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Abstract. The Hardy—Morrey spaces with variable exponents are introduced in terms of
maximal functions. The atomic decomposition of Hardy—Morrey spaces with variable exponents is
established. This decomposition extends and unifies several atomic decompositions of Hardy type
spaces such as the Hardy—Morrey spaces and the Hardy spaces with variable exponents. Some
applications of this atomic decomposition on singular integral are presented.

1. Introduction

The main result of this paper is the atomic decomposition of Hardy—Morrey
spaces with variable exponents. The atomic decomposition is one of the remarkable
features for Hardy type spaces. It had been generalized to some non-classical Hardy
spaces such as the weighted Hardy spaces [6, 24, 56], the Hardy—Orlicz spaces [59]
and the Hardy—Lorentz spaces [1].

Recently, the atomic decomposition has been further extended to several different
Hardy type spaces. The atomic decomposition of Hardy—Morrey spaces is developed
in [34]. We also have the atomic decomposition for weighted Hardy—Morrey spaces
in [33]. Furthermore, the atomic decomposition for Hardy spaces with variable ex-
ponents is established in [46, 54].

The main result of this paper further generalizes the atomic decomposition to
Hardy—Morrey spaces with variable exponents. It is an extension and unification of
the atomic decompositions in [34, 33, 46]. Roughly speaking, we follow the approach
for developing the atomic decomposition for classical Hardy spaces [55, Chapter III,
Section 2|. We find that to establish the atomic decomposition in Hardy—Morrey
spaces with variable exponents, we need the Fefferman—Stein vector-valued maximal
inequalities in Morrey spaces with variable exponents.

The vector-valued maximal inequalities on LP, 1 < p < oo, are well known [19].
There are several generalizations of these inequalities. For instance, the vector-valued
maximal inequalities on classical Morrey spaces are proved in [51, Theorem 2.4]
and [57]. The vector-valued maximal inequalities on rearrangement-invariant quasi-
Banach function spaces and its associate Morrey type spaces are given in [27].

The vector-valued maximal inequalities on Morrey spaces with variable exponents
are presented and proved in Section 3. The Hardy—Morrey spaces with variable
exponents are defined via the maximal functions in Section 4. The introduction of
the Hardy—Morrey spaces with variable exponents is inspired by the studies of the
Hardy—Morrey spaces and the variable exponent analysis.
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The Hardy—Morrey spaces are introduced in [53] by using Littlewood—Paley char-
acterization. The reader may also consult [27, 52, 63] for the studies of Triebel-
Lizorkin—Morrey spaces which is a generalization of the Hardy—Morrey space. The
reader is also referred to [40] for another approach based on Peetre’s maximal func-
tions.

In addition, the maximal function characterization of the Hardy-Morrey space is
given in [34]. It also contains the atomic decomposition of Hardy—Morrey spaces. The
Littlewood-Paley characterization of the weighted Hardy—Morrey spaces is presented
and proved in [32]. The Hardy—Morrey spaces are members of the family of Hardy—
Morrey spaces with variable exponents studied in this paper.

The introduction of Hardy—Morrey spaces with variable exponents is motivated
a second inspiration, the Morrey spaces with variable exponents [46]. Recently, there
are a number of researches on extending the classical results from the Lebesgue space
to the Lebesgue spaces with variable exponent. One of the important results in the
variable exponent analysis is the identification of the class of exponent functions
for which the Hardy-Littlewood maximal function is bounded on the corresponding
Lebesgue spaces with variable exponent [10, 11, 13, 15, 16, 36, 38, 39, 47, 48, 49|.

The variable exponent analysis also covers the studies of Morrey spaces [2, 26,
30, 32, 35|, Besov spaces and Triebel-Lizorkin spaces |3, 18, 22, 61, 62|. Moreover, as
mentioned previously, the Hardy spaces with variable exponents are also introduced
and studied in [46]. It contains the atomic decomposition and some of its important
applications such as the boundedness of some singular integral operators.

In Section 5, the main result of this paper, the atomic decomposition of Hardy—
Morrey spaces with variable exponents, Theorems 5.1, 5.2 and 5.3, is presented and
proved. The proof of this decomposition follows the idea from the classical Hardy
spaces |55, Chapter III, Section 2|. It is also inspired by the results given in |34,
46, 56]. For instance, we follow the ideas in [46] to obtain the boundedness of some
singular integral operators on Hardy—Morrey spaces with variable exponents at the
end of this section as an application of our main results. Furthermore, we extend
an inequality in [56, Chapter VIII, Lemma 5| to the Morrey spaces with variable
exponents which is an essential supporting result to establish our main theorems.

However, the techniques given in [34, 46, 56, 55| are insufficient to establish
our main results, some new ideas are needed. We find that to obtain some crucial
inequalities for the Morrey spaces with variable exponents, we have to identify the
associate spaces of the Morrey spaces with variable exponents which poses a main
obstacle for our studies.

We overcome these difficulties by considering a pre-dual of Morrey space, the
block spaces with variable exponents, instead of the associate spaces of the Morrey
spaces with variable exponents. For details, the reader is referred to Section 5.
Additionally, some indices introduced in [30, Definition 2.6] for the study of vector-
valued singular integral operators on Morrey type spaces are needed in our main
theorems to give a precise characterization of the atomic decomposition.

The Hardy—Morrey spaces are members of the family of Hardy—Morrey spaces
with variable exponents studied in this paper. Moreover, the main results, Theo-
rems 5.1, 5.2 and 5.3, in this paper extend the atomic decomposition for Hardy—
Morrey spaces in [34].
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The Hardy—Morrey spaces with variable exponents include the Hardy spaces
with variable exponents as special cases. In addition, our atomic decomposition also
extends the atomic decomposition in [46, Theorems 4.5 and 4.6] in the sense that
the exponent functions are not restricted to satisfy the local and global log-Hé6lder
conditions [46, (2.5)-(2.6)]. Our results apply to some exponent functions for which
the local and global log-Holder conditions are not necessarily fulfilled [12, 38, 47].

This paper is organized as follows. Section 2 presents some definitions and no-
tions from variable exponent analysis. This section also gives the definition of the
Morrey spaces with variable exponents used in this paper. The vector-valued maxi-
mal inequalities on Morrey spaces with variable exponents are proved in Section 3.
The Hardy—-Morrey spaces with variable exponents are introduced in Section 4. The
atomic decomposition of Hardy—Morrey spaces with variable exponents is established
in Section 5.

2. Preliminaries

We begin with the definition of Lebesgue spaces with variable exponent and

some of theirs properties. Let p(-): R™ — (0, 00] be a Lebesgue measurable function.
Define

p— =essinf{p(z): z € R"} and p; =esssup{p(z): z € R"}.

Definition 2.1. Let p(-): R" — (0, 00 be a Lebesgue measurable function with
0 < p— < ps < o0o. The Lebesgue space with variable exponent LP¢)(R™) consists of
all Lebesgue measurable functions f: R" — C satisfying

[flLrer gy = Inf{X > 0: p(|f(2)]/A) <1} < o0

where

o= [ F@P do -+ | Xgoere e -
{2€R™: p(z) o0}

We call p(-) the exponent function of LP()(R™).
When [{z € R": p(z) = co}| = 0, we find that

1ia
(2.1) 1| zocramny = IILF1= o) -

That is, LPO/*(R") is the a-th power of LPO(R™) (the L-convexification of L0 (R™)),
see [50, Section 2.2| or [41, Volume II, pp. 53-54|. Therefore, if 0 < p_ < p, < o0,
then LPO)(R™) is the p_-convexification of LP()/P-(R™). Since LP)/P-(R™) is a Ba-
nach space [37, Theorem 2.5], LP*)(R™) is a quasi-Banach space [50, Proposition 2.22].

Let B(z,7) = {x € R™: |z — z| < r} denote the open ball with center z € R”
and radius > 0. Let B = {B(z,7): z € R", r > 0}. We now give the definition of
the Morrey space with variable exponent used in this paper.

Definition 2.2. Let p(-): R" — (0,00) and u(z,r): R" x (0,00) — (0, 00).
The Morrey space with variable exponent My, is the collection of all Lebesgue
measurable functions f satisfying

(), 2€R™,R>0 u(Z’ R) ( ) Lr (R )
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By using (2.1), we also have the corresponding result for Morrey space. That is,
the a-th power of M), is My .. More precisely, we have

Lila
(2.2) 1Flaye = LTI

Thus, My, is a quasi-Banach space.
For any p: R" — [1, 00], the conjugate function p’ is defined by Wlx) + 7 = 1.
We have the following duality result for LP()(R™).

Theorem 2.1. If 1 < p(-) < oo, then LPV)(R™) is a Banach function space
and the associate space of LP*)(R™) is LP')(R™). Moreover, if 1 < p_ < p, < oo,
LPO)(RM) is reflexive.

