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Abstract. The Hardy–Morrey spaces with variable exponents are introduced in terms of

maximal functions. The atomic decomposition of Hardy–Morrey spaces with variable exponents is

established. This decomposition extends and unifies several atomic decompositions of Hardy type

spaces such as the Hardy–Morrey spaces and the Hardy spaces with variable exponents. Some

applications of this atomic decomposition on singular integral are presented.

1. Introduction

The main result of this paper is the atomic decomposition of Hardy–Morrey
spaces with variable exponents. The atomic decomposition is one of the remarkable
features for Hardy type spaces. It had been generalized to some non-classical Hardy
spaces such as the weighted Hardy spaces [6, 24, 56], the Hardy–Orlicz spaces [59]
and the Hardy–Lorentz spaces [1].

Recently, the atomic decomposition has been further extended to several different
Hardy type spaces. The atomic decomposition of Hardy–Morrey spaces is developed
in [34]. We also have the atomic decomposition for weighted Hardy–Morrey spaces
in [33]. Furthermore, the atomic decomposition for Hardy spaces with variable ex-
ponents is established in [46, 54].

The main result of this paper further generalizes the atomic decomposition to
Hardy–Morrey spaces with variable exponents. It is an extension and unification of
the atomic decompositions in [34, 33, 46]. Roughly speaking, we follow the approach
for developing the atomic decomposition for classical Hardy spaces [55, Chapter III,
Section 2]. We find that to establish the atomic decomposition in Hardy–Morrey
spaces with variable exponents, we need the Fefferman–Stein vector-valued maximal
inequalities in Morrey spaces with variable exponents.

The vector-valued maximal inequalities on Lp, 1 < p < ∞, are well known [19].
There are several generalizations of these inequalities. For instance, the vector-valued
maximal inequalities on classical Morrey spaces are proved in [51, Theorem 2.4]
and [57]. The vector-valued maximal inequalities on rearrangement-invariant quasi-
Banach function spaces and its associate Morrey type spaces are given in [27].

The vector-valued maximal inequalities on Morrey spaces with variable exponents
are presented and proved in Section 3. The Hardy–Morrey spaces with variable
exponents are defined via the maximal functions in Section 4. The introduction of
the Hardy–Morrey spaces with variable exponents is inspired by the studies of the
Hardy–Morrey spaces and the variable exponent analysis.

doi:10.5186/aasfm.2015.4002
2010 Mathematics Subject Classification: Primary 42B20, 42B25, 42B35, 46E30.
Key words: Atomic decomposition, Morrey spaces, Hardy spaces, maximal functions, variable

exponent analysis, vector-valued maximal inequalities.



32 Kwok-Pun Ho

The Hardy–Morrey spaces are introduced in [53] by using Littlewood–Paley char-
acterization. The reader may also consult [27, 52, 63] for the studies of Triebel–
Lizorkin–Morrey spaces which is a generalization of the Hardy–Morrey space. The
reader is also referred to [40] for another approach based on Peetre’s maximal func-
tions.

In addition, the maximal function characterization of the Hardy–Morrey space is
given in [34]. It also contains the atomic decomposition of Hardy–Morrey spaces. The
Littlewood-Paley characterization of the weighted Hardy–Morrey spaces is presented
and proved in [32]. The Hardy–Morrey spaces are members of the family of Hardy–
Morrey spaces with variable exponents studied in this paper.

The introduction of Hardy–Morrey spaces with variable exponents is motivated
a second inspiration, the Morrey spaces with variable exponents [46]. Recently, there
are a number of researches on extending the classical results from the Lebesgue space
to the Lebesgue spaces with variable exponent. One of the important results in the
variable exponent analysis is the identification of the class of exponent functions
for which the Hardy–Littlewood maximal function is bounded on the corresponding
Lebesgue spaces with variable exponent [10, 11, 13, 15, 16, 36, 38, 39, 47, 48, 49].

The variable exponent analysis also covers the studies of Morrey spaces [2, 26,
30, 32, 35], Besov spaces and Triebel–Lizorkin spaces [3, 18, 22, 61, 62]. Moreover, as
mentioned previously, the Hardy spaces with variable exponents are also introduced
and studied in [46]. It contains the atomic decomposition and some of its important
applications such as the boundedness of some singular integral operators.

In Section 5, the main result of this paper, the atomic decomposition of Hardy–
Morrey spaces with variable exponents, Theorems 5.1, 5.2 and 5.3, is presented and
proved. The proof of this decomposition follows the idea from the classical Hardy
spaces [55, Chapter III, Section 2]. It is also inspired by the results given in [34,
46, 56]. For instance, we follow the ideas in [46] to obtain the boundedness of some
singular integral operators on Hardy–Morrey spaces with variable exponents at the
end of this section as an application of our main results. Furthermore, we extend
an inequality in [56, Chapter VIII, Lemma 5] to the Morrey spaces with variable
exponents which is an essential supporting result to establish our main theorems.

However, the techniques given in [34, 46, 56, 55] are insufficient to establish
our main results, some new ideas are needed. We find that to obtain some crucial
inequalities for the Morrey spaces with variable exponents, we have to identify the
associate spaces of the Morrey spaces with variable exponents which poses a main
obstacle for our studies.

We overcome these difficulties by considering a pre-dual of Morrey space, the
block spaces with variable exponents, instead of the associate spaces of the Morrey
spaces with variable exponents. For details, the reader is referred to Section 5.
Additionally, some indices introduced in [30, Definition 2.6] for the study of vector-
valued singular integral operators on Morrey type spaces are needed in our main
theorems to give a precise characterization of the atomic decomposition.

The Hardy–Morrey spaces are members of the family of Hardy–Morrey spaces
with variable exponents studied in this paper. Moreover, the main results, Theo-
rems 5.1, 5.2 and 5.3, in this paper extend the atomic decomposition for Hardy–
Morrey spaces in [34].
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The Hardy–Morrey spaces with variable exponents include the Hardy spaces
with variable exponents as special cases. In addition, our atomic decomposition also
extends the atomic decomposition in [46, Theorems 4.5 and 4.6] in the sense that
the exponent functions are not restricted to satisfy the local and global log-Hölder
conditions [46, (2.5)-(2.6)]. Our results apply to some exponent functions for which
the local and global log-Hölder conditions are not necessarily fulfilled [12, 38, 47].

This paper is organized as follows. Section 2 presents some definitions and no-
tions from variable exponent analysis. This section also gives the definition of the
Morrey spaces with variable exponents used in this paper. The vector-valued maxi-
mal inequalities on Morrey spaces with variable exponents are proved in Section 3.
The Hardy–Morrey spaces with variable exponents are introduced in Section 4. The
atomic decomposition of Hardy–Morrey spaces with variable exponents is established
in Section 5.

2. Preliminaries

We begin with the definition of Lebesgue spaces with variable exponent and
some of theirs properties. Let p(·) : Rn → (0,∞] be a Lebesgue measurable function.
Define

p− = ess inf{p(x) : x ∈ R
n} and p+ = ess sup{p(x) : x ∈ R

n}.
Definition 2.1. Let p(·) : Rn → (0,∞] be a Lebesgue measurable function with

0 < p− ≤ p+ ≤ ∞. The Lebesgue space with variable exponent Lp(·)(Rn) consists of
all Lebesgue measurable functions f : Rn → C satisfying

‖f‖Lp(·)(Rn) = inf {λ > 0: ρ(|f(x)|/λ) ≤ 1} <∞
where

ρ(f) =

ˆ

{x∈Rn : p(x)6=∞}

|f(x)|p(x) dx+ ‖fχ{x∈Rn : p(x)=∞}‖L∞ .

We call p(·) the exponent function of Lp(·)(Rn).

When |{x ∈ R
n : p(x) = ∞}| = 0, we find that

(2.1) ‖f‖Lp(·)/a(Rn) = ‖|f | 1a‖aLp(·)(Rn).

That is, Lp(·)/a(Rn) is the a-th power of Lp(·)(Rn) (the 1
a
-convexification of Lp(·)(Rn)),

see [50, Section 2.2] or [41, Volume II, pp. 53–54]. Therefore, if 0 < p− ≤ p+ ≤ ∞,
then Lp(·)(Rn) is the p−-convexification of Lp(·)/p−(Rn). Since Lp(·)/p−(Rn) is a Ba-
nach space [37, Theorem 2.5], Lp(·)(Rn) is a quasi-Banach space [50, Proposition 2.22].

Let B(z, r) = {x ∈ R
n : |x − z| < r} denote the open ball with center z ∈ R

n

and radius r > 0. Let B = {B(z, r) : z ∈ R
n, r > 0}. We now give the definition of

the Morrey space with variable exponent used in this paper.

Definition 2.2. Let p(·) : Rn → (0,∞) and u(x, r) : Rn × (0,∞) → (0,∞).
The Morrey space with variable exponent Mp(·),u is the collection of all Lebesgue
measurable functions f satisfying

‖f‖Mp(·),u
= sup

z∈Rn,R>0

1

u(z, R)
‖χB(z,R)f‖Lp(·)(Rn) <∞.
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By using (2.1), we also have the corresponding result for Morrey space. That is,
the a-th power of Mp(·),u is M p(·)

a
,ua

. More precisely, we have

(2.2) ‖f‖M p(·)
a ,ua

= ‖|f | 1a‖aMp(·),u
.

Thus, Mp(·),u is a quasi-Banach space.
For any p : Rn → [1,∞], the conjugate function p′ is defined by 1

p(x)
+ 1

p′(x)
= 1.

We have the following duality result for Lp(·)(Rn).

Theorem 2.1. If 1 ≤ p(·) ≤ ∞, then Lp(·)(Rn) is a Banach function space
and the associate space of Lp(·)(Rn) is Lp

′(·)(Rn). Moreover, if 1 < p− ≤ p+ < ∞,
Lp(·)(Rn) is reflexive.

The above theorem is given in [12, Theorem 2.34, Corollary 2.81 and Section
2.10.3] and [17, Theorems 3.2.13 and 3.4.7].

With the preceding theorems, we have the subsequent property for Lp(·)(Rn)
when the exponent function p(·) satisfying 0 < p− ≤ p+ <∞. The reader is referred
to [4, Chapter I, Section 1, Definition 3.1] for the definition of absolutely continuous
norm and [27, Definition 2.4] for the definition of absolutely continuous quasi-norm.

Corollary 2.2. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞. The Lebesgue space with variable exponent Lp(·)(Rn) has
absolutely continuous quasi-norm.

Proof. From the definition of absolutely continuous quasi-norm, the a-power of
X possesses absolutely continuous quasi-norm provided that the quasi-Banach space
X has. Therefore, our result follows from the fact that the p−

2
-power of Lp(·)(Rn) is

a reflexive Banach space, and, by Theorem 2.1, the p−
2

-power of Lp(·)(Rn) possesses
absolutely continuous norm. �

Let P denote the set of all Lebesgue measurable functions p(·) : Rn → (1,∞)
such that 1 < p− ≤ p+ < ∞. We now define several classes of exponent functions.
They are all related to the boundedness of the Hardy–Littlewood maximal operator.

