1.

Remark. Since Lemma 2.8 is not stated explicitly in [6], let us indicate how it
follows from the results of that paper. Let us now assume that (d1) has been shown
to hold. We obtain (d2) and (e) as well, which follow from [6, Lemma 7]. Now let us
show that (d1) must hold. Suppose not. Then it follows from Lemma 2.5 that taking
a subsequence and renumbering, we may assume that in any neighborhood of a1, fn
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has at least two zeros for sufficiently large n. We derive a contradiction by the same
proof method in [6, Theorem 1, Case II, pp. 13–16].

According to the proof method in [6, Theorem 1 and Corollary 1], we get the
following result.

Lemma 2.9. Let k be a positive integer and let {fn} be a sequence of meromor-
phic functions in D, all of whose zeros have multiplicity at least k + 1. Let {ψn} be

a sequence of meromorphic functions in D such that ψn
χ

=⇒ ψ, where ψ(z) 6≡ 0,∞

in D. If f
(k)
n 6= ψn for all z in D, then {fn} is quasinormal in D.

By means of the proof method in [12, Theorem 1′, p. 67] and [9, Theorem 1], we
get the following result clearly.

Lemma 2.10. Let k ≥ 2 be an integer and let {fn} be a sequence of meromorphic
functions in D, all of whose poles are multiple and whose zeros all have multiplicity
at least k + 1. Let {hn} be a sequence of meromorphic functions in D such that

hn
χ

=⇒ h in D, where h 6≡ 0,∞. Suppose h and hn have the same zeros and poles all
with the same multiplicity and

f (k)
n (z) 6= hn(z) for all z in D.

Then {fn} is normal in D.

In 2013, Yang and Liu promoted Theorem C and obtained the result.

Lemma 2.11. [10, Theorem 1] Let k be a positive integer, let f be a transcen-
dental meromorphic function in C and let R 6≡ 0 be a rational function. Suppose
that all zeros of f have multiplicity at least k+1, except possibly finite many. Then
f (k) − R has infinitely many zeros.

3. Auxiliary lemmas

Lemma 3.1. Let k, l be positive integers and let R(z) be a rational function.
Suppose that R(k)(z) 6= zl in C, then

(3.1.1) R(z) =

l+n+1∏
i=1

(z − γi)

(l + k)(l + k − 1) · · · (l + 1)(z − β)n−k+1

where n ≥ k is an integer and γi, β ∈ C, 1 ≤ i ≤ l + n+ 1.

Proof. Obviously, (R(k−1)(z)− zl+1

l+1
)′ 6= 0. Then R(k−1)(z)− zl+1

l+1
is a nonconstant

rational function. By Lemma 2.4,

R(k−1)(z) =
zl+1

l + 1
+ az + b or R(k−1)(z) =

zl+1

l + 1
+

a

(z + c)n
+ b.

where n ≥ k is an integer and a( 6= 0), b, c ∈ C. So

R(z) =
zl+k

(l + k) · · · (l + 1)
+ Pk(z)

or

R(z) =
zl+k

(l + k) · · · (l + 1)
+

c1
(z + c)n−k+1

+ Pk−1(z),
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where Pk(z) and Pk−1(z) are polynomials of degree k and k− 1 respectively, c1 ∈ C.
Thus, R(z) has the following form

R(z) =

l+n+1∏
i=1

(z − γi)

(l + k)(l + k − 1) · · · (l + 1)(z − β)n−k+1

where γi, i = 1, · · · , l + n + 1, and β ∈ C. �

Combining Lemma 2.5 and the proof method in [4, Lemma 3.1], we obtain the
following result.

Lemma 3.2. Let k be a positive integer, let {fn} be a sequence of meromorphic
functions in D and let {hn} be a sequence of meromorphic functions in D such that

hn
χ

=⇒ h in D, where h 6≡ 0,∞. If

fn(z) 6= 0 and f (k)
n (z) 6= hn(z) for all z in D,

then F is normal in D.

Proof. By Lemma 2.5, it suffices to prove that {fn} is normal at points which h
has poles or zeros. Without loss of generality, we assume that D = ∆, h(z) = zlb(z),
where b is holomorphic and zero-free in ∆, l( 6= 0) is an integer. Then {fn} is normal
in ∆′.