The above theorem is given in [12, Theorem 2.34, Corollary 2.81 and Section
2.10.3] and [17, Theorems 3.2.13 and 3.4.7].

With the preceding theorems, we have the subsequent property for LP()(R™)
when the exponent function p(+) satisfying 0 < p_ < p; < oo. The reader is referred
to [4, Chapter I, Section 1, Definition 3.1| for the definition of absolutely continuous
norm and |27, Definition 2.4] for the definition of absolutely continuous quasi-norm.

p()u’

Corollary 2.2. Let p(-): R™ — (0,00) be a Lebesgue measurable function with
0 < p_ < p. < oo. The Lebesgue space with variable exponent LP()(R™) has
absolutely continuous quasi-norm.

Proof. From the definition of absolutely continuous quasi-norm, the a-power of
X possesses absolutely continuous quasi-norm provided that the quasi-Banach space
X has. Therefore, our result follows from the fact that the Z=-power of LPO)(R") is
a reflexive Banach space, and, by Theorem 2.1, the &=-power of LPO(R™) possesses
absolutely continuous norm. O

Let P denote the set of all Lebesgue measurable functions p(-): R" — (1, 00)
such that 1 < p_ < p, < co. We now define several classes of exponent functions.
They are all related to the boundedness of the Hardy-Littlewood maximal operator.

Definition 2.3. Let B consists of all Lebesgue measurable functions p(-): R" —
[1, 00] such that the Hardy-Littlewood maximal operator M is bounded on LP)(R™).
Write p(-) € B if p/(-) € B. Let B denote the set of all p(-) belonging to P such that
the Hardy-Littlewood maximal operator is bounded on LP()(R™).

An important subset of B is the class of globally log-Holder continuous functions
p € C°(R") with 1 < p_ < p, < oo, see |18, Definition 2.1]. Recall that p(-) €
C'8(R") if it satisfies

1 1
(2.3) Ip(z) — p(y)| < Cm> |z —y| < 5
(24 (o) = p(0)] < Cpmrers ol 2 lal

According to [15, Theorem 8.1|, we have the following characterization of 5.

Theorem 2.3. Let p(-) € P. Then the following conditions are equivalent:

(1) p(-) € B.
(2) P'(-) € B.
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(3) p(-)/q € B for some 1 < q < p_.
(4) (p(+)/q) € B for some 1 < ¢ < p_.

We recall the indices given in [30, Definition 2.6] for the study of vector-valued
singular integral operators on Morrey type spaces.

Definition 2.4. For any p(-) € B, let £, denote the supremum of those ¢ > 1
such that p(-)/q € B. For any p(-) € B, define ep(.) to be the conjugate of Ky (..

The index e, is used to study the Morrey spaces with variable exponents, see
Definitions 3.1 and 2.2. The index &, is a crucial ingredient to formulate the atomic
decomposition in Theorem 5.3.

When p(-) € B, we have p(-),p/(-) € BNB. According to Theorem 2.3, Kp(-)s
Kp'()s ep() and ey are well defined and

(2.5) 1< Kp() <p_.

Moreover, p; < e,y. In particular, if p(-) € C°8(R™), then p; = e,y and p_ = k().

We present a remarkable feature satisfied by the Lebesgue spaces with variable
exponents. It is a special case of a result of Banach function spaces [29, Proposi-
tion 2.2|. It also plays a crucial role on the establishment of the Fefferman—Stein
vector-valued inequalities on the Morrey spaces with variable exponents in the next
section.

Proposition 2.4. Let p(-) € BU B. We have a constant C > 0 so that for any
B € B,

(2.6) |B| < HXBHLP(‘)(R")

The proof of Proposition 2.4 is given in [31, Lemma 3.2|.

With the above proposition, we have the following estimate for the LPC)(R™)
norm of the characteristic function of B € B. Let p: R* — (0, 00] be a Lebesgue
measurable function with p_ > 0. For any B € B, define pg by

X5 Loy @mny < C|BI.

1 1 / 1 d
— =— | —dux.
ps  |Bl/Jpp(7)
Proposition 2.5. Let p(-) € B and 1 < p_ < p; < oo. There exist C;,Cy > 0
so that for any B € B,

Bl Bl
(2.7) Ci| B[Pz < |Ix5llroymny < Col|B|75.

For the proofs of the above propositions, the reader is referred to [32, Proposi-
tions 1.5 and 1.6].

Proposition 2.6. Let p(-): R™ — [1, 00| be a Lebesgue measurable function.
(1) If p(-) € B and 1 < Ky, then for any 1 < q < Ky, there exists constant
C7 > 0 such that for any xq € R™ and r > 0, we have

Peooin lvomen C12%, VjeN.

(2.8)
||XB(96077“) HLP(‘)(R")
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(2) If p(-) € B' and 1 < Ky, then for any 1 < s < k., there exists constant
C5 > 0 such that for any zo € R"™ and r > 0, we have

||XB(xo,2jr) ||LP(')(R")

(2.9) Cp2/m(1-3) <

, VjeN.
X B(zo,m) || o) (R

Proof. For any B = B(xg,r) € B and j € N, we have a constant C' > 0 such
that
C277" < M(xs)(2)
when = € B(xg,2'r), j € N. Thus, for any 1 < ¢ < k., there exists a ¢ < ¢ so that
p(+)/q € B. Subsequently,

277" X Bwo,2im) | ocrva < CIIM(XB)| s < Cllxs| woosa-
Since, for any B € B and ¢ > 0, |[xsl/1»¢7a = X8|} ,), We obtain (2.8).
Similarly, as 1 < Ky, for any 1 < s < Ky(.), there exists a 1 < s < § so that
p'(-)/5 € B. Thus, for any 1 < s < y(.), we also have

||XBSU 207 ||8 /(- n 0,291 ' ()/s(Rn .
(@0, 2r) I Ly’ (Y (Rn) X B(zo,20m) || 171/ (R") < 02" Y eN.

IXBaon 5 wome  IXBEon 0@
Therefore, Proposition 2.4 yields (2.9). O

The above result can be considered as a generalization of the notion of Boyd’s
indices to variable Lebesgue spaces. The Boyd indices gives a control on the operator
norm of the dilation operator Dy(f)(x) = f(sx) on rearrangement-invariant Banach
function spaces (see [4, Chapter 3, Section 5|). Even though the Boyd indices is not
necessarily well defined on variable Lebesgue spaces, the above proposition provides
a pivotal estimate to obtain our main result in the following section.

For a generalization of Boyd’s indices to Banach function space, the reader is
referred to [29).

3. Vector-valued maximal inequalities

We are now ready to state and prove the Fefferman—Stein vector-valued maximal
inequalities on Morrey spaces with variable exponents. Even though Theorem 3.1 is
proved in order to establish the atomic decomposition of Hardy—Morrey spaces with
variable exponents, it has its own independent interest. It includes the corresponding
inequalities on Morrey spaces given in [57]. It also covers the vector-valued maximal
inequalities on variable Lebesgue spaces shown in [9].

Theorem 3.1. Let p(-) € B, 1 < ¢ < oo and u: R" x (0,00) — (0,00) be a
Lebesgue measurable function. If there exists a constant C' > 0 such that for any
xr € R" and r > 0, u fulfills

(3.1) > s o @ u(x,27r) < Cu(z,r),
= IxB@2iin o @

then there exists C' > 0 such that for any f = {fi}icz, fi € Lioc.(R"), i € Z,
(3.2) MO eIty < ClHIF il aty .
where M(f) = {M(f;) }icz-
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Proof. Let f = {fi}icz C Lioc(R™). For any z € R™ and r > 0, write f;(z) =

f() + Z;; fzj(x)a where f{ = XB(z,2r)fi and f,] = XB(221t1r)\B(z,2in) Ji» 7 € N\{0}.
Applying the vector-valued maximal inequalities in [9, Corollary 2.1] to f° = {f?}icz,
we find that. M)l o0y < Il ey Ineed,

1 . 1
oy X IV il < € s oo 1 e

1
< C sup WHXB(ZN‘)HJCH”HLP(‘)(R")

yER”
>0

because inequality (3.1) yields u(z,2r) < Cu(z,r) for some constant C' > 0 indepen-
dent of z € R™ and r > 0.
Furthermore, there is a constant C' > 0 such that, for any j > 1 and i € Z,

X8 (@) (Mf])(2) < C277" Y () / [fi(y)| dy.

B(z,2i+1r)

Since [ is a Banach lattice, we find that

(33) Xoen @O @izl < €270 "X (a) [

B(z,2i+1y

)H{fi(y)}iGZqu dy.