Definition 2.3. Let B consists of all Lebesgue measurable functions p(·) : Rn →
[1,∞] such that the Hardy–Littlewood maximal operator M is bounded on Lp(·)(Rn).

Write p(·) ∈ B′
if p′(·) ∈ B. Let B denote the set of all p(·) belonging to P such that

the Hardy–Littlewood maximal operator is bounded on Lp(·)(Rn).

An important subset of B is the class of globally log-Hölder continuous functions
p ∈ C log(Rn) with 1 < p− ≤ p+ < ∞, see [18, Definition 2.1]. Recall that p(·) ∈
C log(Rn) if it satisfies

|p(x)− p(y)| ≤ C
1

log(1/|x− y|) , |x− y| ≤ 1

2
(2.3)

|p(x)− p(y)| ≤ C
1

log(e+ |x|) , |y| ≥ |x|.(2.4)

According to [15, Theorem 8.1], we have the following characterization of B.

Theorem 2.3. Let p(·) ∈ P. Then the following conditions are equivalent:

(1) p(·) ∈ B.
(2) p′(·) ∈ B.
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(3) p(·)/q ∈ B for some 1 < q < p−.
(4) (p(·)/q)′ ∈ B for some 1 < q < p−.

We recall the indices given in [30, Definition 2.6] for the study of vector-valued
singular integral operators on Morrey type spaces.

Definition 2.4. For any p(·) ∈ B, let κp(·) denote the supremum of those q ≥ 1

such that p(·)/q ∈ B. For any p(·) ∈ B′
, define ep(·) to be the conjugate of κp′(·).

The index ep(·) is used to study the Morrey spaces with variable exponents, see
Definitions 3.1 and 2.2. The index κp(·) is a crucial ingredient to formulate the atomic
decomposition in Theorem 5.3.

When p(·) ∈ B, we have p(·), p′(·) ∈ B ∩ B′
. According to Theorem 2.3, κp(·),

κp′(·), ep(·) and ep′(·) are well defined and

(2.5) 1 < κp(·) ≤ p−.

Moreover, p+ ≤ ep(·). In particular, if p(·) ∈ C log(Rn), then p+ = ep(·) and p− = κp(·).
We present a remarkable feature satisfied by the Lebesgue spaces with variable

exponents. It is a special case of a result of Banach function spaces [29, Proposi-
tion 2.2]. It also plays a crucial role on the establishment of the Fefferman–Stein
vector-valued inequalities on the Morrey spaces with variable exponents in the next
section.

Proposition 2.4. Let p(·) ∈ B ∪ B′
. We have a constant C > 0 so that for any

B ∈ B,

(2.6) |B| ≤ ‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn) ≤ C|B|.
The proof of Proposition 2.4 is given in [31, Lemma 3.2].
With the above proposition, we have the following estimate for the Lp(·)(Rn)

norm of the characteristic function of B ∈ B. Let p : Rn → (0,∞] be a Lebesgue
measurable function with p− > 0. For any B ∈ B, define pB by

1

pB
=

1

|B|

ˆ

B

1

p(x)
dx.

Proposition 2.5. Let p(·) ∈ B and 1 < p− ≤ p+ < ∞. There exist C1, C2 > 0
so that for any B ∈ B,

(2.7) C1|B|
1

pB ≤ ‖χB‖Lp(·)(Rn) ≤ C2|B|
1

pB .

For the proofs of the above propositions, the reader is referred to [32, Proposi-
tions 1.5 and 1.6].

Proposition 2.6. Let p(·) : Rn → [1,∞] be a Lebesgue measurable function.

(1) If p(·) ∈ B̄ and 1 < κp(·), then for any 1 < q < κp(·), there exists constant
C1 > 0 such that for any x0 ∈ R

n and r > 0, we have

(2.8)
‖χB(x0,2jr)‖Lp(·)(Rn)

‖χB(x0,r)‖Lp(·)(Rn)

≤ C12
jn
q , ∀j ∈ N.
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(2) If p(·) ∈ B̄′ and 1 < κp′(·), then for any 1 < s < κp′(·), there exists constant
C2 > 0 such that for any x0 ∈ R

n and r > 0, we have

(2.9) C22
jn(1− 1

s
) ≤

‖χB(x0,2jr)‖Lp(·)(Rn)

‖χB(x0,r)‖Lp(·)(Rn)

, ∀j ∈ N.

Proof. For any B = B(x0, r) ∈ B and j ∈ N, we have a constant C > 0 such
that

C2−jn ≤ M(χB)(x)

when x ∈ B(x0, 2
jr), j ∈ N. Thus, for any 1 < q < κp(·), there exists a q < q̃ so that

p(·)/q̃ ∈ B. Subsequently,

2−jn‖χB(x0,2jr)‖Lp(·)/q̃ ≤ C‖M(χB)‖Lp(·)/q̃ ≤ C‖χB‖Lp(·)/q̃ .

Since, for any B ∈ B and q > 0, ‖χB‖Lp(·)/q = ‖χB‖qLp(·), we obtain (2.8).
Similarly, as 1 < κp′(·), for any 1 < s < κp′(·), there exists a 1 < s < s̃ so that

p′(·)/s̃ ∈ B. Thus, for any 1 < s < κp′(·), we also have

‖χB(x0,2jr)‖sLp′(·)(Rn)

‖χB(x0,r)‖sLp′(·)(Rn)

=
‖χB(x0,2jr)‖Lp′(·)/s(Rn)

‖χB(x0,r)‖Lp′(·)/s(Rn)

≤ C12
jn, ∀j ∈ N.

Therefore, Proposition 2.4 yields (2.9). �

The above result can be considered as a generalization of the notion of Boyd’s
indices to variable Lebesgue spaces. The Boyd indices gives a control on the operator
norm of the dilation operator Ds(f)(x) = f(sx) on rearrangement-invariant Banach
function spaces (see [4, Chapter 3, Section 5]). Even though the Boyd indices is not
necessarily well defined on variable Lebesgue spaces, the above proposition provides
a pivotal estimate to obtain our main result in the following section.

For a generalization of Boyd’s indices to Banach function space, the reader is
referred to [29].

3. Vector-valued maximal inequalities

We are now ready to state and prove the Fefferman–Stein vector-valued maximal
inequalities on Morrey spaces with variable exponents. Even though Theorem 3.1 is
proved in order to establish the atomic decomposition of Hardy–Morrey spaces with
variable exponents, it has its own independent interest. It includes the corresponding
inequalities on Morrey spaces given in [57]. It also covers the vector-valued maximal
inequalities on variable Lebesgue spaces shown in [9].

Theorem 3.1. Let p(·) ∈ B, 1 < q < ∞ and u : Rn × (0,∞) → (0,∞) be a
Lebesgue measurable function. If there exists a constant C > 0 such that for any
x ∈ R

n and r > 0, u fulfills

(3.1)
∞
∑

j=0

‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

u(x, 2j+1r) < Cu(x, r),

then there exists C > 0 such that for any f = {fi}i∈Z, fi ∈ Lloc(R
n), i ∈ Z,

(3.2) ‖‖M(f)‖lq‖Mp(·),u
≤ C‖‖f‖lq‖Mp(·),u

where M(f) = {M(fi)}i∈Z.
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Proof. Let f = {fi}i∈Z ⊂ Lloc(R
n). For any z ∈ R

n and r > 0, write fi(x) =
f 0
i (x) +

∑∞
j=1 f

j
i (x), where f 0

i = χB(z,2r)fi and f ji = χB(z,2j+1r)\B(z,2jr)fi, j ∈ N\{0}.
Applying the vector-valued maximal inequalities in [9, Corollary 2.1] to f 0 = {f 0

i }i∈Z,
we find that ‖‖M(f 0)‖lq‖Lp(·)(Rn) ≤ C‖‖f 0‖lq ||Lp(·)(Rn). Indeed,

1

u(z, r)
‖χB(z,r)‖M(f 0)‖lq‖Lp(·)(Rn) ≤ C

1

u(z, 2r)
‖χB(z,2r)‖f‖lq ||Lp(·)(Rn)

≤ C sup
y∈Rn

r>0

1

u(y, r)
‖χB(y,r)‖f‖lq‖Lp(·)(Rn)

because inequality (3.1) yields u(z, 2r) < Cu(z, r) for some constant C > 0 indepen-
dent of z ∈ R

n and r > 0.
Furthermore, there is a constant C > 0 such that, for any j ≥ 1 and i ∈ Z,

χB(z,r)(x)(Mf
j
i )(x) ≤ C2−jnr−nχB(z,r)(x)

ˆ

B(z,2j+1r)

|fi(y)| dy.

Since lq is a Banach lattice, we find that

(3.3) χB(z,r)(x)‖{(Mf ji )(x)}i∈Z‖lq ≤ C2−jnr−nχB(z,r)(x)

ˆ

B(z,2j+1r)

‖{fi(y)}i∈Z‖lq dy.

Using the generalized Hölder inequality given in [37, Theorem 2.1], we obtain

ˆ

B(z,2j+1r)

‖{fi(y)}i∈Z‖lq dy ≤ C
∥

∥χB(z,2j+1r)‖{fi}i∈Z‖lq
∥

∥

Lp(·)(Rn)
‖χB(z,2j+1r)‖Lp′(·)(Rn)

for some C > 0.
Applying the norm ‖ · ‖Lp(·)(Rn) on both sides of (3.3), we have

‖χB(z,r)‖{(Mf ji )}i∈Z‖lq‖Lp(·)(Rn)

≤ C2−jnr−n‖χB(z,r)‖Lp(·)(Rn)

∥

∥χB(z,2j+1r)‖{fi}i∈Z‖lq
∥

∥

Lp(·)(Rn)
‖χB(z,2j+1r)‖Lp′(·)(Rn).

Proposition 2.4 guarantees that

‖χB(z,r)‖{(Mf ji )}i∈Z‖lq‖Lp(·)(Rn)

≤ C
‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

∥

∥χB(z,2j+1r)‖{fi}i∈Z‖lq
∥

∥

Lp(·)(Rn)
.

Thus,

‖χB(z,r)‖Mf j‖lq‖Lp(·)(Rn)

≤ C
‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

u(z, 2j+1r)

u(z, 2j+1r)
‖χB(z,2j+1r)‖f‖lq‖Lp(·)(Rn)

≤ C
‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

u(z, 2j+1r) sup
y∈Rn

R>0

1

u(y, R)
‖χB(y,R)‖f‖lq‖Lp(·)(Rn).
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Hence, using inequality (3.1), we obtain

1

u(z, r)
‖χB(z,r)‖Mf‖lq‖Lp(·)(Rn) ≤

1

u(z, r)

∞
∑

j=0

‖χB(z,r)‖Mf j‖lq‖Lp(·)(Rn)

≤ C sup
y∈Rn

R>0

1

u(y, R)
‖χB(y,R)‖f‖lq‖Lp(·)(Rn),

where the constant C > 0 is independent of r and z. Taking supreme over z ∈ R
n

and r > 0 gives (3.2). �

Theorem 3.1 also extends the boundedness results of maximal operator from
Lebesgue spaces with variable exponents [9, 10, 13, 47] to Morrey spaces with vari-
able exponent on R

n. For the corresponding result of Morrey spaces with variable
exponents on bounded domains, the reader is referred to [2, 35]. Notice that the
Morrey spaces with variable exponents defined in [2] are different from [35, Defini-
tion 1.2] and Definition 2.2. The Morrey spaces with variable exponents studied in
[2] are defined via the modular form

ρ(f) =

ˆ

{x∈Rn:p(x)6=∞}

|f(x)|p(x) dx+ ‖fχ{x∈Rn:p(x)=∞}‖L∞

while our Morrey spaces with variable exponents and the one introduced in [35,
Definition 1.2] are defined by the norm ‖ · ‖Lp(·)(Rn).

