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Abstract. We show that a function f : R → R of bounded variation satisfies

VarMf ≤ C Var f,

where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator

f 7→ (Mf)′ is bounded from W 1,1(R) to L1(R). This answers a question of Hajłasz and Onninen

in the one-dimensional case.

1. Introduction and main results

The centered Hardy–Littlewood maximal function of f : Rn → R is defined by

Mf(x) = sup
r>0

−

ˆ

B(x,r)

|f(y)| dy.

Kinnunen proved in [9] that the maximal operator f 7→ Mf is bounded in the
Sobolev space W 1,p(Rn) for 1 < p ≤ ∞ (see also [8, Theorem 1]). Since then,
regularity properties of maximal functions have been studied by many authors in
various settings. Kinnunen and Lindqvist [10] proved soon that the boundedness is
fulfilled also by the local maximal operator. The regularity of the fractional maximal
function was studied by Kinnunen and Saksman [11]. It was shown further by Hajłasz
and Onninen [8] that the local spherical maximal operator is bounded in W 1,p(Ω)
when n/(n− 1) < p <∞. And last but not least, Luiro [13] generalized the original
boundedness result and established the continuity of the centered maximal operator
in W 1,p(Rn), 1 < p < ∞. For other related results, see also e.g. [2, 4, 5, 6, 12]. For
results considering other concepts than the weak differentiability, see [7, 14].

Kinnunen’s method depends on the Hardy–Littlewood–Wiener theorem which is
available only for p > 1. The case p = 1 turns out to be quite different and less
approachable than the case p > 1. Because Mf /∈ L1 whenever f is non-trivial,
Kinnunen’s result fails for p = 1. Still, one can ask whether the maximal function of
f ∈ W 1,1 belongs locally to W 1,1. In [8], the authors posed the following question.

Question 1.1. (Hajłasz and Onninen) Is the operator f 7→ |∇Mf | bounded
from W 1,1(Rn) to L1(Rn)?
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In the present work, we show that the answer is positive for n = 1. The question
had been already answered positively in the non-centered one-dimensional case by
Tanaka [15]. This result was sharpened later by Aldaz and Pérez Lázaro [1] who
proved that, for an arbitrary f : R → R of bounded variation, its non-centered

maximal function M̃f is absolutely continuous and

Var M̃f ≤ Var f.

We prove that such an inequality holds for the centered maximal function as well.

Theorem 1.2. Let f : R → R be a function of bounded variation. Then

VarMf ≤ C Var f

for a universal constant C.

Question 1.1 and the validity of Theorem 1.2 were already studied in the discrete
setting in [3]. In the present paper, we do not care how small the constant C may
be. It is a plausible hypothesis that the inequality holds for C = 1, in the same way
as in the non-centered case (see also [3, Question B]).

Once Theorem 1.2 is proven, it is not difficult to derive the weak differentiability
of Mf . Note that Mf needs not to be continuous for an f of bounded variation, and

so M does not possess such strong regularity properties as M̃ . Anyway, for a weakly
differentiable f , everything is all right.

We prove two consequences of Theorem 1.2 concerning the regularity of the max-
imal function. Although the first corollary is essentially an auxiliary result, it says
something more than we need and one may found it interesting itself.

Corollary 1.3. Let f : R → R be a measurable function with Mf 6≡ ∞. If f
is locally absolutely continuous on an open set U , then Mf is also locally absolutely

continuous on U .

The following consequence answers Question 1.1 in the one-dimensional case.

Corollary 1.4. Let f ∈ W 1,1
loc (R) be such that f ′ ∈ L1(R). Then Mf is weakly

differentiable and

‖(Mf)′‖1 ≤ C‖f ′‖1
for a universal constant C.

We note that the above results hold for the local maximal function as well. In
fact, the passage to the local maximal function makes no important difference, as
discussed in Remark 6.4.

We introduce here one more result which is a modified version of Lemma 3.1, the
key ingredient of the proof of Theorem 1.2. We expose the lemma here because we
believe that it can be used for finding a solution of the more-dimensional Hajłasz–
Onninen problem.

Lemma 1.5. Let ̺ be a positive number. Let f : R → R be a function of

bounded variation and let Λnk , n, k ∈ Z, be non-negative numbers. Assume that, for

every (n, k) with Λnk > 0, there are s < u < v < t such that

(k − ̺)2−n ≤ s, t ≤ (k + ̺)2−n, u− s ≥ 2−n, v − u ≥ 2−n, t− v ≥ 2−n

and

min{f(s), f(t)} − −

ˆ v

u

f ≥ Λnk .
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Then
∑

n,k

Λnk ≤ C Var f,

where C depends only on ̺.

Actually, this lemma is proven only for ̺ ≤ 50
4

but the version for general ̺ can
be obtained by modifying of the constants in the proof.

The paper is organized as follows. In Section 2, we study relations between
a function and its maximal function. In Section 3, we introduce the key lemma
(Lemma 3.1), proof of which takes also Sections 4 and 5. Finally, Theorem 1.2 is
proven in Section 6. Its proof is based on two previous results which are Lemma 2.5
and Lemma 3.1. The paper concludes with Section 7, devoted to the proof of Corol-
laries 1.3 and 1.4.

In closing of this introductory section, we present some informal notes concerning
the proof of Theorem 1.2 which may be helpful but the reader may skip them as well.

We will study the variations of f and Mf using two simple structures. We
introduce the structure for Mf first (Definition 2.3), as we want to show that f
oscillates comparably with Mf . This structure, called a peak, consists of three points
p < r < q such that the value of Mf at the middle point r is greater than the values
at p and q. The variation of Mf is related to the quantity

(Q1) Mf(r)−Mf(p) +Mf(r)−Mf(q),

since the sum of these quantities for a suitable system of peaks almost realizes the
variation of Mf .

For a peak p < r < q, there are two possibilities. If some values of f in the interval
(p, q) are close to or greater than Mf(r), then the peak can be easily handled, as the
variation of f over (p− ε, q+ ε) is close to or greater than the quantity (Q1). In the
other case, the peak can not be handled so easily, and we call such a peak essential.
Our tool for working with essential peaks is Lemma 2.5 which allows us to pass to
the second type of structures.

The structure for f is the point-interval-point system given by numbers s < u <
v < t. Similarly as above, the structure is endowed with a quantity which presents
the impact on the variation of f . This quantity is given by

(Q2) min{f(s), f(t)} − −

ˆ v

u

f.

In contrast to the previous formula, values in the middle are expected to be less than

values on the boundary (and this is clearly not the only difference).
We will deal with a system of these structures. This will take a significant part of

the paper, due to certain difficulties. First of all, the corresponding intervals [s, t] do
not have to be disjoint. Even, a point can be an element of arbitrarily large number
of intervals (unless the lengths of the intervals are comparable).

The aim of this part of the proof is to show that each structure has its own
contribution to the variation of f given by (Q2). This aim is met by an abstract
statement, provided in two versions. Lemma 3.1 is the exact version, while Lemma 1.5
above is the more elaborated version.
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2. A property of the maximal function

Throughout the whole proof of Theorem 1.2, a function f : R → R of bounded
variation will be fixed. Without loss of generality, we will suppose that f ≥ 0.

Lemma 2.1. Let r ∈ R and ω > 0 be such that −
´ r+ω

r−ω
f =Mf(r). Let moreover

p ∈ R satisfy r−ω < p < r andMf(p) ≤Mf(r). Then there is t ∈ (2p−(r−ω), r+ω)
such that

f(t) ≥Mf(r) and f(t) ≥Mf(p) +
Mf(r)−Mf(p)

r − p
· ω.

Proof. We choose t ∈ (2p − (r − ω), r + ω) so that f(t) ≥ −
´ r+ω

2p−(r−ω)
f . To show

that the choice works, let us consider the interval (r−ω, 2p− (r−ω)) centered at p.
We have

−

ˆ r+ω

r−ω

f =Mf(r) and −

ˆ 2p−(r−ω)

r−ω

f ≤Mf(p) ≤Mf(r).

Immediately,

f(t) ≥ −

ˆ r+ω

2p−(r−ω)

f ≥Mf(r).