Using the generalized Holder inequality given in [37, Theorem 2.1], we obtain

/B( — {fi(y) Yiezllo dy < C||xpe,2+1n { fikiezllia|| oo oy IXBG27410) | Lo ey
2,211y

for some C > 0.
Applying the norm || - || o) rn) on both sides of (3.3), we have

X8 KOV Yiczlliall oo oy
< CQ_MT_HHXB(z,r) ||LP(')(R”) HXB(Z,2J'+17«) ||{fi}iez||lq HLP(.)(Rn) ||XB(z,2J'+1r) ||Lp’<-)(Rn)~

Proposition 2.4 guarantees that

X8 O ezl oo @y

X B, | Lpo) (m

)
S C X > .+17- fz i l ‘ .
HXB(m,zjﬂr)||Lp(->(Rn) H B(z2 )H{ } EZH qHLP( )(R™)

Thus,

X By ML 10 ]| o) ey
IXBw) | e Ry u(z, 2707)

IXB@.n HLP(-)(Rn)

<C

X820 Lf el o) oy

j 1
=¢ u(z 2717 sup X |l gy
HXB(m,zJ'Jrlr)”LP(-)(Rn) yE;{: u(y’ R) (y,R) LPC) (R™)
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Hence, using inequality (3.1), we obtain

iz e Ml o @y < =3 Z 1) IV ] o5 ey

u(z

1
<Csup —— || Lp() (Rn) s
< C sup ot il
R>0
where the constant C' > 0 is independent of r and z. Taking supreme over z € R"
and r > 0 gives (3.2). O

Theorem 3.1 also extends the boundedness results of maximal operator from
Lebesgue spaces with variable exponents [9, 10, 13, 47| to Morrey spaces with vari-
able exponent on R"™. For the corresponding result of Morrey spaces with variable
exponents on bounded domains, the reader is referred to [2, 35]. Notice that the
Morrey spaces with variable exponents defined in [2] are different from [35, Defini-
tion 1.2] and Definition 2.2. The Morrey spaces with variable exponents studied in
[2] are defined via the modular form

p(f) = / |f($)|p(x) dr + ||fX{m€R":P(w)=OO}HL°°
{z€R™:p(x)#c0}

while our Morrey spaces with variable exponents and the one introduced in |35,
Definition 1.2] are defined by the norm || - || oe) gn)-

The above theorem also provides the boundedness result for the Hardy—Little-
wood operator on the scalar version which gives an generalization on the result for
the boundedness of the maximal operator on Morrey spaces with variable exponents
[26, Theorem 5.8|.

Theorem 3.2. Let p(-) € B. If u satisty (3.1), then

(3.4) MMy < CNF M0

If p(-) € B, ky() > 1 and there exists a 0 < p < 1 such that for any z € R" and
r >0,

u(z, 27 ) _ o (||XB(m,2j+1r)||LP(‘)(R”)

P
) , V7eN
U(SL’,T’) HXB(m,?‘)HLP(')(Rn)

for some C' > 0, then Proposition 2.6 assures that inequality (3.1) holds. Some
further discusses on condition (3.1) are provided in [32]. Moreover, condition (3.1)
is also used in [33| for the study of weighted Hardy—Morrey spaces. With the above
motivation, we define the weight function for Morrey spaces with variable exponents
in the following.

Definition 3.1. Let 0 < g < co. A Lebesgue measurable function u(z,r): R™ x
(0,00) — (0,00) is said to be a Morrey weight function if there exist a 0 < \ < %
and constants C7,Cy > 0 so that for any x € R", u(z,r) > Cy, r > 1,

(3.5) UE2r) o s
u(w,r) — ’
(3.6) o5l < U e o< <t<or

u(z,r)

We denote the class of Morrey weight functions by W,.
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For any B = B(z,r) € B, we write u(B) = u(x,r).

Lemma 3.3. Let p € B' with e,y > 1. Ifu € W, , then u fulfills (3.1).

Proof. By the definition of ey, for the given \ < e—(), we have A\ < 1 — 2
(.

Fpry
Therefore, there exists a 1 < s < k() such that A < 1 — 1. According to (2.9) and
(3.5), we obtain

o) 2]—1—1

Z ||XB (w,r) ||LP() (R™) ( < CZQW()\ (1-1) <C
X B,20+1r ||LP() (R")
for some C' > 0 independent of x and r. Thus, u fulfills (3.1). O

For instance, the function u(z,r) = r"*@ where 0 < A(z) < Ay < 1/ey fulfills
u € W,y (see 2, Section 3]). We give an extension of the notion of exponent function
p(-) when the range of p(-) is a subset of (0, c0).

Definition 3.2. Let B be the set of all Lebesgue measurable functions p: R” —
(0, 00) satisfying 0 < p_ < p; < oo and p(-)/a € B for some a > 0. For any p(-) € B,
define

(3.7) myy = sup{a > 0: p(-)/a € B},
(3.8) hp(y = sup{aep()/a: @ > 0 and p(-)/a € B}.

As ep(y/q > 1, we have my,y < hyy. When p(-) € B, Theorem 2.3 guarantees that
My(y = kp() > 1. The use of the indices m,) and h, is revealed by the following
properties. For any 0 < ¢ < 0o, we have

1
(3.9) hoty = 5%(-)
and
(3.10) u €W, ul € Wh,y/a-

When p(-) € B, we have
(3.11) ep(.) S hp(.) and Whp(_) Q W,

Ep(-)”

Notice that (3.9) is an essential feature possessed by h,) that does not share
with e,.). The index h,.) can be considered as the homogemzatlon of the index ep()
Especially, (3.9) is also a cruc1al property in connection with the a-power of My
see (2.2). The properties (3.9), (3.10) and (3.11) are applied frequently on the proofs
of our main results, Theorems 4.1, 5.1 and 5.2. The following proposition reveals the
reason why we use a stronger condition (3.5) instead of (3.1).

Proposition 3.4. Let p(-) € B and u(zx,r) € Wh,,- Then xp € My, for
any bounded Lebesgue measurable set . Moreover, for any f € My, f Is finite
almost everywhere.

Proof. Let E be a bounded Lebesgue measurable set with £ C B(0, R), R > 0.

For any xg € R™ and k € Z, write D}, = B(x,27%). When k € N, Proposition 2.6,
Definitions 3.1 and 3.2 offer a s > 1 and a > 0 satisfying s < K ()/ay and A < 2(1—1)

s
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so that

1 1
||XDkﬁE||LP(')(Rn) ||XDk||zP(')/a(Rn) ||XDO||ZP(')/G(R7I) —kn(%(l—%)—)\)
u(xe,27%) 7 wu(xg,27F) u(xg, 1)

1
S C||XB(0,R+2) ||zp(.)/(l,(Rn)
for some C' > 0 independent of k£ and xy. If £ < 0, then

HXDmEHLp(-)(Rn) ||XEHLP(‘)(R") <C
u(xg, 27F) — u(xe,27F) T

for some C' > 0 independent of k. As u satisfies (3.6), the above inequalities assure
that xg € M:UC),u-

Let f € Mp(u. Assume that F' = {x € R": |f| = oo} satisfies |F| > 0. We find
that there exists a R > 0 such that G = F'N B(0, R) satisfies |G| > 0. Hence, G is a
bounded Lebesgue measurable set.

For any n € N, nxe < |f|. Since My, is a lattice, we have n|xc|rm,,, <
| f1lm,,., Which contradicts to the assumption that f € M(),. Thus, [F| =0 and
f is finite almost everywhere. O

We have the subsequent result for the boundedness of Hardy-Littlewood maximal
operator on the a-th power of M, ,,.

Proposition 3.5. Let p(-) € B and u(x,r) € Wh,,- If0 < b < my., then M is
bounded on M, . In particular, p(-)/b € B.
b )

Proof. By the definition of my,.), there exists a b < o < my,() such that p(-)/a €
B. Let 0 = a/b. For any f € My ,, Jensen’s inequality reveals that
b K

(3.12) (M(f))" < M(If]%).
In view of (2.2), (3.10), (3.11) and Lemma 3.3, Theorem 3.2 guarantees that

M latygy = IO W, < IMAADI

p0)
0
= Ol

b

for some C' > 0. The belonging p(-)/b € B follows by taking u = 1 in the above
inequalities. O

20 o
0,

< CIIFI" NI

We now offer an application of the Fefferman—Stein vector-valued maximal in-
equalities to study the variable Triebel-Lizorkin-Morrey spaces and the associate
sequence spaces via the Littlewood—-Paley function. Let S(R") and S'(R™) denote
the class of Schwartz functions and tempered distributions, respectively. For any
d € N, let P; denote the class of polynomials in R" of degree less than or equal to
d. Let Poo = UdEN Pd.

