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Abstract. The spectrum of the Dirichlet problem for Laplace operator is studied in three

terminal tubes. The cross-section of the tubes is either a circle or a square. We show that these

Y-shaped waveguides always have at least one eigenvalue in the discrete spectrum. In the regular

case, that is, the angle between the cylinders is 2

3
π, there exists exactly one eigenvalue in the

discrete spectrum. While the angle 2α between the arms is varying, we show that the number of

the bound states remains to be one for α ∈
(

arctan
(

3

4

)

, π
2

]

when the cross-section of the tubes is

square. However, when the angle becomes sharp enough, the number of eigenvalues in the discrete

spectrum increases. Moreover, it is shown that the eigenvalues are monotonously increasing when

the angle 2α is in the interval
(

0, 2

3
π
)

and are monotonously decreasing when 2α ∈
(

2

3
π, π

]

.

1. Physical background

The development of nanotechnology has lead to smaller and smaller devices in
electrical engineering. Over the last few decades there have been several both theoret-
ical and applied studies to understand the physical behavior of such small nanometer
sized waveguides.

The nanometer scale devices have attracted due to their excellent attributes.
They have light weight, but they are still strong because of their elasticity. Moreover,
they have exceptional electrical properties. These waveguides have either metallic or
semi-conducting behavior depending on their geometrical structure.

These devices have a high purity and crystalline structure. Thus, the electron
mean free path is greater than the diameter of the system. Therefore the scattering
is unsubstantial and derives us to model the electron motion as a free particle in the
infinite waveguide where the motion is limited inside the waveguide by posing the
Dirichlet condition on the boundaries.

In this study we concentrate on the three-dimensional and three terminal nan-
otubes with either rectangular or circular cross-section. These waveguides are often
called Y-junctions. Our intention is to investigate the existence of the non-trivial
solutions of the Helmholtz equation:

(1)

{

−∆u(x) = λu(x), x ∈ Y,

u(x) = 0, x ∈ ∂Y.

In particular, those solutions which have the finite energy and the eigenvalue corre-
sponding to such an eigenfunction is located below the continuous spectrum. The
continuous spectrum is where the electron propagation can occur as the contrary to
the discrete spectrum where the eigenfunction is localized.
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The first theoretical explorations of the existence of the bound states were made
more than quarter of a century ago. The appearance of the bound states in twisting
and curved waveguides in two and three dimensions were illustrated in the papers
[6, 7] and [8].

The Y-branch waveguide has some technical applications as a miniaturized switch,
where the electrons are directed to one of the two branches (see, e.g., [2]). Also it
has been presupposed in [16] that Y-branches could be connected to each other to
form logic circuits.

Related to the waveguide at issue, the regular two-dimensional Y-junction waveg-
uide was studied in [15]. The width of one arm was varying while the other two were
set to have unit width. The discrete spectrum was discovered to be empty when the
width of the arm exceeded 1.25.

2. Introduction

Let ω ∈ R
2 be a domain with a Lipschitz boundary ∂ω and ΠH a cylinder which

is bounded from below, that is, ΠH = {x = (y, z) ∈ R
2 ×R : y ∈ ω,−H(y) < z},

where H is a Lipschitz continuous profile function on ω. We will consider the domain
Y, where union of the three cylinders forms a waveguide of shape of letter “Y”.

We focus on examine the waveguides in two different cases. The rectangular case
is when the cross-section is square, that is, ωR =

{

y = (y1, y2) : − 1
2
< y1, y2 <

1
2

}

.
The profile function H is continuous piecewise linear function which form the cylinder
to have pointed end (see the left side of Fig. 1). We denote the rectangular waveguide
by YR.

Figure 1. The pointed cylinders and the branching waveguide with rectangular cross-section.