Further,
ˆ r+ω

2p−(r−ω)

f =

ˆ r+ω

r−ω

f −

ˆ 2p−(r−ω)

r−ω

f

≥ 2ω ·Mf(r)− 2
(
p− (r − ω)

)
·Mf(p)

= 2(r − p) ·Mf(p) + 2ω ·
(
Mf(r)−Mf(p)

)
,

and so

f(t) ≥ −

ˆ r+ω

2p−(r−ω)

f ≥Mf(p) +
Mf(r)−Mf(p)

r − p
· ω. �

Remark 2.2. If p is regular in the sense that Mf(p) ≥ f(p), then t fulfills

f(t)− f(p)

ω
≥
Mf(r)−Mf(p)

r − p
.

Note that ω is close to t− p if p is close to r. Thus, the average increase of f in (p, t)
is comparable to the average increase of Mf in (p, r). We expected at first that this
might lead to a simple proof of Theorem 1.2, possibly with C = 1. Nevertheless, no
simple proof was found at last.

In fact, by a modification of the proof of Lemma 2.1, one can even find t ∈
(2p− (r − ω), r + ω) such that

f(t)− f(p)

t− p
≥
Mf(r)−Mf(p)

r − p
.

It is sufficient to choose t so that g(t) ≥ −
´ r+ω

2p−(r−ω)
g for the function g(x) = f(x) −

Mf(r)−Mf(p)
r−p

· x.
Notice also that the last inequality from the proof gives

Mf(p+ ω)−Mf(p)

ω
≥
Mf(r)−Mf(p)

r − p
.
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Definition 2.3. • A peak is the system consisting of three points p < r < q
such that Mf(p) < Mf(r) and Mf(q) < Mf(r),

• the variation of a peak p = {p < r < q} is given by

varp =Mf(r)−Mf(p) +Mf(r)−Mf(q),

• the variation of a system P of peaks is

varP =
∑

p∈P

varp,

• a peak p = {p < r < q} is essential if supp<x<q f(x) ≤Mf(r)− 1
4
varp,

• for the top r of an essential peak p < r < q, we define (see Lemma 2.4)

ω(r) = max

{
ω > 0: −

ˆ r+ω

r−ω

f =Mf(r)

}
.

Lemma 2.4. Let p = {p < r < q} be an essential peak. Then ω(r) is well

defined. Moreover,

r − ω(r) < p and q < r + ω(r).

Proof. We have

Mf(r) > lim
ω→∞

−

ˆ r+ω

r−ω

f and Mf(r) > lim
ωց0

−

ˆ r+ω

r−ω

f,

as Mf(r) > Mf(p) ≥ limω→∞ −
´ p+ω

p−ω
f = limω→∞ −

´ r+ω

r−ω
f and

(r − ω, r + ω) ⊂ (p, q) =⇒ −

ˆ r+ω

r−ω

f ≤ Mf(r)−
1

4
varp.

It follows that ω(r) is well defined. Moreover, at least one of the points p, q belongs
to (r − ω(r), r + ω(r)). We may assume that p ∈ (r − ω(r), r + ω(r)). It remains to
realize that also q ∈ (r − ω(r), r + ω(r)).

By Lemma 2.1, we can find a t such that p < t < r+ω(r) and f(t) ≥Mf(r). Since
p is an essential peak, t is not an element of (p, q), and we obtain q ≤ t < r+ω(r). �

Lemma 2.5. Let (x, y) be an interval of length L. Let a non-empty system

P = {pi = {pi < ri < qi} : 1 ≤ i ≤ m}

of essential peaks satisfy

x ≤ r1 < q1 ≤ p2 < r2 < q2 ≤ · · · ≤ pm−1 < rm−1 < qm−1 ≤ pm < rm ≤ y

and

25L < ω(ri) ≤ 50L, 1 ≤ i ≤ m.

Then there are s < u < v < t such that

x− 50L ≤ s, t ≤ y + 50L, u− s ≥ 4L, v − u ≥ L, t− v ≥ 4L

and

min{f(s), f(t)} − −

ˆ v

u

f ≥
1

12
varP.
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Proof. We divide the proof into three parts. In parts I and II, we consider two
special cases and find appropriate numbers satisfying the improved inequality

(∗) min{f(s), f(t)} − −

ˆ v

u

f ≥
1

4
varP.

The general case is considered in part III.
I. Let us assume that the system P consists of one peak p = {p < r < q}. First,

we find s and t such that

f(s) ≥Mf(r), x− 50L ≤ s ≤ 2q − (r + ω(r)),

f(t) ≥Mf(r), 2p− (r − ω(r)) ≤ t ≤ y + 50L.

Due to the symmetry, it is sufficient to find a t only. Recall that r − ω(r) < p by
Lemma 2.4. Hence, a suitable t is given by Lemma 2.1, since r + ω(r) ≤ y + 50L.

We consider two possibilities.
(I.a) If q − p < 10L, then we have

s ≤ 2q − (r + ω(r)) < 2p+ 20L− r − 25L < p− 5L < p− L/2− 4L,

and it can be shown similarly that q + L/2 + 4L ≤ t. We take

(u, v) =

{
(p− L/2, p+ L/2), Mf(p) ≤Mf(q),

(q − L/2, q + L/2), Mf(p) > Mf(q).

We obtain

min{f(s), f(t)} − −

ˆ v

u

f ≥Mf(r)−min{Mf(p),Mf(q)} ≥
1

2
varp,

and (∗) is proven.
(I.b) If q − p ≥ 10L, then we use

s ≤ 2q − (r + ω(r)) < q, p < 2p− (r − ω(r)) ≤ t

(here, Lemma 2.4 is needed again). At the same time,

min{f(s), f(t)} ≥Mf(r) > Mf(r)−
1

4
varp ≥ sup

p<x<q
f(x),

and so s and t can not belong to (p, q). It follows that

s ≤ p, q ≤ t.

Let us realize that the choice

(u, v) =
(
(p+ q − L)/2, (p+ q + L)/2

)

works. Since u− p = (q − p− L)/2 = q − v, we have

u− s ≥ u− p ≥ 9L/2, t− v ≥ q − v ≥ 9L/2.

One can verify (∗) by the computation

min{f(s), f(t)} − −

ˆ v

u

f ≥Mf(r)− sup
p<x<q

f(x) ≥
1

4
varp.
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II. Let us assume that the peaks are contained in the interval [x, y]. (I.e., x ≤ p1
and qm ≤ y.) For 1 ≤ i ≤ m+ 1, we define

ei =

{
pi, i = 1 or Mf(pi) ≤Mf(qi−1),

qi−1, i = m+ 1 or Mf(pi) > Mf(qi−1).

We work mainly with the modified system of peaks

P̃ = {p̃i = {ei < ri < ei+1} : 1 ≤ i ≤ m} .

For 1 ≤ i ≤ m, let us find points si and ti such that

f(si) ≥Mf(ri) and f(si) ≥Mf(ei+1) +
Mf(ri)−Mf(ei+1)

ei+1 − ri
· ω(ri),

x− 50L ≤ si ≤ x− 23L,

f(ti) ≥Mf(ri) and f(ti) ≥Mf(ei) +
Mf(ri)−Mf(ei)

ri − ei
· ω(ri),

y + 23L ≤ ti ≤ y + 50L.

Due to the symmetry, it is sufficient to find a ti only. A suitable ti is given by
Lemma 2.1, since 2ei−(ri−ω(ri)) ≥ 2x−y+25L = y+23L and ri+ω(ri) ≤ y+50L.

Similarly as in part I, we consider two possibilities.
(II.a) Assume that

∣∣Mf(em+1)−Mf(e1)
∣∣ > 1

2
var P̃.

We may assume moreover that Mf(em+1) > Mf(e1). As min{f(sm), f(tm)} ≥
Mf(rm) > Mf(em+1), we obtain

min{f(sm), f(tm)} −Mf(e1) > Mf(em+1)−Mf(e1) >
1

2
var P̃ ≥

1

2
varP.

The required properties including (∗) are satisfied for

s = sm, (u, v) = (e1 − L/2, e1 + L/2), t = tm.

