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Abstract. Let {¢,}52; be a sequence of complex numbers. In this paper we answer when the
range of » - | +c, is dense or equal to the complex plane. Some examples are given to explain our
results. As its application, we calculate the Hausdorff dimension of the level sets of a Rademacher
series with complex coefficients.

1. Introduction

Let {¢,}22, be a sequence of complex numbers and let

Yv{cn} = i :l:Cn,
n=1

where the “4” and “—” signs are chosen independently with probability 1/2. When
all ¢, = a, are real numbers, it is known that Y7,,) is a random variable if and only
if {a,} € *(N), ie., Yo7 |as|* < oo [8]. In this case, the distribution function of
Y{a,y is called the infinite Bernoulli convolution, which has been studied extensively
from 1930’s (see |4, 11| and the references given there). It is clear that the support
of the distribution function is the whole real line if and only if {a,} € ¢*(N). When
all {¢,} € (*(N) are complex numbers, Y. is also a random variable. Clearly
{c.} & (1(N) does not guarantee that

(1.1) R({ca}) {Z :tcn} =

Motivating by this, in this paper we want to find rational conditions such that (1.1)
holds.

Another motivation for this issue is the Rademacher series, see [1, 5, 7, 10, 13, 14].
A complex Rademacher series associated to {c,}5° is defined by Y > ¢, R(2" '),
where R(z) is a periodic function with period 1 and R(z) = £1 according to = €
[0,1/2) or [1/2,1), respectively. Clearly we have

(1.2) R({c,}) = {Z j:cn} - {ch}z@"—lx); T € [0,1)}.

We cannot give a sufficient and necessary condition for the question (1.1). In
stead of it, we obtain a criterion for R({¢,}) being dense in the complex plane.
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Let ¢, = a,+1b, € C for n > 1 with {¢,} = o(1), which means that lim,,_,,, ¢, =
0. If {aa, + Bb,}2, & (! for any o, 3 € R with a + i # 0, we call the sequence
{en}52, a linearly non-summable sequence.

Theorem 1.1. Let {¢,}5°, be a sequence of complex numbers with {c,} = o(1).
Then R({c,}) is dense in the complex plane C if and only if {c,}>, is linearly non-
summable.

We are surprised that there are some examples which satisfy R({c,}) = C but
R({c,}) # C (Example 4.4). At the same time, there are some examples with
R({c,}) = C but we do not know whether they are equal to C, an example with this
property is ¢, = m + % for n > 1. The key step of the proof of Theorem 1.1 is
the combination lemma (Lemma 2.3).

To give a sufficient condition for R({c,}) = C we begin with a notation.

Definition 1.2. Let {c, = a,, +1b,}°2; € ¢! be a complex sequence with {c,} =
o(1). A number ¢ is called a ratio of {c, }5° , if there exists a subsequence {c,, }?°, & ¢*
such that a,, /b, — t as k — oo, where the number ¢ may be infinity.

It is easy to check that a complex sequence {c,}°, is linearly non-summable if
it has two distinct ratios.

Theorem 1.3. Let {¢,}>°, be a sequence of complex numbers. Then R({c,})

is the complex space if {c,}>, has two different ratios.

The difficult part of the proof of Theorem 1.3 is how to show that R({c,})
contains a nonempty interior. We will use Moran function systems (Proposition 3.1)
to overcome it.

The other one interesting problem on this issue is to study the level set of
Rademacher series. As far back as 1930, Kaczmarz and Steinhaus [9] showed that,
for any a € R, the level set

E, = {x €[0,1): ianR(Q"_lx) = a}

n=1
has continuous cardinality if {a,} € ¢* and {a,} = o(1). In 1962, Beyer |2| proved
dimH Ea =1

under the assumption {a,} € ¢?\¢'. Wu [12] showed the same result under the
conditions {a,} & ¢*,{a,} = o(1) and another man-made condition Y >~ |an+1 —
a,| < oo. Finally, Xi [14] obtained the result without the man-made condition.

