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Abstract. Let {cn}
∞

n=1
be a sequence of complex numbers. In this paper we answer when the

range of
∑

∞

n=1
±cn is dense or equal to the complex plane. Some examples are given to explain our

results. As its application, we calculate the Hausdorff dimension of the level sets of a Rademacher

series with complex coefficients.

1. Introduction

Let {cn}
∞
n=1 be a sequence of complex numbers and let

Y{cn} =

∞
∑

n=1

±cn,

where the “+” and “−” signs are chosen independently with probability 1/2. When
all cn = an are real numbers, it is known that Y{an} is a random variable if and only
if {an} ∈ ℓ2(N), i.e.,

∑∞
n=1 |an|

2 < ∞ [8]. In this case, the distribution function of
Y{an} is called the infinite Bernoulli convolution, which has been studied extensively
from 1930’s (see [4, 11] and the references given there). It is clear that the support
of the distribution function is the whole real line if and only if {an} 6∈ ℓ1(N). When
all {cn} ∈ ℓ2(N) are complex numbers, Y{cn} is also a random variable. Clearly
{cn} 6∈ ℓ1(N) does not guarantee that

R({cn}) :=

{

∞
∑

n=1

±cn

}

= C.(1.1)

Motivating by this, in this paper we want to find rational conditions such that (1.1)
holds.

Another motivation for this issue is the Rademacher series, see [1, 5, 7, 10, 13, 14].
A complex Rademacher series associated to {cn}

∞
n=1 is defined by

∑∞
n=1 cnR(2n−1x),

where R(x) is a periodic function with period 1 and R(x) = ±1 according to x ∈
[0, 1/2) or [1/2, 1), respectively. Clearly we have

R({cn}) =

{

∞
∑

n=1

±cn

}

=

{

∞
∑

n=1

cnR(2n−1x) : x ∈ [0, 1)

}

.(1.2)

We cannot give a sufficient and necessary condition for the question (1.1). In
stead of it, we obtain a criterion for R({cn}) being dense in the complex plane.
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Let cn = an+ ibn ∈ C for n ≥ 1 with {cn} = o(1), which means that limn→∞ cn =
0. If {αan + βbn}

∞
n=1 6∈ ℓ1 for any α, β ∈ R with α + iβ 6= 0, we call the sequence

{cn}
∞
n=1 a linearly non-summable sequence.

Theorem 1.1. Let {cn}
∞
n=1 be a sequence of complex numbers with {cn} = o(1).

Then R({cn}) is dense in the complex plane C if and only if {cn}
∞
n=1 is linearly non-

summable.

We are surprised that there are some examples which satisfy R({cn}) = C but
R({cn}) 6= C (Example 4.4). At the same time, there are some examples with

R({cn}) = C but we do not know whether they are equal to C, an example with this
property is cn = 1

n lnn+1
+ i

n
for n ≥ 1. The key step of the proof of Theorem 1.1 is

the combination lemma (Lemma 2.3).
To give a sufficient condition for R({cn}) = C we begin with a notation.

Definition 1.2. Let {cn = an+ ibn}
∞
n=1 6∈ ℓ1 be a complex sequence with {cn} =

o(1). A number t is called a ratio of {cn}
∞
n=1 if there exists a subsequence {cnk

}∞k=1 6∈ ℓ1

such that ank
/bnk

→ t as k → ∞, where the number t may be infinity.

It is easy to check that a complex sequence {cn}
∞
n=1 is linearly non-summable if

it has two distinct ratios.

Theorem 1.3. Let {cn}
∞
n=1 be a sequence of complex numbers. Then R({cn})

is the complex space if {cn}
∞
n=1 has two different ratios.

The difficult part of the proof of Theorem 1.3 is how to show that R({cn})
contains a nonempty interior. We will use Moran function systems (Proposition 3.1)
to overcome it.

The other one interesting problem on this issue is to study the level set of
Rademacher series. As far back as 1930, Kaczmarz and Steinhaus [9] showed that,
for any a ∈ R, the level set

Ea :=

{

x ∈ [0, 1) :
∞
∑

n=1

anR(2n−1x) = a

}

has continuous cardinality if {an} 6∈ ℓ1 and {an} = o(1). In 1962, Beyer [2] proved

dimH Ea = 1

under the assumption {an} ∈ ℓ2 \ ℓ1. Wu [12] showed the same result under the
conditions {an} 6∈ ℓ1, {an} = o(1) and another man-made condition

∑∞
n=1 |an+1 −

an| < ∞. Finally, Xi [14] obtained the result without the man-made condition.
In the complex case, we define the level set by Ec =

{

x ∈ [0, 1) :
∑∞

n=1 cnR(2n−1x)

= c
}

for any c ∈ C. we show that

Theorem 1.4. Let {cn}
∞
n=1 be a sequence of complex numbers with {cn} = o(1).