(II.b) Assume that
∣∣Mf(em+1)−Mf(e1)

∣∣ ≤ 1

2
var P̃.

We have

Mf(em+1)−Mf(e1) =

m∑

i=1

[(
Mf(ri)−Mf(ei)

)
−

(
Mf(ri)−Mf(ei+1)

)]
,

var P̃ =
m∑

i=1

[(
Mf(ri)−Mf(ei)

)
+
(
Mf(ri)−Mf(ei+1)

)]
,

and so the assumption can be written in the form
m∑

i=1

(
Mf(ri)−Mf(ei)

)
≥

1

4
var P̃ and

m∑

i=1

(
Mf(ri)−Mf(ei+1)

)
≥

1

4
var P̃.

Let j and k be such that

Mf(rj)−Mf(ej+1)

ej+1 − rj
= max

1≤i≤m

Mf(ri)−Mf(ei+1)

ei+1 − ri
,



116 Ondřej Kurka

Mf(rk)−Mf(ek)

rk − ek
= max

1≤i≤m

Mf(ri)−Mf(ei)

ri − ei
.

We have

f(sj)−Mf(ej+1) ≥
Mf(rj)−Mf(ej+1)

ej+1 − rj
· ω(rj) ≥

Mf(rj)−Mf(ej+1)

ej+1 − rj
· 25L

≥
Mf(rj)−Mf(ej+1)

ej+1 − rj
· 25

m∑

i=1

(ei+1 − ri)

= 25
m∑

i=1

Mf(rj)−Mf(ej+1)

ej+1 − rj
· (ei+1 − ri)

≥ 25

m∑

i=1

(
Mf(ri)−Mf(ei+1)

)
≥

25

4
var P̃,

and the same bound can be shown for f(tk)−Mf(ek). Hence,

min{f(sj), f(tk)} −Mf(e) ≥
25

4
var P̃ ≥

25

4
varP

for some e ∈ {ej+1, ek}. The required properties including (∗) are satisfied for

s = sj , (u, v) = (e− L/2, e+ L/2), t = tk.

III. In the general case, the system P can be divided into three subsystems

P1 = {pi : pi < x}, P2 = {pi : x ≤ pi, qi ≤ y}, P3 = {pi : x ≤ pi, y < qi}.

Each of these systems consists of at most one peak or of peaks contained in [x, y].
Thus, by parts I and II of the proof, if the system is non-empty, then there are
appropriate numbers satisfying the improved inequality (∗). The numbers s < u <
v < t assigned to a Pk with varPk ≥

1
3
varP work. �

3. Key lemma

In this section, we formulate our main tool for investigating the variation of the
function f . We introduce some notation concerning its proof but the main part of
the proof will be accomplished in Sections 4 and 5.

Lemma 3.1. Let Λnk , n ≥ 0, k ∈ Z, be non-negative numbers such that only

finitely of them are positive. Let L0 > 0 and Ln = 2−nL0 for n ∈ N. Assume that,

for every (n, k) with Λnk > 0, there are s < u < v < t such that

(k − 50)Ln ≤ s, t ≤ (k + 51)Ln, u− s ≥ 4Ln, v − u ≥ Ln, t− v ≥ 4Ln

and

min{f(s), f(t)} − −

ˆ v

u

f ≥ Λnk .

Then ∑

n,k

Λnk ≤ 20000Var f.
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We show at the end of this section how the lemma follows from the results of the
next two sections. To finish the proof, it is just sufficient to apply Claim 3.4 on every
N and every K.

It turns out that the systems obtained directly from the assumption of the lemma
are not convenient for our purposes and an additional property is needed. In the
following claim, we show that there are systems with one of two additional properties.
Unfortunately, we will be able to handle only with one property at the same time,
and this will mean twice as much work for us.

Claim 3.2. Let n ≥ 0 and k ∈ Z. If Λnk > 0, then at least one of the following

two conditions takes place:

(A) There are s < α < β < γ < δ < t such that

(k − 50)Ln ≤ s, t ≤ (k + 51)Ln, γ − β = 2Ln,

α− s ≥ Ln, β − α ≥ Ln, δ − γ ≥ Ln, t− δ ≥ Ln

and

min{f(s), f(t)} −max

{
−

ˆ β

α

f,−

ˆ δ

γ

f

}
≥

1

2
Λnk .

(B) There are α < β < u < v < γ < δ such that

(k − 50)Ln ≤ α, δ ≤ (k + 51)Ln,

β − α ≥ Ln, u− β ≥ Ln, v − u ≥ Ln, γ − v ≥ Ln, δ − γ ≥ Ln

and

min

{
−

ˆ β

α

f,−

ˆ δ

γ

f

}
−−

ˆ v

u

f ≥
1

2
Λnk .

Proof. Let s < u < v < t be the points which the assumption of Lemma 3.1 gives
for (n, k). We define

α = u− 3Ln, β = u− 2Ln, γ = v + 2Ln, δ = v + 3Ln

and look whether the inequality

min

{
−

ˆ β

α

f,−

ˆ δ

γ

f

}
≥

1

2

(
min{f(s), f(t)}+−

ˆ v

u

f

)

holds. If it holds, then (B) is satisfied. If it does not hold, then

−

ˆ

I

f ≤
1

2

(
min{f(s), f(t)}+−

ˆ v

u

f

)

where I is one of the intervals (α, β), (γ, δ). This inequality is fulfilled also for I =
(u, v). Hence, (A) is satisfied for one of the choices

α′ = α, β ′ = β, γ′ = u, δ′ = v,

α′ = u, β ′ = v, γ′ = γ, δ′ = δ. �

Definition 3.3. We define

A = {(n, k) : Λnk > 0 and (A) from Claim 3.2 is satisfied for (n, k)} ,

An
K = {k ∈ Z : k = Kmod200, (n, k) ∈ A} , n ≥ 0, 0 ≤ K ≤ 199,
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B = {(n, k) : Λnk > 0 and (B) from Claim 3.2 is satisfied for (n, k)} ,

BnK = {k ∈ Z : k = Kmod200, (n, k) ∈ B} , n ≥ 0, 0 ≤ K ≤ 199.

Claim 3.4. For 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199, we have
∑

{Λnk : n = N mod10, k = Kmod200} ≤ 10Var f.

Proof. Using Claim 3.2 and Corollaries 4.5 and 5.5, we can write
∑

{Λnk : n = N mod10, k = Kmod 200}

=
∑

{Λnk : n = N mod 10, k = Kmod 200 and Λnk > 0}

=
∑

{Λnk : n = N mod 10, k ∈ An
K ∪ BnK} ≤ 5Var f + 5Var f. �

4. Dealing with group A

Proposition 4.1. Let 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199. Let η ∈ N ∪ {0} and let

n = 10η +N . Then there is a system

x1 < u1 < v1 < x2 < u2 < v2 < · · · < xm < um < vm < xm+1

such that

u1 − x1 ≥ Ln, v1 − u1 ≥ Ln, x2 − v1 ≥ Ln, . . .

and
m∑

i=1

[
f(xi) + f(xi+1)− 2−

ˆ vi

ui

f

]
≥

1

5

∑
{Λok : o = N mod 10, o ≤ n, k ∈ Ao

K} .

To prove the proposition, we provide a method how to construct such a system
for η when a system for η − 1 is already constructed. We suppose that there is a
system

X1 < U1 < V1 < X2 < U2 < V2 < · · · < XM < UM < VM < XM+1

such that

U1 −X1 ≥ 1024Ln, V1 − U1 ≥ 1024Ln, X2 − V1 ≥ 1024Ln, . . .

and
M∑

I=1

[
f(XI) + f(XI+1)− 2−

ˆ VI

UI

f

]
≥

1

5

∑
{Λok : o = N mod 10, o ≤ n− 10, k ∈ Ao

K}

(for η− 1 = −1, we may consider M = 0 and X1 = anything). We want to construct
a system

x1 < u1 < v1 < x2 < u2 < v2 < · · · < xm < um < vm < xm+1

such that

u1 − x1 ≥ Ln, v1 − u1 ≥ Ln, x2 − v1 ≥ Ln, . . .

and
m∑

i=1

[
f(xi) + f(xi+1)− 2−

ˆ vi

ui

f

]
≥

M∑

I=1

[
f(XI) + f(XI+1)− 2−

ˆ VI

UI

f

]
+

1

5

∑

k∈An
K

Λnk .
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For every k ∈ An
K , let us consider such a system as in (A) from Claim 3.2. If

we put sk = s, tk = t and choose a (αk, βk) ∈ {(α, β), (γ, δ)}, we obtain a system
sk < αk < βk < tk such that

(k − 50)Ln ≤ sk, tk ≤ (k + 51)Ln, αk − sk ≥ Ln, βk − αk ≥ Ln, tk − βk ≥ Ln

and

min{f(sk), f(tk)} − −

ˆ βk

αk

f ≥
1

2
Λnk .