Suppose {fn} is not normal at z = 0. Since fn 6= 0 in ∆, we have that there
exists r > 0, ∆2r ⊂ ∆, such that fn ⇒ 0 in ∆′

2r. By Argument Principle, for large
enough n, we have

n(r,
1

f
(k)
n − hn

)− n(r, f (k)
n − hn) =

1

2πi

ˆ

|z|=r

f
(k+1)
n − h

′

n

f
(k)
n − hn

dz =
1

2πi

ˆ

|z|=r

h′

h
dz = l.

Since f
(k)
n (z) 6= hn(z), thus −n(r, f

(k)
n − hn) = l. So l < 0, and fn has poles

(otherwise fn
χ
⇒ ∞ in ∆′) which are different from the poles of hn. Thus n(r, f

(k)
n −

hn) > −l, this is a contradiction. �

4. Proof of Theorem 1.1

Proof. Suppose that f (k) = h has at most finitely many zeros, where k ≥ 2 is an
integer. Our goal is to obtain a contradiction in the sequel.

We claim that there exist tn → ∞ and εn → 0 such that

(4.0.1) S(∆(tn, εn), f) =
1

π

¨

|z−tn|<εn

[f#(z)]2 dx dy → ∞.

Otherwise, there would exist ε > 0 and M > 0 such that for all z0 ∈ C, we get

S(∆(z0, ε), f) =
1

π

¨

|z−z0|<ε

[f#(z)]2 dx dy < M.

So

S(r, f) =
1

π

¨

|z|<r

[f#(z)]2 dx dy = O(r2).

Then

T (r, f) =

ˆ r

0

S(t)

t
dt = O(r2).
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Meanwhile, by Lemma 2.1, T (r, h) = Ar2(1 + o(1)) as r → ∞, where A > 0 is a
constant. This contradicts the condition that T (r, h) = o{T (r, f)}. Thus (4.0.1) is
correct.

Let ω1, ω2 be the two fundamental periods of h(z), and P (0 ∈ P ) be a fun-
damental parallelogram of h(z). Obviously, there exist integers in and jn satisfying
zn = tn − inω1 − jnω2 ∈ P . We can extract a subsequence (still denoted by {zn})
such that zn → z0 as n→ ∞. Let fn(z) = f(z + inω1 + jnω2). By (4.0.1),

(4.0.2) S(∆(zn, εn), fn) = S(∆(tn, εn), f) → ∞.

Thus, there exists z∗n (z∗n → z0) such that f#
n (z∗n) → ∞ as n → ∞. Without loss of

generality, we suppose that z0 = 0. Hence no subsequence of {fn} is normal at 0. By
(4.0.2),

(4.0.3) S(∆(z∗n, ε
∗
n), fn) → ∞,

where z∗n → 0 and ε∗n → 0 as n→ ∞.
Clearly, there exists R > 0 such that for all n, P ⊂ ∆(0, R) and ∆(z∗n, ε

∗
n) ⊂

∆(0, R). Let D = ∆(0, R). Obviously, we have z0 ∈ D. By assumption, for large
enough n,

f (k)
n (z) = f (k)(z + inω1 + jnω2) 6= h(z + inω1 + jnω2) = h(z), z ∈ D.

Without loss of generality, we suppose that for all n ∈ N, f
(k)
n (z) 6= h(z) in D.

Obviously, by Lemma 2.9, {fn} is quasinormal in D. By (4.0.3), no subsequence of
{fn} is normal at 0. Thus, there exists ρ > 0, such that {fn} is normal in ∆′(0, ρ),
and h(z) 6= 0,∞ in ∆′(0, ρ). Without loss of generality, we may assume that ρ = 1.
Evidently, there exists a subsequence of {fn} (still denoted by {fn}) such that

(a) all zeros of {fn} are of multiplicity at least k + 1 in ∆,

(b) for each n ∈ N, f
(k)
n (z) 6= h(z) in ∆, where h 6= 0,∞ in ∆′,

(c) no subsequence of {fn} is normal at 0,
(d) fn(z) ⇒ f0(z) in ∆′.