The above theorem also provides the boundedness result for the Hardy–Little-
wood operator on the scalar version which gives an generalization on the result for
the boundedness of the maximal operator on Morrey spaces with variable exponents
[26, Theorem 5.8].

Theorem 3.2. Let p(·) ∈ B. If u satisfy (3.1), then

(3.4) ‖M(f)‖Mp(·),u
≤ C‖f‖Mp(·),u

.

If p(·) ∈ B̄′, κp′(·) > 1 and there exists a 0 ≤ ρ < 1 such that for any x ∈ R
n and

r > 0,

u(x, 2j+1r)

u(x, r)
≤ C

(‖χB(x,2j+1r)‖Lp(·)(Rn)

‖χB(x,r)‖Lp(·)(Rn)

)ρ

, ∀j ∈ N

for some C > 0, then Proposition 2.6 assures that inequality (3.1) holds. Some
further discusses on condition (3.1) are provided in [32]. Moreover, condition (3.1)
is also used in [33] for the study of weighted Hardy–Morrey spaces. With the above
motivation, we define the weight function for Morrey spaces with variable exponents
in the following.

Definition 3.1. Let 0 < q ≤ ∞. A Lebesgue measurable function u(x, r) : Rn×
(0,∞) → (0,∞) is said to be a Morrey weight function if there exist a 0 ≤ λ < 1

q

and constants C1, C2 > 0 so that for any x ∈ R
n, u(x, r) > C1, r ≥ 1,

u(x, 2r)

u(x, r)
≤ 2nλ, r > 0,(3.5)

C−1
2 ≤ u(x, t)

u(x, r)
≤ C2, 0 < r ≤ t ≤ 2r.(3.6)

We denote the class of Morrey weight functions by Wq.
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For any B = B(x, r) ∈ B, we write u(B) = u(x, r).

Lemma 3.3. Let p ∈ B̄′ with ep(·) > 1. If u ∈ Wep(·) , then u fulfills (3.1).

Proof. By the definition of ep(·), for the given λ < 1
ep(·)

, we have λ < 1 − 1
kp′(·)

.

Therefore, there exists a 1 < s < κp′(·) such that λ < 1 − 1
s
. According to (2.9) and

(3.5), we obtain

∞
∑

j=0

‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2j+1r)‖Lp(·)(Rn)

u(x, 2j+1r)

u(x, r)
≤ C

∞
∑

j=0

2nj(λ−(1− 1
s
)) < C

for some C > 0 independent of x and r. Thus, u fulfills (3.1). �

For instance, the function u(x, r) = rnλ(x) where 0 ≤ λ(x) ≤ λ+ < 1/ep(·) fulfills
u ∈ We(·) (see [2, Section 3]). We give an extension of the notion of exponent function
p(·) when the range of p(·) is a subset of (0,∞).

Definition 3.2. Let B̃ be the set of all Lebesgue measurable functions p : Rn →
(0,∞) satisfying 0 < p− ≤ p+ <∞ and p(·)/a ∈ B for some a > 0. For any p(·) ∈ B̃,
define

mp(·) = sup{a > 0: p(·)/a ∈ B},(3.7)

hp(·) = sup{aep(·)/a : a > 0 and p(·)/a ∈ B}.(3.8)

As ep(·)/a ≥ 1, we have mp(·) ≤ hp(·). When p(·) ∈ B, Theorem 2.3 guarantees that
mp(·) = κp(·) > 1. The use of the indices mp(·) and hp(·) is revealed by the following
properties. For any 0 < q <∞, we have

(3.9) h p(·)
q

=
1

q
hp(·)

and

(3.10) u ∈ Whp(·) ⇐⇒ uq ∈ Whp(·)/q.

When p(·) ∈ B, we have

(3.11) ep(·) ≤ hp(·) and Whp(·) ⊆ Wep(·).

Notice that (3.9) is an essential feature possessed by hp(·) that does not share
with ep(·). The index hp(·) can be considered as the homogenization of the index ep(·).
Especially, (3.9) is also a crucial property in connection with the a-power of Mp(·),u,
see (2.2). The properties (3.9), (3.10) and (3.11) are applied frequently on the proofs
of our main results, Theorems 4.1, 5.1 and 5.2. The following proposition reveals the
reason why we use a stronger condition (3.5) instead of (3.1).

Proposition 3.4. Let p(·) ∈ B̃ and u(x, r) ∈ Whp(·). Then χE ∈ Mp(·),u for
any bounded Lebesgue measurable set E. Moreover, for any f ∈ Mp(·),u, f is finite
almost everywhere.

Proof. Let E be a bounded Lebesgue measurable set with E ⊆ B(0, R), R > 0.
For any x0 ∈ R

n and k ∈ Z, write Dk = B(x0, 2
−k). When k ∈ N, Proposition 2.6,

Definitions 3.1 and 3.2 offer a s > 1 and a > 0 satisfying s < κ(p(·)/a)′ and λ < 1
a
(1− 1

s
)
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so that

‖χDk∩E‖Lp(·)(Rn)

u(x0, 2−k)
≤

‖χDk
‖

1
a

Lp(·)/a(Rn)

u(x0, 2−k)
≤ C

‖χD0‖
1
a

Lp(·)/a(Rn)

u(x0, 1)
2−kn(

1
a
(1− 1

s
)−λ)

≤ C‖χB(0,R+2)‖
1
a

Lp(·)/a(Rn)

for some C > 0 independent of k and x0. If k < 0, then

‖χDk∩E‖Lp(·)(Rn)

u(x0, 2−k)
≤

‖χE‖Lp(·)(Rn)

u(x0, 2−k)
≤ C

for some C > 0 independent of k. As u satisfies (3.6), the above inequalities assure
that χE ∈ Mp(·),u.

Let f ∈ Mp(·),u. Assume that F = {x ∈ R
n : |f | = ∞} satisfies |F | > 0. We find

that there exists a R > 0 such that G = F ∩B(0, R) satisfies |G| > 0. Hence, G is a
bounded Lebesgue measurable set.

For any n ∈ N, nχG ≤ |f |. Since Mp(·),u is a lattice, we have n‖χG‖Mp(·),u
≤

‖f‖Mp(·),u
which contradicts to the assumption that f ∈ Mp(·),u. Thus, |F | = 0 and

f is finite almost everywhere. �

We have the subsequent result for the boundedness of Hardy–Littlewood maximal
operator on the a-th power of Mp(·),u.

Proposition 3.5. Let p(·) ∈ B̃ and u(x, r) ∈ Whp(·) . If 0 < b < mp(·), then M is

bounded on M p(·)
b
,ub

. In particular, p(·)/b ∈ B.

Proof. By the definition of mp(·), there exists a b < α < mp(·) such that p(·)/α ∈
B. Let θ = α/b. For any f ∈ M p(·)

b
,ub

, Jensen’s inequality reveals that

(3.12) (M(f))θ ≤ M(|f |θ).
In view of (2.2), (3.10), (3.11) and Lemma 3.3, Theorem 3.2 guarantees that

‖M(f)‖M p(·)
b

,ub
= ‖(M(f))θ‖

1
θ
M p(·)

α ,uα
≤ ‖M(|f |θ)‖

1
θ
M p(·)

α ,uα

≤ C‖|f |θ‖
1
θ
M p(·)

α ,uα
= C‖f‖M p(·)

b
,ub

for some C > 0. The belonging p(·)/b ∈ B follows by taking u ≡ 1 in the above
inequalities. �

We now offer an application of the Fefferman–Stein vector-valued maximal in-
equalities to study the variable Triebel–Lizorkin–Morrey spaces and the associate
sequence spaces via the Littlewood–Paley function. Let S(Rn) and S ′(Rn) denote
the class of Schwartz functions and tempered distributions, respectively. For any
d ∈ N, let Pd denote the class of polynomials in R

n of degree less than or equal to
d. Let P∞ =

⋃

d∈NPd.
Definition 3.3. Let −∞ < α < ∞, 0 < q < ∞, p(·) ∈ B̃ and u ∈ Whp(·). The

variable Triebel–Lizorkin–Morrey spaces Ėα,qp(·),u consists of those f ∈ S ′(Rn)/P∞ such

that

‖f‖Ėα,q
p(·),u

(ϕ) =

∥

∥

∥

∥

(

∑

ν∈Z

2ναq|ϕν ∗ f |q
)1/q∥

∥

∥

∥

Mp(·),u

<∞,



Atomic decomposition of Hardy–Morrey spaces with variable exponents 41

where ϕν(x) = 2νnϕ(2νx), ν ∈ Z and ϕ ∈ S(Rn) satisfies

(3.13) supp ϕ̂ ⊆ {x ∈ R
n : 1/2 ≤ |x| ≤ 2} and |ϕ̂(ξ)| ≥ C, 3/5 ≤ |x| ≤ 5/3

for some C > 0.

Obviously, Ėα,qp(·),u is a quasi-Banach space. If p(x) ≡ p is a constant function

and p > 1, then Ėα,qp(·),u reduces to the homogeneous version of the Triebel–Lizorkin–

Morrey spaces considered in [52, 57, 60]. When u ≡ 1, Ėα,qp(·),u becomes the variable

Triebel–Lizorkin spaces studied in [18, 61, 62]. On one hand, the variable Triebel–
Lizorkin–Morrey spaces is a generalization of the Triebel–Lizorkin–Morrey spaces
introduced in [52, 57, 60]. On the other hand, it gives an extension of the variable
Triebel–Lizorkin spaces considered in [18, 61, 62] to the Morrey spaces setting.

Another family of variable Triebel–Lizorkin–Morrey spaces is introduced in [30].
They are complementary of each others. In Definition 3.3, Ėα,qp(·),u is defined for any

−∞ < α < ∞ while in [30], it is only defined for 0 < α < ∞. On the other hand,
the variable Triebel–Lizorkin–Morrey spaces studied in [30] can be defined when α
and q are functions of x ∈ R

n.
For any j ∈ Z and k = (k1, k2, . . . , kn) ∈ Z

n, Qj,k = {(x1, x2 . . . , xn) ∈ R
n : ki ≤

2jxi ≤ ki + 1, i = 1, 2, . . . , n}. Let |Q| and l(Q) be the Lebesgue measure of Q and
the side length of Q, respectively. We denote the set of dyadic cubes {Qj,k : j ∈
Z, k ∈ Z

n} by Qd. By following the idea given in [20], we introduce the sequence

space associated with Ėα,qp(·),u.

