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Abstract. We consider (not self-similar) Cantor sets defined by a sequence of piecewise linear
functions. We prove that the dimension of the harmonic measure on such a set is strictly smaller
than its Hausdorff dimension. Some Hausdorff measure estimates for these sets are also provided.

1. Introduction and statement of results

In this paper, we deal with the Hausdorff dimension and the harmonic measure
of a certain type of Cantor sets X in the plane. Recall the definition of the Hausdorff
dimension of a (probability) Borel measure µ:

dimH(µ) = inf
{Z:µ(Z)=1}

dimH(Z)

where infimum is taken over all Borel subsets Z with µ(Z) = 1.
Let ω be the harmonic measure on Ĉ \X evaluated at ∞. By celebrated results

of Makarov [Ma] and Jones and Wolff [JV] the Hausdorff dimension of ω is not larger
than one. On the other hand, it is clear that the Hausdorff dimension of ω is at most
dimH(X). Obviously, if dimH(X) > 1 then dimH(ω) < dimH(X).

The questions we answer in our paper are motivated by previous results ob-
tained for classes of self-similar and self-conformal (Cantor) sets (see remark 6 for
the definition of a self-conformal Cantor set). Note that the Hausdorff dimension of
a self-conformal Cantor set is always positive, and given by the so-called Bowen’s
formula, see e.g. [Ru] for an elementary proof and many generalisations.

It has been observed, for several self-similar and self-conformal (Cantor) sets,
that dimH(ω) < dimH(X), see, e.g. [Ba1, Ca, MV, Vol1, Vol2, Zd1, Zd2, UZ]. Nev-
ertheless, the intriguing question about the inequality of dimensions for an arbitrary
self-conformal Cantor repeller, remains open.

Let us also recall that in Rd, d ≥ 3, a general result of Bourgain [Bou] states that
for all domains Ω, the dimension of harmonic measure is bounded above by d− ε(d),
where ε(d) is a positive constant depending only on d, whose exact value remains
unknown.
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All the proofs of the strict inequality dimH(ω) < dimH(X) for conformal repellers
rely on ergodic theory tools: one constructs an invariant measure equivalent to the
harmonic measure and its ergodic properties play a crucial role in the arguments (see
also [LV]).

On the other hand, the inequality dimH(ω) < dimH(X) is not true for more
general Cantor sets, even after assuming a strict regularity of the construction [Ba1].

In this paper we prove the inequality dimH(ω) < dimH(X) for a class of non-
homogeneous Cantor sets. In this case there is no invariant ergodic measure equiv-
alent to harmonic measure and hence previously mentioned tools are inapplicable.
This has also been the case of [Ba1], where an analogous result was proved for a class
of non-homogeneous 4-corner “translation invariant” Cantor sets. That proof made
use of special symmetries of the set. In the present paper, using an entirely different
approach, we prove a general result. In fact, the result of [Ba1] is a special case of
our Theorem A.

Before stating our results, we recall the notion of a modulus of a topological
annulus in C.

Definition 1. Let A ⊂ C be a doubly connected domain (a topological annulus)
in the plane. Every such domain A is conformally equivalent to some geometric
annulus of the form {z : r < |z| < R}. The value

mod(A) =
1

2π
log

(
R

r

)
is called a modulus of the topological annulus A.

We consider the following class of Cantor sets in the plane (even though proofs
can be easily generalized to higher dimensions).

Let Q be a Jordan domain in C. Let M > 0, 0 < a < a < 1 be fixed. We fix a
positive integer N > 1.

Definition 2. Let Q = (Q1, . . . QN) be a family of disjoint Jordan domains such
that each Qi is a preimage of Q under some (expanding) similitude (ai)

−1z + bi. We
call a family Q = (Q1, . . . QN) admissible if the following holds:

(1) a ≤ |ai| ≤ a,
(2) clQi ⊂ Q,
(3) there exists a topological annulus A ⊂ Q with mod(A) > M and separating

∂Q from
⋃
j Qj (i.e. ∂Q and

⋃
j Qj are in different components of C \ A.

Definition 3. Note that, in this way, we have introduced a piecewise linear map
f defined on the union of admissible discs: f :

⋃
Qi∈QQi → Q by the formula

f(z) = (a−1
i z + bi) for z ∈ Qi,

where a−1
i Qi + bi = Q. If Q satisfies the conditions in Definition 2 then we call the

map f admissible.

Definition 4. A set X0 ⊂ C is called admissible if

X0 =
∞⋂
n=1

(fn ◦ fn−1 ◦ · · · ◦ f1 ◦ f0)−1 (Q).
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for some sequence of admissible families (Qk)∞k=0, Qk = (Qk,1, . . . Qk,N), and maps fk
defined as

fk(z) = a−1
k,iz + bk,i for z ∈ Qk,i,

where a−1
k,iQk,i + bk,i = Q. So, the map fk is defined on the union of the domains

{Qk,i}Ni=1, and fk (Qk,i) = Q, for all i = 1, . . . , N .

Remark 5. Note that (fn ◦ fn−1 ◦ · · · ◦ f0)−1 (Q) is a descending family of sets.
Moreover, since f−1 (clQ) ⊂ Q for every admissible map, we have

X0 =
∞⋂
n=1

(fn ◦ fn−1 ◦ · · · ◦ f0)−1 (clQ),

thus X0 is a compact set. The expanding property (item (1) in the definition of an
admissible family) implies easily that X is perfect and totally disconnected. Thus,
X0 is homeomorphic to a Cantor set.

Figure 1. An illustration of an admissible set X0 and of a generalized admissible set as defined
in Section 11.

Remark 6. If the sequence fn is given just by one admissible map f , fn = f ,
for all n ≥ 0 then the resulting Cantor set is called a self-similar Cantor set.

A more general definition of an admissible conformal map can be described sim-
ilarly as in Definition 2: we modify Definition 2, allowing the map f : Qi → Q to
be a conformal isomorphism onto Q. Now, if the sequence fn is given just by one
admissible conformal map f , fn = f , for all n ≥ 0 then the resulting Cantor set is
called a self-conformal Cantor set.

Remark 7. Notice that for admissible Cantor sets there are uniform bounds Λ
and Λ , depending only on N,M, a, a such that

0 < Λ < dimH(X) < Λ < 2.

A short proof of this fact will be given later, in Corollary 18.
In the present paper we prove the following
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Theorem A. LetX be an admissible Cantor set. Let ω be the harmonic measure
on X. Then

dimH(ω) < dimH(X).

This is the main result of this paper. The idea is to create an alternative between
two situations, the one implying the result (section 8) and the other being impossible
(as we prove in sections 9 and 10). In the first situation we make use of a tool due to
Bourgain [Bou]. In the second situation we refer to some ideas due to Volberg [Vol2].

Note also that we can find a uniform strictly positive lower bound of dimHX −
dimH ω that only depends on a, M and N as will be pointed out in section 11.

Moreover, we have the following result of independent interest:

Theorem B. Let (fk)(z) =
∑N

i=1(a−1
k,iz + bk,i)11Qk,i be a sequence of admissible

maps and let X = X0 be the associated admissible Cantor set. There exist a sequence
of admissible functions (f̃k), (f̃k)(z) =

∑N
i=1(ã−1

k,iz + b̃k,i)11Q̃k,i such that

(1) limk→∞maxi(|ãk,i − ak,i|) = 0, b̃k,i = bk,i,
(2) the associated Cantor set X̃ is admissible and dimH(X̃) = dimH(X),
(3) 0 < HdimH(X̃)(X̃) <∞,
(4) if ω and ω̃ are the harmonic measures of X and X̃ respectively, then dimH ω =

dimH ω̃.

The proof of items (1), (2) and (3) of this theorem are carried out in Section 5.
Item (4) follows from results of [Ba2] and [BaHa].

The paper is organized in 11 sections. Section 2 contains some well known facts
and introduces notation. Some basic remarks on Hausdorff dimension of the Cantor
sets considered here and on conformal measures can be found in Sections 3 and 4.
Adapted tools from potential theory are presented in Section 6 and in Section 7 we
apply all previous results to study limits of sequences of Cantor sets.