Case 1. h(0) 6= 0,∞. It follows from Lemma 2.8 that there exists 0 < δ < 1 such
that for large enough n, fn has a single zero of order k+1 in ∆(0, δ). By Lemma 2.2,
there exists M > 0 such that S( δ

2
, fn) < M . This contradicts (4.0.3).

Case 2. h(0) = 0. We assume that 0 is a zero of order l of h(z), where l is a
positive integer. Without loss of generality, we may assume that

h(z) = zl + al+1z
l+1 + · · · = zlĥ(z), z ∈ ∆,

where ĥ(z) 6= 0,∞ in ∆(0, 1) and ĥ(0) = 1.
We claim that for any δ > 0, there exists at least one zero of fn in ∆(0, δ) for large

enough n. Otherwise, there exist δ0 > 0 and a subsequence of {fn} (still denoted by
{fn}) such that fn(z) 6= 0 in ∆(0, δ0). By Lemma 3.2, {fn} is normal at 0 which
contradicts (c).

Taking a subsequence and renumbering if necessary, we may assume that an → 0
is the zero of fn of smallest modulus. By (a) and (b), we have fn(0) 6= 0. Then,

an 6= 0. Let Fn(ζ) =
fn(anζ)

ak+l
n

. We have that

(a1) Fn(ζ) 6= 0 in ∆,
(a2) all zeros of Fn(ζ) are of multiplicity at least k + 1,

(a3) F
(k)
n (ζ) 6= ζ lĥ(anζ), Fn(1) = 0, and ζ lĥ(anζ)

χ
=⇒ ζ l in C.
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By Lemma 3.2 and Lemma 2.9, {Fn(ζ)} is normal in ∆ and quasinormal in C. Hence,
there exist E1 ⊂ C and a subsequence of {Fn(ζ)} (still denoted by {Fn(ζ)}) such
that

(b1) E1 has no accumulation point in C,

(b2) Fn(ζ)
χ

=⇒ F (ζ) in C\E1,
(b3) for each ζ0 ∈ E1, no subsequence of {Fn(ζ)} is normal at ζ0.

Evidently, E1∩△ = ∅ and all zeros of F (ζ) are of multiplicity at least k+1 in C\E1.
Case 2.1. E1 = ∅. By Lemma 2.6, we have either F (k)(ζ) ≡ ζ l or F (k)(ζ) 6= ζ l

in C. If F (k)(ζ) ≡ ζ l in C, then F (k)(1) = 1 which contradicts F (k)(1) = 0. If
F (k)(ζ) 6= ζ l in C, by Lemma 2.11, F must be rational. By Lemma 3.1,

F (ζ) =

l+m+1∏
i=1

(ζ − αi)

(l + k)(l + k − 1) · · · (l + 1)(ζ − β)m−k+1
,

where m ≥ k is an integer, β ∈ C and αi 6= 0, β (1 ≤ i ≤ l +m+ 1). Thus, we have

(4.0.4) Fn(ζ)
χ

=⇒

l+m+1∏
i=1

(ζ − αi)

(l + k)(l + k − 1) · · · (l + 1)(ζ − β)m−k+1
in C.

By Hurwitz’s Theorem, there exist sequences ζn,i→αi and ηn,j→β (counting multi-
plicities of zeros and poles, respectively), such that for large enough n, Fn(ζn,i) = 0
and Fn(ηn,j) = ∞, where i = 1, 2, · · · , m + l + 1 and j = 1, 2, · · · , m − k + 1. Let
zn,i = anζn,i. Hence, fn(zn,i) = 0 and zn,i → 0 as n→ ∞ where i = 1, 2, · · · , m+l+1.
Let

Bn = {zn,1, zn,2, · · · , zn,m+l+1} (where the same elements are admissible).

Subcase 2.1.1. There exists δ(> 0) and a subsequence of {fn} (still denoted by
{fn}) such that fn(z) has exactly m+ l+ 1 zeros (counting multiplicities) in ∆(0, δ)
for large enough n.

By Lemma 2.2, there exists M > 0 such that for large enough n, S( δ
2
, fn) < M .