Definition 3.3. Let —oco < a < 00, 0 < ¢ < 00, p(+) € Band u e Wh,.,- The
variable Triebel-Lizorkin—-Morrey spaces Szf‘(‘iu consists of those f € §'(R™)/Px such

that
1/q
Il 0 = | (S 2ho0 1)

vEZ

< 00,
Mp(-),u
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where ¢, (z) = 2""p(2"z), v € Z and ¢ € S(R™) satisfies
(3.13) suppp C{zeR":1/2<|z| <2} and [¢(&)|>C, 3/5<|z]<5/3
for some C' > 0.

Obviously, 5 ‘;u is a quasi-Banach space. If p(z) = p is a constant function
and p > 1, then 8;‘ ,‘;u reduces to the homogeneous Version of the Triebel-Lizorkin—

Morrey spaces considered in [52, 57, 60]. When u = 1, ., becomes the variable
Triebel-Lizorkin spaces studied in [18, 61, 62]. On one hand the variable Triebel-
Lizorkin—-Morrey spaces is a generalization of the Triebel-Lizorkin-Morrey spaces
introduced in [52, 57, 60]. On the other hand, it gives an extension of the variable
Triebel-Lizorkin spaces considered in [18, 61, 62| to the Morrey spaces setting.

Another family of variable Triebel-Lizorkin-Morrey spaces is introduced in [30].
They are complementary of each others. In Definition 3.3, 55(%“ is defined for any
—00 < a < oo while in [30], it is only defined for 0 < a < co. On the other hand,
the variable Triebel-Lizorkin-Morrey spaces studied in [30] can be defined when «
and ¢ are functions of x € R"™.

For any j € Z and k = (ky, ko, ..., k) € Z", Qjx = {(21,22...,2,) € R": k; <
Vr; <k;+1,0=1,2,...,n}. Let |Q| and I(Q) be the Lebesgue measure of @) and
the side length of (), respectively. We denote the set of dyadic cubes {Q;x: j €
Z,k € Z"} by Q4. By following the idea given in [20]|, we introduce the sequence
space associated with 5;“(%

N

Definition 3.4. Let —oco < a < 00, 0 < ¢ < 00, p(-) € Band u e Wh,.,- The
sequence space € (q) is the collection of all complex-valued sequences s = {sg}geco,

such that "

1/q
Il = (3 @lsalier)
QEQq

where ¥o = |QI™2xq.

Identity (2.1) and Theorem 3.1 assure that for any p € B and 0 < ¢ < oo, there
exists an a > 0 so that

M) Yiezlliorall oo ramay < CllIHfitiezlliorallocrre e

for some C' > 0. Using the terminology given in [27], the pair (19, LP)(R")) is a-
admissible. Moreover, the variable Triebel-Lizorkin spaces are member of Littlewood—
Paley spaces |27, Definition 2.1].

We follow the general approach provided in [27] and obtain the following results.
For simplicity, we refer the reader to [20, 21| for the definitions of the ¢-1 transform
and smooth N-atom, N € N.

< 00,

Mp()u

Theorem 3.6. The ¢-transform Sy is a bounded linear operator from Sa’q

to & ()u. The t-transform Ty, is a bounded linear operator from e () to & ’%
Moreover, for any @1 and @9 satisfying the conditions given in Definition 3. 3 the

quasi-norms || - Hfﬁ(’.‘ﬁ,u(@l) and || - ||5§(‘(§7u(¢2) are mutually equivalent.

The above theorem guarantees that the function space 5;;‘(% ., 1s well defined. Fur-

)

thermore, the definition of 5;‘(3 ., is independent of the function ¢ used in Definition
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3.3. The smooth atomic decomposition for 8 q ., is obtained as a special case of the
smooth atomic decomposition of Littlewood— Paley spaces |28, Theorem 2.1|.

Theorem 3.7. Let N e N. If f € €a’q , then there exists a sequence {sg }geo, €
and a family of smooth N-atoms {CLQ}QGQd such that f = .o Sqaq and

et
p()u
I{s0}oeca,lle et < C’||f||5a(% , where C' is a positive constant independent of f.
The preceding theorem extends the smooth atomic decompositions of variable
Triebel-Lizorkin spaces obtained in [18, Theorem 3.11] and [62, Theorem 1] to vari-

able Triebel-Lizorkin—-Morrey spaces.

4. Hardy—Morrey spaces with variable exponents

The Hardy—Morrey spaces with variable exponents are defined in this section by
using the maximal function characterizations. One of the remarkable and fundamen-
tal properties of Hardy type spaces are the equivalence of definitions of Hardy type
spaces by different maximal functions such as the nontangential maximal function
characterizations and the grand maximal function characterizations. The equivalence
of these maximal function characterizations are established in this section.

We begin with some well-known notions and notations for studying Hardy type
spaces. Recall that a f € S’'(R™) is said to be a bounded tempered distribution if
p* f e L*°(R") for any ¢ € S(R"). For any N € N, define

Ny(¢) = sup (L+ [z Y [7¢(x)], Vo€ SR
TeRt HI<N+1
Write
Fy ={¢ € S(R"): Nn(¢) <1}
For any t > 0 and ® € S(R"), write ®;(z) =t "P(z/t).
Let a,b > 0 and ® € S(R"). For any f € §'(R"), define
(4.1) M(f, @)(w) = sup (% f) ()],

(4.2) M(f, @)(x) =sup  sup (D¢ f)(y)l,

>0 yeR™ Jy—z|<at

(@0 + f) (= — y)|

(43) MU @) =500 sup S Ty
and
(M f)(x) = sup Mi(f,®)(x).
PEFN
Let X
Pla) - oz

T (L))
be the Poisson kernel.
Definition 4.1. Let p(:) € B and u € Wh,,- The Hardy-Morrey space with
variable exponent H,.), consists of all bounded f € §'(R") satisfying

[ 1oty = IM (S, Pl a0 < 00
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We prove one of the fundamental theorem for Hardy—Morrey spaces with variable
exponents. It is an extension for the corresponding theorem for Hardy spaces |25,
Theorem 6.4.4] [55, Chpater 111, Section 1|, Hardy—Morrey spaces [34, Section 2| and

Hardy spaces with variable exponents |46, Section 3|.

Theorem 4.1. Let p(-) € B and u € Wi,
(1) There exists a ® € S(R") with [, ®(x)dx # 0 and a constant C' > 0 such
that

(44) ||M(.fa (I))HMP(.),U < CH.fHHp(.),u

for all bounded tempered distribution f € S'(R™).
(2) For every a > 0 and ® € S(R"™), there exists a constant C' > 0 such that

(4.5) M5 (f @)y < CIMS, @) ryn Y €S (RY).

(3) For every a > 0 and b > n/my.) and ® € S(R"), there exists a constant
C > 0 such that

(4.6) 1M (f, @)l wy. < CUMG (S @) ay,r Y € S'(RT).

(4) For every b > 0 and ® € S(R") with [, ®(x) dx # 0, there exists a constant
C > 0 such that if N = [b] + 1, then

(4.7) IMN DMy < CIME(f @)y Y € S'(RT).

(5) For every N € N, there exists a constant C' > 0 such that if f € S'(R")
satisfies |[(Mnf)||m < 00, then f is a bounded tempered distribution,
fe Hp(')m and

(4.8) [ 5.0 < CIMN P My,

Proof. The proof of the above theorem is similar to [25, Theorem 6.4.4] and [55,
Chapter ITI, Theorem 1|. For simplicity, we just outline the inequalities used there
and applying them to our result. For a complete and detail account on the proof,
the reader is referred to |25, 55].

Part (1). By the proof of |25, Theorem 6.4.4(a)|, we have the pointwise inequal-
ities

p(-),u

(4.9) M(f,®)(x) < CM(f, P)(z), Va e R"

Thus, (4.4) follows from (4.9).

Part (2). Similar to the proof |25, Theorem 6.4.4(b)|, we present the proof for
M;(f, @) only as the general case follows similarly. For any € > 0 and any sufficiently
large N € N, write

* e,N — * t ' !
M;(f, ®) (x)_oiltlfi ‘ysi@(fbt f)(zDI(HE) A+ )™
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We show that if M(f, ®) € M), then M;(f, @)Y € My, N L°(R™). From
25, p. 45], we have

M (f, @) (x)

IA

(4.10) < C( XB(01 )+ ZQ (N=m) 02k)\B(0,2k*1)($))

where C' > 0 is independent of x € R". From the proof of Proposition 3.4, we find
that

1
||XB(0,2’“)\B(0,2’€*1)||Mp(.),u < CmaX(||XB(0,2k+1)||Zp(->/a(Rn)> ||XB(0,2k)||LP<->(Rn))

for some a > 0 independent of k. Thus, Proposition 2.5 yields

n(k+1)

(4.11) IXBo.20BO2- 1) | M,y < C2 7=
for some C' > 0 independent of k. Therefore, when N is large enough, (4.10) and
(4.11) conclude that M;(f, @)Y € M) N LZ(R™).