(1) If {cn} has two distinct ratios, then dimH Ec = 1 for any c ∈ C.
(2) If {cn} is linearly non-summable with one ratio, then

dimH

{

x ∈ [0, 1) :

∞
∑

n=1

cnR(2n−1x) ∈ B(c, δ)

}

= 1

for any δ > 0, where B(c, δ) is the ball with center c and radius δ.
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2. The combination lemma and proof of Theorem 1.1

Let {cn = an + ibn}
∞
n=1 6∈ ℓ1 be a complex sequence with {cn} = o(1) and let

{−1, 1}N be the set of all sequences {xn}n∈N satisfying xn ∈ {−1, 1} for n ≥ 1. We
begin with the existence of ratios. Note that, in the definition of a ratio, we demand
that the subsequence is not in ℓ1.

Proposition 2.1. Let {cn = an + ibn}
∞
n=1 6∈ ℓ1 be a complex sequence with

{cn} = o(1). Then there exists at least one ratio.

Proof. Let Λ1 = {n : |an
bn
| ≤ 1} and Λ2 = {n : |an

bn
| ≥ 1}. Then, by the symmetry

of an and bn, without loss of generality we assume that
∑

n∈Λ1
|cn| = ∞.

Let Aj, k = {n : an/bn ∈ [j/2k, (j + 1)/2k]} for k ≥ 0 and −2k ≤ j < 2k. Then,
for each k, there exists jk such that {[jk/2

k, (jk +1)/2k]}∞k=0 is a decreasing sequence
of sets and

∑

n∈Ajk, k
|cn| = ∞ for each k ≥ 0.

We claim that t0 is a ratio of {cn}
∞
n=1, where t0 = limk→∞

jk
2k

. We prove the claim
as follows: Choose a finite set B1 from Aj1, 1 so that

∑

n∈B1
|cn| ≥ 1. Then choose

B2 from Aj2, 2 so that min{n : n ∈ B2} > max{n : n ∈ B1} and
∑

n∈B2
|cn| ≥ 1. As

so on we can choose {Bk}
∞
k=1 satisfying min{n : n ∈ Bk+1} > max{n : n ∈ Bk} and

∑

n∈Bk
|cn| ≥ 1 for each k ≥ 1. Then the sequence {cn : n ∈ ∪∞

k=1Bk} has the ratio
t0. �

The following result says that any two different ratios can be changed arbitrarily
without loss anything.

Proposition 2.2. Let {cn = an+ibn}
∞
n=1 be a complex sequence and let

(

α1 β1

α2 β2

)

be a non-singular matrix. Then R({an + ibn}) is dense in (equal to) C if and only if
R({(α1an + β1bn) + i(α2an + β2bn)}) is dense in (equal to, resp.) C.

Proof. The assertion follows from the identity

R({an + ibn})

(

α1 β1

α2 β2

)

= R({(α1an + β1bn) + i(α2an + β2bn)}). �

From now on, for any c = a + ib ∈ C, we use the norm ‖c‖ = max{|a|, |b|}
throughout this paper. For any complex sequence {cn}n∈I where I ⊆ N, we denote
that

‖{cn}n∈I‖ = sup
n∈I

‖cn‖.

The following fact will be used in the proof of Lemma 2.3: Let ‖c1 = a1+ib1‖ ≤ 1
and ‖c2 = a2 + ib2‖ ≤ 1. Then it is easy to check that: ‖c1 ± c2‖ > 1 is equivalent
to that |a1| + |a2| > 1, |b1| + |b2| > 1 and a1a2b1b2 < 0. The following combination
lemma plays a key role in the proof of Theorem 1.1.

Lemma 2.3. (Combination lemma) Let {cn}
5
n=1 be complex numbers satisfying

‖cn‖ ≤ 1 for 1 ≤ n ≤ 5 and ‖cn ± cn+1‖ > 1 for 1 ≤ n ≤ 4. Then there exists
{xn}

5
n=1 ∈ {−1, 1}5 such that

∥

∥

∥

∥

5
∑

n=1

xncn

∥

∥

∥

∥

≤ 2.

Proof. Let sign(x) be the sign function, that is, sign(x) = −1, 0 and 1 according
to x < 0, x = 0 and x > 0 respectively. Denote u = c1sign(a1) − c2sign(a2) −
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c3sign(a3)+c4sign(a4). By the above fact and the hypotheses, we have the imaginary
part of u satisfying |Im(u)| =

∣

∣|b1| + |b2| − |b3| − |b4|
∣

∣ ≤ 1. Similarly, write v =
c2sign(a2)− c3sign(a3)− c4sign(a4) + c5sign(a5), we have |Im(v)| ≤ 1.

We claim that, if the real part of u satisfies |Re(u)| > 1, then |Re(v)| ≤ 1. Since
Re(u) = |a1|−|a2|−|a3|+|a4| and |a2|+|a3| > 1, the condition |Re(u)| > 1 implies that
|a1|−|a2|−|a3|+|a4| < −1. Similarly, if |Re(v)| > 1, then |a2|−|a3|−|a4|+|a5| < −1.
Consequently, |a1|−2|a3|+|a5| < −2, which leads to 2 < 2|a3| ≤ 2 and it is impossible.
Hence the claim follows.