While the cross-section is a circle, ωC =
{

y = (y1, y2) : |y| < 1
2

}

, that is the circle

is of radius 1
2
. Again, the cylinders are bounded by the piecewise linear profile

functions. For the circular case, we use the notation YC (see Fig. 4 and 6).
In Sections 3 and 4 we focus attention on the regular case, where the angle

between the cylinders is 2π
3

while in Section 5 we investigate the spectrum when
the angle α is varying. Throughout the paper, we use notation YR or YC without
a superscript for the regular cases and with the superscript α the cases where the
angle is varying.

We study the spectral properties of the Dirichlet-Laplacian (1) in the branching
waveguide Y. This can be rewritten in the variational form

(2) (∇u,∇v)
Y
= λ (u, v)

Y
.

That is, we need to find an eigenpair (λ, u), where λ ∈ C is a spectral parameter and
a non-trivial u ∈ H1

0 (Y) is an eigenfunction. The function u satisfies the integral
identity for any compactly supported smooth test function v ∈ C∞

0 (Y) vanishing at
the boundary ∂Y. The natural scalar product in Lebesgue space L2 (Y) is denoted
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by (·, ·)Y. Moreover, H1
0 (Y) is a subspace of functions in Sobolev space H1 (Y) that

vanish on the boundary. Since the bi-linear form on the left in (2) is closed in H1
0 (Y)

and positive definite, the formulation gives rise to an unbounded positive definite and
self-adjoint operator A in Hilbert space H1

0 (Y) (see, e.g., [3, Ch. 10]).
The spectrum of the operator A is located on the positive semi-axis R+. More-

over, the operator A has a continuous spectrum σc = [λ†,+∞), where λ† is the first
eigenvalue of the problem on the cross-section ω: (∇u,∇v)ω = λ (u, v)ω . The discrete
spectrum σd lies in (0, λ†), if it exists.

3. The rectangular cross-section

Let us now examine the waveguide with the rectangular cross-section. First,
the threshold λ1 for the continuous spectrum can be found by solving the following
problem

{

−∆u = λu, y ∈ ωR,

u = 0, y ∈ ∂ωR.

That is, the first eigenvalue is λ1 = 2π2 and hence σc (YR) = [2π2,+∞).
We are interested to know if there exists any eigenvalue below the continuous

spectrum, namely, in the discrete spectrum σd (YR).

z=0

z

y2

y1

Figure 2. The semi-cylinder of V.

Lemma 1. The discrete spectrum σd (YR) is non-empty.

Proof. Let us first consider the V-shaped waveguide, V, where two cylinders
with slanted ends are joint together so that the angle between them is 2π

3
(see Fig. 2)

and make an assumption that the lower bound σV of the spectrum is 2π2, i.e., the
discrete spectrum is empty. By [3, Ch. 10.1, 10.2], the lower bound is found by

(3) σV = inf
u∈H1

0
(V)

‖∇u;L2(V)‖2

‖u;L2(V)‖2
.

Due to the symmetry of V, it is enough to consider one side of the waveguide. We
use the local Cartesian coordinate system and define a test function

uε(y, z) = vε(y, z) +
√
εw(y, z),

where w(y, z) ∈ H1
0 (V) is a compactly supported smooth function and

vε(y, z) =

{

cos(πy1) cos(πy2), z < 0,

cos(πy1) cos(πy2)e
−εz, z ≥ 0,

where ε > 0. The function uε is continuous, but the normal derivative is

∂νu
ε =

{

0, z < 0,

ε cos(πy1) cos(πy2), z ≥ 0,



332 Pauliina Uusitalo

that is, to have the test function uε in H1
0 (V), we choose the function w so that its

support is located in the neighborhood of the slanted end, denoted by Ξ. Now,

∥

∥∇uε;L2(V)
∥

∥

2 − 2π2
∥

∥uε;L2(V)
∥

∥

2
=
∥

∥∇v;L2(V)
∥

∥

2 − 2π2
∥

∥v;L2(V)
∥

∥

2

+ 2
√
ε

ˆ

V

(

∇v∇w − 2π2vw
)

dx+ ε
(

∥

∥∇w;L2(V)
∥

∥

2 − 2π2
∥

∥w;L2(V)
∥

∥

2
)