Definition 3.4. Let −∞ < α < ∞, 0 < q < ∞, p(·) ∈ B̃ and u ∈ Whp(·). The

sequence space ėα,qp(·),u is the collection of all complex-valued sequences s = {sQ}Q∈Qd

such that

‖s‖ėα,q
p(·),u

=

∥

∥

∥

∥

(

∑

Q∈Qd

(2να|sQ|χ̃Q)q
)1/q∥

∥

∥

∥

Mp(·),u

<∞,

where χ̃Q = |Q|−1/2χQ.

Identity (2.1) and Theorem 3.1 assure that for any p ∈ B̃ and 0 < q < ∞, there
exists an a > 0 so that

‖‖{M(fi)}i∈Z‖lq/a‖Lp(·)/a(Rn) ≤ C‖‖{fi}i∈Z‖lq/a‖Lp(·)/a(Rn)

for some C > 0. Using the terminology given in [27], the pair (lq, Lp(·)(Rn)) is a-
admissible. Moreover, the variable Triebel–Lizorkin spaces are member of Littlewood–
Paley spaces [27, Definition 2.1].

We follow the general approach provided in [27] and obtain the following results.
For simplicity, we refer the reader to [20, 21] for the definitions of the φ-ψ transform
and smooth N -atom, N ∈ N.

Theorem 3.6. The φ-transform Sφ is a bounded linear operator from Ėα,qp(·),u

to ėα,qp(·),u. The ψ-transform Tψ is a bounded linear operator from ėα,qp(·),u to Ėα,qp(·),u.

Moreover, for any ϕ1 and ϕ2 satisfying the conditions given in Definition 3.3, the
quasi-norms ‖ · ‖Ėα,q

p(·),u
(ϕ1)

and ‖ · ‖Ėα,q
p(·),u

(ϕ2)
are mutually equivalent.

The above theorem guarantees that the function space Ėα,qp(·),u is well defined. Fur-

thermore, the definition of Ėα,qp(·),u is independent of the function ϕ used in Definition
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3.3. The smooth atomic decomposition for Ėα,qp(·),u is obtained as a special case of the

smooth atomic decomposition of Littlewood–Paley spaces [28, Theorem 2.1].

Theorem 3.7. LetN ∈ N. If f ∈ Ėα,qp(·),u, then there exists a sequence {sQ}Q∈Qd
∈

ėα,qp(·),u and a family of smooth N -atoms {aQ}Q∈Qd
such that f =

∑

Q∈Qd
sQaQ and

‖{sQ}Q∈Qd
‖ėα,q

p(·),u
≤ C‖f‖Ėα,q

p(·),u
, where C is a positive constant independent of f .

The preceding theorem extends the smooth atomic decompositions of variable
Triebel–Lizorkin spaces obtained in [18, Theorem 3.11] and [62, Theorem 1] to vari-
able Triebel–Lizorkin–Morrey spaces.

4. Hardy–Morrey spaces with variable exponents

The Hardy–Morrey spaces with variable exponents are defined in this section by
using the maximal function characterizations. One of the remarkable and fundamen-
tal properties of Hardy type spaces are the equivalence of definitions of Hardy type
spaces by different maximal functions such as the nontangential maximal function
characterizations and the grand maximal function characterizations. The equivalence
of these maximal function characterizations are established in this section.

We begin with some well-known notions and notations for studying Hardy type
spaces. Recall that a f ∈ S ′(Rn) is said to be a bounded tempered distribution if
ϕ ∗ f ∈ L∞(Rn) for any ϕ ∈ S(Rn). For any N ∈ N, define

NN (φ) = sup
x∈Rn

(1 + |x|)N
∑

|γ|≤N+1

|∂γφ(x)|, ∀φ ∈ S(Rn).

Write

FN = {φ ∈ S(Rn) : NN(φ) ≤ 1}.
For any t > 0 and Φ ∈ S(Rn), write Φt(x) = t−nΦ(x/t).

Let a, b > 0 and Φ ∈ S(Rn). For any f ∈ S ′(Rn), define

M(f,Φ)(x) = sup
t>0

|(Φt ∗ f)(x)|,(4.1)

M∗
a (f,Φ)(x) = sup

t>0
sup

y∈Rn,|y−x|≤at

|(Φt ∗ f)(y)|,(4.2)

M∗∗
b (f,Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f)(x− y)|
(1 + t−1|y|)b(4.3)

and

(MNf)(x) = sup
φ∈FN

M∗
1 (f,Φ)(x).

Let

P (x) =
Γ(n+1

2
)

π
n+1
2

1

(1 + |x|2)n+1
2

be the Poisson kernel.

Definition 4.1. Let p(·) ∈ B̃ and u ∈ Whp(·). The Hardy–Morrey space with

variable exponent Hp(·),u consists of all bounded f ∈ S ′(Rn) satisfying

‖f‖Hp(·),u
= ‖M(f, P )‖Mp(·),u

<∞.
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We prove one of the fundamental theorem for Hardy–Morrey spaces with variable
exponents. It is an extension for the corresponding theorem for Hardy spaces [25,
Theorem 6.4.4] [55, Chpater III, Section 1], Hardy–Morrey spaces [34, Section 2] and
Hardy spaces with variable exponents [46, Section 3].

Theorem 4.1. Let p(·) ∈ B̃ and u ∈ Whp(·).

(1) There exists a Φ ∈ S(Rn) with
´

Rn Φ(x) dx 6= 0 and a constant C > 0 such
that

(4.4) ‖M(f,Φ)‖Mp(·),u
≤ C‖f‖Hp(·),u

for all bounded tempered distribution f ∈ S ′(Rn).
(2) For every a > 0 and Φ ∈ S(Rn), there exists a constant C > 0 such that

(4.5) ‖M∗
a (f,Φ)‖Mp(·),u

≤ C‖M(f,Φ)‖Mp(·),u
, ∀f ∈ S ′(Rn).

(3) For every a > 0 and b > n/mp(·) and Φ ∈ S(Rn), there exists a constant
C > 0 such that

(4.6) ‖M∗∗
b (f,Φ)‖Mp(·),u

≤ C‖M∗
a (f,Φ)‖Mp(·),u

, ∀f ∈ S ′(Rn).

(4) For every b > 0 and Φ ∈ S(Rn) with
´

Rn Φ(x) dx 6= 0, there exists a constant
C > 0 such that if N = [b] + 1, then

(4.7) ‖(MNf)‖Mp(·),u
≤ C‖M∗∗

b (f,Φ)‖Mp(·),u
, ∀f ∈ S ′(Rn).

(5) For every N ∈ N, there exists a constant C > 0 such that if f ∈ S ′(Rn)
satisfies ‖(MNf)‖Mp(·),u

< ∞, then f is a bounded tempered distribution,
f ∈ Hp(·),u and

(4.8) ‖f‖Hp(·),u
≤ C‖MN(f)‖Mp(·),u

.

Proof. The proof of the above theorem is similar to [25, Theorem 6.4.4] and [55,
Chapter III, Theorem 1]. For simplicity, we just outline the inequalities used there
and applying them to our result. For a complete and detail account on the proof,
the reader is referred to [25, 55].

Part (1). By the proof of [25, Theorem 6.4.4(a)], we have the pointwise inequal-
ities

(4.9) M(f,Φ)(x) ≤ CM(f, P )(x), ∀x ∈ R
n.

Thus, (4.4) follows from (4.9).

Part (2). Similar to the proof [25, Theorem 6.4.4(b)], we present the proof for
M∗

1 (f,Φ) only as the general case follows similarly. For any ǫ > 0 and any sufficiently
large N ∈ N, write

M∗
1 (f,Φ)

ǫ,N(x) = sup
0<t< 1

ǫ

sup
|y−x|≤t

|(Φt ∗ f)(y)|
(

t

t+ ǫ

)N
1

(1 + ǫ|y|)N .
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We show that if M(f,Φ) ∈ Mp(·),u, then M∗
1 (f,Φ)

ǫ,N ∈ Mp(·),u ∩L∞(Rn). From
[25, p. 45], we have

M∗
1 (f,Φ)

ǫ,N(x) ≤ C

(1 + ǫ|x|)N−m

≤ C(χB(0,1)(x) +
∞
∑

k=1

2−k(N−m)χB(0,2k)\B(0,2k−1)(x))(4.10)

where C > 0 is independent of x ∈ R
n. From the proof of Proposition 3.4, we find

that

‖χB(0,2k)\B(0,2k−1)‖Mp(·),u
≤ Cmax(‖χB(0,2k+1)‖

1
a

Lp(·)/a(Rn)
, ‖χB(0,2k)‖Lp(·)(Rn))

for some a > 0 independent of k. Thus, Proposition 2.5 yields

(4.11) ‖χB(0,2k)\B(0,2k−1)‖Mp(·),u
≤ C2

n(k+1)
p−

for some C > 0 independent of k. Therefore, when N is large enough, (4.10) and
(4.11) conclude that M∗

1 (f,Φ)
ǫ,N ∈ Mp(·),u ∩ L∞(Rn).

Next, we recall two auxiliary functions used in [25, pp. 45–47]. For any L > 0,
write

U(f,Φ)ǫ,N(x) = sup
0<t< 1

ǫ

sup
|y−x|≤t

t|▽(Φt ∗ f)(y)|
(

t

t + ǫ

)N
1

(1 + ǫ|y|)N

and

V (f,Φ)ǫ,N,L(x) = sup
0<t< 1

ǫ

sup
y∈Rn

|(Φt ∗ f)(y)|
(

t

t + ǫ

)N
1

(1 + ǫ|y|)N
(

t

t+ |x− y|

)L

.

From [25, p. 46], for any 0 < q <∞, we obtain

|(Φt ∗ f)(y)|
(

t

t+ ǫ

)N
1

(1 + ǫ|y|)N
(

t

t + |x− y|

)L

≤
(

M[M∗
1 (f,Φ)

ǫ,N ]q
)

1
q (x).

According to Theorem 2.3 and the definition of B̃, we have a 0 < q < ∞ such that
p(·)/q ∈ B. Additionally, (3.9)–(3.11) assert that

(4.12) uq ∈ Whp(·)/q = Whp(·)/q ⊆ Wep(·)/q .