We require from the choice of (αk, βk) ∈ {(α, β), (γ, δ)} that

dist (XI , (αk, βk)) ≥ Ln, 1 ≤ I ≤M + 1.

For an interval (c, d) and a k ∈ Z, we will denote

(c, d) ⊥ k ⇐⇒ dist
(
(c, d), ((k − 50)Ln, (k + 51)Ln)

)
≥ Ln.

Lemma 4.2. Let (U, V ) be an interval of length greater than 210Ln. Then there

are a subinterval (U ′, V ′) and a k with k = Kmod 200 such that

• −
´ V ′

U ′
f ≤ −
´ V

U
f ,

• V ′ − U ′ ≥ 5Ln,
• U ′ = (k − 100)Ln or V ′ = (k + 100)Ln,
• (k − 105)Ln ≤ U ′ and V ′ ≤ (k + 105)Ln,
• (U ′, V ′) ⊥ l for every l 6= k with l = Kmod200.

Moreover, we can wish that −
´ V ′

U ′
f ≥ −
´ V

U
f instead of the first property.

Proof. Let g and h be the uniquely determined integers with g = h = Kmod 200
such that

(g − 105)Ln ≤ U < (g + 95)Ln and (h− 95)Ln < V ≤ (h + 105)Ln.

We have g < h due to the assumption V − U > 210Ln. The system

U < (g + 100)Ln < (g + 300)Ln < · · · < (h− 100)Ln < V

is a partition of (U, V ) into intervals of length greater than 5Ln. We choose a part
the average value of f over which is less or equal to the average value of f over (U, V ).
(Respectively, greater or equal to the average value of f over (U, V ) if we want to
prove the moreover statement.) Such a subinterval (U ′, V ′) and the appropriate k
with g ≤ k ≤ h and k = Kmod 200 have the required properties. �

Claim 4.3. Let (U, V ) be an interval of length greater than 210Ln. Then at

least one of the following conditions is fulfilled:

(i) There is an interval (c, d) ⊂ (U, V ) with d − c ≥ Ln such that (c, d) ⊥ l for

every l ∈ An
K and

−−

ˆ d

c

f ≥ −−

ˆ V

U

f.

(ii) There are an interval (c, d) ⊂ (U, V ) with d− c ≥ Ln and a k ∈ An
K such that

(c, d) ⊥ l for every l ∈ An
K \ {k} and

−−

ˆ d

c

f ≥ −−

ˆ V

U

f +
1

10
Λnk .
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(iii) There are a system

c < d < y < c′ < d′

with (c, d′) ⊂ (U − 1023Ln, V + 1023Ln) and

d− c ≥ Ln, y − d ≥ Ln, c′ − y ≥ Ln, d′ − c′ ≥ Ln

and a k ∈ An
K such that (c, d′) ⊥ l for every l ∈ An

K \ {k} and

f(y)−−

ˆ d

c

f −−

ˆ d′

c′
f ≥ −−

ˆ V

U

f +
1

10
Λnk .

Proof. Let (U ′, V ′) and k be as in Lemma 4.2. If k /∈ An
K, then (i) is fulfilled for

(c, d) = (U ′, V ′). So, let us assume that k ∈ An
K (and thus that we have sk < αk <

βk < tk for this k).
Let us assume moreover that U ′ = (k − 100)Ln (the procedure is similar when

V ′ = (k + 100)Ln, see below). We put

W = U ′ +
1

5
(V ′ − U ′).

We have W = 4
5
U ′ + 1

5
V ′ ≤ 4

5
(k − 100)Ln +

1
5
(k + 105)Ln = (k − 59)Ln ≤ sk − 9Ln

and βk ≤ tk ≤ (k + 51)Ln = U ′ + 151Ln. In particular,

sk −W ≥ Ln and βk ≤ V ′ + 1023Ln.

Further, we have

−

ˆ W

U ′

f ≤ −

ˆ V ′

U ′

f +
4

5
·
1

2
Λnk or −

ˆ V ′

W

f ≤ −

ˆ V ′

U ′

f −
1

5
·
1

2
Λnk .

If the second inequality takes place, then (ii) is fulfilled for (c, d) = (W,V ′). If the
first inequality takes place, then (iii) is fulfilled for

(c, d) = (U ′,W ), y = sk, (c′, d′) = (αk, βk).

So, the claim is proven under the assumption U ′ = (k−100)Ln. The proof under
the assumption V ′ = (k + 100)Ln can be done in a similar way. If we denote

W ′ = V ′ −
1

5
(V ′ − U ′),

then one can show that (ii) is fulfilled for (c, d) = (U ′,W ′) or (iii) is fulfilled for

(c, d) = (αk, βk), y = tk, (c′, d′) = (W ′, V ′). �

Claim 4.4. There is a subset S ⊂ An
K for which there exists a system

y1 < c1 < d1 < y2 < c2 < d2 < · · · < yj < cj < dj < yj+1

such that

c1 − y1 ≥ Ln, d1 − c1 ≥ Ln, y2 − d1 ≥ Ln, . . . ,

l ∈ An
K \ S =⇒ (ci, di) ⊥ l, 1 ≤ i ≤ j,

l ∈ An
K \ S =⇒ dist (yi, (αl, βl)) ≥ Ln, 1 ≤ i ≤ j + 1,

and
j∑

i=1

[
f(yi) + f(yi+1)− 2−

ˆ di

ci

f

]
≥

M∑

I=1

[
f(XI) + f(XI+1)− 2−

ˆ VI

UI

f

]
+

1

5

∑

k∈S

Λnk .
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Proof. We apply Claim 4.3 on the intervals (UI , VI), 1 ≤ I ≤ M . We write the
inequalities from Claim 4.3 in a form more familiar for our purposes:

(i) f(XI) + f(XI+1)− 2−

ˆ d

c

f ≥ f(XI) + f(XI+1)− 2−

ˆ VI

UI

f,

(ii) f(XI) + f(XI+1)− 2−

ˆ d

c

f ≥ f(XI) + f(XI+1)− 2−

ˆ VI

UI

f +
1

5
Λnk ,

(iii)

[
f(XI) + f(y)− 2−

ˆ d

c

f

]
+

[
f(y) + f(XI+1)− 2−

ˆ d′

c′
f

]

≥ f(XI) + f(XI+1)− 2−

ˆ VI

UI

f +
1

5
Λnk .

We define S as the set of those k’s which appeared in (ii) or (iii) for some I. One
can construct the desired system by inserting the systems which we obtained from
Claim 4.3 between XI ’s. �

To finish the proof of Proposition 4.1, it remains to show that, if a proper subset
S ⊂ An

K has such a system as in Claim 4.4, then S ∪ {k} where k ∈ An
K \ S has also

such a system.
So, let S and

y1 < c1 < d1 < y2 < c2 < d2 < · · · < yj < cj < dj < yj+1

be as in Claim 4.4 and let k ∈ An
K \ S. Let ι be the index such that yι belongs to

the connected component of R \
⋃j
i=1[ci, di] which covers ((k − 50)Ln, (k + 51)Ln).

We intend to obtain the desired system for S ∪ {k} by replacing yι with

y < αk < βk < y′

where

y =

{
yι, yι ≤ αk − Ln and f(yι) ≥ f(sk),

sk, otherwise,

y′ =

{
yι, yι ≥ βk + Ln and f(yι) ≥ f(tk),

tk, otherwise.