The proof of the main theorem is carried out in Sections 8, 9, 10. Section 8
provides a sufficient condition to have dimHX > dimH ω. In Sections 9 and 10 we
study the alternative case, when condition of Section 8 fails.

Finally, in Section 11, we show that the assumptions of the main theorem are
somehow optimal: we construct a Cantor set X slightly different from the ones
studied here, for which dimHX = dimH ω.

2. Definitions and basic facts

In this Section we present the notation and some introductory remarks.

Remark 8. Using the Harnack inequality and the condition (3) in definition 2
we conclude that there exists a universal constant C (depending only on M) with
the following property: Let Q = (Q1, . . . QN) be an arbitrary admissible family of
domains. Then there exists a smooth Jordan curve γQ ⊂ Q \

⋃
j Qj (depending on

the family Q of domains), and separating ∂Q from
⋃
j Qj such that, for every positive

harmonic function φ : Q \
⋃
Qj → R,

(1)
supγQ φ

infγQ φ
< C.
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Notation. Note that f0 maps X0 onto the Cantor set X1 :=
⋂∞
n=1(fn ◦ fn−1◦

· · · ◦ f1)−1(Q), and, generally, denoting

Xk =
∞⋂
n=k

(fn ◦ fn−1 ◦ · · · ◦ fk+1 ◦ fk)−1 (Q)

we have

(2) X0
f0−→ X1

f1−→ X2
f2−→ . . . Xk

fk−→ Xk+1 . . . .

We shall use the notation fk for the composition fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0.

Let x ∈ Xk+1. Then, for every i = 1, . . . N there exists a unique point yk,i ∈ Qk,i

such that fk(yk,i) = x.

Definition 9. Let Lk,s : C(Xk)→ C(Xk+1) be the operator defined as

Lk,s(φ)(x) =
N∑
i=1

φ(yk,i)|ak,i|s

(where we use the common notation C(X) to denote the space of continuous functions
defined on a compact metric space X).

Definition 10. We shall use the natural coding C0 of the set X0 by the symbolic
space Σ, consisting of infinite sequences of digits j ∈ {1, . . . , N}. As usual, the k-th
digit in the code C0(x) equals j if fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0(x) ∈ Qk,j. Similarly, the
coding of the set Xk is defined, so that Ck+1(fk(x)) = σ(Ck(x)) where x ∈ X0 and σ
is the left shift.

Notation. In what follows, we often identify the symbolic cylinder I and the
corresponding subset of the Cantor set C−1

0 (I). The family of all cylinders I ⊂ Σ, of
length n will be denoted by En. Each cylinder I of length n defines a branch of the
map (fn−1 ◦ · · · ◦ f1 ◦ f0)−1. The image of Q under this branch will be denoted by
QI . Note that

QI ∩X0 = C−1
0 (I)

and the sets QI are just the connected components of the set (fn−1 ◦ · · · ◦ f0)−1(Q).

We will denote by the same letter C a constant which may vary in the proofs.

3. Hausdorff dimension

The following simple proposition gives an explicit bound for the Hausdorff di-
mension of the set X.

Proposition 11. Let |ak,1|, . . . |ak,N | be the sequence of “scales” used in the
construction of X0. Then dimH(X0) ≤ ρ where ρ is the number characterized in the
following way:

(3) ρ = inf{s : lim inf
n→∞

n∏
k=1

(|ak,1|s + |ak,2|s + . . . |ak,N |s) = 0}.
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Proof. First, note that lim infn→∞
∏n

k=1 (|ak,1|s + |ak,2|s + . . . |ak,N |s) = 0 for all
s > ρ. Pick some s > ρ. There exists a subsequence nj →∞ with

nj∏
k=1

(|ak,1|s + |ak,2|s + . . . |ak,N |s)→ 0

Let Dn be the family of the domains {QI : I ∈ En} which appear at the n’th step
of the construction of the Cantor set X. Then, after expanding and reordering, the
product above can be rewritten as

(4)
1

(diamQ)s

∑
QI∈Dnj

(diamQI)
s.

So we have
∑

QI∈Dnj
(diamQI)

s → 0. This shows that dimH(X) ≤ ρ. �

Remark 12. In the next Section we shall prove that, actually, dimH(X) = ρ,
see Proposition 16 and Corollary 17.

The observation in Proposition 13 below will be used is Section 6.

Proposition 13. There exist K ∈ N, C > 0 such that the following holds. Let
X be an admissible Cantor set, I is a cylinder in the symbolic space Σ and J is
another cylinder of length K (so IJ is a subcylinder of I, with K symbols added).
Let z ∈ QIJ . Then

dist(z, ∂QI) > C diamQI .

Proof. It is well known that every topological annulus A with sufficiently large
modulus N contains a round annulus R separating the boundary components of A,
with a modulus Ñ > N − C where C is some absolute constant (see, e.g. [McM,
Thm. 2.1.]) Fix N so large that Ñ > 1. Fix K such that KM > N . Consider the
annulus A = QI \QIJ . It follows from the definition of an admissible Cantor set that
mod(A) > KM > N . Since this annulus separates QIJ from ∂QI , we conclude that,
for z ∈ QIJ , dist(z, ∂QI) > eÑ diamQIJ > diamQIJ > aK diamQI . �

4. Conformal measures

Let, as above, X0 be an admissible set, and set Xk = fk(X0).

Definition 14. Fix h > 0. The sequence of probability measures ν0, ν1, . . . is
called a collection of h-conformal measures if supp νk = Xk and the following holds:
there exists a sequence λk,h of positive “scaling factors” such that

(5) L∗k,h(νk+1) = λk,hνk.

Note that the condition (5) is equivalent to the following: if B is a Borel measurable
set, B ⊂ Qk,i then

(6) νk+1(fk(B)) = λk,h · (|ak,i|−h) · νk(B) = λk,h

ˆ
B

|f ′k|h dνk.

The collection of h-conformal measures exists for every h ≥ 0. The measure ν0 is
uniquely determined by assigning to every cylinder I, of length m, the value of the
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measure ν0(I), or, more precisely, of the set C0(I) ⊂ X0:

(7) ν0(I) =

(
|(fm−1 ◦ · · · ◦ f1 ◦ f0)′|−h

)
|I

λ0,hλ1,h . . . λm−1,h

.

The measures νk, k > 0, are defined in a similar way:

(8) νk(I) =

(
|(fm−1+k ◦ · · · ◦ f1+k ◦ fk)′|−h

)
|I

λk,hλ1+k,h . . . λm−1+k,h

.

The normalizing factors are given explicitly:

(9) λn,h = (|an,1|h + . . . |an,N |h),
n = 0, 1, 2, . . . .

Let us note the following straightforward

Proposition 15. For every h, the sequence of h-conformal measures νk is in-
variant, i.e.

(fk)∗(νk) = νk+1.

Proof. This follows directly from the conformality condition (5). It is enough
to check it for k = 0. Let A ⊂ X1 be an arbitrary Borel set. Then f−1

0 (A) =
A1 ∪ A2 ∪ · · · ∪ AN , where Aj ⊂ Q0,j. Using (6) we write

ν0(Aj) = |a0,j|h ·
1

λ0,h

ν1(A)

and

ν0(f−1
0 (A)) =

N∑
j=1

ν0(Aj) =
1

λ0,h

(
N∑
j=0

|a0,j|h
)
ν1(A) = ν1(A). �

We note the following.

Proposition 16. Let ρ be the real number defined by (3). If νk is the sequence
of ρ- conformal measures then, for every k ≥ 0

(10) dimH(νk) = ρ

Proof. It is obvious that the dimensions of all the measures νk are the same.
Indeed, let A be a Borel measurable set such that νk(A) = 1. Then νk+1(fk(A)) = 1
and, since fk, restricted to every set Qk,i is linear, dimH(fk(A)) = dimH(A). Con-
versely, let B be a Borel measurable set such that νk+1(B) = 1. Then νk(f−1

k (B)) = 1
and dimH(f−1

k (B)) = dimH(B).
So, we check (10) for ν0. Fix an arbitrary s < ρ. It follows from condition (3)

in Definition 2 that there exists r0 < diamQ such that, if z ∈ Xk then the ball
B(z, r0) is contained in some domain Qk,i (so the map fk is injective and continuous
in B(z, r0)).