This contradicts (4.0.3).
Subcase 2.1.2. For any δ > 0, fn has at least m+ l+2 zeros (counting multiplic-

ities) in ∆(0, δ) for large enough n.
Taking a subsequence and renumbering if necessary, we may assume that bn 6= 0

is the zero of fn of smallest modulus in ∆\Bn. Obviously, we have bn → 0 as
n → ∞. Let rn = an

bn
. Clearly, Fn(

1
rn
) = 0. Since bn 6∈ Bn, we have 1

rn
6= ζn,i, where

i = 1, 2, · · · , m+ l + 1. By Hurwitz’s Theorem and (4.0.4), 1
rn

→ ∞, then rn → 0 as
n→ ∞.

Let Gn(ζ) =
fn(bnζ)

bk+l
n

. We have that for large enough n,

(c1) Gn(ζ) has only m+ l+1 zeros rnζn,i in ∆ and |rnζn,i| → 0, as n→ ∞, where
i = 1, 2, · · · , m+ l + 1,

(c2) all zeros of Gn(ζ) are of multiplicity at least k + 1,

(c3) G
(k)
n (ζ) 6= ζ lĥ(bnζ) and Gn(1) = 0.

By Lemma 3.2 and Lemma 2.9, {Gn(ζ)} is normal in ∆′ and quasinormal in C.
Hence, there exist E2 ⊂ C and a subsequence of {Gn(ζ)} (still denoted by {Gn(ζ)})
such that
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(d1) E2 has no accumulation point in C,

(d2) Gn(ζ)
χ

=⇒ G(ζ) in C\E2,
(d3) for each ζ0 ∈ E2, no subsequence of {Gn(ζ)} is normal at ζ0.

Evidently, E2

⋂
∆′ = ∅ and all zeros of G(ζ) are of multiplicity at least k + 1 in

C\E2.
Let

G∗
n(ζ) = Gn(ζ)

m−k+1∏
j=1

(ζ − rnηn,j)

m+l+1∏
i=1

(ζ − rnζn,i)

, F ∗
n(ζ) = Fn(ζ)

m−k+1∏
j=1

(ζ − ηn,j)

m+l+1∏
i=1

(ζ − ζn,i)

.

By (4.0.4), G∗
n(rnζ) = F ∗

n(ζ) ⇒
1

(l+k)(l+k−1)···(l+1)
in C. Thus

(4.0.5) G∗
n(0) → G∗∗(0) =

1

(l + k)(l + k − 1) · · · (l + 1)
.

Subcase 2.1.2.1. G(ζ) ≡ ∞ in C\E2. Evidently, G∗
n(ζ) has no zeros in ∆. We

have G∗
n(ζ) ⇒ ∞ in ∆ which follows from Maximum Modulus Principle of analytic

functions. This contradicts (4.0.5).
Subcase 2.1.2.2. G(ζ) is a meromorphic function in C\E2. We claim that

(4.0.6) G(ζ) =
ζ l+k

(l + k)(l + k − 1) · · · (l + 1)
in C\E2.

By Lemma 2.7, G(k)(ζ) ≡ ζ l, then G(ζ) = ζl+k+Pk−1(ζ)
(l+k)(l+k−1)···(l+1)

, where Pk−1(z) is a

polynomial of degree ≤ k − 1. Since G∗
n(ζ) have no zeros in ∆,

(4.0.7) G∗
n(ζ) ⇒ G∗(ζ) =

ζ l+k + Pk−1(ζ)

(l + k)(l + k − 1) · · · (l + 1)

1

ζ l+k
, ζ ∈ ∆.

On one hand, by (4.0.5), we have G∗∗(0) 6= 0,∞. And by (4.0.5) and (4.0.7), we
obtain G∗∗(0) = G∗(0). Then we have G∗(0) 6= 0,∞. On the other hand, by the
expression of G∗(ζ) in (4.0.7), 0 is the zero of the denominator of multiplicity l + k.
Then, 0 is the zero of the numerator of multiplicity l + k. Hence, 0 is the zero of
Pk−1(ζ) of multiplicity l + k. However, Pk−1(z) is a polynomial of degree ≤ k − 1.
Thus, we have Pk−1(ζ) ≡ 0.