For every l 6= k with l = Kmod 200, we have

dist
(
((k − 50)Ln, (k + 51)Ln), ((l − 50)Ln, (l + 51)Ln)

)
≥ 99Ln ≥ Ln,

and thus

l ∈ An
K \ (S ∪ {k}) =⇒ (αk, βk) ⊥ l,

l ∈ An
K \ (S ∪ {k}) =⇒ dist (y, (αl, βl)) ≥ Ln and dist (y′, (αl, βl)) ≥ Ln.

Let us prove the inequality for the modified system. We note that, if j ≥ 1, then
the left side of the inequality for the original system can be written in the form

f(y1)− 2−

ˆ d1

c1

f + 2f(y2)− 2−

ˆ d2

c2

f + · · ·+ 2f(yj)− 2−

ˆ dj

cj

f + f(yj+1).
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We need to show that the modification of the system increased this quantity at least
by 1

5
Λnk . What we need to show is

when 1 < ι < j + 1: 2f(y)− 2−

ˆ βk

αk

f + 2f(y′) ≥ 2f(yι) +
1

5
Λnk ,

when 1 = ι < j + 1: f(y)− 2−

ˆ βk

αk

f + 2f(y′) ≥ f(yι) +
1

5
Λnk ,

when 1 < ι = j + 1: 2f(y)− 2−

ˆ βk

αk

f + f(y′) ≥ f(yι) +
1

5
Λnk ,

when 1 = ι = j + 1: f(y)− 2−

ˆ βk

αk

f + f(y′) ≥
1

5
Λnk .

These inequalities, even with 1 instead of 1
5
, follow from

f(y)−−

ˆ βk

αk

f ≥
1

2
Λnk , f(y′)−−

ˆ βk

αk

f ≥
1

2
Λnk , max{f(y), f(y′)} ≥ f(yι)

(f(y) ≥ f(yι) is implied by yι ≤ αk−Ln and f(y′) ≥ f(yι) is implied by yι ≥ βk+Ln).
The proof of Proposition 4.1 is completed.

Corollary 4.5. For 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199, we have
∑

{Λnk : n = N mod10, k ∈ An
K} ≤ 5Var f.

Proof. Let η be large enough such that

Ao
K 6= ∅ =⇒ o ≤ n

where n = 10η +N . Let

x1 < u1 < v1 < x2 < u2 < v2 < · · · < xm < um < vm < xm+1

be the system which Proposition 4.1 gives for N,K and η. For 1 ≤ i ≤ m, let
wi ∈ (ui, vi) be chosen so that

f(wi) ≤ −

ˆ vi

ui

f.

We compute

Var f ≥
m∑

i=1

[|f(wi)− f(xi)|+ |f(xi+1)− f(wi)|]

≥

m∑

i=1

[f(xi)− f(wi) + f(xi+1)− f(wi)]

≥

m∑

i=1

[
f(xi) + f(xi+1)− 2−

ˆ vi

ui

f

]

≥
1

5

∑
{Λok : o = N mod10, o ≤ n, k ∈ Ao

K}

=
1

5

∑
{Λok : o = N mod10, k ∈ Ao

K} . �
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5. Dealing with group B

Proposition 5.1. Let 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199. Let η ∈ N ∪ {0} and let

n = 10η +N . Then there is a system

ϕ1 < ψ1 < s1 < t1 < ϕ2 < ψ2 < s2 < t2 < · · · < sm < tm < ϕm+1 < ψm+1

such that

ψ1 − ϕ1 ≥ Ln, s1 − ψ1 ≥ Ln, t1 − s1 ≥ Ln, ϕ2 − t1 ≥ Ln, . . .

and
m∑

i=1

[
−

ˆ ψi

ϕi

f +−

ˆ ψi+1

ϕi+1

f − 2−

ˆ ti

si

f

]
≥

1

5

∑
{Λok : o = N mod10, o ≤ n, k ∈ BoK} .

To prove the proposition, we provide a method how to construct such a system
for η when a system for η − 1 is already constructed. We suppose that there is a
system

Φ1 < Ψ1 < S1 < T1 < Φ2 < Ψ2 < S2 < T2 < · · · < SM < TM < ΦM+1 < ΨM+1

such that

Ψ1−Φ1 ≥ 1024Ln, S1−Ψ1 ≥ 1024Ln, T1−S1 ≥ 1024Ln, Φ2−T1 ≥ 1024Ln, . . .

and
M∑

I=1

[
−

ˆ ΨI

ΦI

f +−

ˆ ΨI+1

ΦI+1

f − 2−

ˆ TI

SI

f

]
≥

1

5

∑
{Λok : o = N mod 10, o ≤ n− 10, k ∈ BoK}

(for η − 1 = −1, we may consider M = 0,Φ1 = anything and Ψ1 = Φ1 + 1024Ln).
We want to construct a system

ϕ1 < ψ1 < s1 < t1 < ϕ2 < ψ2 < s2 < t2 < · · · < sm < tm < ϕm+1 < ψm+1

such that

ψ1 − ϕ1 ≥ Ln, s1 − ψ1 ≥ Ln, t1 − s1 ≥ Ln, ϕ2 − t1 ≥ Ln, . . .

and
m∑

i=1

[
−

ˆ ψi

ϕi

f +−

ˆ ψi+1

ϕi+1

f − 2−

ˆ ti

si

f

]
≥

M∑

I=1

[
−

ˆ ΨI

ΦI

f +−

ˆ ΨI+1

ΦI+1

f − 2−

ˆ TI

SI

f

]
+

1

5

∑

k∈Bn
K

Λnk .

For every k ∈ BnK , let us consider such a system as in (B) from Claim 3.2. We
obtain a system αk < βk < uk < vk < γk < δk such that

(k − 50)Ln ≤ αk, δk ≤ (k + 51)Ln,

βk − αk ≥ Ln, uk − βk ≥ Ln, vk − uk ≥ Ln, γk − vk ≥ Ln, δk − γk ≥ Ln

and

min

{
−

ˆ βk

αk

f,−

ˆ δk

γk

f

}
−−

ˆ vk

uk

f ≥
1

2
Λnk .

Again, for an interval (c, d) and a k ∈ Z, we denote

(c, d) ⊥ k ⇐⇒ dist
(
(c, d), ((k − 50)Ln, (k + 51)Ln)

)
≥ Ln.

Claim 5.2. Let (S, T ) be an interval of length greater than 210Ln. Then at least

one of the following conditions is fulfilled:
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(i) There is an interval (c, d) ⊂ (S, T ) with d − c ≥ Ln such that (c, d) ⊥ l for

every l ∈ BnK and

−−

ˆ d

c

f ≥ −−

ˆ T

S

f.

(ii) There are an interval (c, d) ⊂ (S, T ) with d− c ≥ Ln and a k ∈ BnK such that

(c, d) ⊥ l for every l ∈ BnK \ {k} and

−−

ˆ d

c

f ≥ −−

ˆ T

S

f +
1

10
Λnk .

(iii) There are a system

c < d < µ < ν < c′ < d′

with (c, d′) ⊂ (S − 500Ln, T + 500Ln) and

d− c ≥ Ln, µ− d ≥ Ln, ν − µ ≥ Ln, c′ − ν ≥ Ln, d′ − c′ ≥ Ln

and a k ∈ BnK such that (c, d′) ⊥ l for every l ∈ BnK \ {k} and

−

ˆ ν

µ

f −−

ˆ d

c

f −−

ˆ d′

c′
f ≥ −−

ˆ T

S

f +
1

10
Λnk .

Proof. This can be proven in the same way as Claim 4.3. �

The main difference between proofs of Propositions 4.1 and 5.1 is that we need
one more analogy of Claim 4.3 because there are intervals (ΦI ,ΨI) instead of points
XI . Even, two versions of this analogy are provided. Both versions are written at
once in the manner that the inequalities belonging to the second version are written
in square brackets (this concerns also the proof of the claim).

Claim 5.3. Let (Φ,Ψ) be an interval of length greater than 210Ln. Then at

least one of the following conditions is fulfilled:

(i*) There is an interval (µ, ν) ⊂ (Φ,Ψ) with ν − µ ≥ Ln such that (µ, ν) ⊥ l for

every l ∈ BnK and

−

ˆ ν

µ

f ≥ −

ˆ Ψ

Φ

f.