Now, take an arbitrary ball B = B(z, r) with z ∈ X0 and r < r0 and let n be the
least iterate such that the diameter of fn−1 ◦ · · · ◦ f1 ◦ f0(B) becomes larger than r0.
Then we have, using (6),

ν0(B) =

´
fn(B)

|(f−n)′|ρ dνn
λ0,ρ . . . λn−1,ρ

.

The nominator of the last fraction is just, up to a bounded factor, (diam(B))ρ �
rρ ≤ (diam(B))s.



286 Athanasios Batakis and Anna Zdunik

After neglecting this bounded factor we can write the above ratio as

(11) (diam(B))s · diam(B)ρ−s

λ0,ρλ1,ρ . . . λn−1,ρ

.

Since all the maps fk are expanding, with expansion factor bounded from below by
1
a
> 1 , n is related to diamB = 2r, namely r ≤ exp(−nδ) for some positive δ, and

we can estimate the second factor in (11) from above by

(12) C exp(−n(ρ− s)δ) 1

λ0,ρλ1,ρ . . . λn−1,ρ

,

where C > 0 is a constant. Now, choose s′ ∈ (s, ρ) sufficiently close to ρ so that, for
all k, λk,s′ ≤ λk,ρ exp(δ(ρ− s)). Then

exp(−n(ρ− s)δ) 1

λ0,ρλ1,ρ . . . λn−1,ρ

≤ 1

λ0,s′λ1,s′ . . . λn−1,s′
.

Since ρ was a “transition parameter”, λ0,s′λ1,s′ . . . λn−1,s′ →∞ for every s′ < ρ. This
proves that for all z ∈ X0

lim
r→0

ν0(B(z, r))

rs
= 0,

which implies that dimH(ν0) ≥ s and, consequently, dimH(ν0) ≥ ρ. Together with
the estimate dimH(X0) ≤ ρ, this gives dimH(ν0) = ρ. �

Corollary 17. ρ = dimH(X0).

Proof. Proposition 11 gives the estimate dimH(X0) ≤ ρ, while Proposition 10
implies that dimH(X0) ≥ dimH(ν0) = ρ. �

We end this section with the following corollary, providing the bounds formulated
in Remark 7.

Corollary 18. Let X be an admissible and N,M, a, a the associated bounds.
There are exist constants 0 < Λ < Λ < 2 , depending only on N,M, a, a and on the
domain Q such that,

Λ < dimH(X) < Λ.

Proof. Fix Λ > 0 satisfying N(a)Λ = 1 and let s < Λ. Then, for every k ≥ 0,
|ak,1|s + . . . |ak,n|s > 1. Therefore, ρ ≥ s, and, since s was an arbitrary number in
(0,Λ), we conclude that ρ ≥ Λ.

To get the upper bound of the dimension , we use Proposition 13. Applying
Proposition 13 to QI = Q we see that there exist constants C > 0, K ∈ N such that
for every admissible Cantor set X, and every cylinder J of length K, dist(QJ, ∂Q) >
C. This implies that there exists another constant c < 1 such that

area(
⋃
|J |=K QJ)

area(Q)
< c

or, equivalently,
K−1∏
k=0

(|ak,1|2 + · · ·+ |ak,N |2) < c.
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Applying the same bound for consecutive admissible sets X0, XK , X2K . . . and mul-
tiplying, we get, with possibly larger constant δ < 1:

n−1∏
k=0

(|ak,1|2 + · · ·+ |ak,N |2) < δn

for every n ∈ N.
Therefore,

n−1∏
k=0

(|ak,1|s + · · ·+ |ak,N |s) <
n−1∏
k=0

(|ak,1|2 + · · ·+ |ak,N |2) · (as−2)n < δn · (|a|s−2)n.

Define Λ < 2 as the value satisfying the equation aΛ−2 · δ = 1. For every s > Λ,
we conclude, using the formula for Hausdorff dimension of X (see Corollary 17) that
dimH(X) ≤ s. Thus, dimH(X) ≤ Λ. �

5. Hausdorff and harmonic measures

In this section we prove Theorem B. We start with

Theorem 19. Let (fn) be a sequence of admissible maps and letX the associated
Cantor set. There exist a sequence of admissible functions (f̃n) =

∑N
i=1(ã−1

k,iz +

b̃k,i)11Q̃k,i such that

(1) limk→∞maxi=1,...N(|ãk,i − ak,i|) = 0,
(2) b̃k,i = bk,i for k ∈ N, i = 1, . . . N ,
(3) the associated Cantor set X̃ satisfies dimH(X̃) = dimH(X),
(4) 0 < HdimH(X̃)(X̃) <∞.

We can also deduce

Corollary 20. Let X̃ be the admissible Cantor set, constructed in Theorem 19.
If ω and ω̃ are the harmonic measures of X and X̃ respectively, then dimH ω =
dimH ω̃.

In [Ba2] the author proved that if all squares of a given generation k are of equal
size ak (i.e. ak,i = ak, for any i, j = 1, . . . , N and for all k), then the dimension
of harmonic measure is a continuous function with respect to the `∞ norm of the
sequence (ak). More recently, in [BaHa] the authors extended this result to Cantor
sets defined by a sequence of conformal maps. In particular, applied to our case, this
implies that if two Cantor sets X,X ′ are defined by sequences (ak,i, bk,i), (a

′
k,i, b

′
k,i)

respectively, such that limk maxi{|ak,i − a′k,i| + |bk,i − b′k,i|} = 0, then the associated
harmonic measures have the same dimension.

Thus, Theorem 19 and Corollary 20 imply Theorem B. The rest of this section
is devoted to the proof of Theorem 19.

The following proposition is a refinement of Proposition 11.

Proposition 21. Let ak,1, . . . ak,N be the sequence of “scales” used in the con-
struction of X. For all h > 0 then there is a constant C > such that

1

C
lim inf
n→∞

n∏
k=1

λk,h ≤ Hh(X) ≤ lim inf
n→∞

n∏
k=1

λk,h
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Proof. Subsets of the Cantor set X and the cylinders on the symbolic space Σ
are identified through the coding. The upper bound of Hh(X) is immediate since∏n

k=1 λk,h corresponds to the natural covering of X by its cylinders of the nth gener-
ation.

To prove the lower bound take any ball U intersecting X and define IU to be the
cylinder of the highest generation s containing U ∩X. More precisely, take

s(U) = max{n ; ∃IUn ∈ En : U ∩X ⊂ IUn },
and let IU = IUs(U).

Clearly, diam(U ∩X) ≤ diam(IU). On the other hand, U intersects two distinct
subcylinders of IUs . By the modulus separation condition (3) in Definition 2, we
deduce that there is a constant C = C(M,Q) such that diam(U) ≥ aC diam(IU).

This implies that we can replace all balls U of a given covering R of X by cylin-
ders IU of similar size and still control the variation of the sum

∑
U∈R diam(U)h ≥

(aC)h
∑

U∈R diam(IU)h.
Since we can only consider coverings with cylinders, one can easily check that we

get optimal coverings using cylinders of the same generation. Indeed, for n ∈ N we
say that a covering R with cylinders is n-optimal for Hh if∑
I∈R

diam(I)h = min

{∑
R′

diam(I)h ; R′ covering with cylinders of generation ≤ n

}
.

Take an n- optimal covering R, of minimal cardinality. Choose I a cylinder in R
of the minimal generation and let I ′ be any cylinder of the same generation not
contained in R. There is hence a subcovering R ∩ I ′ = {I ′J1, . . . , I

′J`} of I ′ with
subcylinders of I ′.

By the definition of R we have diam(I ′)h >
∑`

i=1 diam(I ′Ji)
h or, equivalently,∑̀

i=1

diam(I ′Ji)
h

diam(I ′)h
< 1.