If 1 6∈ E2, by (c3), we have G(1) = 0. This contradicts (4.0.6). If 1 ∈ E2, by

Lemma 2.8, G(k−1)(ζ) =
´ ζ

1
ξl dξ = ζl+1−1

l+1
. However, by (4.0.6), we have G(k−1)(ζ) =

ζl+1

l+1
. This is a contradiction.

Subcase 2.2. E1 6= ∅. We claim that 1 ∈ E1. Suppose that 1 6∈ E1. Since E1 6= ∅,
there exists at least a point ζ0 such that ζ0 ∈ E1. Thus, by Lemma 2.8, F (k)(ζ) = ζ l

in C\E1. At the same time, F (1) = 0 and all zeros of F are of multiplicity at least
k + 1, we have F (k)(1) = 0, a contradiction.

Thus, by Lemma 2.8, in C\E1,

F (k−1)(ζ) =

ˆ ζ

1

ξl dξ =
ζ l+1 − 1

l + 1
.(4.0.8)

F (k−2)(ζ) =

ˆ ζ

1

ξl+1 − 1

l + 1
dξ =

ζ l+2

(l + 2)(l + 1)
−

ζ

l + 1
+

1

(l + 2)
.(4.0.9)
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We claim that E1 = {1}. Otherwise, there exists ζ0 ∈ E1 and ζ0 6= 1. By Lemma 2.8,
in C\E1,

(4.0.10) F (k−1)(ζ) =

ˆ ζ

ζ0

ξl dξ =
ζ l+1 − ζ0

l+1

l + 1
.

By (4.0.8) and (4.0.10), we obtain ζ0
l+1 = 1. Furthermore, by Lemma 2.8, in C\E1,

(4.0.11) F (k−2)(ζ) =

ˆ ζ

ζ0

ξl+1 − 1

l + 1
dξ =

ζ l+2

(l + 2)(l + 1)
−

ζ

l + 1
+

ζ0
(l + 2)

.

By (4.0.9) and (4.0.11), we get ζ0 = 1, a contradiction. Thus E1 = {1}.
By Lemma 2.8, F (z) can extend to an analytic function in C and is a polynomial

of degree l+k. 1 is the zero of F with multiplicity k. Hence, F must have zeros which
are distinct from 1. We may denote one of the other zeros of F by e1. Since all zeros of
F (ζ) are of multiplicity at least k+1 in C\E1, we have F (k−1)(e1) = 0, F (k)(e1) = 0.
Then, e1 is a multiple zero of F (k−1)(z). However, by (4.0.8), F (k−1)(z) only has
simple roots. This is a contradiction.

Case 3. h(0) = ∞. Suppose that z = 0 is a pole of order l of h(z). Without loss
of generality, we may assume that

h(z) =
1

zl
+
al−1

zl−1
+ · · · =

ĥ(z)

zl
in ∆,

where ĥ(z) 6= 0,∞ in ∆ and ĥ(0) = 1.
Subcase 3.1. For n sufficiently large, fn(0) 6= 0. Without loss of generality, we

assume that for each n ∈ N, fn(0) 6= 0.
We claim that for any δ > 0, there exists at least one zero of fn in ∆(0, δ) for

sufficiently large n. Otherwise, there exist δ0 (> 0 ) and a subsequence of {fn} (still
denoted by {fn}) such that fn(z) 6= 0 in ∆(0, δ0). By Lemma 3.2, {fn} is normal at
0. This is a contradiction.

Taking a subsequence and renumbering if necessary, we may assume that an is
the zero of {fn} of smallest modulus. Evidently, an → 0 as n→ ∞. Since fn(0) 6= 0,
we have an 6= 0.

Let Fn(ζ) = al−kn fn(anζ), clearly we have

(i1) Fn(ζ) 6= 0 in ∆,
(i2) all zeros of Fn(ζ) are of multiplicity at least k + 1,

(i3) F
(k)
n (ζ) 6= ĥ(anζ)

ζl
, Fn(1) = 0, and ĥ(anζ)

ζl
χ

=⇒ 1
ζl

in C.