In the complex case, we define the level set by E. = {z € [0,1): 377, ¢, R(2" ')
= c} for any ¢ € C. we show that

Theorem 1.4. Let {¢,}°, be a sequence of complex numbers with {c,} = o(1).

(1) If {c,} has two distinct ratios, then dimy E. =1 for any ¢ € C.
(2) If{c,} is linearly non-summable with one ratio, then

dimy {x € [0,1): f:cn}z@"—lx) € B(c, 5)} =1

n=1

for any 6 > 0, where B(c,d) is the ball with center ¢ and radius 0.
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n=1
2. The combination lemma and proof of Theorem 1.1

Let {¢, = a, + ib,}22, & ¢' be a complex sequence with {c,} = o(1) and let
{—=1,1}N be the set of all sequences {x, }nen satisfying x, € {—1,1} for n > 1. We
begin with the existence of ratios. Note that, in the definition of a ratio, we demand
that the subsequence is not in ¢*.

Proposition 2.1. Let {¢, = a, + ib,}>2, & (' be a complex sequence with
{¢n} = o(1). Then there exists at least one ratio.

Proof. Let Ay = {n: [{*| <1} and Ay = {n: > 1}. Then, by the symmetry
of a, and b,, without loss of generality we assume that ) . |c,| = oc.

Let Ajx = {n: a,/b, € [j/2%, (j +1)/2F]} for k > 0 and —2% < j < 2*. Then,
for each k, there exists ji such that {[jx/2%, (jx +1)/2"]}32, is a decreasing sequence
of sets and ZneAjk,k |c,| = oo for each k > 0.

an
bn,

We claim that t, is a ratio of {c, }2°, where ty = limj_,o 2. We prove the claim
as follows: Choose a finite set B, from Aj, 1 so that >z |e,| > 1. Then choose
B, from Aj, 5 so that min{n: n € By} > max{n:n € Bi} and }_ 5 [c,| > 1. As
so on we can choose {By}32, satisfying min{n: n € By} > max{n: n € By} and
> nes, [en| = 1 for each k > 1. Then the sequence {c,: n € U2, By} has the ratio
to. U

The following result says that any two different ratios can be changed arbitrarily
without loss anything.

Proposition 2.2. Let {c, = a,+ib,}22, be a complex sequence and let <Zl gl)
2 D2

be a non-singular matrix. Then R({a, + ib,}) is dense in (equal to) C if and only if
R({(aan + B1by) + i(aeay, + Poby)}) is dense in (equal to, resp.) C.

Proof. The assertion follows from the identity

From now on, for any ¢ = a +ib € C, we use the norm ||c|| = max{|al,|b|}
throughout this paper. For any complex sequence {c,},er where I C N, we denote
that

[{cntnerll = sup|[|cal|-
nel

The following fact will be used in the proof of Lemma 2.3: Let ||c; = a3 +ib|| < 1
and ||ca = ag + ibs|| < 1. Then it is easy to check that: ||c; £ co|| > 1 is equivalent
to that |ay| + |az| > 1, |b1] + |b2] > 1 and ajasbibs < 0. The following combination
lemma plays a key role in the proof of Theorem 1.1.

Lemma 2.3. (Combination lemma) Let {c,}>_, be complex numbers satisfying
lenll < 1 for 1 < n <5 and ||¢, £ cpqa| > 1 for 1 < n < 4. Then there exists

{x,}>_, € {—1,1}° such that
5
S
n=1

Proof. Let sign(z) be the sign function, that is, sign(z) = —1, 0 and 1 according
tox < 0, x = 0 and x > 0 respectively. Denote u = ¢sign(a;) — cosign(as) —

<2




138 Xing-Gang He and Chun-Tai Liu

cssign(as) + ¢ysign(ayq). By the above fact and the hypotheses, we have the imaginary
part of u satisfying [Im(u)| = [|b1] + |bs] — |bs| — |b4]| < 1. Similarly, write v =
cosign(ag) — cgsign(as) — cysign(ay) + cssign(as), we have [Im(v)| < 1.