,
(4)

where the first two terms on right equals 1
4
ε and the last term is cε > 0 due to the

assumption of a lower bound. We apply Green’s formula and write (4) into a form

2
√
ε

ˆ

V

(

∇v∇w − 2π2vw
)

dx+ Cε = 2
√
ε

ˆ

∂Ξ

w∂νv ds + Cε,(5)

where w can be selected so that the last integral on right becomes negative. Hence,
the value of (4) is less than −√

ε+Cε. For the small values of ε > 0 this contradicts
with the assumption since

(6) σV = inf
u∈H1

0
(V)

‖∇u;L2(V)‖2

‖u;L2(V)‖2
≤ ‖∇uε;L2(V)‖2

‖uε;L2(V)‖2
< 2π2.

Thus, the discrete spectrum σd (V) of the operator A related to the problem (1) in
the V-shaped waveguide is non-empty. Therefore there is at least one eigenvalue λV

with the corresponding eigenfunction uV. We extend the eigenfunction as zero from
V onto YR. Hence the lower bound is

(7) σYR
= inf

u∈H1

0
(YR)

‖∇u;L2(YR)‖2

‖u;L2(YR)‖2
≤ ‖∇uV;L

2(YR)‖2

‖uV;L2(YR)‖2
< 2π2,

which guarantees the non-emptiness of the discrete spectrum. �

Lemma 2. The multiplicity of the discrete spectrum σd (YR) equals one.

Proof. We assume that at least two eigenvalues appear in the discrete spectrum
and show that such assumption leads to a contradiction. By the max-min principle
(see [3, §10.2.2]), the nth eigenvalue can be represented by

λn = max
En

inf
u∈En\{0}

‖∇u;L2(Y)‖2

‖u;L2(Y)‖2
,(8)

where En is a subspace of H1
0 (Y) of co-dimension n− 1.

We split the waveguide YR into three semi-cylinders ΠR with the right-angled
ends. In the middle there is left a prism P , which has an equilateral triangle T as a
base (see Fig. 3).

Figure 3. The division of the YR.
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We consider the mixed boundary value problem on the prism P as follows

(9)











−∆v = µv, x ∈ P,

∂νv = 0, (y2, z) ∈ ∂T, −1
2
< y1 <

1
2
,

v = 0, (y2, z) ∈ T, y1 = ±1
2
.

The first eigenvalue of Neumann-Laplacian is µT
1 = 0 with the corresponding eigen-

function vT1 , which is a constant. By [9], the second and third eigenvalues are
µT
2 = µT

3 = 16
9
π2. By the separation of variables, that is, in view of the third di-

mension, the first eigenvalue of the problem (9) on the prism is µ1 = π2 with the
corresponding eigenfunction v1 = c cos(πy1), where c ∈ R. The second eigenvalue
µP
2 = 25

9
π2.

We set

E⊥
2 (YR) =

{

u ∈ H1
0 (YR) :

ˆ

P

u(x)v1(x) dy dz = 0

}

,

where v1(x) is the first eigenfunction of the problem (9). For any u ∈ E⊥
2 , the

inequality

(10)
‖∇u;L2(P )‖2

‖u;L2(P )‖2
> 2π2

is vindicated since µP
2 is greater than the threshold 2π2.

We employ the Friedrichs inequality for the cylinders ΠR, that is,

2π2

ˆ 1

2

− 1

2

ˆ 1

2

− 1

2

|u(y1, y2, z)|2 dy

≤
ˆ 1

2

− 1

2

ˆ 1

2

− 1

2

(

∣

∣

∣

∣

∂

∂y1
u(y1, y2, z)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂

∂y2
u(y1, y2, z)

∣

∣

∣

∣

2
)

dy.

(11)

Integrating over the variable z ∈ (0,∞), we obtain

(12) 2π2
∥

∥u;L2(ΠR)
∥

∥

2 ≤
∥

∥∇u;L2(ΠR)
∥

∥

2
.

Let us presume that λ2 belongs to the discrete spectrum, that is, λ2 ∈ (λ1, 2π
2).