By Lemma 3.2 and Lemma 2.9, {Fn(ζ)} is normal in ∆ and quasinormal in C. Ob-
viously, there exist E3 ⊂ C and a subsequence of {Fn(ζ)} (still denoted by {Fn(ζ)})
such that

(j1) E3 has no accumulation point in C,

(j2) Fn(ζ)
χ

=⇒ F (ζ) in C\E3,
(j3) for each ζ0 ∈ E3, no subsequence of {Fn(ζ)} is normal at ζ0.

Clearly, E3 ∩∆ = ∅ and all zeros of F (ζ) are of multiplicity at least k + 1 in C\E3.
Subcase 3.1.1. E3 = ∅. By (i2), (i3), we have F (1) = · · · = F (k)(1) = 0. Thus,

F (ζ) is a meromorphic function in C. Combining (i3) and Lemma 2.6, we have either
F (k)(ζ) ≡ 1

ζl
or F (k)(ζ) 6= 1

ζl
in C.

If F (k)(ζ) ≡ 1
ζl

in C, which contradicts F (k)(1) = 0.
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If F (k)(ζ) 6= 1
ζl

in C, by Lemma 2.11 and Lemma 2.3, F (ζ) = c. Since F (1) = 0,

we have F (ζ) ≡ 0, i.e.,

(4.0.12) Fn(ζ) = al−kn fn(anζ) ⇒ 0 in C.

We claim that for any δ > 0, there exists at least one pole of fn in ∆(0, δ)
for sufficiently large n. Otherwise, there exist δ0(> 0) and a subsequence of {fn}
(still denoted by {fn}) such that {fn} is of a family of holomorphic in ∆(0, δ0). By
Lemma 2.10, {fn} is normal at 0. This is a contradiction.

Taking a subsequence and renumbering if necessary, we may assume that bn is
the pole of fn(z) of smallest modulus. Clearly, we have bn → 0 as n → ∞. Since

f
(k)
n (z) 6= h(z) and h(0) = ∞, we have f(0) 6= ∞, hence bn 6= 0.

Let Gn(ζ) = bl−kn fn(bnζ). Clearly, we have

(k1) Gn(ζ) is holomorphic function in ∆,
(k2) all zeros of Gn(ζ) are of multiplicity at least k + 1,

(k3) G
(k)
n (ζ) 6= ĥ(bnζ)

ζl
, Gn(1) = ∞ and ĥ(bnζ)

ζl
χ

=⇒ 1
ζl

in C.

By Lemma 2.10 and Lemma 2.9, {Gn(ζ)} is normal in ∆ and quasinormal in C.
Thus, there exist E4 ⊂ C and a subsequence of {Gn(ζ)} (still denoted by {Gn(ζ)})
such that

(l1) E4 has no accumulation point in C,

(l2) Gn(ζ)
χ

=⇒ G(ζ) in C\E4,
(l3) for each ζ0 ∈ E4, no subsequence of {Gn(ζ)} is normal at ζ0.

Evidently, E4∩∆ = ∅ and all zeros of G(ζ) are of multiplicity at least k+1 in C\E4.
Since Fn(

bn
an
) = al−kn fn(bn) = ∞, by Hurwitz’s theorem and (4.0.12), bn

an
→ ∞.

Set rn = an
bn

. Evidently, rn → 0 as n → ∞. Since Gn(rn) = bl−kn fn(an) = 0, we have

G(0) = 0. Hence G(z) is a meromorphic function in C\E4. By (k3) and Lemma 2.6,
we have either G(k)(ζ) ≡ 1

ζl
or G(k)(ζ) 6= 1

ζl
in C \ E4.