In view of Lemma 3.3, we are allowed to apply Theorem 3.2 to M p(·)
q
,uq

. Hence,

by (2.2), we obtain

‖V (f,Φ)ǫ,N,L‖Mp(·),u
≤ C‖M[M∗

1 (f,Φ)
ǫ,N ]q‖

1
q

M p(·)
q ,uq

≤ C‖[M∗
1 (f,Φ)

ǫ,N ]q‖
1
q

M p(·)
q ,uq

≤ C‖M∗
1 (f,Φ)

ǫ,N‖Mp(·),u
(4.13)

for some C > 0 independent of f . Moreover, according to [25, (6.4.23)], we also have
the pointwise inequality

(4.14) U(f,Φ)ǫ,N(x) ≤ CV (f,Φ)ǫ,N,L(x), ∀x ∈ R
n

for some C > 0 independent of f . Hence, (4.13) and (4.14) yield

(4.15) ‖U(f,Φ)ǫ,N‖Mp(·),u
≤ C0‖M∗

1 (f,Φ)
ǫ,N‖Mp(·),u
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for some C0 > 0 independent of f .
Define

Eǫ = {x ∈ R
n : U(f,Φ)ǫ,N(x) ≤ 2C0M

∗
1 (f,Φ)

ǫ,N(x)},
where C0 is given by (4.15). We obtain

‖χ(Eǫ)cM
∗
1 (f,Φ)

ǫ,N‖Mp(·),u
≤ 1

2C0
‖χ(Eǫ)cU(f,Φ)

ǫ,N‖Mp(·),u
≤ 1

2C0
‖U(f,Φ)ǫ,N‖Mp(·),u

.

By using (4.15), we find that

(4.16) ‖χ(Eǫ)cM
∗
1 (f,Φ)

ǫ,N‖Mp(·),u
≤ 1

2
‖M∗

1 (f,Φ)
ǫ,N‖Mp(·),u

.

Furthermore, by [25, (6.4.27)], for any 0 < q <∞ and x ∈ Eǫ, we have

M∗
1 (f,Φ)

ǫ,N(x) ≤ C
(

M[M(f,Φ)]q
)

1
q (x)

where C > 0 is independent of f and ǫ.
Similar to the proof of (4.13), by applying Theorem 3.2 with sufficiently small

q > 0 to M p(·)
q
,uq

, we get

(4.17) ‖χEǫM
∗
1 (f,Φ)

ǫ,N‖Mp(·),u
≤ C‖M(f,Φ)‖Mp(·),u

for some C > 0 independent of ǫ > 0 and f . Inequalities (4.16) and (4.17) assure
that

‖M∗
1 (f,Φ)

ǫ,N‖Mp(·),u
≤ C‖M(f,Φ)‖Mp(·),u

+
1

2
‖M∗

1 (f,Φ)
ǫ,N‖Mp(·),u

.

Since M∗
1 (f,Φ)

ǫ,N ∈ Mp(·),u, by applying Lebesgue monotone theorem, we obtain

‖M∗
a (f,Φ)‖Mp(·),u

≤ C‖M(f,Φ)‖Mp(·),u

for some C > 0 depending on N . This guarantees that

‖M(f,Φ)‖Mp(·),u
<∞ =⇒ ‖M∗

a (f,Φ)‖Mp(·),u
<∞.

With this assertion, (4.5) can be established by repeating the above arguments with
U(f,Φ)ǫ,N and V (f,Φ)ǫ,N,L replaced by two new auxiliary functions

U(f,Φ)(x) = sup
0<t<∞

sup
|y−x|≤t

t|▽(Φt ∗ f)(y)|

and

V (f,Φ)L(x) = sup
0<t<∞

sup
y∈Rn

|(Φt ∗ f)(y)|
(

t

t+ |x− y|

)L

.

For brevity, we skip the details. For a detail account of the above procedures, the
reader is referred to [25, pp. 44–50] or [55, pp. 95–98].

Part (3). From the proof of [25, Theorem 6.4.4(c)], we have the pointwise in-
equality

M∗∗
b (f,Φ)(x) ≤ max(1, a−n)

(

M(M∗
a (f,Φ)

n
b )(x)

)
b
n

, ∀x ∈ R
n.

Therefore, whenever b > n
mp(·)

, (2.2), (3.7) and Proposition 3.5 give (4.6).

Part (4). The proof of [25, Theorem 6.4.4(d)] asserts that

(MNf)(x) ≤ CM∗∗
b (f,Φ)(x), ∀x ∈ R

n
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for some C > 0 independent of f . Obviously, (4.7) follows.

Part (5). Let f ∈ S ′(Rn) satisfy ‖MNf‖Mp(·),u
< ∞ for some N ∈ N. For

any fixed ϕ ∈ S(Rn), we have a constant c > 0 such that cϕ ∈ FN . Therefore,
M∗

1 (f, cϕ) ≤ MN(f). Moreover, Proposition 3.4 yields for any x ∈ R
n

c|(ϕ ∗ f)(x)| ≤ inf
|y−x|≤1

M∗
1 (f, cϕ)(y) ≤

‖χB(x,1)M
∗
1 (f, cϕ)‖Mp(·),u

‖χB(x,1)‖Mp(·),u

≤ C‖MNf‖Mp(·),u
<∞,(4.18)

which guarantee that f is a bounded tempered distribution. Finally, by the proof of
[25, Theorem 6.4.4(e)], we have

sup
t>0

|(Pt ∗ f)(x)| ≤ C(MNf)(x), ∀x ∈ R
n

for some C > 0 independent of f and, hence, (4.8) follows. �

The preceding theorem also gives several maximal functions characterizations of
Hardy–Morrey spaces with variable exponents such as the Poisson characterizations,
the nontangential maximal function characterizations and the grand maximal func-
tion characterizations. As shown in Part (5) of Theorem 4.1, for any ϕ ∈ S(Rn), we
have

|(ϕ ∗ f)(x)| ≤ C‖MNf‖Mp(·),u
≤ C‖f‖Hp(·),u

, ∀x ∈ R
n.

These inequalities guarantee that whenever fj converges to f in Hp(·),u, fj also con-
verges to f in S ′(Rn).

For simplicity, for the rest of the paper, we denote the grand maximal function
by M.

5. Atomic decomposition

The main results of this paper are presented in this section. The atomic decom-
position for the Hardy–Morrey spaces with variable exponents is established. We
start with the definition of cubes and atoms. For any z = (z1, · · · , zn) ∈ R

n and
r > 0, let Q(z, r) = {(y1, · · · , yn) ∈ R

n : max1≤i≤n |yi − zi| ≤ r/2} denote the cube
with center z and side length l(Q(z, r)) = r. Write Q = {Q(z, r) : z ∈ R

n and r > 0}.
For any Q = Q(z, r) ∈ Q and k > 0, we define kQ = Q(z, kr).

Definition 5.1. Let p(·) ∈ B̃, p+ < q ≤ ∞ and 1 ≤ q ≤ ∞. Let d ∈ N satisfy

d ≥ dp(·) = min{k ∈ N : mp(·)(n+ k + 1) > n}.
A function a is a (p(·), q, d) atom if there exists Q ∈ Q such that

supp a ⊂ 3Q,(5.1)

‖a‖Lq ≤ |Q| 1q
‖χQ‖Lp(·)(Rn)

,(5.2)

ˆ

Rn

xγa(x)dx = 0, ∀γ ∈ N
n satisfying |γ| ≤ d.(5.3)

The above definition for (p(·), q, d) atom follows from the definition of atoms for
the classical Hardy spaces [55]. The major modification is on the size condition.
Precisely, the modification is on the denominator of the right hand side of (5.2), see
[46, Definition 1.4]. We have a further modification on the index dp(·). We replace
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the index p− from [46, Definition 1.4] by mp(·). From the proof of the subsequent
atom decomposition, we see that it is necessary to made such modification.

We present the main result of this paper in the following. We spilt it into two
theorems, the first one is the decomposition theorem and the second one is the
reconstruction theorem.

Theorem 5.1. Let p(·) ∈ B̃, p+ < q ≤ ∞, 1 ≤ q ≤ ∞ and u ∈ Whp(·). For

any f ∈ Hp(·),u, there exist a family of (p(·), q, d) atoms {aj}j∈N with supp aj ⊂ 3Qj ,
Qj ∈ Q and a sequence of scalars {λj}j∈N such that

f =
∑

j∈N

λjaj in S ′(Rn)(5.4)

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

≤ C‖f‖Hp(·),u
, ∀0 < s <∞(5.5)

for some C > 0 independent of f .

Theorem 5.2. Let p(·) ∈ B̃ and u ∈ Whp(·). There exists a q0 > 1 such that for
any family of (p(·), q, d) atoms {aj}j∈N with q > q0, supp aj ⊂ Qj and sequence of
scalars {λj}j∈N satisfying

(5.6)

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

<∞

for some 0 < s < min(1, mp(·)), the series

f =
∑

j∈N

λjaj

converges in S ′(Rn) and f ∈ Hp(·),u with

(5.7) ‖f‖Hp(·),u
≤ C

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

for some C > 0 independent of f .

Notice that Theorem 5.2 does not cover the important boundary case when s =
mp(·). To establish the reconstruction theorem for this case, we need to impose a
stronger condition on the exponent function.

Theorem 5.3. Let p(·) ∈ B̃ and u ∈ Whp(·) satisfy mp(·) ≤ 1 and the conditions

in Theorem 5.2 with s = mp(·). If p(·)/mp(·) ∈ B̄′ and κ(p(·)/mp(·))′ > 1, then the
conclusions of Theorem 5.2 are valid with s = mp(·).

Theorems (5.1), (5.2) and (5.3) generalize and unify the atomic decompositions
for Hardy spaces, Hardy–Morrey spaces and Hardy space with variable exponents
in [34, 46, 55]. The reader may have a wrong impression that it is unnecessary to
extend the range of s to 0 < s ≤ mp(·). In fact, the atomic decompositions of the
classical Hardy spaces, the Hardy–Morrey spaces and the Hardy spaces with variable
exponents are special cases of Theorem 5.3, not Theorem 5.2.
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Although Theorem 5.3 induces the atomic decompositions in [34, 46, 55], it only
applies to a restrictive class of exponent functions. Theorem 5.2 extends the atomic
decomposition of Hp(·),u to a larger class of exponent functions.

When p(·) = p, 0 < p ≤ 1, is a constant function and u ≡ 1, the Hardy–
Morrey space with variable exponent reduces to the classical Hardy space. Moreover,
Lp(·)(Rn) = Mp(·),u = Lp and mp(·) = p. Thus, p(·)/mp(·) ∈ B̄′ and κ(p(·)/mp(·))′ = ∞.

When s = p, (5.5) and (5.6) (with respect to Theorem 5.3) offer

(

∑

j∈N

|λj|p
)

1
p =

∥

∥

∥

∥

∥

∑

j∈N

( |λj |
‖χQj

‖Lp

)p

χQj

∥

∥

∥

∥

∥

1
p

L1

=

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)p

χQj

∥

∥

∥

∥

∥

1
p

M1,up

=

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

<∞

which gives the condition imposed on the sequences for the atomic decomposition of
classical Hardy spaces [55, Chapter III, Section 2.2, Theorem 2].

In case p(·) = q, 0 < q ≤ 1, is a constant function and u(x, r) = |B(x, r)| 1p− 1
q ,

q ≤ p < ∞, Hp(·),u becomes the Hardy–Morrey spaces studied in [34]. Additionally,
(5.5) gives

sup
Q∈Q

(

|Q|1−
q
p

∑

j∈N

|λj|q|Qj ∩Q|
|Qj|

)
1
q

≤
∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)q

χQj

∥

∥

∥

∥

∥

1
q

M1,uq

(5.8)

≤
∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

< C‖f‖Hp(·),u

when 0 < s ≤ q = mp(·). Notice that whenever the sequence {λj}j∈N satisfies (5.8),
it also fulfills [34, (1.2)].