We claim that, if the real part of u satisfies |[Re(u)| > 1, then |Re(v)| < 1. Since
Re(u) = |ay|—|az|—|as|+|as| and |as|+|as| > 1, the condition |Re(u)| > 1 implies that
|ai|—|az| —|as|+|as] < —1. Similarly, if |Re(v)| > 1, then |ag|—|as|—|a4|+|as| < —1.
Consequently, |a;|—2|as|+|as| < —2, which leads to 2 < 2|as| < 2 and it is impossible.
Hence the claim follows.

The result follows by choosing {z,,}>_; € {—1,1}° such that Zi:l TpCp = U+ C5
when |Re(u)| <1 or 320_ &nc, = ¢ + v when |Re(u)] > 1. O

Lemma 2.4. Let {c,})_, be complex numbers with all ||c,|| < 1. Then there
exists {z, }N_, € {—1,1}" such that

k
g TnCnp
n=1

Proof. We prove it by induction. Assume that the result holds for N and N > 5.
For N + 1, we show it by two cases:

Case 1. There exists j, 1 < j < 4, such that either ||c;+cj1|| < 1or |c;—cju] <
1. Without loss of generality we say that |c; + ¢2f| < 1. By induction there exists
{z;}, € {—1,1}* such that

<5, foralll<k<N.

Y

k
1’1(01 + 02) + inci—i—l S 5

i=2
for 2 < k < N, this implies the assertion for N + 1;
Case 2. The assumption in Case 1 fails. We replace {cy, ca, c3, ¢4} by wif ||ul| <1
or {c, 3, ¢4, 5} by v if ||u|| > 1, where u and v are given in the proof of Lemma 2.3.
Then the assertion follows by Lemma 2.3 and the same idea of Case 1. U

Now we can give a result on the controlling problem.

Proposition 2.5. Let {c,}32, be a sequence of complex numbers with {c,} =
o(1). Then there exists a sequence {x,}>°, € {—1,1}N such that

[
E TnCp
n=1

Proof. Since {c¢,} = o(1) as n — oo, there exists an increasing natural number
sequence {Ny}72, such that Ny =1 and

for all k£ > 1. Clearly the result follows by using Lemma 2.4 for each subsequence

n=Ng_1"

< 5[H{entnall-

Ni—1 -
{eatntm, || < 27 Hea il

Lemma 2.6. Let {c, = a,+1ib,}>>, with{c,} = o(1) be linearly non-summable.
If there exists a non-summable subsequence of {¢,, }°° | such that its real or imaginary
part is summable, then R({c,}) is dense in C.
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Proof. Let {c,, }?2, be a non-summable subsequence satisfying that its real or
imaginary part is summable. Without loss of generality we assume that its real part
Y rey lan, | converges and ny > 1.

Note that {a,}52; is not in ¢! with a,, — 0. For any a + bi € C, there exists a
sequence {z, } € {—1,1}N such that a = > a,x,. We denote By, = Z"k ", for
k > 1, where {n,} is given in the above subsequence. Let Aj = {nk,nkH, Mgty .- -}
and A = N\ (A, U{L,2,...,n,—1}).

Since {bnen, } is not summable, there exist y, € {—1,1} for n > ny dependent
on k such that > _\ b,y, =b— By and || ZneA; cnYnll < 5l[{cn}neac || Hence we
have

nE—1
chxn+20nyn—a—Zan:cn—l—sz—l—Zanyn—irzb—Bk chyn
n=nj n=nj neMg neAf
=a+ b — Z Qn Xy + Z AnYn + Z CnlYn-
n=ng neiy neAg

Note that

'— S et Y it S e < | S a3 ol 45 {enhens

n=ng neiy neAf n=ng neAy

which tends to zero when k tends to infinity. Then the proof is complete. O]

Proof of Theorem 1.1. We first prove the sufficiency. Suppose that {c,}>2,
is linearly non-summable. By Lemma 2.1 and Proposition 2.2 we may assume that
there exists a subsequence {c,, }32, & ¢! such that a,, /b,, tends to 0 when & tends to
infinity. In this case we still have >~ 7 | |a,| = oo by the linear non-summation. When
Y re; lan, | converges, the sufficient condition follows by Lemma 2.6; When > "% | |a,, |
diverges, we construct a subsequence {l;} of {n;} such that Zzozl la;,| < oo and
Y pe; by, | = co. This implies the sufficiency according to Lemma 2.6 again.