(ii*) There are an interval (µ, ν) ⊂ (Φ,Ψ) with ν − µ ≥ Ln and a k ∈ BnK such

that (µ, ν) ⊥ l for every l ∈ BnK \ {k} and

−

ˆ ν

µ

f ≥ −

ˆ Ψ

Φ

f +
1

10
Λnk

[
resp. −

ˆ ν

µ

f ≥ −

ˆ Ψ

Φ

f +
1

5
Λnk

]
.

(iii*) There are a system

µ < ν < c < d < µ′ < ν ′

with (µ, ν ′) ⊂ (Φ− 500Ln,Ψ+ 500Ln) and

ν − µ ≥ Ln, c− ν ≥ Ln, d− c ≥ Ln, µ′ − d ≥ Ln, ν ′ − µ′ ≥ Ln

and a k ∈ BnK such that (µ, ν ′) ⊥ l for every l ∈ BnK \ {k} and

−

ˆ ν

µ

f −−

ˆ d

c

f +−

ˆ ν′

µ′
f ≥ −

ˆ Ψ

Φ

f +
1

10
Λnk
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[
resp. −

ˆ ν

µ

f − 2−

ˆ d

c

f + 2−

ˆ ν′

µ′
f ≥ −

ˆ Ψ

Φ

f +
1

5
Λnk

and 2−

ˆ ν

µ

f − 2−

ˆ d

c

f +−

ˆ ν′

µ′
f ≥ −

ˆ Ψ

Φ

f +
1

5
Λnk

]
.

Proof. By Lemma 4.2, there are a subinterval (Φ′,Ψ′) and a k with k = Kmod 200
such that

• −
´ Ψ′

Φ′
f ≥ −
´ Ψ

Φ
f ,

• Ψ′ − Φ′ ≥ 5Ln,
• Φ′ = (k − 100)Ln or Ψ′ = (k + 100)Ln,
• (k − 105)Ln ≤ Φ′ and Ψ′ ≤ (k + 105)Ln,
• (Φ′,Ψ′) ⊥ l for every l 6= k with l = Kmod 200.

If k /∈ BnK , then (i*) is fulfilled for (µ, ν) = (Φ′,Ψ′). So, let us assume that k ∈ BnK
(and thus that we have αk < βk < uk < vk < γk < δk for this k).

We provide the proof under the assumption Φ′ = (k−100)Ln only (the procedure
is similar when Ψ′ = (k + 100)Ln). We put

Θ = Φ′ +
1

5
(Ψ′ − Φ′).

We have Θ = 4
5
Φ′ + 1

5
Ψ′ ≤ 4

5
(k− 100)Ln+

1
5
(k+105)Ln = (k− 59)Ln ≤ αk − 9Ln ≤

uk − 9Ln and δk ≤ (k + 51)Ln = Φ′ + 151Ln. In particular,

uk −Θ ≥ Ln and δk ≤ Ψ′ + 500Ln.

Further, we have

−

ˆ Θ

Φ′

f ≥ −

ˆ Ψ′

Φ′

f −
4

5
·
1

2
Λnk or −

ˆ Ψ′

Θ

f ≥ −

ˆ Ψ′

Φ′

f +
1

5
·
1

2
Λnk

[
resp. −

ˆ Θ

Φ′

f ≥ −

ˆ Ψ′

Φ′

f −
8

5
·
1

2
Λnk or −

ˆ Ψ′

Θ

f ≥ −

ˆ Ψ′

Φ′

f +
2

5
·
1

2
Λnk

]
.

If the second inequality takes place, then (ii*) is fulfilled for (µ, ν) = (Θ,Ψ′). If the
first inequality takes place, then (iii*) is fulfilled for

(µ, ν) =

{
(Φ′,Θ), −

´ Θ

Φ′
f ≥ −
´ βk
αk
f,

(αk, βk), −
´ Θ

Φ′
f < −
´ βk
αk
f,

(c, d) = (uk, vk), (µ′, ν ′) = (γk, δk).

The inequalities in (iii*) follow from

−

ˆ ν

µ

f ≥ −

ˆ Θ

Φ′

f ≥ −

ˆ Ψ

Φ

f −
4

5
·
1

2
Λnk

[
resp. · · · −

8

5
·
1

2
Λnk

]
,

−

ˆ ν

µ

f −−

ˆ d

c

f ≥
1

2
Λnk , −

ˆ ν′

µ′
f −−

ˆ d

c

f ≥
1

2
Λnk . �

Claim 5.4. There is a subset T ⊂ BnK for which there exists a system

µ1 < ν1 < c1 < d1 < µ2 < ν2 < c2 < d2 < · · · < cj < dj < µj+1 < νj+1

such that

ν1 − µ1 ≥ Ln, c1 − ν1 ≥ Ln, d1 − c1 ≥ Ln, µ2 − d1 ≥ Ln, . . . ,
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l ∈ BnK \ T =⇒ (ci, di) ⊥ l, 1 ≤ i ≤ j,

l ∈ BnK \ T =⇒ (µi, νi) ⊥ l, 1 ≤ i ≤ j + 1,

and
j∑

i=1

[
−

ˆ νi

µi

f +−

ˆ νi+1

µi+1

f − 2−

ˆ di

ci

f

]
≥

M∑

I=1

[
−

ˆ ΨI

ΦI

f +−

ˆ ΨI+1

ΦI+1

f − 2−

ˆ TI

SI

f

]
+

1

5

∑

k∈T

Λnk .

We note that, if j ≥ 1 and M ≥ 1, then the inequality can be written in the form

−

ˆ ν1

µ1

f − 2−

ˆ d1

c1

f + 2−

ˆ ν2

µ2

f − 2−

ˆ d2

c2

f + · · ·+ 2−

ˆ νj

µj

f − 2−

ˆ dj

cj

f +−

ˆ νj+1

µj+1

f

≥ −

ˆ Ψ1

Φ1

f − 2−

ˆ T1

S1

f + 2−

ˆ Ψ2

Φ2

f − · · · − 2−

ˆ TM

SM

f +−

ˆ ΨM+1

ΦM+1

f +
1

5

∑

k∈T

Λnk .

Proof. If M = 0, then we can put T = ∅, j = 0 and find a suitable interval
(µ1, ν1) of length Ln. So, let us assume that M ≥ 1.

We apply Claim 5.2 on the intervals (SI , TI), 1 ≤ I ≤ M , and Claim 5.3 on the
intervals (ΦI ,ΨI), 1 ≤ I ≤ M + 1, (the first version for 1 < I < M + 1, the second
version for I = 1, I = M + 1). We write the inequalities from Claim 5.2 in a form
more familiar for our purposes:

(i) −2−

ˆ d

c

f ≥ −2−

ˆ TI

SI

f,

(ii) −2−

ˆ d

c

f ≥ −2−

ˆ TI

SI

f +
1

5
Λnk ,

(iii) −2−

ˆ d

c

f + 2−

ˆ ν

µ

f − 2−

ˆ d′

c′
f ≥ −2−

ˆ TI

SI

f +
1

5
Λnk .

Concerning the inequalities from Claim 5.3, we moreover specify which inequality
will be applied for I:

(i*) 1 < I < M + 1 : 2−

ˆ ν

µ

f ≥ 2−

ˆ ΨI

ΦI

f,

I = 1 or I =M + 1 : −

ˆ ν

µ

f ≥ −

ˆ ΨI

ΦI

f,

(ii*) 1 < I < M + 1 : 2−

ˆ ν

µ

f ≥ 2−

ˆ ΨI

ΦI

f +
1

5
Λnk ,

I = 1 or I =M + 1 : −

ˆ ν

µ

f ≥ −

ˆ ΨI

ΦI

f +
1

5
Λnk ,

(iii*) 1 < I < M + 1 : 2−

ˆ ν

µ

f − 2−

ˆ d

c

f + 2−

ˆ ν′

µ′
f ≥ 2−

ˆ ΨI

ΦI

f +
1

5
Λnk ,

I = 1 : −

ˆ ν

µ

f − 2−

ˆ d

c

f + 2−

ˆ ν′

µ′
f ≥ −

ˆ ΨI

ΦI

f +
1

5
Λnk ,

I =M + 1 : 2−

ˆ ν

µ

f − 2−

ˆ d

c

f +−

ˆ ν′

µ′
f ≥ −

ˆ ΨI

ΦI

f +
1

5
Λnk .
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We define T as the set of those k’s which appeared in (ii), (iii), (ii*) or (iii*) for
some I. One can construct the desired system by collecting the systems which we
obtained from Claims 5.2 and 5.3. �

To finish the proof of Proposition 5.1, it remains to show that, if a proper subset
T ⊂ BnK has such a system as in Claim 5.4, then T ∪ {k} where k ∈ BnK \ T has also
such a system.