Next, we recall two auxiliary functions used in |25, pp. 45-47|. For any L > 0,
write

U(f,@)E,N(x): sup sup t|V(q>t*f)(y)‘( t ) : 1

o<t<l ly—az|<t t+e€ I+ €|y|)N
and
t \V 1 / L
V(9 () = sup sup |(@ *f)(y)|( ) ( ) .
Jup, s | fvc) Urdy)” \ixle—y]

From [25, p. 46], for any 0 < ¢ < 0o, we obtain
t N 1 t t * e,N
@ N0l () e () < (OG0 @)

According to Theorem 2.3 and the definition of B, we have a 0 < ¢ < oo such that
p(+)/q € B. Additionally, (3.9)—(3.11) assert that

(4.12) ul € Whp(,)/q =W,
In view of Lemma 3.3, we are allowed to apply Theorem 3.2 to M, ,. Hence,
by (2.2), we obtain '

Q|-

CW,

p(-)/a — €p(-)/a"

1
V(@) ayy < CUMIME(f, @)5M]15

q

p(-)u

1

(4.13) < CIME (S, @) P, < CUMICS @)Y a
for some C' > 0 independent of f. Moreover, according to |25, (6.4.23)], we also have
the pointwise inequality

(4.14) U(f,®)N(x) < CV(f, ®)*Nt(x), VYoeR"
for some C' > 0 independent of f. Hence, (4.13) and (4.14) yield
(4.15) IUCf, @) aty. < Coll M (f, @) e

p(-),u
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for some Cy > 0 independent of f.
Define
E.={z € R": U(f,®)""(x) < 2CoM; (f, )" (x)},
where (Y is given by (4.15). We obtain

* € 1 € 1
IX(Ee MT (F, ©)N [ty < 5, X UL @) Mty < 54

e,N
p()u — 200 HU(f’ (I)) ||Mp(.),u’

By using (4.15), we find that
Lo e
< SIME(F, @) a0

(4.16) o M (@) Nl ay < 5

Furthermore, by [25, (6.4.27)], for any 0 < ¢ < co and = € E,, we have

1
q

M (f, @)~ (x) < C(M[M(f, ®)]*)* (x)

where C' > 0 is independent of f and e.
Similar to the proof of (4.13), by applying Theorem 3.2 with sufficiently small
q>0to My, ,, we get

(4.17) IxE M ()N a0 < CIMF, D)y

for some C' > 0 independent of € > 0 and f. Inequalities (4.16) and (4.17) assure
that

||Mik(f> ®)E7N||Mp(.),u < CHM(fa (I))HM

p(-),u

1 * €
I (@) g
Since M (f, @)Y € M), by applying Lebesgue monotone theorem, we obtain

Mg (f; @)l w0 < CIMS, @) a0
for some C' > 0 depending on N. This guarantees that

IM(f, @) lmyq,, <00 = [[M(f; ®)l[am,,,, < 00

p(-),u
With this assertion, (4.5) can be established by repeating the above arguments with
U(f,®)sN and V(f, @)L replaced by two new auxiliary functions

U(f,®)(x) = sup sup #[V(P;* f)(y)l

0<t<oo [y—z|<t
and
. L
V(f,®)E(x) = sup sup [(D; * - ) .
(1.8 = s sup (@0 N0 (57— 1)
For brevity, we skip the details. For a detail account of the above procedures, the
reader is referred to [25, pp. 44-50| or [55, pp. 95-98|.
Part (3). From the proof of |25, Theorem 6.4.4(c)|, we have the pointwise in-
equality

n

M (£ 0)a) < max(La) (MO 9) D)) s e e R

Therefore, whenever b > —"— (2.2), (3.7) and Proposition 3.5 give (4.6).

Mp(.)’

Part (4). The proof of [25, Theorem 6.4.4(d)]| asserts that
My f)(x) < CM(f, ®)(x), VreR"
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for some C' > 0 independent of f. Obviously, (4.7) follows.

Part (5). Let f € S'(R") satisfy |Mnf|lm,.,, < oo for some N € N. For
any fixed ¢ € S(R"), we have a constant ¢ > 0 such that cp € Fy. Therefore,
M;(f,cp) < Mn(f). Moreover, Proposition 3.4 yields for any x € R"

X B0 M (f, c0) My

clpx f)(x)] < inf My(f,co)(y) <
ly—al<1 IXB1)ll M.
(4.18) < OIMyfllm,, . < oo,

which guarantee that f is a bounded tempered distribution. Finally, by the proof of
|25, Theorem 6.4.4(e)|, we have

Sup (P * f)(z)] < C(Mnf)(z), VzeR"

for some C' > 0 independent of f and, hence, (4.8) follows. O

The preceding theorem also gives several maximal functions characterizations of
Hardy—Morrey spaces with variable exponents such as the Poisson characterizations,
the nontangential maximal function characterizations and the grand maximal func-
tion characterizations. As shown in Part (5) of Theorem 4.1, for any ¢ € S(R"), we
have

(¢ + @) < CIMu St < Cllfllng,,. Vo€ R
These inequalities guarantee that whenever f; converges to f in Hp(.), f; also con-
verges to f in S'(R™).

For simplicity, for the rest of the paper, we denote the grand maximal function

by M.

5. Atomic decomposition

The main results of this paper are presented in this section. The atomic decom-
position for the Hardy—Morrey spaces with variable exponents is established. We
start with the definition of cubes and atoms. For any z = (z1,---,2,) € R" and
r>0,let Q(z,7) = {(y1, - ,yn) € R™: maxj<i<, |y; — 2| < r/2} denote the cube
with center z and side length I(Q(z,7)) = r. Write @ = {Q(z,7): z € R and r > 0}.
For any Q = Q(z,7r) € Q and k > 0, we define kQ = Q(z, kr).

Definition 5.1. Let p(-) € B, p, < ¢ < oo and 1 < ¢ < co. Let d € N satisfy
d > dpy = min{k € N: myy(n +k+1) >n}.
A function a is a (p(-), ¢, d) atom if there exists Q € Q such that
(5.1) supp a C 3Q),
QL
HXQHLP(')(R")’

(5.3) / 2Va(x)dr =0, Vy e N" satisfying || < d.

(5.2) lallze <

The above definition for (p(+), ¢, d) atom follows from the definition of atoms for
the classical Hardy spaces [55]. The major modification is on the size condition.
Precisely, the modification is on the denominator of the right hand side of (5.2), see
|46, Definition 1.4]. We have a further modification on the index d,.). We replace
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the index p_ from [46, Definition 1.4] by my). From the proof of the subsequent
atom decomposition, we see that it is necessary to made such modification.

We present the main result of this paper in the following. We spilt it into two
theorems, the first one is the decomposition theorem and the second one is the
reconstruction theorem.

Theorem 5.1. Let p(-) € B, py <qg<o00,1<qg<ooandue Wh,,- For
any f € Hp()u, there exist a family of (p(-), q,d) atoms {a;};en With suppa; C 3Q);,

Q; € Q and a sequence of scalars {\;};en such that

(5.4) f=Y XNa; in SR

JEN
)\. S s
(5.5) > (ﬁ) XQ; < Cllfllny,.. VO<s<oo
= \xes o @) ’

P()/sus
for some C' > 0 independent of f.

Theorem 5.2. Let p(-) € B and u € Wh,.,- There exists a qo > 1 such that for
any family of (p(-),q,d) atoms {a;};en With ¢ > qo, suppa; C Q; and sequence of
scalars {\;}jen satistfying

> (#)chzj

= \xe; o @

1
s

(5.6) < 00

P()/s5,us
for some 0 < s < min(1, my.)), the series
f=2_Na

jEN

converges in S'(R") and f € Hy(.),, with

S (i)

jeN ||XQJ- ||LP(')(R”

1
s

(57) ||f||7‘lp(.),u S C

Mp()/s,us
for some C' > 0 independent of f.

Notice that Theorem 5.2 does not cover the important boundary case when s =
my()- To establish the reconstruction theorem for this case, we need to impose a
stronger condition on the exponent function.

Theorem 5.3. Let p(-) € B and u € W, satisfy my.y < 1 and the conditions
in Theorem 5.2 with s = myy. If p(-)/my. € B and K(p()/myy) > 1, then the
conclusions of Theorem 5.2 are valid with s = m,,.).