The result follows by choosing {xn}
5
n=1 ∈ {−1, 1}5 such that

∑5
n=1 xncn = u+ c5

when |Re(u)| ≤ 1 or
∑5

n=1 xncn = c1 + v when |Re(u)| > 1. �

Lemma 2.4. Let {cn}
N
n=1 be complex numbers with all ‖cn‖ ≤ 1. Then there

exists {xn}
N
n=1 ∈ {−1, 1}N such that

∥

∥

∥

∥

k
∑

n=1

xncn

∥

∥

∥

∥

≤ 5, for all 1 ≤ k ≤ N.

Proof. We prove it by induction. Assume that the result holds for N and N ≥ 5.
For N + 1, we show it by two cases:

Case 1. There exists j, 1 ≤ j ≤ 4, such that either ‖cj+cj+1‖ ≤ 1 or ‖cj−cj+1‖ ≤
1. Without loss of generality we say that ‖c1 + c2‖ ≤ 1. By induction there exists
{xi}

N
i=1 ∈ {−1, 1}N such that

∥

∥

∥

∥

x1(c1 + c2) +
k

∑

i=2

xici+1

∥

∥

∥

∥

≤ 5

for 2 ≤ k ≤ N , this implies the assertion for N + 1;
Case 2. The assumption in Case 1 fails. We replace {c1, c2, c3, c4} by u if ‖u‖ ≤ 1

or {c2, c3, c4, c5} by v if ‖u‖ > 1, where u and v are given in the proof of Lemma 2.3.
Then the assertion follows by Lemma 2.3 and the same idea of Case 1. �

Now we can give a result on the controlling problem.

Proposition 2.5. Let {cn}
∞
n=1 be a sequence of complex numbers with {cn} =

o(1). Then there exists a sequence {xn}
∞
n=1 ∈ {−1, 1}N such that

∥

∥

∥

∥

∞
∑

n=1

xncn

∥

∥

∥

∥

≤ 5‖{cn}
∞
n=1‖.

Proof. Since {cn} = o(1) as n → ∞, there exists an increasing natural number
sequence {Nk}

∞
k=0 such that N0 = 1 and

∥

∥

∥

∥

{cn}
Nk−1
n=Nk−1

∥

∥

∥

∥

≤ 2−k‖{cn}
∞
n=1‖

for all k ≥ 1. Clearly the result follows by using Lemma 2.4 for each subsequence
{cn}

Nk−1
n=Nk−1

. �

Lemma 2.6. Let {cn = an+ibn}
∞
n=1 with {cn} = o(1) be linearly non-summable.

If there exists a non-summable subsequence of {cn}
∞
n=1 such that its real or imaginary

part is summable, then R({cn}) is dense in C.
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Proof. Let {cnk
}∞k=1 be a non-summable subsequence satisfying that its real or

imaginary part is summable. Without loss of generality we assume that its real part
∑∞

k=1 |ank
| converges and n1 > 1.

Note that {an}
∞
n=1 is not in ℓ1 with an → 0. For any a + bi ∈ C, there exists a

sequence {xn} ∈ {−1, 1}N such that a =
∑∞

n=1 anxn. We denote Bk =
∑nk−1

n=1 bnxn for
k ≥ 1, where {nk} is given in the above subsequence. Let Λk = {nk, nk+1, nk+2, . . .}
and Λc

k = N \ (Λk ∪ {1, 2, . . . , nk − 1}).
Since {bn∈Λk

} is not summable, there exist yn ∈ {−1, 1} for n ≥ nk dependent
on k such that

∑

n∈Λk
bnyn = b − Bk and ‖

∑

n∈Λc
k
cnyn‖ ≤ 5‖{cn}n∈Λc

k
‖. Hence we

have

nk−1
∑

n=1

cnxn +

∞
∑

n=nk

cnyn = a−

∞
∑

n=nk

anxn + iBk +
∑

n∈Λk

anyn + i(b− Bk) +
∑

n∈Λc
k

cnyn

= a+ bi−

∞
∑

n=nk

anxn +
∑

n∈Λk

anyn +
∑

n∈Λc
k

cnyn.

Note that
∣

∣

∣

∣

−

∞
∑

n=nk

anxn +
∑

n∈Λk

anyn +
∑

n∈Λc
k

cnyn

∣

∣

∣

∣

≤

∣

∣

∣

∣

∞
∑

n=nk

anxn

∣

∣

∣

∣

+
∑

n∈Λk

|an|+ 5‖{cn}n∈Λc
k
‖,

which tends to zero when k tends to infinity. Then the proof is complete. �

Proof of Theorem 1.1. We first prove the sufficiency. Suppose that {cn}
∞
n=1

is linearly non-summable. By Lemma 2.1 and Proposition 2.2 we may assume that
there exists a subsequence {cnk

}∞k=1 6∈ ℓ1 such that ank
/bnk

tends to 0 when k tends to
infinity. In this case we still have

∑∞
n=1 |an| = ∞ by the linear non-summation. When

∑∞
k=1 |ank

| converges, the sufficient condition follows by Lemma 2.6; When
∑∞

k=1 |ank
|

diverges, we construct a subsequence {lk} of {nk} such that
∑∞

k=1 |alk | < ∞ and
∑∞

k=1 |blk | = ∞. This implies the sufficiency according to Lemma 2.6 again.
Now we construct a desired subsequence of {cnk