So, let T and

µ1 < ν1 < c1 < d1 < µ2 < ν2 < c2 < d2 < · · · < cj < dj < µj+1 < νj+1

be as in Claim 5.4 and let k ∈ BnK \T . Let ι be the index such that (µι, νι) is covered

by the same connected component of R \
⋃j
i=1[ci, di] as ((k− 50)Ln, (k+51)Ln). We

intend to obtain the desired system for T ∪ {k} by replacing µι < νι with

µ < ν < uk < vk < µ′ < ν ′

where

(µ, ν) =

{
(µι, νι), νι ≤ uk − Ln and −

´ νι
µι
f ≥ −
´ βk
αk
f,

(αk, βk), otherwise,

(µ′, ν ′) =

{
(µι, νι), µι ≥ vk + Ln and −

´ νι
µι
f ≥ −
´ δk
γk
f,

(γk, δk), otherwise.

For every l 6= k with l = Kmod 200, we have

dist
(
((k − 50)Ln, (k + 51)Ln), ((l − 50)Ln, (l + 51)Ln)

)
≥ 99Ln ≥ Ln,

and thus

l ∈ BnK \ (T ∪ {k}) =⇒ (uk, vk) ⊥ l,

l ∈ BnK \ (T ∪ {k}) =⇒ (µ, ν) ⊥ l and (µ′, ν ′) ⊥ l.

Let us prove the inequality for the modified system. We need to show that the
modification of the system increased the left side at least by 1

5
Λnk . What we need to

show is

when 1 < ι < j + 1: 2−

ˆ ν

µ

f − 2−

ˆ vk

uk

f + 2−

ˆ ν′

µ′
f ≥ 2−

ˆ νι

µι

f +
1

5
Λnk ,

when 1 = ι < j + 1: −

ˆ ν

µ

f − 2−

ˆ vk

uk

f + 2−

ˆ ν′

µ′
f ≥ −

ˆ νι

µι

f +
1

5
Λnk ,

when 1 < ι = j + 1: 2−

ˆ ν

µ

f − 2−

ˆ vk

uk

f +−

ˆ ν′

µ′
f ≥ −

ˆ νι

µι

f +
1

5
Λnk ,

when 1 = ι = j + 1: −

ˆ ν

µ

f − 2−

ˆ vk

uk

f +−

ˆ ν′

µ′
f ≥

1

5
Λnk .

These inequalities, even with 1 instead of 1
5
, follow from

−

ˆ ν

µ

f −−

ˆ vk

uk

f ≥
1

2
Λnk , −

ˆ ν′

µ′
f −−

ˆ vk

uk

f ≥
1

2
Λnk , max

{
−

ˆ ν

µ

f,−

ˆ ν′

µ′
f

}
≥ −

ˆ νι

µι

f

(−
´ ν

µ
f ≥ −
´ νι
µι
f is implied by νι ≤ uk−Ln and −

´ ν′

µ′
f ≥ −
´ νι
µι
f is implied by µι ≥ vk+Ln).

The proof of Proposition 5.1 is completed.
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Corollary 5.5. For 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199, we have
∑

{Λnk : n = N mod 10, k ∈ BnK} ≤ 5Var f.

Proof. Let η be large enough such that

BoK 6= ∅ =⇒ o ≤ n

where n = 10η +N . Let

ϕ1 < ψ1 < s1 < t1 < ϕ2 < ψ2 < s2 < t2 < · · · < sm < tm < ϕm+1 < ψm+1

be the system which Proposition 5.1 gives for N,K and η. For 1 ≤ i ≤ m + 1, let
θi ∈ (ϕi, ψi) be chosen so that

f(θi) ≥ −

ˆ ψi

ϕi

f.

For 1 ≤ i ≤ m, let zi ∈ (si, ti) be chosen so that

f(zi) ≤ −

ˆ ti

si

f.

We compute

Var f ≥
m∑

i=1

[|f(zi)− f(θi)|+ |f(θi+1)− f(zi)|]

≥

m∑

i=1

[f(θi)− f(zi) + f(θi+1)− f(zi)] ≥

m∑

i=1

[
−

ˆ ψi

ϕi

f +−

ˆ ψi+1

ϕi+1

f − 2−

ˆ ti

si

f

]

≥
1

5

∑
{Λok : o = N mod10, o ≤ n, k ∈ BoK}

=
1

5

∑
{Λok : o = N mod 10, k ∈ BoK} . �

6. Proof of Theorem 1.2

We are going to finish the proof of Theorem 1.2. Recall that Theorem 1.2 is being
proven for a fixed function f of bounded variation with f ≥ 0. We introduce the
remaining notation needed for proving the theorem first. Note that some notation
was already introduced in Definition 2.3.

We fix a system

a1 < b1 < a2 < b2 < · · · < aσ < bσ < aσ+1

such that
Mf(ai) < Mf(bi) and Mf(ai+1) < Mf(bi)

for 1 ≤ i ≤ σ.

Definition 6.1. • The system P consists of all peaks pi = {ai < bi < ai+1}
where 1 ≤ i ≤ σ,

• the system E consists of all essential peaks from P,
• L0 is given by 50L0 = max({ω(bi) : pi ∈ E} ∪ {0}),
• Ln is given by Ln = 2−nL0 for n ∈ N,
• the systems En

k , n ≥ 0, k ∈ Z, are defined by

En
k =

{
pi ∈ E : 25Ln < ω(bi) ≤ 50Ln, kLn ≤ bi < (k + 1)Ln

}
.
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Our aim is to prove the inequality varP ≤ C Var f . While the proof for the non-
essential peaks is easy, the proof for the essential peaks employs all the previously
achieved results.

Lemma 6.2. We have

var(P \ E) ≤ 2Var f.

Proof. For every pi ∈ P \ E, we choose xi with ai < xi < ai+1 such that

f(xi) ≥Mf(bi)−
1

4
varpi.

We take a small enough ε > 0 such that the intervals (ai − ε, ai + ε), 1 ≤ i ≤ σ + 1,
are pairwise disjoint and do not contain any xj . For 1 ≤ i ≤ σ + 1, we choose
yi ∈ (ai − ε, ai + ε) so that

f(yi) ≤Mf(ai).

For pi ∈ P \ E, we have

|f(xi)− f(yi)|+ |f(yi+1)− f(xi)| ≥ f(xi)− f(yi) + f(xi)− f(yi+1)

≥ 2

[
Mf(bi)−

1

4
varpi

]
−Mf(ai)−Mf(ai+1)

=
1

2
varpi,

and the lemma follows. �

Lemma 6.3. We have

varE ≤ 12 · 20000Var f.

Proof. Let us put

Λnk =
1

12
varEn

k , n ≥ 0, k ∈ Z,

and pick an (n, k) with Λnk > 0. Clearly, the system En
k is non-empty. Let us

consider x = kLn and y = (k + 1)Ln. Then Lemma 2.5 applied on En
k provides a

system s < u < v < t such that

(k − 50)Ln ≤ s, t ≤ (k + 51)Ln, u− s ≥ 4Ln, v − u ≥ Ln, t− v ≥ 4Ln

and

min{f(s), f(t)} − −

ˆ v

u

f ≥
1

12
varEn

k = Λnk .

It follows that the assumption of Lemma 3.1 is satisfied. We can write

1

12
varE =

1

12

∑

n,k

varEn
k =

∑

n,k

Λnk ≤ 20000Var f. �

Once we have these bounds, the proof of Theorem 1.2 is easy. Nevertheless, we
provide the final argument for completeness.

