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Abstract. We establish an integral operator which preserves s-Carleson measure on the unit
ball. As an application, we characterize the distance from Bloch-type functions to the analytic
function space F(p, q, s) on the ball.

1. Introduction

Let B,, be the unit ball of C" with boundary S,, and H(B,,) the space of holo-
morphic functions on B,,. When n = 1, we have the unit disc D.

If¢eS,andr >0, let B((,r) ={z € B,:|1l—(z()| <r}. Fora constant
s > 0 and a positive Borel measure p on B,,, we call © an s-Carleson measure if

[llem, = sup {W CESy, > O} < 00.

We write CM, for the class of all s-Carleson measures. When s = 1, the s-Carleson
measure becomes the classical Carleson measure on the ball. See [15] for more details.
The Carleson measure plays a crucial role in lots of theories.

Motivated by Lemma 3.1.2 in [7] and Theorem 2.5 in [5], we investigate an integral
operator which preserves s-Carleson measures on the unit ball. For ¢, A > 0, we define
formally a linear operator T} 5 as

_ (1 - Jw*)?
,—rt,)\f(z) - /];n ‘1 _ <ij>‘t+)\f(w) dv(w), S Brm
where dv is the volume measure on B,, normalized with v(B,,) =1 and f € H(B,).
The main result of this manuscript shows that CM, is invariant under 7} 5, which is
stated as following:

Theorem 1. Assume0 < s<1,1<p<oo,anda > —1. Let A\ > (a+1—p)/p,
t >n+1—(a+1)/pand f be Lebesgue measurable on B,,. If | f(2)[P(1 —|2]*)* dv(z)
belongs to CM, then |T;,f(2)[P(1 — |z?)P¢t—"=D+> du(z) also belongs to CM,.
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For f € H(B,,) with homogeneous expansion
f(z2) = ful2),
k=0
the radial derivative of f is defined as
Rf(z) =) kfi(2).
k=1

It is easy to see that Rf € H(B,,) with

1) 1) s0) = [

For 0 < a < o0, the Bloch-type space on B,,, denoted by B,, is the space of
analytic functions on B,, satisfying
1fll5. = sup (1 = |2*)*|Rf (2)] < co.

ZGBn

It is well known that B, is a Banach space under the norm

115, = 1£O) + 1[5,

In particular, B; becomes the classic Bloch space B, which is the maximal M&bius
invariant Banach space.
For any point a € B,, \ {0} we define

pols) = SR 2],

where s, = /1 —|a|?, P,(z) = (z,a)a/|a|* and Q.(a) = z — P,(2). When a = 0,
we simply define p,(2) = —z. It is easy to check that ¢,(0) = a, ¢.(a) = 0,
a(pa(2)) = z and 1 — |pa(2)]* = (1 — |a*)(1 = |2]?)/]1 — (z,a)[*. All these basic
facts can be found in [15].

Let 0 <p<oo,0<s<o00, —-1<qg+s<oo, —1<qg+n< oo. The space
F(p,q,s), known as the general family of function spaces, is defined as the set of
f € H(B,,) for which

z € B,,

115 pas) = p/ [Rf(2)P(1—12[*)?(1 = |pa(2)]*)" dv(2) < 0.

su
a€By, n
The spaces F(p,q,s) were first introduced by Zhao on D in [12|. Recently, Zhang,
He and Cao characterized several equivalent norms of F'(p,q, s) on B,, in [11].

As the sequel of [10], this manuscript aims to characterize the distance from
f € B, to F(p,q,s) on B,, as an application of Theorem 1. Let X C B, be an
analytic function space. The distance from a Bloch-type function f to X is defined

by
dlStBa (f’ X) = glg)f; Hf - gHBa'

The second result of this paper is motivated by [1, 2, 6, 9, 13|, which states as
following;:
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Theorem 2. Suppose 1 <p<o00,0<s<n, -1 <qg+s<ooand f € Bnti+q.
p

Then
' , Xa. (5 (%) dv(z)
dlStBn+1+q (f? F(p? Q? S)) ~ lnf {E > 0: (:[Q_(f|)z‘2>’n+1—s

nt+l+4q

v |Rf(z)| > €} and Xg.(y) 18 the characteristic

ecMm: }

where Q.(f) = {2 € B,: (1 —|2]*)
function of the set Q.(f).

The argument in our proof of Theorem 2 is a generalization of [10], which follows
from Theorem 3.1.3 in [7]. The distance from a B, function to Campanato—Morrey
space on D was given in [8] with the similar idea.

Notation. Throughout this paper, we only write U <V (or V 2 U) for U < ¢V
for a positive constant ¢, and moreover U =~ V for both U <V and V < U.

2. Preliminaries

The following result is well-known, for example, see Theorem 50 in [14] for a
proof.

Lemma 3. Let s,7 € (0,00) and p be a nonnegative Borel measure on B,,.
Then p € CMy if and only if

2 = d < 00.
(2) [l f;l]_gn /Bn 11— (2, w)+ms p(2)

It is easy to check that if (2) holds for some v > 0, it holds for all v > 0.
According to Lemma 3, the following corollary can be easily obtained.