}∞k=1 if
∑∞

k=1 |ank
| diverges. Note

that in this case
∑∞

k=1 |bnk
| diverges also. Denote Λm = {k : |ank

/bnk
| < 2−m} for

m ≥ 1. Then k belongs to Λm for sufficiently large k and thus
∑

k∈Λm
|bk| = ∞

for each m. We can choose finite sets Γk ⊂ Λk such that
∑

n∈Γk
|bn| ∈ (1, 2) and

maxΓk < minΓk+1 for k ≥ 1. We claim that Γ := ∪∞
k=1Γk is the index set of a

desired subsequence. In fact,

∑

n∈Γ

|an| =

∞
∑

k=1

∑

n∈Γk

|an| ≤

∞
∑

k=1

2−k
∑

n∈Γk

|bn| ≤ 2

and
∑

n∈Γ

|bn| =
∞
∑

k=1

∑

n∈Γk

|bn| ≥
∞
∑

k=1

1 = ∞.

Now we prove the necessity. Suppose that R({cn}) is dense in C, then both the
real and imaginary parts of {cn} are not in ℓ1. If there exist α and β such that
{αan + βbn}

∞
n=1 ∈ ℓ1, this implies a contradiction by Proposition 2.2. �
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3. Moran function systems and proof of Theorem 1.3

In the proof of Theorem 1.3, the difficult point is to show that R({cn}) contains
a nonempty interior. The following proposition will help us to show it [6]. We begin
with some notations.

Given a sequence {nk}
∞
k=1 of natural numbers with all nk ≥ 2 and a sequence

{fk, i(x) : k ≥ 1, i = 1, 2, . . . , nk} of functions from R
n to itself, which satisfy that

‖fk, i(x)− fk, i(y)‖ ≤ r‖x− y‖

for all k ≥ 1 and 1 ≤ i ≤ nk, where 0 < r < 1. We say that the sequence is a Moran

function system with contraction ratio not exceeding r. Define
∏m

k=1{1, 2, . . . , nk} =
{σ = σ1σ2 · · ·σm : σk ∈ {1, 2, . . . , nk}, 1 ≤ k ≤ m} for m ≥ 1 and

∏∞
k=1{1, 2, . . . , nk}

= {σ = σ1σ2 · · · · · · : each σk ∈ {1, 2, . . . , nk}}. For any σ = σ1 · · ·σm, we define

fσ(x) = f1, σ1
◦ f2, σ2

◦ · · · ◦fm,σm
(x),

which is the composing function of fi, σi
, i = 1, 2, . . . , m.

Proposition 3.1. Let F = {fk,i(x) : i = 1, 2, . . . , nk, k ≥ 1} be a Moran function
system with contraction ratio not exceeding r. Suppose that the set {fk,i(0) : i =
1, 2, . . . , nk, k ≥ 1} is bounded with bound M , then

(1) For any σ = σ1σ2 · · · ∈
∏∞

k=1{1, 2, . . . , nk}, the limit

lim
k→∞

fσ1···σk
(0)

exists, we denote the value as fσ(0);
(2) The set KF , KF := {fσ(0) : σ ∈

∏∞
k=1{1, 2, . . . , nk}}, is a nonempty compact

set;
(3) Let Q be a compact set so that Q ⊆

⋃nk

i=1 fk,i(Q) for all k ≥ 1, then Q ⊆ KF .

Proof. Let B(0, R) be the closure ball with center 0 and radius R. Then, for
each k and i with 1 ≤ i ≤ nk, we have

fk, i(B(0, R)) ⊆ B(fk, i(0), rR) ⊆ B(0,M + rR) ⊆ B(0, R)

if R > M/(1−r). This implies that {
⋃

σ∈
∏m

i=1
{1,2,...,ni}

fσ(B(0, R))}∞m=1 is a decreasing

sequence of compact sets. Hence,

∞
⋂

m=1

⋃

σ∈
∏m

i=1
{1,2,...,ni}

fσ(B(0, R))

is a nonempty compact set, which is independent of large R. For any σ = σ1σ2 · · · ∈
∏∞

k=1{1, 2, . . . , nk}, we have

∞
⋂

k=1

fσ1···σk
(B(0, R)) =

{

lim
k→∞

fσ1···σk
(0) = fσ(0)

}

.

Hence,

(3.1) KF =

∞
⋂

m=1

⋃

σ∈
∏m

i=1
{1,2,...,ni}

fσ(B(0, R)).

This deduces (1) and (2).
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By the hypothesis in (3) we have

Q ⊆
⋃

σ∈
∏m

k=1
{1,2,...,nk}

fσ(Q)

for m ≥ 1. Choosing R so that Q ⊆ B(0, R), we obtain Q ⊆ KF by the above and
(3.1). �

Next we construct a Moran function system F and a cube Q = [−5, 5]× [−5, 5]
such that Q ⊆ KF ⊆ R({cn}) if {cn}

∞
n=1 has two distinct ratios.