Due to the assumption, we have

(13) 2π2 > λ2 ≥ inf
u∈E⊥

2
\{0}

‖∇u;L2(YR)‖2

‖u;L2(YR)‖2
.

The sum of inequalities (10) and (12) leads to

‖∇u;L2(YR)‖2

‖u;L2(YR)‖2
≥ 2π2, for u ∈ E⊥

2 (YR) .(14)

This contradicts with (13), and therefore the lemma is verified. �
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4. The circular cross-section

Figure 4. The branching waveguide with circular cross-section.

We now turn into the problem with the circular cross-section (see Fig. 4). To find
the threshold of the continuous spectrum λC

† we solve the Dirichlet problem for the
Laplacian on the cross-section ωC : (∇u,∇v)ωC

= λ (u, v)ωC
. We change over to the

polar coordinates to see that the first eigenvalue is λ1 = 4j20,1, where j0,1 ≈ 2.4048 is
the first positive root of Bessel function of order 0 (see, e.g., [5]). Thus, the continuous
spectrum is σc (YC) =

[

4j20,1,+∞
)

.
The existence of the eigenvalues in the discrete spectrum is studied in several

types of waveguides. In the paper [1] it was shown with the help of the comparison
principle that for any planar and broken waveguide there exists at least one eigen-
value in the discrete spectrum (see also [7]). In the paper [6], the non-emptiness of
the discrete spectrum was verified for two and three dimensional bend tubes with
equidistant width. Moreover, the result was extended to any number of dimensions
in [8]. Applying to these results, we take a curved tube which is contained in the
cranked V-shaped waveguide (see Fig. 5). Applying the results of [6] it is known that
there exists at least one bound state. By the comparison principle, the existence of
bound state in the discrete spectrum σd

C is proven.
Moreover, in the paper [13], it was proven with the support of the variational

method that whenever the profile function H(y) of the cylinder is continuous and
piecewise linear, the discrete spectrum in the case of the branching waveguide can not
be empty. In fact, the proof given to the rectangular case in Section 3 is an example
of it. (See also [4], where thin cylinders with distorted ends are studied.) Thus to
derive corresponding lemma as in the rectangular case in Lemma 2, it remains to
show the following lemma.

Figure 5. The curved waveguide. Figure 6. The branch of YC .

Lemma 3. The discrete spectrum of σd (YC) contains exactly one eigenvalue.

Proof. We divide the waveguide into three identical cylinders with straight ends.
An element left in the middle, P̃ , is a conical type part, which resembles the prism P .
Instead of this element P̃ , we consider the prism P with the mixed boundary problem

given in (9). Since P̃ ⊂ P , the eigenvalues µP̃
n ≥ µP

n by the comparison principle.

Therefore, µP̃
1 ≥ π2 and µP̃

2 ≥ 25
9
π2 > 4j20,1. Thus, we employ the inequality

(15)
‖∇u;L2(P̃ )‖2
‖u;L2(P̃ )‖2

> 4j20,1,
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where a function u ∈ H1
0 (YC) satisfies the orthogonality condition

´

P̃
u(x)v1(x) dy dz

= 0, where v1 is the corresponding eigenfunction to µP̃
1 .

Integrating over the variable z ∈ (0,∞) in the Friedrichs inequality, we obtain

(16) 4j20,1
∥

∥u;L2(ΠC)
∥

∥

2 ≤
∥

∥∇u;L2(ΠC)
∥

∥

2
.