Now we construct a desired subsequence of {c,, }7°; if Y. | |an, | diverges. Note
that in this case Y, |bs,| diverges also. Denote A, = {k: |an, /by, | < 27™} for
m > 1. Then k belongs to A,, for sufficiently large & and thus »_, . |b| = oo
for each m. We can choose finite sets I'yx C Ay such that }- . [b,| € (1,2) and
max [y < minl'4; for & > 1. We claim that I' := U2,I'; is the index set of a
desired subsequence. In fact,

Z|an|—ZZ|an|<Z2 5N b <2

nel’ k=1 nel'y nely
and
S =203 b \>Z =
nel’ k= 1’/L€Fk

Now we prove the necessity. Suppose that R({c,}) is dense in C, then both the
real and imaginary parts of {c,} are not in ¢!. If there exist o and 3 such that
{aa, + b, }°2, € ', this implies a contradiction by Proposition 2.2. O
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3. Moran function systems and proof of Theorem 1.3

In the proof of Theorem 1.3, the difficult point is to show that R({c,}) contains
a nonempty interior. The following proposition will help us to show it [6]. We begin
with some notations.

Given a sequence {n;}7°, of natural numbers with all n; > 2 and a sequence
{fri(x): k>1,i=1,2,...,n;} of functions from R" to itself, which satisfy that

[ fri(x) = fri)I| < rllz =y
forall k> 1 and 1 <i < nyg, where 0 < r < 1. We say that the sequence is a Moran

function system with contraction ratio not exceeding r. Define [[;" {1,2,...,n} =

{o =0100- om0 €{1,2,...,m}, 1 <k <m}form>1and [[}{1,2,...,nx}

={o=0109----- :each oy € {1,2,...,n;}}. For any 0 = 0y - - - 0, we define
fO(x) = f1,01 © f2,02 o 'Ofm,crm(x)v

which is the composing function of f; ,,,2 =1,2,...,m.

Proposition 3.1. Let F' = {fy;(x): i =1,2,...,ng, k > 1} be a Moran function
system with contraction ratio not exceeding r. Suppose that the set {fy;(0): i =
1,2,...,n,k > 1} is bounded with bound M, then

(1) For any 0 = o109+ € [ [ {1,2,...,ny}, the limit
1t fr., (0
—00

exists, we denote the value as f,(0);

(2) The set K, Kp :={f,(0): 0 € [[;—,{1,2,...,nx}}, is a nonempty compact
set;

(3) Let @ be a compact set so that Q C |J*, fr:(Q) for all k > 1, then Q C Kp.

Proof. Let B(0, R) be the closure ball with center 0 and radius R. Then, for
each k£ and 7 with 1 < i < ng, we have

fr,i(B(0,R)) € B(f,:(0),7R) C B(0,M +rR) C B(0,R)
if R > M/(1—r). This implies that {UUEHEL{L? ..... ny Jo(B(0, R))}5_; is a decreasing

sequence of compact sets. Hence,
N U  £(BO.R)
m=1 O’GH?’;I{L2 ..... nl}

is a nonempty compact set, which is independent of large R. For any ¢ = 0105 --- €
Hzozl{la 2> ceey nk}, we have

() foreon(BO R) = { lim fo,..0,(0) = fo(0) .