The next lemma says that we can construct a subsequence from {cn} such that
its real part and imaginary part are comparable to the sequence {δn}∞n=1, where δ is
given arbitrarily in (0, 1).

Lemma 3.2. Let {cn = an+ibn}
∞
n=1 6∈ ℓ1 be a complex sequence with {cn} = o(1)

and limn→∞ an/bn = t, where 0 < t < ∞. Then, for any 0 < δ < 1 and a positive
number sequence {ηk}

∞
k=1 with

∑∞
k=1 ηk < ∞, there exists a sequence {Λk}

∞
k=1 of

finite sets with minΛk+1 > maxΛk for all k ≥ 1 such that
∣

∣

∣

∣

∑

n∈Λk

|bn| − δk
∣

∣

∣

∣

≤ ηk,

∣

∣

∣

∣

∑

n∈Λk
ansign(bn)

∑

n∈Λk
|bn|

− t

∣

∣

∣

∣

< ηk

for all k ≥ 1 and
∞
∑

k=1

∑

n∈Λk

‖cn‖ < ∞.

Proof. We define Γk = {n : |an/bn−t|+‖cn‖ < ηk} for k ≥ 1. Then by hypotheses
we have

∑

n∈Γk

|bn| = ∞.

Now we choose finite sets Λk from Γk by induction. Note that bn tends to zero when
n tends to infinity, we can choose a finite set Λ1 from Γ1 such that

∣

∣

∑

n∈Λ1
|bn| −

δ
∣

∣ ≤ η1, and then choose a finite set Λ2 from Γ2 such that minΛ2 > maxΛ1 and
∣

∣

∑

n∈Λ2
|bn| − δ2

∣

∣ ≤ η2. In general we obtain a sequence {Λk}
∞
k=1 of finite sets with

minΛk+1 > maxΛk for all k ≥ 1 and
∣

∣

∑

n∈Λk

|bn| − δk
∣

∣ ≤ ηk, for k ≥ 1.

Now we show the second inequality. Write tn = an/bn, then |tn − t| < ηk for
n ∈ Γk. Hence, the second assertion follows from that

∑

n∈Λk
ansign(bn)

∑

n∈Λk
|bn|

− t =
∑

n∈Λk

(tn − t)
|bn|

∑

m∈Λk
|bm|

.

Note that |an| ≤ (|t|+ ηk)|bn| for n ∈ Γk. Then
∞
∑

k=1

∑

n∈Λk

‖cn‖ ≤

∞
∑

k=1

∑

n∈Λk

(|an|+ |bn|) ≤

∞
∑

k=1

(1 + |t|+ ηk)
∑

n∈Λk

|bn|

≤

∞
∑

k=1

(1 + |t|+ ηk)(δ
k + ηk) ≤ (1 + |t|+

∞
∑

k=1

ηk)

∞
∑

k=1

(δk + ηk) < ∞. �
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Applying Lemma 3.2 to a special case, we have the following lemma.

Lemma 3.3. Let {cn = an + ibn}
∞
n=1 6∈ ℓ1 and {γn = αn + iβn}

∞
n=1 6∈ ℓ1 with

{cn}, {γn} = o(1). Suppose that limn→∞ an/bn = 2 and limn→∞ βn/αn = 3, then,
for any δ ∈ (0, 1), there exist two sequences {Λk}

∞
k=1, {Γk}

∞
k=1 of finite sets with

minΛk+1 > maxΛk and minΓk+1 > maxΓk for all k ≥ 1 such that

105

64
δk ≤

∑

n∈Λk

ansign(bn) ≤
153

64
δk,

7

8
δk ≤

∑

n∈Λk

|bn| ≤
9

8
δk

and
7

8
δk ≤

∑

n∈Γk

|αn| ≤
9

8
δk,

161

64
δk ≤

∑

n∈Γk

βnsign(αn) ≤
225

64
δk.

Proof. Using Lemma 3.2 for {cn = an + ibn}
∞
n=1 and taking ηk =

1
8
δk, we have

7

8
δk ≤

∑

n∈Λk

|bn| ≤
9

8
δk

and

(2−
1

8
)
7

8
δk ≤ (2−

1

8
δk)

7

8
δk ≤

∑

n∈Λk

ansign(bn) ≤ (2 +
1

8
δk)

9

8
δk ≤ (2 +

1

8
)
9

8
δk.

Similarly, using Lemma 3.2 for {βn + iαn}
∞
n=1 and taking ηk =

1
8
δk, we have

7

8
δk ≤

∑

n∈Γk

|αn| ≤
9

8
δk

and

(3−
1

8
)
7

8
δk ≤

∑

n∈Γk

βnsign(αn) ≤ (3 +
1

8
)
9

8
δk. �

Now we construct the desired Moran function system from Lemma 3.3. Let {Λk}
and {Γk} be given in Lemma 3.3. We define

a1k =
∑

n∈Λk

ansign(bn), b1k =
∑

n∈Λk

|bn|

and
α1
k =

∑

n∈Γk

|αn|, β1
k =

∑

n∈Γk

βnsign(αn)

for k ≥ 1. Write

Dk = {±[(a1k + ib1k)± (α1
k + iβ1

k)]} = {dk, 1, dk,2, dk,3, dk, 4}

and then define
fk,d(z) = δz + δ1−kd, d ∈ Dk.