Theorems (5.1), (5.2) and (5.3) generalize and unify the atomic decompositions
for Hardy spaces, Hardy—Morrey spaces and Hardy space with variable exponents
in [34, 46, 55]. The reader may have a wrong impression that it is unnecessary to
extend the range of s to 0 < s < my(). In fact, the atomic decompositions of the
classical Hardy spaces, the Hardy—Morrey spaces and the Hardy spaces with variable
exponents are special cases of Theorem 5.3, not Theorem 5.2.
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Although Theorem 5.3 induces the atomic decompositions in [34, 46, 55|, it only
applies to a restrictive class of exponent functions. Theorem 5.2 extends the atomic
decomposition of H,y.), to a larger class of exponent functions.

When p(-) = p, 0 < p < 1, is a constant function and v = 1, the Hardy—
Morrey space with variable exponent reduces to the classical Hardy space. Moreover,
Lp(')(R") = ./\/lp(.)m = L? and Mp() = D- Thus, p(-)/mp(.) € B and R(p(-) fmyp(y) = OO
When s = p, (5.5) and (5.6) (with respect to Theorem 5.3) offer

S = () o | =[5 () e

1
P

Sl

JEN jEN Ix@; v JEN Ixaq, ||LP(')(R”

- Z (=) e

= \xes o e

1,uP

1
s

p(-)/s,u®
which gives the condition imposed on the sequences for the atomic decomposition of
classical Hardy spaces [55, Chapter III, Section 2.2, Theorem 2|.
In case p(-) = ¢, 0 < ¢ < 1, is a constant function and u(zx,r) = |B(x,r)|%_%,
q < p < 00, Hp()u becomes the Hardy-Morrey spaces studied in [34]. Additionally,

(5.5) gives
1 1
., I\ 19Q; N QI = |\ q a
(5.8)  sup (\Q|1 2o ) S| o) <@
QeQ JjEN J jEN @ I1LPO (Re) Miug
1
LY W
jEN @ IILPO (Re) Moy /s,us

when 0 < s < ¢ = my(). Notice that whenever the sequence {\;} cn satisfies (5.8),
it also fulfills [34, (1.2)].

The normalization on atoms given in [34, Definition 1.4| is different from us. Our
normalization of atoms follows from the classical approach given in [55, Chapter III,
Section 2.2]. When p(-) satisfies 0 < p_ < p; < oo and the globally log-Hélder
continuous conditions (2.3)-(2.4) and u = 1, Hp(.), is the Hardy space with variable
exponents studied in [46]. In addition, m,.) = p— and Kp)poy = (0+/p-) > 1.
Thus, Theorems 5.1 and 5.3 apply.

In fact, even for the special case u = 1, Theorems 5.1 and 5.3 extend the atomic
decomposition of Hardy space with variable exponents [46, Theorems 4.5 and 4.6] to
the case when p(-) € B does not satisfy (2.3) and (2.4). For examples of function
p(+) € B that do not satisfy (2.3) and (2.4), the reader is referred to [38, 47].

To prove Theorem 5.1, we state a well known preliminary supporting result for the
atomic decomposition [55, Chapter III, Section 2.1] and |56, Chapter VIII, Lemma 3].
We use the presentation given in [46, Lemma 4.7].

Proposition 5.4. Let d € N and 0 > 0. For any f € S'(R"), there exist
g € S'(R™), {bx}ren C S'(R™), a collection of cubes {Qi}ren € Q and a family of
smooth functions with compact supports {n} such that

(1) f=g+0bwhereb=>", bk,
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(2) the family {Qy}ren has the bounded intersection property and
J Q= {z e R™: (Mf)(2) > o},
keEN

(3) suppme C Qr, 0 < M < 1 and

Z Mk = X{zeRm:(Mf)(z)>0}>
keN

(4) the tempered distribution g satisfies
(Mg)(z) SMF) (@)X {zerm(Mp)@)<0} (T)

Qk)n-i-d-l-l
+0o ,
]; Qk + |Zl§' _ l’k|)n+d+1

where xj, denotes the center of the cube Q,
(5) the tempered distribution by is given by b, = (f — cp)nx where ¢, € Py
satisfying

/ bp(x)q(z)dr =0, Vq € Py,

and

(Mb)(a) < COMANa (o) + o P g, (2)

for some C > 0.

Roughly speaking, the proof of Theorem 5.1 follows the idea of atomic decompo-
sition for the classical Hardy spaces in [55, Chapter III, Section 2|.
We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. It suffices to establish the atomic decomposition for
(p(+), 00, d) atoms since (p(+),00,d) atoms are (p(-), ¢, d) atoms for any 1 < g < co.
Accordmg to Proposition 5.4, for any 0 = 2/, j € Z, we have distributions ¢, &’
satisfying (1)—(5) in Proposmon 54 and f = gJ + b erte

(5.9) O’ ={z eR": (Mf)(x)>2} =[] Q]
keEN
where [, on fo is the decomposition of O’ given by Item (2) of Proposition 5.4.
Let {r)} be the family of smooth functions with respect to the decomposition
07 = Upen Qi given by Proposition 5.4, Item (3). In addition, as Mf € M),
according to Proposition 3.4, we have O/*' C 07 and (), 07 = ). For any ¢ €
S(R™), we have a constant ¢ > 0 such that cp € Fy. Proposition 5.4 yields

cle g ()] < (Mg')(x)

‘ ) (Qj)n+d+1 ‘
< (M) (@)X fzerm:(Mmp)(@)<2} (2) + 2 /; 0+ le — <

for some C' > 0 where :l:{C is the center of fo That is, ¢ — 0 in §’'(R") as j — —oo.
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Next, we show that ¥ — 0 in S'(R") as j — oo. By Propositions 3.5 and
Item (5) of Proposition 5.4, for any n/(n 4+ dp)+ 1) <7 < min(1,my)) and @ € Q,
we have p(-)/r € B and

[ 1@ s
Q

<C/QZ|Mf |XQ’()d£E+C'2”/

kEN Q@ keN

<c|  Mp@[d+c2m Y / (Mg ) O+

QNOJ keN

By using [23, Chapter II, Theorem 2.12], we obtain
/ (M XQ{;)(x))r(n+dp(.)+1)/”XQ(x) dr < / (XQ;; (x))r(n+dp(.)+1)/n(M XQ)(x) dx
~ [ )M xe)(@) o
= [, 0@ ar

because r(n + dy) + 1)/n > 1. Consequently, the above inequalities, (5.9) and the

( Z(Qj)n—i-dp(.)—i-lXRn\Qj( ) )r
dx

+ |:L’ |)n+dp( y+1

bounded intersection property satisfied by {Qi} ren yield

Lia@raz<c [ ap@r i) dr

for some C' > 0. For any ¢ € S(R"), by the above inequalities and (4.18), we find
that

V% ()] < |/ i Q) dy<c/ My
<c / MA@ M X)) dy

¢ " (MAWI"A+ [z —y))™" dy

for some C > 0.
As p(-)/r € B, by using the Holder inequality for the pair LPO/"(R™) and
L0/ (R™) and Proposition 2.4, we find that

/ MA@+ o= yl) " dy < I / [(MF) ()X (9) dy

n

k=0
o0 1 )
=¢ Z m ” (Mf)(y) HLP(')/T'(R") HXB(HC,?]“) HL(P(-)/T)’(Rn)
2r)”
¢ 1ML,
Z ||XB (z,2%) ||Lp( /(R Mp()u

where B* = B(x,2%)\B(z,2*"!) when k > 1 and B® = B(z,1).
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Since u” € Wh,, ., Lemma 3.3 gives

/n ((MPY W)L+ [z —y)™" dy < CIM S

p()u’

In view of the fact that O’ | ), the dominated convergence theorem yields that

lim 7+ o(a)" < C lim [ (MA@ + o= y) ™ dy = 0.

j—o0 0J

Thus, &’ * ¢ — 0 pointwisely. That is, & — 0 in S'(R") when j — oo.
The convergence of ¢/ and ¥ assert that the telescoping sum

f=> (g g
jezZ
converges in §'(R™). By using Item (5) of Proposition 5.4, we also have
G =g =V =0 =S (f — T (f — )
kEN

where ¢} € Py satisfies
/ (f(x) — c(@))a(e)l(z) dz = 0, Vg€ Py

— J
Moreover, we have f =3, Aj, where

AL = (f =l = S0 = it + 3 o™

leN leN

and ¢, € Py satisfies

[ (@) - P @) - learit @) de =0, Vg Pa

Write
aj, = N p Al and A = 2’ Xzl o>

where ¢ is a constant determined by the family {A{C}jk and most importantly, it is
independent of j and k, see [55, pp. 108-109]. Therefore, similar to the proof for the
classical Hardy space [55, Chapter ITI, Section 2], a. is a (p(-), 00, d) atom.

According to the definition of Qi and following from the fact that the family
{fo} xen has the finite intersection property, we find that for any 0 < s < 0o

Ak ° .