We now consider two subcases.
Subcase 3.1.1.1. E4 is an empty set. If G(k)(ζ) ≡ 1

ζl
in C, we have G(0) = ∞

which contradicts G(0) = 0. If G(k)(ζ) 6= 1
ζl

in C, by Lemma 2.11 and Lemma 2.3,

G(ζ) = c which contradicts G(1) = ∞.
Subcase 3.1.1.2. E4 is not an empty set. Let ζ0 ∈ E4. Clearly, ζ0 6= 0. By

Lemma 2.8, G(k−1)(ζ) =
´ ζ

ζ0

1
ξl
dξ = 1

1−l

(
1

ζl−1 − 1
ζ0

l−1

)
. Evidently, G(0) = ∞ which

contradicts G(0) = 0.
Subcase 3.1.2. E3 6= ∅. We claim that 1 ∈ E3. Suppose that 1 6∈ E3. Since

E3 6= ∅, there exists at least a point ζ0 such that ζ0 ∈ E3. Thus, by Lemma 2.8,
F (k)(ζ) = 1

ζl
in C\E3. Meanwhile, F (1) = 0 and all zeros of F are of multiplicity at

least k + 1, we have F (k)(1) = 0, a contradiction.
Thus, by Lemma 2.8, in C\E3,

F (k−1)(ζ) =

ˆ ζ

1

1

ξl
dξ =

ζ−l+1 − 1

−l + 1
.(4.0.13)

F (k−2)(ζ) =

ˆ ζ

1

ξ−l+1 − 1

−l + 1
dξ =

ζ−l+2

(−l + 2)(−l + 1)
−

ζ

−l + 1
+

1

(−l + 2)
.(4.0.14)
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We claim that E3 = {1}. Otherwise, there exists ζ0 ∈ E1 and ζ0 6= 1. By
Lemma 2.8, in C\E3,

(4.0.15) F (k−1)(ζ) =

ˆ ζ

ζ0

1

ξl
dξ =

ζ−l+1 − ζ0
−l+1

−l + 1
.

By (4.0.13) and (4.0.15), we obtain ζ0
−l+1 = 1. Furthermore, by Lemma 2.8, in

C\E3,

(4.0.16) F (k−2)(ζ) =

ˆ ζ

ζ0

ξ−l+1 − 1

−l + 1
dξ =

ζ−l+2

(−l + 2)(−l + 1)
−

ζ

−l + 1
+

ζ0
(l + 2)

.

By (4.0.14) and (4.0.16), we get ζ0 = 1, a contradiction. Thus E3 = {1}.
Thus, by Lemma 2.8, in C\E3

F (ζ) =

ˆ ζ

ζ=1

ˆ ζ1

ζ=1

· · ·

ˆ ζk−1

ζ=1

1

ζ lk
dζk dζk−1 · · ·dζ1

=
1 + Pk−1(ζ)ζ

l−k

(−l + k)(−l + k − 1) · · · (−l + 1)ζ l−k
,

(4.0.17)

where Pk−1(ζ) is a polynomial of degree k − 1. Hence, by (4.0.17), in ∆

(4.0.18) Fn(ζ)
χ

=⇒
1 + Pk−1(ζ)ζ

l−k

(−l + k)(−l + k − 1) · · · (−l + 1)ζ l−k
.

By Hurwitz’s Theorem, there exist γn,i, i = 1, 2, . . . , l−k), such that γn,i → 0 and
Fn(γn,i) = ∞. Since f and h have no common poles, we have Fn(0) 6= ∞, γn,i 6= 0,
i = 1, 2, · · · , l − k.

Suppose that sn is one of {γn,1, γn,2, · · · , γn,l−k} of largest modulus. Let Un(ξ) =
sl−kn Fn(snξ). Evidently, Un(ξ) has only l − k poles ηn,i =

γn,i

sn
on ∆ for n sufficiently

large. By the expression of F (k−1) in (4.0.13), for all R > 0 and large enough n,

Un(ξ) 6= 0, ξ ∈ ∆(0, R).

Combining (i3) and U
(k)
n (ξ) 6= ĥ(ansnξ)

ξl
, and by Lemma 3.2, Un(ξ) is normal in C.

We assume that Un(ξ)
χ

=⇒ U(ξ) in C and ηn,i → ηi. Since Un(1) = ∞, we have
U(1) = ∞.

We claim that U(ξ) ≡ ∞ in C. Otherwise, by Lemma 2.6, we have either
U (k)(ζ) ≡ 1

ξl
or U (k)(ξ) 6= 1

ξl
in C. If U (k)(ξ) ≡ 1

ξl
in C, which contradicts U(1) = ∞.