We will show that the above sequence of functions is the desired one. Let Q =
[−5, 5] × [−5, 5]. It is not difficult to see that, for all k ≥ 1 and δ closed to 1, for
example δ = 0.99, we have

(3.2) Q ⊆
⋃

d∈Dk

fk,d(Q).

In fact, by Lemma 3.3 we have (a1k + α1
k, b

1
k + β1

k) ⊂ [δk, 4.7δk] × [δk, 4.7δk] and
(a1k − α1

k, b
1
k − β1

k) ⊂ [0.4δk, 2δk] × [−3δk,−δk]. Then, when δ is chosen closed to 1
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enough, we have [0, 5]×[0, 5] ⊆ fk,d(Q) if d = (a1k+ib1k)+(α1
k+iβ1

k) and [0, 5]×[−5, 0] ⊆
fk,d(Q) if d = (a1k + ib1k)− (α1

k + iβ1
k). This implies (3.2) by the symmetry property

of all Dk.

Lemma 3.4. Let {cn = an + ibn}
∞
n=1 6∈ ℓ1 and {γn = αn + iβn}

∞
n=1 6∈ ℓ1 with

{cn}, {γn} = o(1). Suppose limn→∞ an/bn = 2 and limn→∞ βn/αn = 3, then there
exists c = a+ bi ∈ C such that

c+ [−5, 5]× [−5, 5] ⊆ R({cn}) +R({γn}).

Proof. With the same notations we have a Moran function system G := {fk, d(x) =
δz + δ1−kd : d ∈ Dk, k ≥ 1}, where δ is chosen so that (3.2) holds. Note that
fk, d(0) = δ1−kd ∈ [−5, 5]× [−5, 5]. By Proposition 3.1 we have

Q = [−5, 5]× [−5, 5] ⊆ KG =

{

fσ(0) : σ ∈

∞
∏

k=1

{1, 2, 3, 4}

}

.

Since

fσ1···σm
(0) = d1, σ1

+ d2, σ2
+ · · ·+ dk, σm

,

we have

KG =

{ ∞
∑

k=1

dk, σk
: all σk ∈ {1, 2, 3, 4}

}

⊆ R({cn}n∈∪∞

k=1
Λk
) +R({γn}n∈∪∞

k=1
Γk
).

According to Proposition 2.5, there exist xn ∈ {−1, 1} for n ∈ N \ ∪∞
k=1Λk and

yn ∈ {−1, 1} for n ∈ N \ ∪∞
k=1Γk such that

∑

n∈N\∪∞

k=1
Λk

xncn +
∑

n∈N\∪∞

k=1
Γk

ynγn = a+ bi.

Hence,

R({cn}) +R({γn}) ⊇ R({cn}n∈∪∞

k=1
Λk
) +R({γn}n∈∪∞

k=1
Γk
) + a+ bi ⊇ Q+ c. �

Proof of Theorem 1.3. We first note that the sequence {cn} with two ratios must
be linearly non-summable. By Proposition 2.2 we can assume that both 2 and 3−1

are ratios. Since any sequence can be decomposed into two sequences with the same
ratio, we can assume that the sequence{cn}

∞
n=1 is decomposed into three sequences:

{c
(1)
n = a

(1)
n + ib

(1)
n }∞n=1, {c

(2)
n = a

(2)
n + ib

(2)
n }∞n=1 and {c

(3)
n }∞n=1, which satisfy that

lim
n→∞

a(1)n /b(1)n = 2, lim
n→∞

b(2)n /a(2)n = 3

and {c
(3)
n }∞n=1 is linearly non-summable. Then the result follows by Lemma 3.4 and

Theorem 1.1. �

Definition 3.5. We call a sequence {cn = an+ibn}
∞
n=1 with an/bn → t changeable

if there exists a partition {Λk}
∞
k=1 of N and a sequence {xn}

∞
n=1 ∈ {−1, 1}∞ such that

the new sequence {
∑

n∈Λk
xncn}

∞
k=1 6∈ ℓ1 satisfies that limk−→∞

∑

n∈Λk
xncn = 0 and

lim
k→∞

∑

n∈Λk
xnan

∑

n∈Λk
xnbn

= t′ 6= t.
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Theorem 3.6. Let {cn = an + ibn}
∞
n=1 with {cn} = o(1) be a linearly non-

summable sequence satisfying an/bn → t. Suppose that the sequence {cn} can be
decomposed into two non-summable sequences such that one of them is changeable,
then R({cn}) = C.