Hence,

(3.1) k=1 U  £BOR)

m=1oe[]",{1,2,...,n;}

This deduces (1) and (2).
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7L1

By the hypothesis in (3) we have

QC U 5@
o€l {1,2,....n}

for m > 1. Choosing R so that @ C B(0, R), we obtain Q C K by the above and
(3.1). O

Next we construct a Moran function system F' and a cube @ = [—5,5] x [—5, 5]
such that Q@ C Kr C R({c,}) if {c,}52, has two distinct ratios.

The next lemma says that we can construct a subsequence from {c,} such that
its real part and imaginary part are comparable to the sequence {0}, where § is
given arbitrarily in (0, 1).

Lemma 3.2. Let {c, = a,+ib, }5>, & {* be a complex sequence with {c,} = o(1)
and lim,,_,, a, /b, = t, where 0 < t < co. Then, for any 0 < § < 1 and a positive
number sequence {n}32, with Y .- n, < oo, there exists a sequence {A,}3°, of
finite sets with min Ay, > max Ay for all k > 1 such that

Z |b | - (5k ‘ZnEA anSign(bn)

neMg |bn|

nEAk

for all k > 1 and

f: > lenll < oo

k=1 neAy

Proof. We define I'y, = {n: |a,/b,—t|+||cn|| < ni} for & > 1. Then by hypotheses

we have
Z |bn| = 00

nely
Now we choose finite sets A, from 'y by induction. Note that b, tends to zero when
n tends to infinity, we can choose a finite set A; from I'y such that |3, A, 1onl —

) } < 11, and then choose a finite set Ay from I'y such that min Ay > max A; and
| > men, 10l — 62| < ms. In general we obtain a sequence {A;}72, of finite sets with
min A ; > max A, for all £ > 1 and

} Z |by | —5k} <mn, fork>1.
neAy

Now we show the second inequality. Write t,, = a,/b,, then [t, — t| < n for
n € I'y. Hence, the second assertion follows from that

ZneAk ansign (b B Z 12

Note that |a,| < (|t| + nx)|bn| for n € I'y. Then

DD el D7D Uanl +15al) < D (T + [t 1) Y 1bal

k=1 neAy k=1 neAy nEAk
[ee) [e.e]

(1 4[]+ 7e) (6" + ) 1+\t|+2nk Z(S +m) <oo. O

k=1 k=1
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Applying Lemma 3.2 to a special case, we have the following lemma.

Lemma 3.3. Let {c, = a, +ib,}2, & (' and {v, = a,, +i8,}32, & (' with
{en}, {m} = o(1). Suppose that lim,_, a,/b, = 2 and lim,,_,, B/, = 3, then,
for any 6 € (0,1), there exist two sequences {Ag}32,,{I'x}32, of finite sets with
min A1 > max Ay and min 'y ; > max D'y, for all k > 1 such that

105, 153, 7., .
45 <Zan81gnb)§—5 —5 <Z|b|< 5

neAy n€Ay
and

161 225
5k < E < Bk < E i < =5k,

64
nely nely

Proof. Using Lemma 3.2 for {¢,, = a,, 4 ib, };2, and taking 7, = £0*, we have

7 & 9
85 < E |b,] < 85
neMg

and

— _ — _ < < _

1)95

“oF < (2
< 93

neMg

Similarly, using Lemma 3.2 for {3, + i, }22, and taking n;, = $6%, we have

7k 9k
g(s §Z|O‘n|§§5
nely

and 19,
)5 O

k
I <
(3 5 E Brsign(a,) < (3 + 33

nely
Now we construct the desired Moran function system from Lemma 3.3. Let {Ax}
and {I'x} be given in Lemma 3.3. We define

ap =Y apsign(b,), b= > |bl

neA n€Ay
and
o) = Z |, Br = Z Brsign(ay,)
nely nely

for k£ > 1. Write
Dy, = {*[(ag +iby) £ (g +i8)]} = {d, 1, dr,2, di,3, d, 4}
and then define
fra(z) =0z +87Fd, de Dy
We will show that the above sequence of functions is the desired one. Let @) =