Summing up the above inequalities, we obtain

‖∇u;L2(YC)‖2

‖u;L2(YC)‖2
≥ 4j20,1, for u ∈ E⊥

2 (YC) ,(17)

where u satisfies one orthogonality condition. Now the the assumption λ2 ∈ σd (YC)
and the max-min principle (8) contradict. �

5. The discrete spectrum when the angle is varying

Let now the angles vary between the cylinders. We set the angle between the
arms to be 2α, where α ∈

(

0, π
2

]

. Then the other two angles are π − α. We denote
the waveguide by Y

α, where the angles are varying. At first, we concentrate purely
on the rectangular cross-section. The same reasoning as in the earlier section ensures
the non-emptiness of the discrete spectrum σd(Yα

R).
For example, in [1] and [14] the two-dimensional broken waveguides were stud-

ied with the varying angle. Altogether it was noticed that the multiplicity of the
discrete spectrum increases infinitely as the angle approaches to zero. Again, in
the paper [6] it was shown that when the tube is slightly bent, only one bound
state appears. For example, for the two-dimensional V-shaped waveguide it was
shown in [14] that the multiplicity of the discrete spectrum is exactly one whenever

αV ∈
[

arctan
(√

2
5

)

, π
2

)

. Due to the lack of the domain monotonicity, the same may

not hold for Yα
R. However, similar result is shown for Yα

R when α ∈
[

arctan
(

3
4

)

, π
2

]

,
see Lemma 6 and Lemma 7.

To find the angles when only one eigenvalue lies in the discrete spectrum, we
divide Y

α
R in the following way. In the middle, we set a cuboid Q of width and

length 1 and height a = 2−cos(α)
2 sin(α)

. In the arms there exist two right angled prisms.

The prisms P1 and P2, have a right-angled triangle T1 and T2, respectively, as a

cross-section. For the bigger triangle T1 one leg is b = 2−cos(α)
2

and the hypotenuse a.

In the smaller triangle T2, one leg is 1− b and the hypotenuse 1
2
, see Fig. 7.

2�

1
-b

Figure 7. The division of the branching waveguide with the varying angle α.

We pose Dirichlet boundary conditions on the sides of the Q, where y1 = ±1
2
. On

the other sides we pose Neumann boundary condition. The first eigenvalue µ1 = π2
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and the second µ2 = π2 + min
{

π2, π2

a2

}

. Thus, the request to have the second

eigenvalue greater than the threshold, we obtain that the height a must be less or
equal to 1. Therefore the possible values of α are restricted to the interval:

(18) α ∈
[

arctan

(

3

4

)

,
π

2

]

.

For the prisms P1 and P2, we first consider the eigenvalue problems in the triangles
T1 and T2. To the smaller triangle, having Neumann boundary condition on the
hypotenuse and on one leg and Dirichlet condition on the other leg, the first eigenvalue
is estimated by Friedrichs inequality (see for example [13]) to be µ1(T2) ≥ π2

4(1−b)2
.

Since (1− b)2 ≤ 1
4
, the first eigenvalue µ1 (T2) > π2 for every α ∈

[

0, π
2

)

. Thus,
taking into account the third coordinate y1, the first eigenvalue in the prism P2 is
µ1 (P2) > 2π2. We set α = π

4
and show the following.

Lemma 4. The discrete spectrum of Y
π
4

R contains exactly one eigenvalue.

Proof. The triangles T1 and T2 are now isosceles right triangles. On the isosceles
right triangles the eigenvalue problem can be solved by separation variables (see,
e.g., [11]). We first view the eigenvalues in the square S with side length 1. Dirichlet
boundary conditions is posed on the sides x1 = 0 and x2 = 0 and Neumann condition
on the other two sides. The eigenvalues are then µ(S) = π2

4
((2m+ 1)2 + (2n+ 1)2)

and the eigenfunctions uS(x) = sin
(

2m+1
2

πx1

)

sin
(

2n+1
2

πx2

)

.
The combination of the eigenfunctions uS(x) solves the Laplace problem with

mixed boundary conditions on the isosceles triangle, that is,

uT (x) = sin
(

2m+1
2

πx1

)

sin
(

2n+1
2

πx2

)

+ sin
(

2n+1
2

πx2

)

sin
(

2m+1
2

πx1

)

.

The eigenvalues are µmn(T ) = π2

4
((2m+ 1)2 + (2n+ 1)2), where m,n = 0, 1, 2, . . ..