Proof. By Definition 3.5 we can change the sequence {cn} so that it has at least
two distinct radios. Then the result follows by Theorem 1.3. �

4. Some examples

We have showed that any complex sequence {cn}
∞
n=1 6∈ ℓ1 with {cn} = o(1) has

at lease one ratio (Proposition 2.1) and R({cn}) = C if it has two different ratios
(Theorem 1.3). The following example says that there exist complex sequences with
only one ratio which range is the complex space.

Example 4.1. Let {cn = (−1)n

n ln(n+1)
+ i

n
}∞n=1 with one ratio 0. Then R({cn}) = C.

Proof. We decompose the sequence {cn} into two sequences: {c4k+1, c4k+2}
∞
k=0

and {c4k+3, c4k+4}
∞
k=0. Note that

−c4k+1 + c4k+2 =
1

(4k + 1) ln(4k + 2)
+

1

(4k + 2) ln(4k + 3)
−

i

(4k + 1)(4k + 2)

:= αk + iβk

and

lim
k→∞

αk

βk

= ∞.

Then the sequence {c4k+1, c4k+2}
∞
k=0 is changeable and thus the assertion follows by

Theorem 3.6. �

Remark 4.2. Let {cn = 1
n ln(n+1)

+ i
n
}∞n=1 with one ratio 0. It is easy to check

that the sequence {cn}
∞
n=1 is linearly non-summable, then R({cn}) is dense in C by

Theorem 1.1, but we do not know whether R({cn}) = C.

To give an example so that the range of a sequence is dense in C but not equal
to C, we begin with the following lemma.

Lemma 4.3. Let An = 2−n(Z+ [−1/4, 1/4]) and A =
⋃∞

n=1An. Then A 6= R.

Proof. We show that 1/3 6∈ A. If 1/3 ∈ A, there exists n ≥ 1 such that
1/3 ∈ An, i.e., 2n/3 ∈ Z + [−1/4, 1/4]. Note that 2n/3 = kn + rn/3 for some
kn ∈ Z and rn ∈ {1, 2}, then dist(2n/3,Z) = 1/3. This yields a contradiction to
2n/3 ∈ Z+ [−1/4, 1/4]. �

Example 4.4. Let {mk}
∞
k=0 and {nk}

∞
k=0 be two increasing integer sequences

with m0 = n0 = 0 and nk+1 ≥ nk +mk + 3 for k ≥ 0. Define

aj = 2−mk , bj = 2−mk−nk and cj = aj + ibj ,

whenever
k−1
∑

l=0

2ml+nl ≤ j <
k

∑

l=0

2ml+nl and k ≥ 1.

Then R({cj}) is dense in C but not equal to C.
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Proof. We first show that the complex sequence {cj} is linearly non-summable.
Note that

∞
∑

j=1

aj ≥
∞
∑

j=1

bj =
∞
∑

k=1

∑k
l=0

2ml+nl−1
∑

∑k−1

l=0
2ml+nl

2−mk−nk =
∞
∑

k=1

1 = ∞.

For any α, β ∈ R with α+ iβ 6= 0, clearly {αaj + βbj} does not lie in ℓ1 when α = 0.
When α 6= 0, we have limj→∞(αaj+βbj)/aj = α. Then {αaj+βbj} is non-summable
and thus {cj} is linearly non-summable. By Theorem 1.1, R({cj}) is dense in C.

Secondly, we show that R({cj}) is not equal to C. For any {xj}
∞
j=1 ∈ {−1, 1}∞

such that
∑∞

j=1 xjcj converges, we have

∞
∑

j=1

xjcj =

∞
∑

k=1

lk2
−mk + i

∞
∑

k=1

lk2
−mk−nk ,

where all lk are integers. Hence, there exists k0 ≥ 1 such that |lk2
−mk | ≤ 1 for k > k0.

Since

∞
∑

k=1

lk2
−mk−nk = 2−mk0

−nk0

( k0
∑

k=1

lk2
mk0

−mk+nk0
−nk + 2mk0

∞
∑

k=k0+1

lk2
−mk2−(nk−nk0

)

)

and
∣

∣

∣

∣

2mk0

∞
∑

k=k0+1

lk2
−mk2−(nk−nk0

)

∣

∣

∣

∣

≤ 2−(nk0+1−nk0
−mk0

−1) ≤
1

4
,

we have
∑∞

k=1 lk2
−mk−nk ∈ A, where A is given in Lemma 4.3. Consequently,

the imaginary part of R({cj}) is contained in A and thus the assertion follows by
Lemma 4.3. �

5. Hausdorff dimension of the level sets

Let {xn}, {yn} ∈ {−1, 1}N. Define

d({xn}, {yn}) = 2−k,

where k satisfies that xi = yi for 1 ≤ i < k and xk 6= yk. It is well-known (easy
check) that {−1, 1}N is a complete metric space with this metric d(·, ·). Similarly we
define the Hausdorff dimension on {−1, 1}N by, for any B ⊆ {−1, 1}N,

dimH B = sup

{

s : lim
δ→0

inf
{

∑

i∈I

diam(Ui)
s : {Ui}i∈I is a cover of B

with diam(Ui) < δ
}

= ∞

}

.