[—5,5] x [=5,5]. It is not difficult to see that, for all £ > 1 and ¢ closed to 1, for
example 6 = 0.99, we have

(3.2) Q< | fral@
deDy,

In fact, by Lemma 3.3 we have (aj + aj, b + 8}) C [0%,4.76%] x [6%,4.76%] and
(a} — a}, bt — BL) C [0.46%,26%] x [—-36%, —6%]. Then, when § is chosen closed to 1
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n=1
enough, we have [0, 5]x[0,5] C fr.4(Q) if d = (a}+ibi)+(ai+iB}) and [0, 5] x[—5,0] C
fra(Q) if d = (a}, +ib}) — (ot +iB}). This implies (3.2) by the symmetry property
of all Dy.
Lemma 3.4. Let {c, = a, +ib,}52, & (' and {v, = a,, +iB,}2, & (* with
{ev}, {m} = o(1). Suppose lim,,_, a, /b, = 2 and lim,_,, B,/a, = 3, then there
exists ¢ = a + bi € C such that

¢+ [=5,5] x [=5,5] € R({ca}) + R({7n})-

Proof. With the same notations we have a Moran function system G := { fi 4(z) =
8z + 67*d: d € Dy, k > 1}, where § is chosen so that (3.2) holds. Note that
fr.a(0) = 6'7*d € [—5,5] x [-5,5]. By Proposition 3.1 we have

Q =[-5,5] x [-5,5] C K¢ = {fU(O): o€ H{1,2,3,4}}.

Since
.fO'l“'O'm(O) = dl,cn + d2,02 +eeet dk?70'7n’

we have

Kg = { de,ak: all 3, € {1,2, 3>4}} - R({Cn}neu,ﬁlAk) + R({'Vn}neu;';lrk)-

k=1

According to Proposition 2.5, there exist z, € {—1,1} for n € N \ U2;A; and
yn € {—1,1} for n € N\ U2, '}, such that

Z TnCr + Z YnVn = @ + bi.

nEN\UR | Ay neEN\U Ty
Hence,

R({ca}) + R({m}) 2 B({catneuz ) + B{Vntneug r) +a+0i 2 Q +c. T

Proof of Theorem 1.3. We first note that the sequence {¢,} with two ratios must
be linearly non-summable. By Proposition 2.2 we can assume that both 2 and 37!
are ratios. Since any sequence can be decomposed into two sequences with the same
ratio, we can assume that the sequence{c, }>°, is decomposed into three sequences:

{cg) =a) + z'bg)};’ozl, {cg) =aP + z‘bﬁf)};o:l and {cﬁlg)};’ozl, which satisfy that

lim «(V /b =2 lim b?/a!? =3
n—oo

n—o0

and {cg’) o2, is linearly non-summable. Then the result follows by Lemma 3.4 and

Theorem 1.1. O
Definition 3.5. We call a sequence {¢,, = a,+ib, }>, with a,, /b, — t changeable
if there exists a partition {A;}72, of N and a sequence {z,,}>2; € {—1,1}* such that

the new sequence { TpCp 52, & (' satisfies that limy_,o0 > Tnc, = 0 and

neA neAg



144 Xing-Gang He and Chun-Tai Liu

Theorem 3.6. Let {c, = a, + ib,}>2, with {¢,} = o(1) be a linearly non-
summable sequence satisfying a, /b, — t. Suppose that the sequence {c,} can be
decomposed into two non-summable sequences such that one of them is changeable,

then R({c,}) = C.

Proof. By Definition 3.5 we can change the sequence {c,} so that it has at least
two distinct radios. Then the result follows by Theorem 1.3. U

4. Some examples

We have showed that any complex sequence {c,}52; & ¢* with {c,} = o(1) has
at lease one ratio (Proposition 2.1) and R({¢,}) = C if it has two different ratios
(Theorem 1.3). The following example says that there exist complex sequences with
only one ratio which range is the complex space.