If U (k)(ξ) 6= 1
ξl

in C, by Lemma 2.11 and Lemma 2.3, we have U(ξ) = c, where c is a

constant. This contradicts U(1) = ∞. Thus, Un(ξ)
χ

=⇒ ∞ in C.
Let

U∗
n(ξ) = Un(ξ) ·

l−k∏

i=1

(ξ − ηn,i)

Furthermore, we obtain U∗
n(ξ)

χ
=⇒ ∞ in C.

Let

F ∗
n(ζ) = Fn(ζ) ·

l−k∏

i=1

(ζ − γn,i) = Fn(ζ) ·
l−k∏

i=1

(ζ − snηn,i).
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By (4.0.18), F ∗
n(ζ) has no poles in ∆(0, 1

2
) for large enough n. And by the maximum

principle,

F ∗
n(ζ)

χ
=⇒

1 + Pk−1(ζ)ζ
l−k

(−l + k)(−l + k − 1) · · · (−l + 1)
in ∆(0, 1

2
).

Hence,

(4.0.19) F ∗
n(0) →

1

(−l + k)(−l + k − 1) · · · (−l + 1)
as n→ ∞.

On the other hand, in C

F ∗
n(snξ) = Fn(snξ) ·

l−k∏

i=1

(snξ − γn,i) = Fn(snξ) ·
l−k∏

i=1

(snξ − snηn,i)

= sl−kn Fn(snξ) ·
l−k∏

i=1

(ξ − ηn,i) = U∗
n(ξ)

χ
=⇒ ∞.(4.0.20)

By (4.0.20), F ∗
n(0) → ∞ as n→ ∞ which contradicts (4.0.19).

Subcase 3.2. There exists a subsequence of {fn(z)} (still denoted by {fn(z)})
such that fn(0) = 0. We may assume that cn( 6= 0) is the pole of fn(z) of smallest
modulus and cn→0 as n→ ∞ which is similar to Subcase 3.1.1..

Let Gn(ζ) = cl−kn fn(cnζ). Obviously, we have

(m1) Gn(ζ) is holomorphic function in ∆,
(m2) all zeros of Gn(ζ) are of multiplicity at least k + 1,

(m3) G
(k)
n (ζ) 6= ĥ(cnζ)

ζl
, Gn(1) = ∞, and ĥ(cnζ)

ζl
χ

=⇒ 1
ζl

in C.

By Lemma 2.10 and Lemma 2.9, {Gn(ζ)} is normal in ∆ and quasinormal in C.
Then, there exist E5 ⊂ C and a subsequence of {Gn(ζ)} (still denoted by {Gn(ζ)})
satisfying

(n1) E5 has no accumulation point in C,

(n2) Gn(ζ)
χ

=⇒ G(ζ) in C\E5,
(n3) for each ζ0 ∈ E5, no subsequence of {Gn(ζ)} is normal at ζ0.

Evidently, E5∩∆ = ∅ and all zeros of G(ζ) are of multiplicity at least k+1 in C\E5.
Clearly, Gn(0) = cl−kn fn(0) = 0, we have G(0) = 0. Hence, G(z) is meromorphic

in C \ E5. By (m3) and Lemma 2.6, we have either G(k)(ζ) ≡ 1
ζl

or G(k)(ζ) 6= 1
ζl

in

C \ E5.
We now distinguish two cases.
Case 3.2.1. E5 is an empty set. If G(k)(ζ) ≡ 1

ζl
in C, we have G(0) = ∞ which

contradicts G(0) = 0. If G(k)(ζ) 6= 1
ζl

in C, by Lemma 2.11 and Lemma 2.3, G(ζ) = c

which contradicts G(1) = ∞.
Case 3.2.2. E5 is not an empty set. Let ζ0 ∈ E5. Clearly, we have ζ0 6= 0.

By Lemma 2.8, we get G(k−1)(ζ) =
´ ζ

ζ0

1
ξl
dξ = 1

1−l

(
1

ζl−1 − 1
ζ0

l−1

)
. Evidently, we have

G(0) = ∞ which contradicts G(0) = 0. �
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