Recall that the level set Ec = {x ∈ [0, 1) :
∑∞

n=1 cnR(2n−1x) = c} for c ∈ C and define
Fc =

{

{xn} ∈ {−1, 1}N :
∑∞

n=1 cnxn = c
}

. It is known that dimH Ec = dimH Fc by

bi-Lipschitz mapping from [0, 1) to {−1, 1}N [14]. We begin with a generalization of
Theorem 2 in [14].
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Lemma 5.1. Let {cn}
∞
n=1 6∈ ℓ1 be a sequence of complex numbers with {cn} =

o(1). Then

dimH

{

{xn} ∈ {−1, 1}N :

∞
∑

n=1

xncn converges

}

= 1.

Proof. The proof is essentially identical to that of [14, Theorem 2] with minor
modifications. �

Definition 5.2. Let Λ ⊆ N. Define the super and lower density of Λ by

D(Λ) = lim sup
k→∞

#(Λ ∩ [0, k])

k
, D(Λ) = lim inf

k→∞

#(Λ ∩ [0, k])

k
,

respectively, where #E is the cardinalities of the set E. If D(Λ) = D(Λ), we say the
common value the density of Λ and denote it by D(Λ).

Let Λ = {n1, n2, · · · } ⊆ N. We define a map hΛ from {−1, 1}N to itself by

hΛ({xn}n∈N) = {xn}n∈N\Λ.

Lemma 5.3. Let Λ ⊆ N and 0 < ǫ < 1. If D(Λ) < ǫ, then

(1− ǫ) dimH hΛ(B) ≤ dimH B

for any B ⊆ {−1, 1}N.

Proof. Denote mk = #(Λ ∩ [0, k − 1]). Then, by D(Λ) < ǫ, mk/k < ǫ for
k > k0 ≥ 1. For any {xn}, {yn} ∈ {−1, 1}N with d({xn}, {yn}) = 2−k < 2k0 , we have

d
(

hΛ({xn}), hΛ({yn})
)

≤ 2−k+mk = d({xn}, {yn})
1−

mk
k < d({xn}, {yn})

1−ǫ.

Hence, by the definition of Hausdorff dimension, it is easy to check that

(1− ǫ) dimH hΛ(B) ≤ dimH B. �

Lemma 5.4. Let {cn = an + ibn}
∞
n=1 with {cn} = o(1) be a linearly non-

summable sequence and let ǫ so that 0 < ǫ < 1. Suppose that {cn} has a unique ratio
(at least two distinct ratios), then there exists a linearly non-summable subsequence
{cn}n∈Λ with one ratio (two distinct ratios, resp.) so that D(Λ) < ǫ.

Proof. First we show the case of one ratio. By Proposition 2.2 we can assume
that the unique ratio is 1, that is, limn→∞ an/bn = 1. Since

∑∞
n=1 |an − bn| =

∑q

j=1

∑∞
k=0 |akq+j − bkq+j| = ∞, there exists j so that

∑∞
k=0 |akq+j − bkq+j| = ∞.

This implies that the subsequence {ckq+j}
∞
k=0 is linearly non-summable. Denote Λq =

{kq + j : k = 0, 1, 2, . . .}, by a simple calculation we have D(Λq) = 1/q. Hence the
assertion follows by choosing q so that 1/q < ǫ. Secondly, for the case of at least two
ratios, the assertion follows by the same idea used for two subsequences with distinct
ratios. �

The following result is the same with Theorem 1.1.

Theorem 5.5. Let {cn = an + ibn}
∞
n=1 with {cn} = o(1) be a linearly non-

summable sequence and let c ∈ C.

(1) If {cn} has one ratio, then

dimH

{

{xn} ∈ {−1, 1}N :
∞
∑

n=1

xncn ∈ B(c, δ)

}

= 1
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for any δ > 0;
(2) If {cn} has at least two distinct ratios, then

dimH

{

{xn} ∈ {−1, 1}N :
∞
∑

n=1

xncn = c

}

= 1.

Proof. (1) For any ǫ > 0, by Lemma 5.3 there exists a linearly non-summable
subsequence {cn}n∈Λ with D(Λ) < ǫ. According to Lemma 5.1, we have

dimH

{

{xn} ∈ {−1, 1}N :
∑

n∈N

xncn converges

}

= 1.

To show the assertion (1), it is sufficient, by Lemma 5.3, to show that

hΛ

({

{xn} ∈ {−1, 1}N :
∑

n∈N

xncn ∈ B(c, δ)

})

⊇

{

{xn}n∈N\Λ :
∑

n∈N\Λ

xncn converges

}

.

(5.1)

For any {xn}n∈N\Λ so that
∑

n∈N\Λ xncn converges (to d), by Theorem 1.1 there

exists {xn}n∈Λ such that
∑

n∈Λ xncn ∈ B(c− d, δ). Then we have
∑

n∈N

xncn =
∑

n∈N\Λ

xncn +
∑

n∈Λ

xncn ∈ B(c, δ).

This implies (5.1) by the definition of hΛ.
The proof of (2) is similar to that of (1) and we omit it. �
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