Example 4.1. Let {c, = nl(n_(i):l) + %};’f’:l with one ratio 0. Then R({c,}) = C.

Proof. We decompose the sequence {c,} into two sequences: {cip+1,Canta}iy
and {Cagt3, Cak+a}ie,y. Note that

1 1 7
T G = T Ak 1 2) | @k 2) @k +3)  (dk+ Dk +2)
=y + 10k
and
lim X _ %)
k—o00 Bk
Then the sequence {car+1, Cart2}5e, is changeable and thus the assertion follows by
Theorem 3.6. [
Remark 4.2. Let {¢, = m + L322, with one ratio 0. It is easy to check

that the sequence {¢,}7°, is linearly non-summable, then R({c,}) is dense in C by
Theorem 1.1, but we do not know whether R({¢,}) = C.

To give an example so that the range of a sequence is dense in C but not equal
to C, we begin with the following lemma.

Lemma 4.3. Let A, =27"(Z +[—1/4,1/4]) and A=J,_, A,. Then A # R.

Proof. We show that 1/3 ¢ A. If 1/3 € A, there exists n > 1 such that
1/3 € A, ie., 2"/3 € Z + [-1/4,1/4]. Note that 2"/3 = k, + r,/3 for some
k, € Z and r, € {1,2}, then dist(2"/3,Z) = 1/3. This yields a contradiction to
2"/3 € Z+ [—1/4,1/4]. O

Example 4.4. Let {my}2, and {ng}32, be two increasing integer sequences
with mg = ng = 0 and ng1 > ng + my + 3 for £ > 0. Define

. — 9T Mg L — QT ME—Ng . = . 1P
a; =27 by =2 and ¢; = a; + by,

whenever
k-1 k
D o< <y o and ko> 1L
1=0 1=0

Then R({c;}) is dense in C but not equal to C.
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n=1

Proof. We first show that the complex sequence {c;} is linearly non-summable.
Note that

k
0o 00 Dpg2mitri—1

LTED DTE SIS SIS o
j=1 k=1

7j=1 k=1 Zf;ol om+mny

For any «, 8 € R with a+ i3 # 0, clearly {aa; + 8b;} does not lie in ¢! when a = 0.
When « # 0, we have lim;_,.(aa; + b;)/a; = a. Then {aa;+ #b;} is non-summable
and thus {c;} is linearly non-summable. By Theorem 1.1, R({c;}) is dense in C.

Secondly, we show that R({c;}) is not equal to C. For any {z;}32, € {—1,1}*
such that Z;’il xjc; converges, we have

f: xic; = f: [x27™F 414 f: [ 27T
=1 k=1 k=1

where all [, are integers. Hence, there exists kg > 1 such that |[;,27"*| < 1 for k > k.
Since

00 ko 00
Z lk2_mk_”k — QM "Ny (Z lk2mk0_mk+”k0_”k 4 Mk Z lk2—mk 2—(nk—nk0))
k=1

k=1 k=ko+1
and

QMg Z lk2_mk2_("k_"k0) §2_(nk0+1_"k0_mk0_1)§

k=ko+1

1
47

we have Y oo [;27™ ™ € A, where A is given in Lemma 4.3. Consequently,
the imaginary part of R({c;}) is contained in A and thus the assertion follows by
Lemma 4.3. UJ

5. Hausdorfl dimension of the level sets

Let {x,}, {yn} € {—1,1}N. Define
d({z}, {yn}) = 27",

where k satisfies that z; = y; for 1 < i < k and z; # yg. It is well-known (easy
check) that {—1,1}N is a complete metric space with this metric d(-,-). Similarly we
define the Hausdorff dimension on {—1,1}N by, for any B C {—1,1}N,

dimy B = sup {s: (lgi_r}(l) inf { Z diam(U;)*: {U, }ies is a cover of B

el

with diam(U;) < 5} = oo}

Recall that the level set E. = {z € [0,1): >.°° ¢, R(2"'z) = ¢} for ¢ € C and define
F. = {{z,} € {-1,1}N: 37 cpx,, = ¢}. It is known that dimy E. = dimy F, by

n=1
bi-Lipschitz mapping from [0, 1) to {—1, 1} [14]. We begin with a generalization of
Theorem 2 in [14].
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Lemma 5.1. Let {c,}>°, € (* be a sequence of complex numbers with {c,} =
o(1). Then

dimy {{xn} c {—1,1}N: ancn converges} =1.