> # Xoi () < C29y05(x)
kEN HXQ{C HLP(-)(Rn) k

for some C' > 0. Consequently,

> (AJ Xy (7) < CY 29y0s(x) < C(MS)(2)".

X llLro e =
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By applying the quasi-norm || - ||%fp(_)/s _. on both sides of the above inequality, (2.2)

s

yields
A ’ s
Z (W) XQ?c S CHfHHp(.),ua 0<s <o
j J | LPC) (R™
jik Qy, My o
for some C' > 0 independent of f. -

To prove Theorem 5.2, we need several supporting results. We use a duality
result for M, , to provide some crucial estimates. Therefore, we introduce the
block space for variable exponents in the following.

We now present the definition of block spaces with variable exponents given in
[7]. It is inspired by the classical block spaces defined in [5].

Definition 5.2. Let p(-): R™ — [1,00] and u(z,r): R™ x (0,00) — (0,00) be
Lebesgue measurable functions. A Lebesgue measurable function b is a (u, p(+))-block
if supp b C B(xg,r), 1o € R", r > 0, and

1
q (R X ——.
(5.10) oo < 2o
We write b € by, if bis a (u, p(-))-block. Define B, ,, by
(5.11) By = { Z)\kbk: Z |Ak| < oo and by is an (u,p(-))—block}.
k=1 k=1

The space By, is endowed with the norm

(5.12) If]ls,,. = inf { > [ Ael such that f =) )\kbk}.
k=1 k=1

We call B, the block space with variable exponent.

A simple consequence of the above definition is that for any b € b, ,, we have

(5.13) bl < 1.

p(-),u
We first present the Hélder inequality for M), and B (..

Lemma 5.5. Let p(-): R" — [1,00] and u(z,7): R" x (0,00) — (0,00) be
Lebesgue measurable functions. We have

/ F@)9(@)| dz < Ol flaay,, gl

for some C' > 0 independent of f € M), and g € B ().

Proof. For any b € by, with suppb C B, by using the Hélder inequality for
LPO)(R™) [37, Theorem 2.1] and (5.10), we have

/ |f(2)b(z)| dx < ClixBflrey @ 10 o) (memy

(5.14) <o

= U(B) ||XBf||LP(')(R") < Cl“f“./\/lp(.),u'
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For any g € B,()., we have a family of (u,p'(-))-blocks {b;}ren and sequence
{)\k}keN such that f = ZkEN Akbk and

(5.15) > Il <2llglls,,,

Therefore, (5.14) and (5.15) give

[ 1f@a@lde < Sl [ 1f@h@)lds < Cllflag, ol O

kEN
The following is the norm conjugate formula for M), and By,
Lemma 5.6. Let p(-): R" — [1,00] and u(z,r): R" x (0,00) — (0,00) be
Lebesgue measurable functions. We have constants Cy, C; > 0 such that

(5.16) Collflla,. < sup / F@)b(@)] dz < O || fllan, ..

Ebp/(_),u
Proof. The inequality on the right hand side of (5.16) follows from (5.14). Next,

we show the inequality on the left hand side of (5.16). According to the definition of
Mp()us there exists a B € B such that

1 1
§||f’|M,,(.),u < @HXBJCHLP(‘)(R")'

For this given B € B, the norm conjugate formula for L()(R™) (see [12, Propositions
2.34 and 2.37] and [17, Corollary 3.2.14]) yields a g € L7’ *)(R™) with 9]l ooy gy <1
such that

1
5170 < 5 [ @@ e = [ (@G

G(z) = ﬁm(x)g(z).

Obviously, G is a (u, p'(+))-block. Therefore, the inequality on the left hand side of
(5.16) follows. O

The subsequent lemma gives an estimate of the action of the Hardy-Littlewood
operator on blocks. In addition, the ¢y appeared in Theorem 5.2 is determined by
the following lemma and proposition.

Lemma 5.7. Let p(-) € B and u € W, oy Af Kp(y > 1, then there exists a

go > 1 such that for any q > qo and b € by ()., we have

(5.17) 1v([b) ))?H%p,(.),u <C
for some C' > 0 independent of b.

where

Proof. Let b € by, with support B(zg,r), 0 € R", r > 0. For any k €
N, let By = B(wo, 2"r). Write my, = x5, 5, (M(p|7)7, k € N\{0} and mo =
XBo(M(\bP’))%. We have supp my C Byy1\ By and

MBI )T =3 m.
k=0
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Since k() > 1, by using Jensen’s inequality and (3.12), we have a ¢; > 1 such that
when ¢ > q1, p'(+)/q belongs to B. Therefore, by the boundedness of the Hardy—
Littlewood maximal operator on L” ()/¢ (R™), we find that
N C

10| 2o ey < CIMUABIN vy gy < ClIBN )y < )
for some C' > 0 independent of xq and r. That is, mg is a constant-multiple of
an (u,p'(-))-block. The definition of Hardy-Littlewood maximal operator and the
Holder inequality for LPO)(R™) (see [37, Theroem 2.1]) assert that

/ / XB, \B, /
el = | M) < X2 [ ) o
r B(zo,r)

1 ,
(5'18) S CXBk+1\Bk W H |b|q ||LP’(-)/q’(Rn) ||XB(mo,r) ||L(p’(-)/q’)’(Rn)

for some C' > 0 independent of k. Proposition 2.4 and (5.18) ensure that

, 4
HmkHLp’(-)(Rn) = [[lrma]® ’|z;7’(-)/q’(Rn)
1
< (HXBkH\BkHLP“‘)/Q’(R") " )q/ 1611 Lo
=~ 2knrn ||XB(SU()77")||Lp,(')/q/(Rn) Lp (R )
<C ||XBk+1 ||LP'(')(R”) u(x07 2k+17,) 1

i L)
29 [|X (a0, | o) () u(wo, ) u(wo, 28+1r)

Define m;, = ob;, where
IXBelromny  u(xo, 2841r)

u(zo, 1)

O — Tn
24 ||XB(IO7T)||LP’(')(R”)
Consequently, by is a constant-multiple of an (u, p/(+))-block and this constant does
not depend on k. Hence, (5.13) yields

(5.19) bell s, < C

where C' is independent of k.

Since Ky > 1 and u € W, ., Proposition 2.6 and Definition (3.1) yield, for any

€p(-)?
1< < Ky ()
MR W
k=0 k=0
for some C' > 0. As — 1() + 1() = 1, for any fixed A\ < %, we can choose a 8 < Ky,
e ep . ep .
and go > 1 such that for any ¢ > ¢o, we have % +A< %. Hence,
e s kn kn
(5.20) Y op<c) 25 <0
k=0 k=0
Since B, (), is a Banach lattice |7, Proposition 2.2|, we find that
sy L >
IO .0 < D lonl el
k=0

Thus, (5.19) and (5.20) yield (5.17) with gy = max(qi, ¢1). O
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In fact, the Hardy-Littlewood maximal operator is also bounded on 95, ,. The
reader is referred to |7, Theorem 3.2| for the details.

We apply the preceding results to generalize the inequalities shown in [56, Chap-
ter VIII, Lemma 5] and [46, Lemma 4.11] to Morrey spaces with variable exponents
in the following proposition.

Proposition 5.8. Let p(-) € B and u € W, oo Let {A\i}ren be a sequence
of scalars. If Ky > 1, then there exists a qo > 1 such that for any ¢ > qo and
{by}ren C L7 with suppb C Qy, € Q and

(5.21) gl < —
HXQkHLP(')(R")

we have

A
of s Al | k\ B U

(5.22)

> Aibr

keN

Mpm,u Mp()u

for some C' > 0 independent of {b; }ren and {Ak}keN.
Proof. For any g € by, we have

[ n@lata)de| < ol lxausl < O ( |l dx)
n ||XQk’|LP(‘)(R") Qr

where ¢’ is the conjugate of ¢. Moreover,

4l ( 1 )
b d 7 q

., gty < oo NG Jo, 19N d

| Qx|

U=

L
q

<Cp———— inf gl?
||XQk||LP() (R™) :cer( (| ‘ )( ))
1 , K
= C—/ (M(|g|7)(z)) 7" dx
||XQk||LP(')(Rn) O

for some C' > 0.
The above inequalities yield

Jo (S )o@y aal < 057 il [ (Gl @) o

keN HXQk HLP( ) (Rn

e V(2))7 dx
R O ) [

| Ak N
<D ——xa IM(g1) < (s,

e ||XQ;c | Lot J(R") Mp(),u

where we use Lemma 5.5 for the last inequality. Therefore, Lemmas 5.6 and 5.7 yield
(5.22). OJ

The above proposition plays a decisive role for estimating the sequence used to
establish the atomic decomposition of Hp.),. With the above preparations, we now
offer the proof for Theorem 5.2 in the following.
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Proof of Theorem 5.2. Let {a;}jexn be a family of (p(-),q,d) atoms with
suppa; C 3Q; and {\;}jen be a sequence of scalars satisfying (5.6). For any
v € S(R™), by using [46, (4.21) and (4.22)], we have

Miae)e) < C (xg, (00 ) 0) + <MXQ—>“)) ,

1XQ; Il re) mn
where Q = 2¢/nQ and r = (n + d + 1) /n. Write f = > jen Ajaj, we find that
||M(f7 30) HMP(.),u

<0( S lxg, (May)

jEN
Since 0 < s < 1, the s-inequality guarantees that

r<|(Zomamar) ],

Next, we apply Proposition 5.8 on M()/s.us With b; = (xg,(Ma;))* to estimate I.
Therefore, we first verify the condltlons given in Propos1t10n 5.8.