Thus, the first eigenvalue in T1 is µ1(T1) = π2

2b2
= 4

(2
√
2−1)

2π
2 ≥ π2 and the cor-

responding eigenfunction is v1(x) = sin
(

π
2b
x1

)

sin
(

π
2b
x2

)

. Also the first eigenvalue

µ1(T2) ≥ π2 as observed above. Moreover, µ1

(

P1,2

(

π
4

))

> 2π2. Therefore in each
prism

∥

∥∇u;L2
(

Pi

(

π
4

))
∥

∥

2

∥

∥u;L2
(

Pi

(

π
4

))
∥

∥

2 ≥ 2π2, where i = 1, 2.(19)

For any u ∈ H1
0 (Y

π
4

R ) having one orthogonality condition
´

Q
u(x)v1(x) dy dz = 0,

where v1 is the first eigenfunction of the mixed boundary value problem on the
cuboid Q, the inequality

(20)
∥

∥∇u;L2(Q)
∥

∥

2
> 2π2

∥

∥u;L2(Q)
∥

∥

2

is valid. The Friedrichs inequality for the cylinders is given in (12). Summing up
these inequalities ((12), (19) and (20)), we obtain

(21)
∥

∥

∥
∇u;L2(Y

π
4

R)
∥

∥

∥

2

≥ 2π2
∥

∥

∥
u;L2(Y

π
4

R)
∥

∥

∥

2

with one orthogonality condition.

The assumption of having at least two eigenvalues in the discrete spectrum fails by
comparing the inequality (21) and the max-min principle (8). �

In addition to the above result, we are able to improve the lemma slightly.
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π
4

b

α

Figure 8. The isosceles right triangle T1

(

π
4

)

and the stretched T1 (α).

Lemma 5. Let α ∈
[

arctan
(

3
4

)

, arccos
(

2−
√
2
)]

. Then the number of eigen-

values in the discrete spectrum σd (Yα
R) equals one.

Proof. We follow the paper [14] and perform new (local) variables by setting
(y2, z) 7→ (y2, zb cot(α)). Thus, the triangle T1

(

π
4

)

is transformed to T1 (α). By the
max-min principle,

µ1

(

π
4

)

=
π2

2b2
= min

u∈H1

0(T1(π
4
))

∥

∥∇u;L2
(

T1

(

π
4

))
∥

∥

2

∥

∥u : L2
(

T1

(

π
4

))
∥

∥

2

= min
v∈H1

0
(T1(α))

b2(cot(α))2 ‖∂zv;L2 (T1 (α))‖2 + ‖∂y2v;L2 (T1 (α))‖2

‖v : L2 (T1 (α))‖2

≤ max
{

(b cot(α))2, 1
}

min
v∈H1

0
(T1(α))

‖∇v;L2 (T1 (α))‖2

‖v : L2 (T1 (α))‖2

= max
{

(b cot(α))2, 1
}

µ1 (α) .

Here H1
0 (T ) is the Sobolev space with smoothness index one having all the functions u

which vanish on one leg of the triangle. Thus, µ1 (α) ≥ min
{

(b−1 tan(α))
2
, 1
}

µ1

(

π
4

)

.

Taking into account the restriction (18), we have µ1 (α) ≥ π2

2b2
. Hence, the require-

ment that the first eigenvalue µ1 (α) ≥ π2 is valid when α ≤ arccos
(

2−
√
2
)

. Thus
on the prisms, the following inequality is valid:

(22)
‖∇u;L2 (Pi(α))‖2

‖u;L2 (Pi(α))‖2
≥ 2π2, where i = 1, 2.

Summing up the inequalities (12), (20) and (22), leads to

‖∇u;L2 (Yα
R)‖

2

‖u;L2 (Yα
R)‖

2 ≥ 2π2,

where the function u satisfies one orthogonality condition on the cuboid Q. Com-
parison between the above inequality and the max-min principle (8), yields to the
desired result for the three-dimensional domain Y

α
R. �

5.1. The monotonicity of the eigenvalues. We notice that while the angle
is varying the smallest area in the center of the waveguide is attained when α = π

3
,

that is, an equilateral triangle. For any other angle, the center is greater and has a
form of an isosceles triangle. Based on the comparison principle, we will show the
following.
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Figure 9. The branching waveguides Yα and Y
π

3 , where α ≤ π
3
.