But this latter sum is equal to
∑`

i=1
diam(IJi)

h

diam(I)h
and hence diam(I)h >

∑`
i=1 diam(IJi)

h

which contradicts I ∈ R. It follows that all cylinders of the same generation as I,
say, n, are in R.

We conclude that there exists a constant C > 0 such that for every cover R of
the set X, by balls of diameters smaller than ε, there exists a cover R′ by cylinder
sets of the same generation n, and of diameter smaller than Cε, such that∑

U∈R

diam(U)h ≥ 1

C

∑
I∈R′

diam(I)h

Note that, as in (4), we can write∑
I∈R′

diam(I)h = diam(X)h ·
n∏
k=1

λk,h

and the proof is complete. �

Let us now turn to the proof of Theorem 19.
Proof. We construct the sequence f̃n satisfying (1) and (3). Recall that ρ denotes

the dimension of X.
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Let us distinguish two cases:

Case 1: Hρ(X) = 0. Since Hρ−ε(X) = +∞ for all ε > 0, Proposition 21 implies
that

(13) lim
n→∞

n∏
k=1

λk,ρ−ε = +∞.

The construction is carried out by induction.

Step 1. Define, for n ∈ N, ε1,n to be a real number such that
n∏
k=1

λk,ρ−ε1,n = 1.

Note that ε1,n does not have to be positive. However, since Hρ(X) = 0, we have,
using Proposition 21 that lim infn Πn

k=1λk,ρ = 0. Thus, ε1,n is positive for infinitely
many n’s.

By (13) lim
n→∞

ε1,n = 0+. We can therefore choose n1 such that

ε1,n1 = max{ε1,n ; n ∈ N} > 0.

For k = 1, . . . , n1 and i = 1, . . . , N , put

ãk,i = ak,i|ak,i|−
ε1,n1
ρ .

This implies
∏n1

k=1 (|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) = 1 and, by the choice of ε1,n1 ,∏n
k=1 (|ãk,1|ρ + ãk,2|ρ + · · ·+ |ãk,N |ρ) ≥ 1, for n ≤ n1 . Remark also that, |ãk,i| ≥
|ak,i|.

Step 2. Define for n > n1, ε2,n to be a real number such that
n∏

k=n1+1

λk,ρ−ε2,n = 1.

Clearly, limn→∞ ε2,n = 0. As before we can now choose n2 such that ε2,n2 =
max{ε2,n ; n > n1} > 0. Now, we have, for n ≥ n1

1 =
n∏
k=1

λk,ρ−ε1,n =

n1∏
k=1

λk,ρ−ε1,n

n∏
k=n1+1

λk,ρ−ε1,n .

Since, for n > n1, ε1,n ≤ ε1,n1 we get
n1∏
k=1

λk,ρ−ε1,n ≤
n1∏
k=1

λk,ρ−ε1,n1 = 1.

This implies that
n∏

k=n1+1

λk,ρ−ε1,n ≥ 1

and therefore ε2,n ≤ ε1,n, for all n > n1. In particular, ε2,n2 ≤ ε1,n1 .
For k = n1 + 1, . . . , n2 and i = 1, . . . , N put

ãk,i = ak,i|ak,i|−
ε2,n2
ρ .
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The same reasoning as above now gives
∏n2

k=1 (|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) = 1 and
by the choice of ε2,n2 ,

∏n
k=1 (|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) ≥ 1, for n ≤ n1 . Again,

|ãk,i| ≥ |ak,i|.
Step 3. Proceed by induction.

Since ε1,n ≥ εk,n for all k, n we have that limk→∞ εk,nk = 0. This implies that
|ãk,i − ak,i| → 0 as k →∞. We define the maps (f̃n) and the domains Q̃k,i using the
modified constants ãk,i:

f̃n(z) =
N∑
i=1

(ã−1
k,iz + b̃k,i)11Q̃k,i

where Q̃k,i = ãk,iQ+ bk,i. Let X̃ be the corresponding Cantor set. We have

lim inf
n→∞

n∏
k=1

(|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) = 1,

which proves Hρ(X̃) = 1.

Case 2: Hρ(X) = +∞. This case can be treated in the same way as Case 1.
Nevertheless, there is a simple way to deal with it. Clearly, since ρ is the dimension
of the set, for all δ < 1 we get that lim infn→∞ δ

n
∏n

k=1 λk,ρ = 0 and therefore we can
find a sequence (δj)j < 1, limj→∞ δj = 1 and a strictly increasing sequence of positive
integers nj such that

lim inf
K→∞

K∏
j=1

nj+1∏
`=nj

δ
nj+1−nj
j λ`,ρ = 0.

We can now modify the sequence (ak,i), by putting for all j ∈ N and k =
nj + 1, . . . , nj+1

a′k,i = δ
1
ρ

j ak,i,

the sequence (bk,i) is left unchanged. This yields a Cantor set X ′ (of the same Haus-
dorff dimension) satisfying limk maxi{|ak,i − a′k,i|} = 0 and lim infn→∞

∏n
k=1 λ

′
k,ρ =

0 = Hρ(X
′), which puts the situation back to case one. �

6. Green’s functions and capacity

We denote by Cap(X) the logarithmic capacity ofX. We start with the following.

Proposition 22. There exists a constant κ > 0, depending only onM,a, a,Q,N ,
such that, if X is an admissible Cantor set then Cap(X) > κ.

Proof. One can assume that diamQ = 1. Fix h positive and so small that
P = Nah > 1. We shall use the measure νh to estimate the capacity from below.
Then, using (7) we get, for every cylinder I,

νh(I) ≤ (diamQI)
h 1

P n
< (diamQI)

h

The logarithmic potential of the measure νh can be estimated pointwise. Let
z ∈ X; denote by In(z) the cylinder containing x (under the identification of X with
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the symbolic space Σ). Then, using Proposition 13, we get

Uνh(z) =

ˆ
log

1

|z − w|
dνh(w) ≤

∑
n

νh(In(z)) · inf
w∈In(z)\In+1(z)

log
1

|z − w|

≤
∑
n

νh(In(z)) log
1

C diamQIn+1(z)

≤
∑
n

diamQIn(z) log
1

C diamQIn+1(z)

.

Since diamQIn(z) < an and diamQIn(z) > an, this easily gives a common bound on
Uνh(z). Consequently, we get a common bound for the energy function:

I(νh) =

ˆ
Uνh(z)dνh(z) ≤ I0 <∞

and Cap(X) ≥ exp(−I0). �

Let X = X0 be an admissible Cantor set, and let (Xk)
∞
k=0 be the associated

sequence of consecutive Cantor sets, according to (2). Denote by ωk the harmonic
measure on the Cantor set Xk, evaluated at ∞. Denote by Gk the Green’s function
in C \Xk. Note that all the sets Xk are regular in the sense of Dirichlet, thus each
function Gk has a continuous extension to the whole plane C and Gk |Xk = 0. We
clearly have ωk = ∆Gk.

Given an admissible Cantor set X, we denote by GX the family of all functions
F : Q → R such that F is continuous in Q, F|Q\X is harmonic and strictly positive,
while F|X = 0. Obviously, such a function is subharmonic in Q and we require,
additionally, that for F ∈ GX , the measure µF = ∆(F ) to be normalized, i.e. µF (X) =
1.

We introduce the following operators in a way similar to those proposed in [Zd1].

Definition 23. Let Pk : GXk → GXk+1
be defined as

Pk(F )(x) =
∑

y∈f−1
k (x)

F (y)

Recall the notation: if µ is a measure in Xk then (fk)∗µ is the image of the
measure µ under fk; in other words (fk)∗µ = µ ◦ f−1

k .

Proposition 24. If F ∈ GXk then

(fk)∗(µF ) = ∆Pk(F ).

Proof. Let φ ∈ C∞0 (Q) be a test function. Then

∆Pk(F )(φ) =

ˆ
Q

∆φ · Pk(F ) =
N∑
i=1

ˆ
Qk,i

∆φ ◦ fk · F · |f ′k|2

=
N∑
i=1

ˆ
Qk,i

∆(φ ◦ fk) · F =

ˆ
Q

φ ◦ fk dµF = (fk)∗(φ),

which proves the statement. �

Remark 8 and the Maximum Principle give the following observation (see also
[MV], [Zd3]).
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Proposition 25. There exists a universal constant D > 0 such that if X is
an admissible Cantor set and F1, F2 ∈ GX then the measures µF1 , µF2 are mutually
absolutely continuous, with density bounded by D.