The normalization on atoms given in [34, Definition 1.4] is different from us. Our
normalization of atoms follows from the classical approach given in [55, Chapter III,
Section 2.2]. When p(·) satisfies 0 < p− ≤ p+ < ∞ and the globally log-Hölder
continuous conditions (2.3)-(2.4) and u ≡ 1, Hp(·),u is the Hardy space with variable
exponents studied in [46]. In addition, mp(·) = p− and κ(p(·)/p−)′ = (p+/p−)

′ > 1.
Thus, Theorems 5.1 and 5.3 apply.

In fact, even for the special case u ≡ 1, Theorems 5.1 and 5.3 extend the atomic
decomposition of Hardy space with variable exponents [46, Theorems 4.5 and 4.6] to
the case when p(·) ∈ B̃ does not satisfy (2.3) and (2.4). For examples of function
p(·) ∈ B that do not satisfy (2.3) and (2.4), the reader is referred to [38, 47].

To prove Theorem 5.1, we state a well known preliminary supporting result for the
atomic decomposition [55, Chapter III, Section 2.1] and [56, Chapter VIII, Lemma 3].
We use the presentation given in [46, Lemma 4.7].

Proposition 5.4. Let d ∈ N and σ > 0. For any f ∈ S ′(Rn), there exist
g ∈ S ′(Rn), {bk}k∈N ⊂ S ′(Rn), a collection of cubes {Qk}k∈N ⊆ Q and a family of
smooth functions with compact supports {ηk} such that

(1) f = g + b where b =
∑

k∈N bk,
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(2) the family {Qk}k∈N has the bounded intersection property and
⋃

k∈N

Qk = {x ∈ R
n : (Mf)(x) > σ},

(3) supp ηk ⊂ Qk, 0 ≤ ηk ≤ 1 and
∑

k∈N

ηk = χ{x∈Rn:(Mf)(x)>σ},

(4) the tempered distribution g satisfies

(Mg)(x) ≤(Mf)(x)χ{x∈Rn:(Mf)(x)≤σ}(x)

+ σ
∑

k∈N

l(Qk)
n+d+1

(l(Qk) + |x− xk|)n+d+1
,

where xk denotes the center of the cube Qk,
(5) the tempered distribution bk is given by bk = (f − ck)ηk where ck ∈ Pd

satisfying
ˆ

Rn

bk(x)q(x) dx = 0, ∀q ∈ Pd,

and

(Mbk)(x) ≤ C(Mf)(x)χQk
(x) + σ

l(Qk)
n+d+1

|x− xk|n+d+1
χRn\Qk

(x)

for some C > 0.

Roughly speaking, the proof of Theorem 5.1 follows the idea of atomic decompo-
sition for the classical Hardy spaces in [55, Chapter III, Section 2].

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. It suffices to establish the atomic decomposition for
(p(·),∞, d) atoms since (p(·),∞, d) atoms are (p(·), q, d) atoms for any 1 ≤ q < ∞.
According to Proposition 5.4, for any σ = 2j, j ∈ Z, we have distributions gj, bj

satisfying (1)–(5) in Proposition 5.4 and f = gj + bj . Write

(5.9) Oj = {x ∈ R
n : (Mf)(x) > 2j} =

⋃

k∈N

Qj
k

where
⋃

k∈NQ
j
k is the decomposition of Oj given by Item (2) of Proposition 5.4.

Let {ηjk} be the family of smooth functions with respect to the decomposition

Oj =
⋃

k∈NQ
j
k given by Proposition 5.4, Item (3). In addition, as Mf ∈ Mp(·),u,

according to Proposition 3.4, we have Oj+1 ⊂ Oj and
⋂

j∈NO
j = ∅. For any ϕ ∈

S(Rn), we have a constant c > 0 such that cϕ ∈ FN . Proposition 5.4 yields

c|ϕ ∗ gj(x)| ≤ (Mgj)(x)

≤ (Mf)(x)χ{x∈Rn:(Mf)(x)≤2j}(x) + 2j
∑

k∈N

l(Qj
k)
n+d+1

(l(Qj
k) + |x− xjk|)n+d+1

≤ C2j

for some C > 0 where xjk is the center of Qj
k. That is, gj → 0 in S ′(Rn) as j → −∞.
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Next, we show that bj → 0 in S ′(Rn) as j → ∞. By Propositions 3.5 and
Item (5) of Proposition 5.4, for any n/(n+ dp(·) + 1) < r < min(1, mp(·)) and Q ∈ Q,
we have p(·)/r ∈ B and
ˆ

Q

|(Mbj)(x)|r dx

≤ C

ˆ

Q

∑

k∈N

|(Mf)(x)|rχQj
k
(x) dx+ C2jr

ˆ

Q

∑

k∈N

(

l(Qj
k)
n+dp(·)+1χ

Rn\Qj
k
(x)

(l(Qj
k) + |x− xjk|)n+dp(·)+1

)r

dx

≤ C

ˆ

Q∩Oj

|(Mf)(x)|r dx+ C2jr
∑

k∈N

ˆ

Rn

χQ(x)((MχQj
k
)(x))r(n+dp(·)+1)/n dx.

By using [23, Chapter II, Theorem 2.12], we obtain
ˆ

Rn

((MχQj
k
)(x))r(n+dp(·)+1)/nχQ(x) dx ≤

ˆ

Rn

(χQj
k
(x))r(n+dp(·)+1)/n(MχQ)(x) dx

=

ˆ

Rn

χQj
k
(x)(MχQ)(x) dx

=

ˆ

Qj
k

(MχQ)(x) dx,

because r(n + dp(·) + 1)/n > 1. Consequently, the above inequalities, (5.9) and the

bounded intersection property satisfied by {Qj
k}k∈N yield

ˆ

Q

|(Mbj)(x)|r dx ≤ C

ˆ

Oj

|(Mf)(x)|r(MχQ)(x) dx

for some C > 0. For any ϕ ∈ S(Rn), by the above inequalities and (4.18), we find
that

|bj ∗ ϕ(x)|r ≤ C
1

|Q(x, 1)|

ˆ

Q(x,1)

|M∗
1 (b

j , ϕ)(y)|r dy ≤ C

ˆ

Q(x,1)

|(Mbj)(y)|r dy

≤ C

ˆ

Oj

|(Mf)(y)|r(MχQ(x,1))(y) dy

≤ C

ˆ

Oj

|(Mf)(y)|r(1 + |x− y|)−n dy

for some C > 0.
As p(·)/r ∈ B, by using the Hölder inequality for the pair Lp(·)/r(Rn) and

L(p(·)/r)′(Rn) and Proposition 2.4, we find that
ˆ

Rn

|(Mf)(y)|r(1 + |x− y|)−n dy ≤ C
∞
∑

k=0

2−kn
ˆ

Rn

|(Mf)(y)|rχBk(y) dy

≤ C
∞
∑

k=0

1

|B(x, 2k)|‖(Mf)(y)r‖Lp(·)/r(Rn)‖χB(x,2k)‖L(p(·)/r)′(Rn)

≤ C
∞
∑

k=0

u(x, 2k)r

‖χB(x,2k)‖Lp(·)/r(Rn)

‖Mf‖rMp(·),u

where Bk = B(x, 2k)\B(x, 2k−1) when k ≥ 1 and B0 = B(x, 1).
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Since ur ∈ Whp(·)/r , Lemma 3.3 gives
ˆ

Rn

|(Mf)(y)|r(1 + |x− y|)−n dy ≤ C‖Mf‖rMp(·),u
.

In view of the fact that Oj ↓ ∅, the dominated convergence theorem yields that

lim
j→∞

|bj ∗ ϕ(x)|r ≤ C lim
j→∞

ˆ

Oj

|(Mf)(y)|r(1 + |x− y|)−n dy = 0.

Thus, bj ∗ ϕ→ 0 pointwisely. That is, bj → 0 in S ′(Rn) when j → ∞.
The convergence of gj and bj assert that the telescoping sum

f =
∑

j∈Z

(gj+1 − gj)

converges in S ′(Rn). By using Item (5) of Proposition 5.4, we also have

gj+1 − gj = bj+1 − bj =
∑

k∈N

((f − cj+1
k )ηj+1

k − (f − cjk)η
j
k)

where cjk ∈ Pd satisfies
ˆ

Rn

(f(x)− cjk(x))q(x)η
j
k(x) dx = 0, ∀q ∈ Pd.

Moreover, we have f =
∑

j,k A
j
k, where

Ajk = (f − cjk)η
j
k −

∑

l∈N

(f − cj+1
l )ηj+1

l ηjk +
∑

l∈N

ck,lη
j+1
l

and ck,l ∈ Pd satisfies
ˆ

Rn

((f(x)− cj+1
l (x))ηjk(x)− ck,l(x))q(x)η

j+1
l (x) dx = 0, ∀q ∈ Pd.

Write

ajk = λ−1
j,kA

j
k and λj,k = c2j‖χQj

k
‖Lp(·)(Rn),

where c is a constant determined by the family {Ajk}j,k and most importantly, it is
independent of j and k, see [55, pp. 108–109]. Therefore, similar to the proof for the
classical Hardy space [55, Chapter III, Section 2], ajk is a (p(·),∞, d) atom.

According to the definition of Qj
k and following from the fact that the family

{Qj
k}k∈N has the finite intersection property, we find that for any 0 < s <∞

∑

k∈N

(

|λj,k|
‖χQj

k
‖Lp(·)(Rn)

)s

χQj
k
(x) ≤ C2sjχOj(x)

for some C > 0. Consequently,

∑

j,k

(

|λj,k|
‖χQj

k
‖Lp(·)(Rn)

)s

χQj
k
(x) ≤ C

∑

j∈Z

2sjχOj(x) ≤ C(Mf)(x)s.
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By applying the quasi-norm ‖ · ‖1/sMp(·)/s,us
on both sides of the above inequality, (2.2)

yields

∥

∥

∥

∥

∥

∑

j,k

(

|λj,k|
‖χQj

k
‖Lp(·)(Rn)

)s

χQj
k

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

≤ C‖f‖Hp(·),u
, 0 < s <∞

for some C > 0 independent of f . �

To prove Theorem 5.2, we need several supporting results. We use a duality
result for Mp(·),u to provide some crucial estimates. Therefore, we introduce the
block space for variable exponents in the following.

We now present the definition of block spaces with variable exponents given in
[7]. It is inspired by the classical block spaces defined in [5].

Definition 5.2. Let p(·) : Rn → [1,∞] and u(x, r) : Rn × (0,∞) → (0,∞) be
Lebesgue measurable functions. A Lebesgue measurable function b is a (u, p(·))-block
if supp b ⊆ B(x0, r), x0 ∈ R

n, r > 0, and

(5.10) ‖b‖Lp(·)(Rn) ≤
1

u(x0, r)
.

We write b ∈ bp(·),u if b is a (u, p(·))-block. Define Bp(·),u by

(5.11) Bp(·),u =

{ ∞
∑

k=1

λkbk :

∞
∑

k=1

|λk| <∞ and bk is an (u, p(·))-block

}

.