Lemma 6. The function α 7→ λα
p is strictly increasing when 0 < α ≤ π

3
and

strictly decreasing when π
3
< α ≤ π

2
.

Proof. Let 0 < α < β ≤ π
3

and make a division of the waveguides Y
α and Y

β

into three cylinders, where the arms form the cylinders Πα, Πβ with slanted ends and
the legs are the cylinders Ξα, Ξβ, respectively, with pointed end, see Fig. 9 and 10.

The cylinder Πα is mapped to Πβ by the local transformation, namely, compres-

sion (y, z) 7→
(

y,
tan(α̂)

tan(β̂)

)

. Here α̂ and β̂ indicates the angles in the slanted ends of

the cylinders Πα and Πβ, respectively, with a property α̂ < β̂. Similarly, to the
cylinder Ξα with the pointed end, we make the local coordinate change, where the

cylinder is compressed to Ξβ. That is, (y, z) 7→
(

y,
tan(α̃)

tan(β̃)

)

. Here α̃ and β̃ denote the

angles in the pointed end of the cylinders Ξα and Ξβ, and clearly α̃ < β̃. Due to the
compressions along the cylinders, we obtain via the max-min principle

λα
p = max

Eα
p

inf
u∈Eα

p \{0}

‖∇u;L2 (Yα
R)‖

2

‖u : L2 (Yα
R)‖

2

= max
Eβ
p

inf
v∈Eβ

p \{0}

∥

∥

∥
∂y1v;L

2
(

Y
β
R

)
∥

∥

∥

2

+
∥

∥

∥
∂y2v;L

2
(

Y
β
R

)
∥

∥

∥

2

+(1 + ǫ)−2
∥

∥

∥
∂zv;L

2
(

Y
β
R

)
∥

∥

∥

2

∥

∥

∥
v : L2

(

Y
β
R

)
∥

∥

∥

2

≤ max
Eβ
p

inf
v∈Eβ

p \{0}

∥

∥

∥
∇v;L2

(

Y
β
R

)
∥

∥

∥

2

∥

∥

∥
v : L2

(

Y
β
R

)
∥

∥

∥

2 = λβ
p .

Let now π
3
< α < β ≤ π

2
. Now the cylinders Πβ and Ξβ have sharper ends and

therefore we compress cylinders of Yβ to cylinders of Yα. We proceed as above, but
the roles of α and β are changed and therefore we obtain by the max-min principle

λβ
p ≤ λα

p ,

which finishes the proof. �

β

Πα Ξβ
Ξα

β
~ β̂

Figure 10. The cylinders Πα, Πβ and the pointed end cylinders Ξα and Ξβ .

Moreover, when α = π
2
, the Y-shaped waveguide turns into T-shaped waveguide

T. This type of planar waveguide was explored in [12]. In the three-dimensional
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case, we divide T into three cylinders with right-angled end and a cube C of unit
side length located in the junction. For this cube, we pose Neumann condition on
the sides z = ±1

2
and y2 = −1

2
. For the other three sides we pose the Dirichlet

condition. The first eigenvalue is 5
4
π2 < 2π2 and the corresponding eigenfunction is

v1(x) = cos (πy1) sin
(

π
2

(

y2 − 1
2

))

. We take the subspace of co-dimension one to be

E⊥
2 (T) =

{

u ∈ H1
0 (T) :

ˆ

C
v1(x)u(x) dx = 0

}

.

The second eigenvalue is 9
4
π2 and is therefore greater than the threshold 2π2. Thus,

for any function u ∈ E⊥
2 (T), the inequality

‖∇u;L2 (C)‖2

‖u;L2 (C)‖2
> 2π2

holds. Summing up the above inequality with (12), we obtain

(23)
‖∇u;L2 (T)‖2

‖u;L2 (T)‖2
> 2π2,

where u ∈ E⊥
2 (T). With the help of the max-min principle, it is guaranteed that

λ
π
2

2 > 2π2 and therefore the discrete spectrum contains only one eigenvalue. Thus,
according to the above consideration and Lemma 6, we derive the following.