n=1
Proof. The proof is essentially identical to that of [14, Theorem 2| with minor
modifications. U

Definition 5.2. Let A C N. Define the super and lower density of A by

E(A) = lim sup wj D(A) = lim inf w,

k—o0 k k—o0

respectively, where #F is the cardinalities of the set E. If D(A) = D(A), we say the
common value the density of A and denote it by D(A).

Let A = {ny,ny,---} € N. We define a map hy from {—1,1}N to itself by
ha({Zn tnen) = {Tn fnena-
Lemma 5.3. Let AC N and 0 < e < 1. If D(A) < ¢, then
(1 —¢)dimpy hpa(B) < dimy B
for any B C {—1,1}N.

Proof. Denote my, = #(A N[0,k — 1]). Then, by D(A) < €, mp/k < € for
k> ko> 1. For any {z,}, {yn} € {1, 1}N with d({z,,}, {yn}) = 27% < 2% we have

d(ha({za}), hal{n})) < 278 = d({wa}, {ya})' ™ < d({za}, {ga})'
Hence, by the definition of Hausdorff dimension, it is easy to check that

(1 — €) dimy ha(B) < dimy B. 0

Lemma 5.4. Let {¢, = a, + ib,};>, with {¢,} = o(1) be a linearly non-
summable sequence and let € so that 0 < € < 1. Suppose that {c,} has a unique ratio
(at least two distinct ratios), then there exists a linearly non-summable subsequence
{¢n}nea With one ratio (two distinct ratios, resp.) so that D(A) < e.

Proof. First we show the case of one ratio. By Proposition 2.2 we can assume
that the unique ratio is 1, that is, lim, . a,/b, = 1. Since Y, |a, — b,| =
01 2 heo [@hgtj — brgrj| = 00, there exists j so that 3 7 [akg; — brgrj| = oo
This implies that the subsequence {cyq4;}72, is linearly non-summable. Denote A, =
{kq+j: k=0,1,2,...}, by a simple calculation we have D(A,) = 1/q. Hence the
assertion follows by choosing ¢ so that 1/q < e. Secondly, for the case of at least two
ratios, the assertion follows by the same idea used for two subsequences with distinct
ratios. U

The following result is the same with Theorem 1.1.

Theorem 5.5. Let {¢, = a, + ib,}22, with {¢,} = o(1) be a linearly non-
summable sequence and let ¢ € C.

(1) If {c,} has one ratio, then

dimp {{xn} c {—1,1}N: ixncn € Blc, 5)} =1

n=1
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n=1

for any § > 0;
(2) If {c,} has at least two distinct ratios, then

dimp {{xn} e {-1,1}: gxncn = c} =1

Proof. (1) For any e > 0, by Lemma 5.3 there exists a linearly non-summable
subsequence {c, }nea with D(A) < e. According to Lemma 5.1, we have

dimy {{xn} c {—1,1}N: Z TnCp, converges} =1.

neN
To show the assertion (1), it is sufficient, by Lemma 5.3, to show that
hA<{{9:n} e {-1,13N: > w,c. € B(e, 5)})
(51) neN
D {{xn}neN\A: Z TnCn Converges}.

neN\A

For any {z, }nen\a so that ZneN\A T C, converges (to d), by Theorem 1.1 there
exists {@ }nea such that > _\ w,c, € B(c —d,6). Then we have

Z TpCp, = Z TpCp + ancn € B(c,0).

neN neN\A neA
This implies (5.1) by the definition of h,.
The proof of (2) is similar to that of (1) and we omit it. O
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