Since s < my(.y, Proposition 3.5 guarantees that p(-)/s € B. Theorem 2.3 yields
(p(-)/s) € B. Hence (2.5) asserts that xy.y/s, Kp()/sy > 1.

As s < 1 < ¢, the boundedness of the Hardy—Littlewood maximal operator on
L%/* asserts that

> NI X)) s e ey

JEN

):I+II.

Mp()u Mp()u

> (lxg, (May))?

JEN

Mp()u Mp()/s,us

o -
1Qj] <C |Qj] 7/

(5.23) [(Ma;)®|pars < Cllagllze < C < -
1xQ; Il 2et/s(mm X, lzrer7s @y

for some C' > 0 independent of a; where we use (2.8) for the last inequality. Moreover,
(3.9)—(3.11) guarantee that

(5.24) ut € Wi s = W, ©W

p()/s — Ep(-)/s*

Therefore, in view of (5.23) and (5.24), we are allowed to apply Proposition 5.8 on
Moy js,us With by = (xg,(Ma;))* and it offers a go such that whenever g > sqo, we
have

[A°

1<C
= Ixg, lzrors @y

Qj

Mp(y/s,us

Let § = s/2. Since xq, < Xo, < C(Mxg,)? for some C' > 0 independent of j, we

infer that
Nk %\ ¢
]<CH< ( j <M><Qj>))
= \xa; v ey b/,

As Proposition 3.5 asserts that p(-)/8 € B, by using (3.10) and (3.11), we have
cw,

Ep()/B°

AIN]

M

uﬁ < Whp(-)/ﬁ Wh

p(:)/B —
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Theorem 3.1 and Lemma 3.3 ensure that

)

A7 22|
r=¢ <Z (nxQ»HW e XQ]‘) )
jeN ! (B Mp(-)/,@,uﬁ
|As] ’ s
jen MXes IO @) Moy /5,08

We next consider 1. Since my,.r > 1, by the definition of m,.y and Proposi-
tion 3.5, we find that p(-)r € B. Furthermore, (3.9)—(3.11) yield

1
ur € thp(.) = Wh - We

p()r — p()r”
In view of (2.2), Theorem 3.1 and Lemma 3.3 assure that

Loy
1< | ( Z Wlle, Ik M0, )
JEN Mp(-)r',ul/”“
Loy
= 0| (3 liva gk ey, )
jEN Mp(-)'r,ul/r
-1
= || 3 Ml 1o e o,
JEN p(-)u

for some C' > 0. As 0 < s < 1, the s-inequality and (2.2) yield
1

Z (¢)SXQ.
JEN HXQJ'HLP(-)(Rn) i

for some C' > 0. Thus, (5.25) and (5.26) give

> (o) e

jEN HXQj ||LP(-)(Rn

(5.26) II1<c

Mp(y/s,us

S

IM(f, o)l My < C

Mp(y/s,us

Hence, f € Hy(y.. and (5.7) is valid. Fmally, the above estimates already show that
for any fixed gp E S(R™), M(f,¢) € yu- In view of Proposition 3.4, for any
g € My, g is finite almost everywhere. Furthermore, we have |f % | < M(f, ©).
Thus, f * ¢ is also finite almost everywhere. This reveals that f = > jeN Ay
converges in §'(R™). O

Proof of Theorem 5.3. The proof of Theorem 5.3 follows from the proof of The-
orem 5.2. The only modification is on checking the conditions for applying Propo-
sition 5.8. In our case, since K(p()/mpy) > 1, we can apply Proposition 5.8 for any
p(-)/s with 0 < s < my(). Hence, the range for s in which condition (5.6) applies
can also be extended to 0 < s < m,). The rest of the proof follows from the proof
of Theorem 5.2. U

At the end of this paper, we present a major application of the atomic decompo-
sition for H,(.)., we show the boundedness results of some singular integral operators
on Hy(). We find that the ideas given in [46, Section 5| for the studies of the bound-
edness of singular integral operator for Hardy spaces with variable exponent can be
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easily transferred to the corresponding studies for H,.) .. Therefore, we apply them
to the Hardy—Morrey spaces with variable exponents in the following.

Theorem 5.9. Let p(-) € B and u € Wh,,- Let T: L? — L? be a bounded
operator with its Schwartz kernel K (x,y) = k(x — y) satisfying

(5.27) sup |z V™ k(x)| < 00, ¥Ym € NU{0}
zER™\{0}

and
Tf() = [ ka-)fw)dy. « ¢ suppf

for any compact supported f € L?. Then, T can be extended to be a bounded
operator from H,.) ., to My .

Proof. By Theorem 5.1, for any sufficient large ¢ and f € Hp(.).,, we have

F=> Ao

JEN

where {a;} is a family of (p(-),q,d) atoms and {\;};en satisfies (5.5). According to
[46, Proposition 5.3|, we have

TH@ <Y ) (xéj<x>\<Taj><x>| "

JEN

(M xg,)(#)" )

1xQ; I 2re) ()

for some C' > 0 where r = (n+d+1)/n. We can obtain our desired result by applying
the ideas from the proof of Theorem 5.2 to the above inequality. For simplicity, we
omit the detail and leave it to the readers. 0

Next, we introduce the notion of molecule associated with H,.) .. The following
definition for molecule is modified from the corresponding definition of molecule from
[46].

Definition 5.3. Let p(z) € B, py < ¢ < oo and 1 < ¢ < 0o. Let d € N satisfy
dpy < d. A Lebesgue measurable function m is said to be a (p(-), ¢, d)-molecule
centered at a cube ) € Q if it satisfies

Q|7

Ixgmllre < 7,
N Xl Lr) (mm)

Y R )
HXQHLP(')(R") Q)

/ 'm(z)dr =0, Vv e N" satisfying |y] < d.

Similar to the atomic decomposition of H,.) ., we have the molecular character-
ization for Hy(. .

Theorem 5.10. Let p(-) € B and u € Wh,.,- There exists a g > 1 such that
for any family of (p(-),q,d) molecules centered at @);, {m;};en, With ¢ > qo and
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sequence of scalars {\;};en satisfying

TR

= \xe; o @

1
s

< 00

p()/su®
for some 0 < s < min(1, my,.)), the series
F=>_\my
jEN

converges in S'(R") and f € Hp(.), with

> () @

= \xe,llzro@e

1
s

17y < C

Mop()/s,us
for some C' > 0 independent of f.
Proof. According to [46, (5.2)], for any ¢ € S(R"), we have

MY Amj.@)(@) < C ) |)\j|(XQj(I)(Mmj)(x) + Mxo,)(@)" )

JEN JEN ||XQj ||LP(‘)(Rn)

where r = (n+ d + 1)/n. Therefore, the rest of the proof is similar to the proof of
Theorem 5.2. For brevity, we leave the detail to the reader. U

With the above molecular characterization of Hy.) ., we obtain the boundedness
of some Calderén—Zygmund operators for Hp.) .

Theorem 5.11. Let p(-) € B and u € Wh,,- Let k € S(R") satisfy (5.27).
Then,
Tf(z) = (kx* f)(x)
can be extended to be a bounded operator on Hp(.y .

Proof. Theorem 5.1 guarantees that for any sufficient large ¢ and f € H,() ., we

have
F=> Ao
jEN
where {a;} is a family of (p(-), ¢, d) atoms and {\;};en satisfies (5.5).
Therefore, T' can be extended as

Tf = Z )\jTaj.
jeN
In view of [46, Proposition 5.4|, T" maps a (p(-),q,d) atom associated with @ to a
constant multiple of a (p(-), ¢, d) molecule centered at @) with the multiple constant

independent of the atoms. Thus, {T'a;};en is a family of (p(-), ¢, d) molecules.
Theorem 5.10 guarantees that

(Y

1
s

ITf 4y, < € < Cllf ey o

Mp(y/s,us

for some C' > 0 independent of f. O
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