Proof. Let (Qk)∞k=0, be the sequence of admissible families, defining the set X
(see Definition 4). Let F ∈ GX , let G be the standard Green’s function for X. Let
γ = γQ0 be the Jordan curve described in Remark 8. Since γ separates ∂Q from the
union

⋃N
j=1Q0,j, and since the set X is contained in the union

⋃N
j=1 Q0,j, we conclude

that X is contained in the Jordan domain bounded by the curve γ. In the sequel,
we denote this curve γ by γ(X). Since µF is a probability measure, the ratio G(x)

F (x)

cannot be larger than 1 everywhere in γ(X). Indeed, if G(x)
F (x)
≥ L > 1 in γ, then the

Maximum Principle implies that the inequality G(x) ≥ LF (x) holds everywhere in
Q. This would imply µ(X) ≥ Lω(X) = 1, a contradiction. By the same reason, the
above ratio cannot be smaller than 1 everywhere in γ(X). Together with Remark 8
this implies that there exists a constant C > 0, independent of both the set X and
F ∈ GX such that, for an arbitrary function F ∈ GX , 1

C
≤ F|γ(X) ≤ C. Using the

Maximum Principle again, we conclude that 1
C2 ≤

dµF1
dµF2
≤ C2. �

Proposition 26. (Uniform decay of Green’s functions) There exist constants
0 < η < 1, C > 0 (depending on Q,M, a, a,N) such that, for every admissible
Cantor set X, for an arbitrary function F ∈ GX , and an arbitrary cylinder I of
length n,

(14) sup
z∈QI

F (z) ≤ Cηn.

Proof. First, notice that there is a common bound on F|γ(X), over all admissible
sets X, and all functions F ∈ GX (see the proof of Proposition 25). This implies that
there exists a constant C > 0 such that FQI ≤ C for every cylinder I of length 1.

Now, let I be an arbitrary cylinder of length n and IJ its subcylinder of length
n+ 1. Let z ∈ ∂QIJ . Put XI = QI ∩X. Then

F (z) =

ˆ
∂QI

F (w)ω(z, dw,QI \XI).

Thus,

(15) sup
z∈∂QIJ

F (z) ≤ sup
w∈∂QI

F (w) · ω(z, ∂QI , QI \XI)

It remains to check that

(16) ω(z, ∂QI , QI \XI) < η

for some 0 < η < 1. This follows from the standard estimate (from below) of the
harmonic measure by the capacity (see [GM], Theorem III. 9.1).

Indeed, since the required estimate is invariant under conformal maps, and the
pair (QI , XI) is mapped under fn onto the pair (Q,Xn), it is enough to prove that
there exists η ∈ (0, 1) such that, for an arbitrary admissible Cantor set X,

ω(z,X,Q \X) > 1− η

where z ∈ QJ and |J | = 1. Since we have the estimate of the capacity Cap(X) from
below by κ, and since the set X is separated from ∂Q by some annulus with modulus
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larger than M , the estimate (16) follows. Thus, (15) implies, by induction, that, if I
is a cylinder of length n then

sup
z∈∂QI

F (z) < Cηn.

The required estimate on supz∈QI F (z) follows now from the Maximum Principle. �

7. Sequences and convergence of admissible Cantor sets

Recall that Q is a fixed Jordan domain. Recall that a non-homogeneous Cantor
set is given by a sequence of maps fk(z) =

∑N
i=1(a−1

k,iz + bk,i)11Qk,i , where a
−1
k,iQk,i +

bk,i = Q and k = 0, 1, 2 . . . . Obviously, fk is N -to-one and the branches (fk)
−1
i : Q→

Qk,i are given by (fk)
−1
i (w) = ak,i(w − bk,i).

Assume that we are given an infinite sequence of admissible Cantor setsX(0), X(1),
. . . , X(n), . . . . Let us note the following:

Proposition 27. Let X(0), X(1), . . . X(n), . . . be a sequence of admissible Cantor
sets of the same Hausdorff dimension ρ. For each n denote by (nfk)

∞
k=0, the sequence

of maps defining the set X(n). Let h > 0 be given (not necessarily equal to the
Hausdorff dimension of the sets X(n)). For every n, let {ν(n)

k }∞k=0 be the sequence of
h-conformal measures associated to the set X(n). Then one can extract a subsequence
ns so that, for all k ∈ N, and all i = 1, . . . N the following holds:

(1) The limit lims→∞(nsfk)
−1
i = (∞fk)

−1
i exists (which, equivalently, means sim-

ply that for all k the coefficients of the piecewise linear map nsfk converge to
the coefficient of the piecewise linear map ∞fk). The Cantor set X(∞), built
with the maps ∞fk is admissible.

(2) For all k ≥ 0, the following (weak-*) limits exist:

ν
(ns)
k → ν

(∞)
k

and ν(∞)
k is the system of h- conformal measures for X(∞). The corresponding

normalizing factors are

λ∞k,h = lim
s→∞

λnsk,h.

Proof. The proof of convergence of the maps uses only the diagonal argument.
Note that we do not require (and do not prove) this convergence to be uniform with
respect to k.

To prove the convergence of the conformal measures, it is enough to recall the
explicit formulas (7) and (8). Let us fix an arbitrary cylinder I, of length m. Then

ν
(ns)
0 (I) =

(
|(nsfm−1 ◦ · · · ◦ns f1 ◦ns f0)′|−h

)
|I

λns0,hλ
ns
1,h . . . λ

ns
m−1,h

and it is clear that the convergence of the coefficients of the maps nsfk for k =

0, . . .m−1 gives the convergence of ν(ns)
0 (I) to ν(∞)

0 (I). This easily implies that ν(ns)
0

converge weakly to ν(∞)
0 , treated as measures in Σ and also as measures in C. The

same reasoning applies for the measures ν(ns)
k . Here, as usual, we identify, through

an appropriate coding, the measures on the Cantor sets X(ns)
k and the measures on

the symbolic space Σ. �
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Now, let X(n) be a sequence of admissible Cantor sets, converging to X(∞) in the
sense of item (1) in Proposition 27.

Proposition 28. Let X(0), X(1), . . . X(n), . . . be a sequence of admissible Cantor
sets, converging to X(∞) in the sense of item (1) in Proposition 27. Assume that a
sequence of subharmonic functions F (n) : Q→ R is given:

F (n) ∈ GX(n) .

Then one extract a subsequence such that F (ns) converges uniformly on compact
subsets of Q to

F (∞) ∈ GX(∞) .

Moreover, the sequence of measures µns = ∆(F (ns)) converges weakly to µ(∞) =
∆(F (∞)).

Proof. The proof, again, uses the diagonal argument. Write Q \ X(∞) as a
countable union

⋃
Cm of compact connected subsets of Q\X(∞), where Cm+1 ⊃ Cm:

Cm = Q
′
m \

⋃
|J |=m

QJ

where QJ correspond to the coding for the limit set X(∞) and Q′m is an increasing
sequence of topological discs, with X(∞) ⊂ Q′m ⊂ Q

′
m ⊂ Q′m+1 and

⋃
Q′m = Q.

Fix m. As X(n) → X(∞), the functions F (n) form a uniformly bounded sequence
of harmonic functions in a neighbourhood of Cm, starting from some n = n(m). Thus,
one can extract a subsequence converging uniformly in Cm to some function F (∞)

defined in Cm and harmonic in int(Cm). In the inductive construction, we choose
yet another subsequence, converging uniformly in Cm+1. The limit must coincide in
int(Cm) with the previously found limit F (∞).

The required subsequence ns is now chosen according to the Cantor diagonal
argument. It is obvious from the construction that F (∞) is positive and harmonic
in Q \ X(∞). It remains to check that setting F (∞)(x) = 0 for x ∈ X(∞) gives a
continuous (thus: also subharmonic) extension of F (∞) to the whole domain Q.