The space Bp(·),u is endowed with the norm

(5.12) ‖f‖Bp(·),u
= inf

{ ∞
∑

k=1

|λk| such that f =

∞
∑

k=1

λkbk

}

.

We call Bp(·),u the block space with variable exponent.

A simple consequence of the above definition is that for any b ∈ bp(·),u, we have

(5.13) ‖b‖Bp(·),u
≤ 1.

We first present the Hölder inequality for Mp(·),u and Bp′(·),u.

Lemma 5.5. Let p(·) : Rn → [1,∞] and u(x, r) : Rn × (0,∞) → (0,∞) be
Lebesgue measurable functions. We have

ˆ

|f(x)g(x)| dx ≤ C‖f‖Mp(·),u
‖g‖Bp′(·),u

for some C > 0 independent of f ∈ Mp(·),u and g ∈ Bp′(·),u.

Proof. For any b ∈ bp′(·),u with supp b ⊆ B, by using the Hölder inequality for

Lp(·)(Rn) [37, Theorem 2.1] and (5.10), we have
ˆ

Rn

|f(x)b(x)| dx ≤ C‖χBf‖Lp(·)(Rn)‖b‖Lp′(·)(Rn)

≤ C
1

u(B)
‖χBf‖Lp(·)(Rn) ≤ C1‖f‖Mp(·),u

.(5.14)
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For any g ∈ Bp′(·),u, we have a family of (u, p′(·))-blocks {bk}k∈N and sequence
{λk}k∈N such that f =

∑

k∈N λkbk and

(5.15)
∞
∑

k=1

|λk| < 2‖g‖Bp′(·),u
.

Therefore, (5.14) and (5.15) give
ˆ

|f(x)g(x)| dx ≤
∑

k∈N

|λk|
ˆ

Rn

|f(x)bk(x)| dx ≤ C‖f‖Mp(·),u
‖g‖Bp′(·),u

. �

The following is the norm conjugate formula for Mp(·),u and Bp(·),u.

Lemma 5.6. Let p(·) : Rn → [1,∞] and u(x, r) : Rn × (0,∞) → (0,∞) be
Lebesgue measurable functions. We have constants C0, C1 > 0 such that

(5.16) C0‖f‖Mp(·),u
≤ sup

b∈bp′(·),u

ˆ

Rn

|f(x)b(x)| dx ≤ C1‖f‖Mp(·),u
.

Proof. The inequality on the right hand side of (5.16) follows from (5.14). Next,
we show the inequality on the left hand side of (5.16). According to the definition of
Mp(·),u, there exists a B ∈ B such that

1

2
‖f‖Mp(·),u

<
1

u(B)
‖χBf‖Lp(·)(Rn).

For this given B ∈ B, the norm conjugate formula for Lp(·)(Rn) (see [12, Propositions
2.34 and 2.37] and [17, Corollary 3.2.14]) yields a g ∈ Lp

′(·)(Rn) with ‖g‖Lp′(·)(Rn) ≤ 1
such that

1

2
‖f‖Mp(·),u

<
1

u(B)

ˆ

B

|f(x)g(x)| dx =

ˆ

Rn

|f(x)G(x)| dx,

where

G(x) =
1

u(B)
χB(x)g(x).

Obviously, G is a (u, p′(·))-block. Therefore, the inequality on the left hand side of
(5.16) follows. �

The subsequent lemma gives an estimate of the action of the Hardy–Littlewood
operator on blocks. In addition, the q0 appeared in Theorem 5.2 is determined by
the following lemma and proposition.

Lemma 5.7. Let p(·) ∈ B′
and u ∈ Wep(·). If κp′(·) > 1, then there exists a

q0 > 1 such that for any q > q0 and b ∈ bp′(·),u, we have

(5.17) ‖(M(|b|q′))
1
q′ ‖Bp′(·),u

≤ C

for some C > 0 independent of b.

Proof. Let b ∈ bp′(·),u with support B(x0, r), x0 ∈ R
n, r > 0. For any k ∈

N, let Bk = B(x0, 2
kr). Write mk = χBk+1\Bk

(M(|b|q′))
1
q′ , k ∈ N\{0} and m0 =

χB0(M(|b|q′))
1
q′ . We have suppmk ⊆ Bk+1\Bk and

(M(|b|q′))
1
q′ =

∞
∑

k=0

mk.
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Since κp′(·) > 1, by using Jensen’s inequality and (3.12), we have a q1 > 1 such that

when q > q1, p
′(·)/q′ belongs to B. Therefore, by the boundedness of the Hardy–

Littlewood maximal operator on Lp
′(·)/q′(Rn), we find that

‖m0‖Lp′(·)(Rn) ≤ C‖M(|b|q′)‖
1
q′

Lp′(·)/q′(Rn)
≤ C‖b‖Lp′(·)(Rn) ≤

C

u(x0, r)

for some C > 0 independent of x0 and r. That is, m0 is a constant-multiple of
an (u, p′(·))-block. The definition of Hardy–Littlewood maximal operator and the
Hölder inequality for Lp(·)(Rn) (see [37, Theroem 2.1]) assert that

|mk|q
′

= χBk+1\Bk
|M(|b|q′)| ≤ χBk+1\Bk

2knrn

ˆ

B(x0,r)

|b(x)|q′ dx

≤ CχBk+1\Bk

1

2knrn
‖|b|q′‖Lp′(·)/q′(Rn)‖χB(x0,r)‖L(p′(·)/q′)′ (Rn)(5.18)

for some C > 0 independent of k. Proposition 2.4 and (5.18) ensure that

‖mk‖Lp′(·)(Rn) = ‖|mk|q
′‖

1
q′

Lp′(·)/q′ (Rn)

≤
(‖χBk+1\Bk

‖Lp′(·)/q′(Rn)

2knrn
rn

‖χB(x0,r)‖Lp′(·)/q′(Rn)

)
1
q′

‖b‖Lp′(·)(Rn)

≤ C
‖χBk+1

‖Lp′(·)(Rn)

2
kn
q′ ‖χB(x0,r)‖Lp′(·)(Rn)

u(x0, 2
k+1r)

u(x0, r)

1

u(x0, 2k+1r)
.

Define mk = σkbk, where

σk =
‖χBk+1

‖Lp′(·)(Rn)

2
kn
q′ ‖χB(x0,r)‖Lp′(·)(Rn)

u(x0, 2
k+1r)

u(x0, r)
.

Consequently, bk is a constant-multiple of an (u, p′(·))-block and this constant does
not depend on k. Hence, (5.13) yields

(5.19) ‖bk‖Bp′(·),u
≤ C

where C is independent of k.
Since κp′(·) > 1 and u ∈ Wep(·), Proposition 2.6 and Definition (3.1) yield, for any

1 < β < κp′(·)
∞
∑

k=0

σk ≤ C

∞
∑

k=0

2
kn
β
+knλ− kn

q′

for some C > 0. As 1
κp′(·)

+ 1
ep(·)

= 1, for any fixed λ < 1
ep(·)

, we can choose a β < κp′(·)

and q2 > 1 such that for any q > q2, we have 1
β
+ λ < 1

q′
. Hence,

(5.20)

∞
∑

k=0

σk ≤ C

∞
∑

k=0

2
kn
β
+knλ− kn

q′ < C.

Since Bp′(·),u is a Banach lattice [7, Proposition 2.2], we find that

‖(M(|b|q′))
1
q′ ‖Bp′(·),u

≤
∞
∑

k=0

|σk|‖bk‖Bp′(·),u
.

Thus, (5.19) and (5.20) yield (5.17) with q0 = max(q1, q1). �
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In fact, the Hardy–Littlewood maximal operator is also bounded on Bp(·),u. The
reader is referred to [7, Theorem 3.2] for the details.

We apply the preceding results to generalize the inequalities shown in [56, Chap-
ter VIII, Lemma 5] and [46, Lemma 4.11] to Morrey spaces with variable exponents
in the following proposition.

Proposition 5.8. Let p(·) ∈ B′
and u ∈ Wep(·). Let {λk}k∈N be a sequence

of scalars. If κp′(·) > 1, then there exists a q0 > 1 such that for any q > q0 and
{bk}k∈N ⊂ Lq with supp bk ⊆ Qk ∈ Q and

(5.21) ‖bk‖Lq ≤ |Qk|
1
q

‖χQk
‖Lp(·)(Rn)

,

we have

(5.22)

∥

∥

∥

∥

∑

k∈N

λkbk

∥

∥

∥

∥

Mp(·),u

≤ C

∥

∥

∥

∥

∑

k∈N

|λk|
‖χQk

‖Lp(·)(Rn)

χQk

∥

∥

∥

∥

Mp(·),u

for some C > 0 independent of {bk}k∈N and {λk}k∈N.

Proof. For any g ∈ bp′(·),u, we have

∣

∣

∣

∣

ˆ

Rn

bk(x)g(x) dx

∣

∣

∣

∣

≤ ‖bk‖Lq‖χQk
g‖Lq′ ≤ |Qk|

1
q

‖χQk
‖Lp(·)(Rn)

(
ˆ

Qk

|g(x)|q′ dx
)

1
q′

where q′ is the conjugate of q. Moreover,

∣

∣

∣

∣

ˆ

Rn

bk(x)g(x) dx

∣

∣

∣

∣

≤ |Qk|
‖χQk

‖Lp(·)(Rn)

(

1

|Qk|

ˆ

Qk

|g(x)|q′ dx
)

1
q′

≤ C
|Qk|

‖χQk
‖Lp(·)(Rn)

inf
x∈Qk

(M(|g|q′)(x))
1
q′

≤ C
1

‖χQk
‖Lp(·)(Rn)

ˆ

Qk

(M(|g|q′)(x))
1
q′ dx

for some C > 0.
The above inequalities yield

∣

∣

∣

∣

∣

ˆ

Rn

(

∑

k∈N

λkbk(x)

)

g(x) dx

∣

∣

∣

∣

∣

≤ C
∑

k∈N

|λk|
‖χQk

‖Lp(·)(Rn)

ˆ

Qk

(M(|g|q′)(x))
1
q′ dx

≤ C

ˆ

Rn

(

∑

k∈N

|λk|
‖χQk

‖Lp(·)(Rn)

χQk
(x)

)

(M(|g|q′)(x))
1
q′ dx

≤
∥

∥

∥

∥

∑

k∈N

|λk|
‖χQk

‖Lp(·)(Rn)

χQk

∥

∥

∥

∥

Mp(·),u

‖(M(|g|q′))
1
q′ ‖Bp′(·),u

where we use Lemma 5.5 for the last inequality. Therefore, Lemmas 5.6 and 5.7 yield
(5.22). �

The above proposition plays a decisive role for estimating the sequence used to
establish the atomic decomposition of Hp(·),u. With the above preparations, we now
offer the proof for Theorem 5.2 in the following.
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Proof of Theorem 5.2. Let {aj}j∈N be a family of (p(·), q, d) atoms with
supp aj ⊆ 3Qj and {λj}j∈N be a sequence of scalars satisfying (5.6). For any
ϕ ∈ S(Rn), by using [46, (4.21) and (4.22)], we have

M(aj , ϕ)(x) ≤ C

(

χQ̃j
(x)(M aj)(x) +

(MχQj
)(x)r

‖χQj
‖Lp(·)(Rn)

)

,

where Q̃ = 2
√
nQ and r = (n+ d+ 1)/n. Write f =

∑

j∈N λjaj , we find that

‖M(f, ϕ)‖Mp(·),u

≤ C

(
∥

∥

∥

∥

∑

j∈N

|λj|χQ̃j
(M aj)

∥

∥

∥

∥

Mp(·),u

+

∥

∥

∥

∥

∑

j∈N

|λj|(MχQj
)r‖χQj

‖−1
Lp(·)(Rn)

∥

∥

∥

∥

Mp(·),u

)

= I + II.