Proof of Theorem 1.2. Let x1 < x2 < · · · < xl be given. We want to show that

l−1∑

j=1

∣∣Mf(xj+1)−Mf(xj)
∣∣ ≤ C Var f.
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After eliminating unnecessary points and possible repeating of the first and the last
point, we obtain a system

b0 ≤ a1 < b1 < a2 < b2 < · · · < aσ < bσ < aσ+1 ≤ bσ+1

such that
Mf(ai) < Mf(bi) and Mf(ai+1) < Mf(bi)

for 1 ≤ i ≤ σ and

σ∑

i=0

(
Mf(bi)−Mf(ai+1)

)
+

σ+1∑

i=1

(
Mf(bi)−Mf(ai)

)
=

l−1∑

j=1

∣∣Mf(xj+1)−Mf(xj)
∣∣.

Considering the notation from Definition 6.1, the left side of this equality can be
written as

Mf(b0)−Mf(a1) +Mf(bσ+1)−Mf(aσ+1) + varP.

We haveMf(b0)−Mf(a1) ≤ sup f−inf f ≤ Var f . Similarly, Mf(bσ+1)−Mf(aσ+1) ≤
Var f . It follows now from Lemma 6.2 and Lemma 6.3 that

l−1∑

j=1

∣∣Mf(xj+1)−Mf(xj)
∣∣ ≤ (1 + 1 + 2 + 12 · 20000)Var f,

and the proof of the theorem is completed. �

Remark 6.4. The proof of Theorem 1.2 works also for the local Hardy–Little-
wood maximal function. More precisely, if Ω ⊂ R is open and d : Ω → (0,∞) is
Lipschitz with the constant 1 such that d(x) ≤ dist(x,R \ Ω), then the function

M≤df(x) = sup
0<ω≤d(x)

−

ˆ x+ω

x−ω

|f |

fulfills VarΩM≤df ≤ C VarΩ f . Here, by VarΩ we mean
∑

nVarIn where Ω =
⋃
n In is

a decomposition of Ω into open intervals. The inequality VarIn M≤df ≤ C VarIn f can
be proven in the same way as Theorem 1.2. It is sufficient just to modify appropriately
the formula for ω(r) in Definition 2.3.

The version of Corollary 1.4 for M≤df can be proven as well. If f ∈ W 1,1
loc (Ω) and

f ′ ∈ L1(Ω), then M≤df is weakly differentiable and

‖(M≤df)
′‖1,Ω ≤ C‖f ′‖1,Ω.

7. Proof of Corollaries 1.3 and 1.4

In this section, we follow methods from [1] and [15]. We recall that a function
f : A ⊂ R → R is said to have Lusin’s property (N) (or is called an N-function) on
A if, for every set N ⊂ A of measure zero, f(N) is also of measure zero. The well-
known Banach–Zarecki theorem states that f : [a, b] → R is absolutely continuous if
and only if it is a continuous N -function of bounded variation.

Lemma 7.1. Let f : R → R be a measurable function with Mf 6≡ ∞ and let

r > 0. Then the function

M≥rf(x) = sup
ω≥r

−

ˆ x+ω

x−ω

|f |

is locally Lipschitz. In particular, M≥rf is a continuous N -function.
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We prove a claim first.

Claim 7.2. For x, y ∈ R, we have

M≥rf(y) ≥M≥rf(x)−
M≥rf(x)

r
|y − x|.

Proof. Due to the symmetry, we may assume that y > x. Let ε > 0. There is an
ω ≥ r for which

−

ˆ x+ω

x−ω

|f | ≥ M≥rf(x)− ε.

We can compute

M≥rf(y) ≥ −

ˆ 2y−(x−ω)

x−ω

|f | =
1

2(y − x+ ω)

ˆ 2y−(x−ω)

x−ω

|f |

≥
1

2(y − x+ ω)

ˆ x+ω

x−ω

|f | ≥
2ω

2(y − x+ ω)

(
M≥rf(x)− ε

)

≥M≥rf(x)− ε−
y − x

y − x+ ω
M≥rf(x) ≥M≥rf(x)− ε−

y − x

r
M≥rf(x).

As ε > 0 could be chosen arbitrarily, the claim is proven. �

Proof of Lemma 7.1. We realize first that M≥rf is locally bounded. If y ∈ R,
then M≥rf is bounded on a neighbourhood of y by Claim 7.2, as

|y − x| < r =⇒ M≥rf(x) ≤
r

r − |y − x|
M≥rf(y).

Now, let I be a bounded interval. There is a B > 0 such that M≥rf(x) ≤ B for
x ∈ I. Using Claim 7.2 again, we obtain, for x, y ∈ I,

M≥rf(y) ≥M≥rf(x)−
B

r
|y − x|.

Hence, M≥rf is Lipschitz with the constant B/r on I. �

Lemma 7.3. Let f : R → R be a measurable function with Mf 6≡ ∞ and let

x ∈ R. If f is continuous at x, then Mf is continuous at x, too.

Proof. The assumption Mf 6≡ ∞ is sufficient for Mf to be lower semicontinuous.
Assume that Mf is not upper semicontinuous at x. There is a sequence xk converging
to x such that infk∈NMf(xk) > Mf(x). We choose c so that

inf
k∈N

Mf(xk) > c > Mf(x).

For each k ∈ N, we choose ωk > 0 such that

−

ˆ xk+ωk

xk−ωk

|f | ≥ c, k = 1, 2, . . . .

Now,

• the possibility ωk → 0 contradicts the continuity of f at x, since then
lim supy→x |f(y)| ≥ c > Mf(x) ≥ lim infy→x |f(y)|,

• the possibility lim supk→∞ ωk > r > 0 contradicts the continuity of the func-
tionM≥rf from Lemma 7.1, since then lim supk→∞M≥rf(xk) ≥ c > Mf(x) ≥
M≥rf(x). �
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Lemma 7.4. Let f : R → R be a measurable function with Mf 6≡ ∞ which is

continuous on an open set U . If f has (N) on U , then Mf has also (N) on U .

Proof. Note that the set E = {x ∈ U : Mf(x) > |f(x)|} fulfills E =
⋃∞
k=1E1/k

where

Er =

{
x ∈ U : Mf(x) > sup

|y−x|<r

|f(y)|

}
, r > 0.

For x ∈ Er, we have Mf(x) = M≥rf(x) where M≥rf is as in Lemma 7.1. At the
same time, for x ∈ U \ E, we have Mf(x) = |f(x)|. Hence,

|Mf(N)| ≤ |Mf(N \ E)|+

∞∑

k=1

|Mf(N ∩ E1/k)|

≤ |f(N \ E)|+

∞∑

k=1

|M≥1/kf(N ∩ E1/k)| = 0

for every null set N ⊂ U . �

Proof of Corollary 1.3. By Lemma 7.3, Mf is continuous on U . By Lemma 7.4,
Mf has (N) on U . So, it is sufficient to show that Mf has bounded variation on a
given [a, b] ⊂ U because then the Banach–Zarecki theorem can be applied to prove
that Mf is absolutely continuous on [a, b].

Let r > 0 be chosen so that [a− r, b+ r] ⊂ U and let g : R → R be defined by

g(x) =

{
f(x), x ∈ [a− r, b+ r],

0, x /∈ [a− r, b+ r].

Then g has bounded variation, as f is absolutely continuous on [a − r, b + r]. By
Theorem 1.2, Mg has bounded variation. It remains to realize that

Mf(x) = max{Mg(x),M≥rf(x)}, x ∈ [a, b],

for the function M≥rf from Lemma 7.1. �

Proof of Corollary 1.4. Assume that f ∈ W 1,1
loc (R) is such that f ′ ∈ L1(R).

Then f is represented by a locally absolutely continuous function with variation
‖f ′‖1 (which will be also denoted by f). By Corollary 1.3, Mf is locally absolutely
continuous, and thus weakly differentiable. Using Theorem 1.2, we can write

‖(Mf)′‖1 = VarMf ≤ C Var f = C‖f ′‖1. �
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