Let I be an arbitrary cylinder, denote by l the length of I. Let I ′ be the cylinder
of length l − 1 containing I, and let QI (resp. QI′) be the domain corresponding to
I (I ′), defined by the coding for X(∞). Similarly, denote by Q

(n)
I (resp. Q(n)

I′ ) the
domain corresponding to I (resp. I ′), defined by the coding for X(n).

Then, for large ns, QI ⊂ Q
(ns)
I′ . Let z ∈ QI . Using the estimate (14) we get that

F (ns)(z) ≤ Cηl−1

and, therefore,
F (∞)(z) ≤ Cηl−1.

Thus F (∞)(z) tends to 0 as z → X(∞).
The above reasoning shows also that the convergence F (ns) → F (∞) is uniform

in each set Q′m. Once the convergence F (ns) ⇒ F (∞) has been established, the
convergence of the measures µns is standard: if φ ∈ C∞0 (Q), then

∆G̃(ns)(φ) =

ˆ
∆φG̃(ns) →

ˆ
∆φG̃(∞) = ∆G̃(∞)(φ). �
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8. Sufficient condition for the inequality dim(X) > dim(ω)

In this section we show how to adapt the argument proposed by Bourgain in
[Bou] to prove the inequality dim(X) > dim(ω). In this way, we obtain some ex-
plicit sufficient condition which guarantees the inequality dim(X) > dim(ω) (see
Proposition 29 below).

Recall that ω = ω0 is the standard harmonic measure in X0, evaluated at the
point at ∞. Similarly, the harmonic measure on the set Xk is denoted by ωk. We
shall use the natural codings C0, C1, . . . introduced in Definition 10.

In what follows, we often identify the symbolic cylinder I and the corresponding
subset of the Cantor set QI ∩X0 = C−1

0 (I).

Proposition 29. Let X = X0 be the admissible Cantor set. Let, as above,
ω = ω0 be the harmonic measure on X0, ρ = dimH(X) and let ν = ν0 be the ρ-
conformal measure on X0. Assume the following: There exists K > 0 and γ < 1
such that for every cylinder I = (I)n ⊂ X of length n there exists a subcylinder
IJ = (IJ)n+K(I), K(I) ≤ K such that

(17) max

(
ω(IJ)

ω(I)
:
ν(IJ)

ν(I)
,
ν(IJ)

ν(I)
:
ω(IJ)

ω(I)

)
>

1

γ
.

Then dimH(ω) < dimH(X)− δ where δ is a constant depending only on a, K, N , γ.

Proof. Given I = In ∈ En, denote by En+K(I)(I) the family of all cylinders of
generation n + K(I), which are contained in I. First, we check that it follows from
(17) that there exists 0 < β < 1 such that, for every I = In ∈ En,

(18)
∑

IJ∈En+K(I)(I)

(ω(IJ))
1
2 (ν(IJ))

1
2 ≤ βω(I)

1
2ν(I)

1
2 .

The constant β depends on K, a, a and γ. This can be seen as follows: Notice that,
given two sequences of positive numbers c1, . . . cκ and d1, . . . dκ such that

∑
ci =∑

di = 1 we have, by Schwarz inequality,
∑
c

1
2
i d

1
2
i ≤ 1 and the equality holds iff the

sequences are equal.
Let κ be a positive integer and B0 = {(p1, . . . , pκ, q1, . . . qκ) ∈ [0, 1]2κ ;

∑
i pi =∑

i qi = 1} and, for 0 < γ < 1 take the compact subset Bγ of B0:

Bγ =

{
(p1, . . . , pκ, q1, . . . qκ) ∈ [0, 1]2κ ;

∑
i

pi =
∑
i

qi = 1

and ∃j ∈ {1, . . . , κ} pj ≤ γqj

}
.

Since the function (p1, . . . , pκ, q1, . . . , qκ) 7→
∑

i

√
piqi is continuous, we get that there

exists β = β(γ, κ) < 1 such that

sup
Bγ

∑
i

√
piqi ≤ β < 1.

Finally, to get (18), one can now apply the previous to pi = ω(IJ)/ω(I) and qi =
ν(IJ)/ν(I).

Now, (18) implies easily that for n > K,

(19)
∑
I∈En

ω(I)
1
2ν(I)

1
2 ≤ β̃n
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with some β < β̃ < 1. Next, fix some s > ρ such that

(20) β̃aρ−s < 1

Since s > ρ = dimH(X), we have

lim inf
n→∞

λ1,sλ2,s . . . λn,s = 0.

Thus, there exists a sequence ni → ∞ such that limi→∞ λ1,sλ2,s . . . λni,s = 0. Fix
such a sequence.

Obviously, one can assume that diamX = 1. Now, formula (7) gives

ν(Ini) =
(diam Ini)

ρ

λ1,ρλ2,ρ . . . λni,ρ
.

Since λk,ρ ≤ aρ−sλk,s, we can write, for every cylinder I ∈ Eni ,

ν(Ini) ≥ (diam Ini)
ρ(a)(s−ρ)ni

1

λ1,sλ2,s . . . λni,s
≥ (diam Ini)

ρ(a)(s−ρ)ni ,

for ni large, since the value of the omitted fraction tends to ∞.
Inserting this inequality to (19) and using (20) we get, for small positive ε,∑

J∈Eni

(ω(J))
1
2 (diam(J))

ρ−ε
2 ≤

∑
J∈Eni

(ω(J))
1
2 (ν(J))

1
2a

ρ−s
2
ni diam(J)−

ε
2

≤
∑
J∈Eni

(ω(J))
1
2 (ν(J))

1
2 (a)( ρ−s−ε

2
)ni

≤ β̃ni(a)( ρ−s−ε
2

)ni =
(
β̃aρ−sa

s−ρ−ε
2

)ni
< β̂ni

(21)

with some β̂ < 1, if ε is small (since s has been chosen so that β̃aρ−s < 1).
We shall show that (21) implies that dimH ω < ρ. Denote by Fni the family

of all cylinders I ∈ Eni for which ω(I) < diam(I)ρ−ε, and by Hni the family of the
remaining cylinders in Eni . Then∑

I∈Hni

(diam I)ρ−ε ≤
∑
I∈Hni

ω(I) ≤ 1

and ∑
I∈Fni

ω(I) =
∑
I∈Fni

ω(I)
1
2ω(I)

1
2 ≤

∑
I∈Fni

ω(I)
1
2 diam(I)

ρ−ε
2 ≤ β̂ni .

Thus, by Borel–Cantelli lemma,

ω

⋃
i0

∞⋂
i=i0

(
⋃

I∈Hni

I)

 = 1

On the other hand, we see, directly from the definition of Hausdorff measure, that
(ρ− ε)- dimensional Hausdorff measure of the above set is σ–finite.

Therefore, dimH(ω) ≤ ρ− ε. �
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9. The alternative case

We will investigate the case when condition (17) of Proposition 29 fails. We keep
the notation of the previous sections. In particular, X = X0 is an admissible Cantor
set of dimension ρ. Let νk be the collection of ρ-conformal measures associated to
X. Note that (although this fact in not used in our proof), we can assume, using
Theorem B, that the starting measures νk are just the normalized ρ dimensional
Hausdorff measures.

Proposition 30. Let X = X0 be an admissible Cantor set, let ρ = dimH(X),
and let νk be the collection of ρ-conformal measures associated to X. Suppose that
for all 1 > γ > 0 and K ∈ N there exist a cylinder I such that for all subcylinders
IJ , where J is a word of length ≤ K we have

(22) γ <

∣∣∣∣ω(IJ)

ω(I)
:
ν0(IJ)

ν0(I)

∣∣∣∣ < 1

γ
.

Then we can construct another admissible Cantor set X̃ (not necessarily of the same
dimension ρ), a ρ-conformal measure ν̃ on X̃ and a bounded subharmonic function
F ∈ GX̃ such that ∆F = ν̃.