Since 0 < s < 1, the s-inequality guarantees that

I ≤
∥

∥

∥

∥

(

∑

j∈N

(|λj|χQ̃j
(M aj))

s

)
1
s
∥

∥

∥

∥

Mp(·),u

=

∥

∥

∥

∥

∑

j∈N

(|λj|χQ̃j
(M aj))

s

∥

∥

∥

∥

1
s

Mp(·)/s,us

.

Next, we apply Proposition 5.8 on Mp(·)/s,us with bj = (χQ̃j
(M aj))

s to estimate I.
Therefore, we first verify the conditions given in Proposition 5.8.

Since s < mp(·), Proposition 3.5 guarantees that p(·)/s ∈ B. Theorem 2.3 yields
(p(·)/s)′ ∈ B. Hence, (2.5) asserts that κp(·)/s, κ(p(·)/s)′ > 1.

As s < 1 < q, the boundedness of the Hardy–Littlewood maximal operator on
Lq/s asserts that

(5.23) ‖(M aj)
s‖Lq/s ≤ C‖aj‖sLq ≤ C

|Qj|
1

q/s

‖χQj
‖Lp(·)/s(Rn)

≤ C
|Q̃j|

1
q/s

‖χQ̃j
‖Lp(·)/s(Rn)

for some C > 0 independent of aj where we use (2.8) for the last inequality. Moreover,
(3.9)–(3.11) guarantee that

(5.24) us ∈ Whp(·)/s = Whp(·)/s ⊆ Wep(·)/s.

Therefore, in view of (5.23) and (5.24), we are allowed to apply Proposition 5.8 on
Mp(·)/s,us with bj = (χQ̃j

(M aj))
s and it offers a q0 such that whenever q > sq0, we

have

I ≤ C

∥

∥

∥

∥

∑

j∈N

|λj|s
‖χQ̃j

‖Lp(·)/s(Rn)

χQ̃j

∥

∥

∥

∥

1
s

Mp(·)/s,us

.

Let β = s/2. Since χQj
≤ χQ̃j

≤ C(MχQj
)2 for some C > 0 independent of j, we

infer that

I ≤ C

∥

∥

∥

∥

(

∑

j∈N

( |λj|β
‖χQj

‖Lp(·)/β(Rn)

(MχQj
)

)2) 1
2
∥

∥

∥

∥

2
s

M
p(·)/β,uβ

.

As Proposition 3.5 asserts that p(·)/β ∈ B, by using (3.10) and (3.11), we have

uβ ∈ Whp(·)/β = Whp(·)/β ⊆ Wep(·)/β .
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Theorem 3.1 and Lemma 3.3 ensure that

I ≤ C

∥

∥

∥

∥

∥

(

∑

j∈N

( |λj|β
‖χQj

‖Lp(·)/β(Rn)

χQj

)2) 1
2

∥

∥

∥

∥

∥

2
s

M
p(·)/β,uβ

= C

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

1
s

Mp(·)/s,us

.(5.25)

We next consider II. Since mp(·)r > 1, by the definition of mp(·) and Proposi-
tion 3.5, we find that p(·)r ∈ B. Furthermore, (3.9)–(3.11) yield

u
1
r ∈ Wrhp(·) = Whp(·)r ⊆ Wep(·)r .

In view of (2.2), Theorem 3.1 and Lemma 3.3 assure that

II ≤ C

∥

∥

∥

∥

(

∑

j∈N

|λj|‖χQj
‖−1
Lp(·)(Rn)

(MχQj
)r
)

1
r
∥

∥

∥

∥

r

M
p(·)r,u1/r

= C

∥

∥

∥

∥

(

∑

j∈N

|λj|‖χQj
‖−1
Lp(·)(Rn)

χrQj

)
1
r
∥

∥

∥

∥

r

M
p(·)r,u1/r

= C

∥

∥

∥

∥

∑

j∈N

|λj|‖χQj
‖−1
Lp(·)(Rn)

χQj

∥

∥

∥

∥

Mp(·),u

for some C > 0. As 0 < s < 1, the s-inequality and (2.2) yield

(5.26) II ≤ C

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

1
s

Mp(·)/s,us

for some C > 0. Thus, (5.25) and (5.26) give

‖M(f, ϕ)‖Mp(·),u
≤ C

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

1
s

Mp(·)/s,us

.

Hence, f ∈ Hp(·),u and (5.7) is valid. Finally, the above estimates already show that
for any fixed ϕ ∈ S(Rn), M(f, ϕ) ∈ Mp(·),u. In view of Proposition 3.4, for any
g ∈ Mp(·),u, g is finite almost everywhere. Furthermore, we have |f ∗ ϕ| ≤ M(f, ϕ).
Thus, f ∗ ϕ is also finite almost everywhere. This reveals that f =

∑

j∈N λjaj
converges in S ′(Rn). �

Proof of Theorem 5.3. The proof of Theorem 5.3 follows from the proof of The-
orem 5.2. The only modification is on checking the conditions for applying Propo-
sition 5.8. In our case, since κ(p(·)/mp(·))′ > 1, we can apply Proposition 5.8 for any

p(·)/s with 0 < s ≤ mp(·). Hence, the range for s in which condition (5.6) applies
can also be extended to 0 < s ≤ mp(·). The rest of the proof follows from the proof
of Theorem 5.2. �

At the end of this paper, we present a major application of the atomic decompo-
sition for Hp(·),u, we show the boundedness results of some singular integral operators
on Hp(·),u. We find that the ideas given in [46, Section 5] for the studies of the bound-
edness of singular integral operator for Hardy spaces with variable exponent can be
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easily transferred to the corresponding studies for Hp(·),u. Therefore, we apply them
to the Hardy–Morrey spaces with variable exponents in the following.

Theorem 5.9. Let p(·) ∈ B̃ and u ∈ Whp(·). Let T : L2 → L2 be a bounded

operator with its Schwartz kernel K(x, y) = k(x− y) satisfying

sup
x∈Rn\{0}

|x|n+m|▽mk(x)| <∞, ∀m ∈ N ∪ {0}(5.27)

and

Tf(x) =

ˆ

Rn

k(x− y)f(y) dy, x 6∈ suppf

for any compact supported f ∈ L2. Then, T can be extended to be a bounded
operator from Hp(·),u to Mp(·),u.

Proof. By Theorem 5.1, for any sufficient large q and f ∈ Hp(·),u, we have

f =
∑

j∈N

λjaj

where {aj} is a family of (p(·), q, d) atoms and {λj}j∈N satisfies (5.5). According to
[46, Proposition 5.3], we have

|Tf(x)| ≤ C
∑

j∈N

|λj|
(

χQ̃j
(x)|(Taj)(x)|+

(MχQj
)(x)r

‖χQj
‖Lp(·)(Rn)

)

for some C > 0 where r = (n+d+1)/n. We can obtain our desired result by applying
the ideas from the proof of Theorem 5.2 to the above inequality. For simplicity, we
omit the detail and leave it to the readers. �

Next, we introduce the notion of molecule associated with Hp(·),u. The following
definition for molecule is modified from the corresponding definition of molecule from
[46].

Definition 5.3. Let p(x) ∈ B̃, p+ < q ≤ ∞ and 1 ≤ q ≤ ∞. Let d ∈ N satisfy
dp(·) ≤ d. A Lebesgue measurable function m is said to be a (p(·), q, d)-molecule
centered at a cube Q ∈ Q if it satisfies

‖χQ̃m‖Lq ≤ |Q| 1q
‖χQ‖Lp(·)(Rn)

,

|m(x)| ≤ 1

‖χQ‖Lp(·)(Rn)

(

1 +
|x− xQ|
l(Q)

)−2n−2q−3

, x ∈ R
n\Q̃,

ˆ

Rn

xγm(x) dx = 0, ∀γ ∈ N
n satisfying |γ| ≤ d.

Similar to the atomic decomposition of Hp(·),u, we have the molecular character-
ization for Hp(·),u.

Theorem 5.10. Let p(·) ∈ B̃ and u ∈ Whp(·) . There exists a q0 > 1 such that
for any family of (p(·), q, d) molecules centered at Qj , {mj}j∈N, with q > q0 and
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sequence of scalars {λj}j∈N satisfying
∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

<∞

for some 0 < s < min(1, mp(·)), the series

f =
∑

j∈N

λjmj

converges in S ′(Rn) and f ∈ Hp(·),u with

‖f‖Hp(·),u
≤ C

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

for some C > 0 independent of f .

Proof. According to [46, (5.2)], for any ϕ ∈ S(Rn), we have

M(
∑

j∈N

λjmj , ϕ)(x) ≤ C
∑

j∈N

|λj|
(

χQ̃j
(x)(Mmj)(x) +

(MχQj
)(x)r

‖χQj
‖Lp(·)(Rn)

)

where r = (n + d + 1)/n. Therefore, the rest of the proof is similar to the proof of
Theorem 5.2. For brevity, we leave the detail to the reader. �

With the above molecular characterization of Hp(·),u, we obtain the boundedness
of some Calderón–Zygmund operators for Hp(·),u.

Theorem 5.11. Let p(·) ∈ B̃ and u ∈ Whp(·). Let k ∈ S(Rn) satisfy (5.27).
Then,

Tf(x) = (k ∗ f)(x)
can be extended to be a bounded operator on Hp(·),u.

Proof. Theorem 5.1 guarantees that for any sufficient large q and f ∈ Hp(·),u, we
have

f =
∑

j∈N

λjaj

where {aj} is a family of (p(·), q, d) atoms and {λj}j∈N satisfies (5.5).
Therefore, T can be extended as

Tf =
∑

j∈N

λjTaj.

In view of [46, Proposition 5.4], T maps a (p(·), q, d) atom associated with Q to a
constant multiple of a (p(·), q, d) molecule centered at Q with the multiple constant
independent of the atoms. Thus, {Taj}j∈N is a family of (p(·), q, d) molecules.

Theorem 5.10 guarantees that

‖Tf‖Hp(·),u
≤ C

∥

∥

∥

∥

∥

∑

j∈N

( |λj|
‖χQj

‖Lp(·)(Rn)

)s

χQj

∥

∥

∥

∥

∥

1
s

Mp(·)/s,us

≤ C‖f‖Hp(·),u

for some C > 0 independent of f . �
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