Lemma 7. Let α ∈
[

arctan
(

3
4

)

, π
2

]

. Then the number of the eigenvalues in the

discrete spectrum σd (Yα
R) is one.

On the other hand, for the cranked two-dimensional waveguide, Nazarov and
Shanin found a critical threshold α∗ ≈ 0.077π so that for any smaller α the multi-
plicity of the discrete spectrum exceeds one (see [14]). Thus, for any α < α∗, the
second eigenvalue λα

2 (V ) < π2. Taking into account the third dimension and the
domain monotonicity V ⊂ Y

α
R, the number of eigenvalues in the discrete spectrum

exceeds one at least for the same threshold α∗.

5.2. The circular waveguide while the angle α is varying. For the circular
waveguide Y

α
C, where α is varying, the division as in the rectangular case (see Fig. 7)

is incompetent since the threshold of the continuous spectrum is 4j20,1 and there is
no such α that the second eigenvalue of the cuboid Q would be greater than this
threshold. Likewise, we are not able to show the uniqueness of the eigenvalue in the
discrete spectrum in the case when α = π

2
, since 9

4
π2 < 4j20,1.

We adapt the condition given in [10] for the first positive eigenvalue of the

Neumann-Laplacian on the triangle. That is, µ2 >
j2
1,1

D2 , where D is the diameter
of the triangle and j1,1 ≈ 3.8317 is the first positive root of the Bessel function of
order 1. We split the waveguide like was done in the regular case, that is, into three
right-angled cylinder and prism in the middle.

When α < π
3
, we extend the waveguide from the middle by setting a prism

with an isosceles triangle as a cross-section (see Fig. 11a)). The extension is needed
to attain the right-angled ends to the cylinders. The diameter of the triangle is

D = cos(α)(2−cos(α))
(sin(α))2

. Hence, for the prism, µ2 >
j2
1,1

D2 + π2 > 4j20,1 when α > 0.326π.
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a) b)

Figure 11. The branching waveguide Y
α
C and the extension.

Respectively, when α ≥ π
3
, we extend the waveguide by an isosceles triangle with

acute vertex (see Fig. 11b)). Now the diameter of the triangle is D = 1
2 cos(α)

. Thus,

µ2 >
j2
1,1

D2 +π2 > 4j20,1 when α < 0.342π. The resembling inequality as given in (17) is
valid when α ∈ (0.326π, 0.342π) and hence by the max-min principle, the number of
eigenvalues in the discrete spectrum is one whenever α belongs to this small interval
around the value π

3
.

We write YR(s), where s is the width of the cylinder. The circular waveguide can
be situated between two rectangular waveguides, namely, YR( 1√

2
) ⊂ YC ⊂ YR(1) (see

Fig. 12). Certainly, the structure of the spectrum for the YR( 1√
2
) is similar than for

the YR(1) with the exception that the threshold for the continuous spectrum is 4π2.
It would be tempting to say that being between these two waveguides the spectrum
for YC must have the same conditions. However, this may not be true since the
threshold of the continuous spectrum is different in each case.

For example, let us assume that for a fixed value of α, the multiplicity of the
discrete spectrum is one for the rectangular waveguides. That is, λ2(Y

α
R(1)) > 2π2

and λ2(Y
α
R( 1√

2
)
) > 4π2. Due to the domain monotonicity, it holds that λ2(Y

α
R(1)) ≤

λ2(Y
α
C) ≤ λ2(Y

α
R( 1√

2
)
). We note that the eigenvalue λ2(Y

α
C) > 2π2 but we are not

able to say whether the eigenvalue is below the threshold 4j20,1 of the continuous
spectrum or not.

1

Figure 12. The cross-section of the waveguides YR and YC .
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