Proof. The set X̃ will be constructed through the limit procedure described in
Section 7. Let (γn) be a sequence of numbers in (0, 1), such that limn→∞ γn = 1.
Under the hypothesis we can find a sequence (In)n of cylinders of size kn, such that
for every word J of length ≤ n

(23) γn <

∣∣∣∣ω(InJ)

ω(In)
:
ν0(InJ)

ν0(In)

∣∣∣∣ < 1

γn
.

For any cylinder I of length k, denote by fI the linear map fk−1◦· · ·◦f0 mapping
QI onto Q. Consider the functions Gkn defined in Q by

Gkn(x) =
1

ω(In)
G(f−1

In
(x)).

Observe that Gkn ∈ GXkn . Denote µkn = ∆Gkn . Thus, µkn is a probability measure
on Xkn . Let J be a cylinder, identified, through the coding, with the appropriate
subset of Xkn . Then

µkn(J) =
ω(IknJ)

ω(Ikn)
.

The formula (23) can be now rewritten as follows: for every cylinder J of length ≤ n:

(24) γn < |µkn(J) : νkn(J)| < 1

γn
.

We can now apply Propositions 27 and 28 to the sequence of admissible Cantor
sets X(n) := Xkn , the associated ρ-conformal measures ν(n)

0 := νkn (and ν
(n)
m :=

νkn+m,m = 1, 2 . . . ) and the sequence of functions

F (n) := Gkn ∈ G(Xkn) = G(X(n)).

We obtain an admissible Cantor set X̃ and a function G̃ ∈ GX̃ such that ∆G̃ = µ̃, µ̃
being the limit of (a subsequence of) the measures µnk . Moreover, the measures νkn
converge weakly to the ρ- conformal measure ν̃ on X̃.



298 Athanasios Batakis and Anna Zdunik

On the other hand, the relation (24), implies that, for every cylinder J ,

µkn(J)

νkn(J)
→ 1

(where, again J is identified with an appropriate subset of Xkn). This implies (cf.
Proposition 27) that µ̃ is a ρ-conformal measure on X̃, which completes the proof. �

10. Rigidity argument

In this section we prove the following result which implies that the “alternative
case” considered in the previous section cannot hold.

Proposition 31. Let X = X0 be an admissible Cantor set, and let (νk)
∞
k=0 be

the collection of associated ρ conformal measures, where ρ is not necessarily equal to
the Hausdorff dimension of the sets Xk. Further, let G̃ ∈ GX and let ω̃ = ∆G̃. Then
the measures ω̃ and ν = ν0 do not coincide.

Proof. Consider, again, the sets

(25) X = X0
f0−→ X1

fl−→ X2
f2−→ . . . ,

the family of functions G̃j defined inductively by setting G̃0 = G̃, G̃k+1 = Pk(G̃k),
and the corresponding measures ω̃0 = ω̃ = ∆G̃0, ω̃k = ∆G̃k.

The proof of Proposition 31 will be divided into two parts.

10.1. Non-real case.

Lemma 32. Assume that none of the sets X0, X1, X2 . . . is contained in a set of
zeros of a harmonic function defined in Q. If ω̃ = ν then for every cylinder I ∈ Ek
there exists a constant αI such that the equality

(26) G̃k ◦ fk = G̃0 · αI

holds everywhere in QI .

Proof of the lemma. Since ω̃k is the image of ω̃0 under the map fk, νk is the
image of ν0 under fk and also ω̃0 = ν0, we have: ω̃k = νk.

Consider now two measures in QI : (ω̃0)|QI and ω̃k ◦ fkQI . We have

ω̃k ◦ fk|QI = νk ◦ fkQI = (αI · ν0)|QI

where αI = |(fk)′|ρ|QI · λ0,ρ · · · · · λk−1,ρ . But (ω̃0)|QI = ∆((G̃0)|QI and (ω̃k ◦ fk)|Qj =

∆((G̃k ◦ fk)|QI ). Since the measures are equal in QI , we get

(27) (G̃k ◦ fk)|QI = (G̃0)|QI · αI +H

where H is a harmonic function in QI . On the other hand, both G̃k ◦ fk and G̃0 are
equal to 0 in QI ∩X = I and by assumption the set Xk (thus: also X ∩ QI = I) is
not contained in a set of zeros of a harmonic function. We deduce that H must be
equal to 0 and the lemma follows. �

We continue the proof of Proposition 31. We keep the assumption of Lemma 32.
Consider two cylinders I, I ′ of the same length k. Then fk(I) = fk(I ′) = Xk.
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Denote by f−kI′ the branch of f−k mapping Xk to I ′ (and Q to QI′). Let g = gII′ =
f−kI′ ◦ fk : QI → QI′ . Then, by Lemma 32, everywhere in QI ,

(28)
αI
αI′

G̃0 ◦ g = G̃0

Now consider two cases.
(1) Case 1: There exists D > 0 such that for every k ∈ N, for all I, I ′ ∈ Ek,

diamQI

diamQI′
< D.

(2) Case 2: The opposite.
First, we deal with Case 2. In this case, we can choose the cylinders I, I ′ so that

g is a strong contraction; since it is a linear map, it is actually defined everywhere in
C and we have clg(Q) ⊂ Q, so ⋃

k

g−k(Q) = C.

Now, two functions: αI′
αI
G̃0 ◦ g and G̃0 are defined and subharmonic in Q, harmonic

in an open connected dense set Q \ (X ∪ g−1(X)). Since they coincide in an open set
QI (see (28)), they coincide everywhere in Q. So, the formula

αI′

αI
G̃0 ◦ g

gives an extension of G̃0 to a subharmonic function defined in g−1(Q) and, in the
same way, to a subharmonic function defined everywhere in C.

Now, choosing another pair of cylinders, we can produce another relation of the
type (28) and another extension of G̃0, say

αJ ′

αJ
G̃0 · h = G̃0.

By the same argument as above, these two extensions must coincide. We use the
same letter G̃0 to denote this, just described, extension.

In the reasoning below we use the following argument from Volberg’s paper [Vol2].
Denote

Z = {z ∈ C : G̃0(z) = 0},
in particular,

(29) Z ∩Q = X

The set Z is invariant under the action of both contractions h and g, and, conse-
quently, the action of the group generated by them. It is easy to see that this group
contains arbitrarily small translations. Thus, there exists such a small translation T
that T (X) ⊂ Q. This would imply T (X) ⊂ X, a contradiction.

So, we are left with Case 1. Given k ∈ N, we consider all cylinders of length k.
There are Nk of them, and, by the assumption,

(30)
diamQI

diamQI′
< D

for I, I ′ ∈ Ek.
For I, I ′ ∈ Ek let, as above gII′ = f−kI′ ◦ fk : QI → QI′ . Using (30) and the fact

that card(Ek) = Nk it is easy to see the following.
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Claim. Let δ = dist(X, ∂Q). There exists 0 < b0 < δ and a sequence kn → ∞
such that for every kn one can find two cylinders I, I ′ ∈ Ekn such that, putting

gII′ = γnz + bn

we have

(31) γn → 1, bn → b0.

The functions G̃0 and G̃0 ∩ gII′ are continuous in R := Q∩ g−1
II′(Q) and harmonic

in the open connected dense set R \ (X ∪ g−1
II′X). Since they coincide in an open set

QI , they coincide everywhere in R.
For n sufficiently large we have X ⊂ R and g−1

II (X) ⊂ R. Since both sets can be
defined as sets of zeros of G̃0 and G̃0 ◦ gII′ respectively, they must coincide. Passing
to a limit in (31), we see that X would be invariant under a (small) translation; again
a contradiction. This ends the proof of Proposition 31 in the first case.

10.2. Real case. This case can be reduced to the previous one. We briefly
describe the procedure: the previous proof goes through unchanged, until the formula
(27). Now, we cannot conclude that H = 0. However, (27) implies that some Xk is
contained in a set of zeros of a harmonic function H. Replacing X0 by Xk, we can
assume that k = 0.

Proposition 33. Le X = X0 be an admissible Cantor set. Assume that there
exists a harmonic function H in Q such that X ⊂ {z : H(z) = 0}. Then there exists
k ≥ 0 such that Xk is contained in a straight line.

Proof. Denote by l = {z ∈ Q : H(z) = 0}. Note that, after diminishing slightly
the set Q so that it still contains the whole set X, we can assume that l is a union of
finitely many real analytic arcs l = l1∪· · ·∪ lr, and that the set of intersections lj ∩ lj
is finite. One can also assume that each such arc has infinitely many intersections
with the set X. Let x ∈ X be an intersection point of some arcs, say x ∈ l1 ∩ l2 ∩X.
Let I be a cylinder containing x, let I ′ be another cylinder of the same length and
let x′ = gII′(x).

We claim that x is an isolated point in either l1 ∩X or l2 ∩X. Indeed, otherwise
take x′ = gII′(x) and observe that the set X in a neighborhood of x′ (more precisely:
the set X ∩ QI′) would be contained in a union of two intersecting arcs, and not
contained in one arc. Since the total number of intersections of the arcs l1, . . . , lr is
finite, and the number of possible choices of x′ is infinite, we get a contradiction.

Therefore, one can assume that X is contained in a union of a finite number of
analytic arcs l1, . . . , lr, which do not intersect. Pick a point x ∈ X and a cylinder
I containing x, of sufficiently high generation k so that the neighborhood QI of x
intersects only one curve lj. Then fk(QI) = Q, fk(lj ∩QI) is an analytic arc L ⊂ Q,
and Xk ⊂ L.

The conclusion is that, replacing X = X0 by some Xk, one can assume that X
is contained in one analytic arc L. We claim that L is, actually, a straight line. To
check it, first notice that gII′(L ∩ I) = L ∩ I ′, thus
(32) gII′(L ∩QI) = L ∩QI′

Assume first that there are arbitrarily strong contractions among the maps gII′ .
Then, for such a strong contraction, (32) implies that gII′(L) ⊂ L. If L is not a
straight line then there are three points in L which are non-collinear. Applying the
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maps (contracting similitudies) gII′ and using the fact gII′(L) ⊂ L we conclude that
the curve L would not be differentiable, a contradiction.

If there are no strong contractions among the maps gII′ (case one in the proof
of part 1) then, as before, one can produce arbitrarily small translations τ such that
τ(L) ∩Q ⊂ L. Thus, L is a straight line. �

Composing the maps fk with rotations, we can assume that all the sets Xk are
contained in the real line R. Thus, since all the functions H in the formulas (27)
must be equal to 0 in R, H(z) = −H(z) and we can symmetrize all the formulas
(27) by taking Ĝk(z) = G̃k(z) + G̃(z). Then we get, instead of (27),

(Ĝk ◦ fk)|QI = (Ĝ0)|QI · αI

and the proof of the previous case applies. �

Final conclusion—Proof of Theorem A.

Proof of Theorem A is now clear. Indeed, either harmonic and ρ-conformal
measure of X satisfy relation (17) and hence dimH ω < dimHX by Proposition 29,
or (17) fails and we get a contradiction by combining Propositions 31 and 30. �

11. Further comments and remarks

In this paper the number of subdomains associated to an admissible map is fixed
(equal to some N , cf section 1). Modulo some technical but small modifications the
proofs can be carried out if we consider sequences of admissible funtions (fn) with
varying multiplicities 2 ≤ Nn ≤ N , see Figure 1.

We can also easily modify the proof to get a uniform bound on dimHX−dimH ω.
To see this, observe that the difference dimHX − dimH ω depends only on γ and K
in Proposition 29. Therefore, we need to show that γ and K can be chosen uniformly
for a, M and N fixed. But then, if the uniformity of (17) fails, for all 0 < γ < 1 and
K > 0 there exists a set X and a cylinder I as in Proposition 30. Using once again
the diagonal argument (proposition 28) we return to the situation of section 10 and
deduce the contradiction.

Nevertheless, the hypothesis on the upper bound of multiplicities (and hence
lower bound a of contracting ratios) cannot be omitted as shows the following Propo-
sition.

Proposition 34. There exists a (unbounded) sequence Nn and a sequence of
admissible functions (fn) of multiplicities Nn such that the dimension of harmonic
measure ω of the Cantor set X associated to (fn) is equal to the Hausdorff dimension
of the set.

Let us give a sketch of the proof of this statement.

Proof. Consider, for instance, the self-similar triadic linear Cantor set X0 that
we identify with the symbolic dyadic tree. If σ is the left shift, I ∈ En a cylinder of
length n and K any set, we will write IK for the set σ−n(K)∩ I. So, IK is a subset
of I.

It is well known that the dimension τ of the harmonic measure ωX0 of R2 \ X0

is strictly smaller than the Hausdorff dimension of the set X0. Take K0 ⊂ X0 to be
a compact set of dimension τ and of harmonic measure ωX0(K0) > 1

2
. Then, we can
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find a finite covering J1 of K0 with cylinders (I1
j )j with I1

j ∈ J1 ⊂ E1∪ · · · ∪EN1 such
that

∑
j diam(I1

j )τ+ τ
2 < 1

2
.

Choose K1 ⊃ K0 compact of dimension τ and such that ωX0(K1) > 3
4
. Since

dimH(I ∩ K0) ≤ τ for all cylinders I, we can augment K1 with all images σn(K0),
n = 1, . . . , N1. We can therefore assume that I ∩K0 ⊂ IK1 for all I ∈ J1 (but still
dimH(K1) = τ).

There is a finite collection J2 of cylinders (I2
j )j with I2

j ∈ J2 ⊂ E1 ∪ · · · ∪ EN2

covering K1 and verifying∑
j

diam(II2
j )τ+ τ

4 <
1

22
diam(I)τ+ τ

2 ,

for any cylinder I ∈ J1.
We proceed by induction. Assume we have constructed Jn ⊂ E1 ∪ · · · ∪ ENn , a

finite collection of cylinders covering a compact set Kn−1 satisfying
• K0 ⊂ · · · ⊂ Kn−1 and I ∩Kn−2 ⊂ IKn−1 for all I ∈ Jn−1,
• dimHKn−1 = τ ,
• ωX0(Kn−1) > (1− 1

2n−1 ),
•
∑

J∈Jn diam(IJ)τ+ τ
2n < 1

2n
diam(I)τ+ τ

2n−1 , for all I ∈ Jn−1.
Take Kn ⊃ Kn−1, a compact set of dimension τ , such that I ∩Kn−1 ⊂ IKn, for

all I ∈ Jn and verifying

ωX0(Kn) >

(
1− 1

2n

)
.

There is a finite collection Jn+1 of cylinders (In+1
j )j with In+1

j ∈ Jn+1 ⊂ E1∪· · ·∪ENn+1

such that the sets (In+1
j )j cover Kn and verify∑
j

diam(IIn+1
j )τ+ τ

2n+1 <
1

2n+1
diam(I)τ+ τ

2n ,

for every cylinder I from Jn.
Note that by Harnack’s principle there exist a constant C > 0 such that, for all

cylinders I,

ωX0(IKn) >

(
1− C 1

2n

)
ωX0(I).

Consider the Cantor set

X =
⋂
n∈N

⋃
I1∈J1

· · ·
⋃

In∈Jn

I1 . . . In.

Note that K0 ⊂ X ⊂ X0. Moreover, by construction, the Hausdorff dimension of X
is less or equal to τ and since K0 ⊂ X0 it is equal to τ . On the other hand, by the
monotonicity of the measure, ωX(A) ≥ ωX0(A), for all A ⊂ X.

We only need to show that dimH ωX = τ . Suppose that dimH ωX < τ . Then,
there exists A ⊂ X such that dimHA < τ and ωX(A) = 1. We deduce that ωX(X \
A) = 0 and a fortiori, ωX0(X \ A) = 0. Therefore, ωX0(K0) = ωX0(K0 ∩ A) and
dim(K0 ∩ A) < τ which is absurd. �

Remark 35. A stated before, in the example the number Nk of subdomains Qk,i

goes to infinity as k → ∞ and, hence, there is no lower bound of the contraction
ratios. Nevertheless, the annuli hypothesis remains valid.
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