Corollary 4. Let f be an analytic function on B,,. Then f € F(p,q,s) if and
only if |Rf(2)[P(1 — |2|*)?"* dv(z) is an s/n-Carleson measure if and only if there
exists an v > 0 such that

1—Jwl)
p _ ( 2\q+s
1 1 g _fﬁﬁl/n T <z’w>|y+5\1i’f(z>|fﬂ(1 — 27 du(z) < oo.

We also need the following standard result from [15].

Lemma 5. Supposet > —1 and ¢ > 0. Then

(1 —|w]?)! 1
d S —
/n 1— (2, w)[rritre v(w) (1 |z2)e

for all z € B,,.
The following lemma is quoted from [3], which is Lemma 2.5 there.
Lemma 6. Suppose s > —1 and r,t > 0. Ift <s+n+ 1 <r, then
[ clraw 1
B, [1 = (zw)["1 = (pw)|* ™ (1= |z2)=>7= 11 = (n, 2)|"

Next we show that F(p,q,s) is contained in Bn+i+q. Similar result on the disk
P

can be found in [12].

Lemma 7. Suppose 1 < p < 00,0 < s < 0o and max{-n—1,—s—1} < ¢ < o0,
then F(p,q,s) C Bun+1+q. Moreover, if s > n, then F(p,q,s) = Bu+i+q.
p p
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Proof. By using the reproducing formula on Rf we can get that

F'n+1+a 1—|w]?)*Rf(w
) Rite) = 7§!F(a—|— 1)) /B ((1 —|<z,‘1,31>)”+$+‘3 dolw)

for all & > —1. In this proof we take o > qTJfS and 0 <vy<n+1+gq.
When p =1, it is easy to check that
1— 2\n+1+q 1 — 2\«
(1 _ |Z‘2)n+1+q‘Rf(Z)| 5/ ( |Z| ) ( |'LU| ) |Rf(w)| dv(w)

B, 1= (z,w)[rrtte

_ [ A wP) = PR ()] (L= [ — )
B /n ‘1 - <Z,w>"¥+8 |1 — <z’w>|n+1+o¢—'y—s d ( )

g/B Q) ) (1 — Juf?)+ do(w)

o 1= (z,w)[rts
(1 _ |Z|2)n+l+q—'y(1 _ |,w|2)a—q—s

CweB, 1= (g wppites
(1 o ‘z|2)n+1+q—'y(1 _ ‘w|2)a—q—s
S ||fHF(Z77Q7S)7’\/ u)sél]g)n ‘1 _ <Z’ w>|n+1+a—'\/—s

Sincen+1+qg—~v>0and a —qg—s > 0, it follows that

(1 _ |Z|2)n+1+q—“{(1 _ |w|2)a—q—s

Ssu
weby |1 = (2, w)[rrire—rs

< 1.

~

Thus F(p,q,s) C Ba+1+q when p = 1.
When p > 1, take p’ = p/(p — 1). Then it follows from the Holder’s inequality

that

q+ts

(1— |w|2)q28(1 - |z|2)%|Rf(w)| (1— |Z|2)_%(1 - |w|2)a_ P
Rf 2)| < dv(w
‘ ( >| N /n |1 <Z’w>|s<;w ‘1 <Z7w>‘n 1 a_SJI:"/ ( )

B =

1= (zw)|*+

<(/ n OZED g swe(a - fufyr dow))

1

1 / (1= w2y @5 ) v
S E— T dv(w
(1= 1227 \JBa |1 = (2, w)[P 1+ 0

1

TR

gts

< Wletpna ([ (BN
= - |Z‘2)% B, [1— <ij>‘p’(n+1+a—szy)

1

1 1 d
<
~ ||f||F(p,q,s)n(1 _ |Z|2)% <(1 B |Z‘2)n+;+c{w>

1
= ||f||F(p7q78)7’Y nt+l4q *

(L—1z?) »
Apparently, Lemma 5 is applied in the last inequality. This gives that F'(p,q,s) C
Brii+q when 1 < p < o0.
P
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Now, suppose s > n, let f € Buti+q, then
P

ntl+q
P S ||f||Bn+1+q <00
P

[Rf(2)I(1 = [2]?)

for all z € B,,. It follows that

1—|af?

[ rsera - e () e
= swp [ rgapa - e - e () )

s, T a)
1— |Z‘2)s—n—1
<Py s (=) [ T aue) ~ 1,

" = su
||fHF(p,q,s) ae]??

n

This completes the proof. O

3. Proof of Theorem 1
Proof. When p = 1, according to Lemma 3, it is sufficient to show that

S“p/B A lal) gy ()10 = 2P du(z) < oo

aceB,, n |]' - <Za a’>|’y+ns

for some v > 0. That is to show

1— 271_ 2\t—n—14a
p [ QIR0

1= (z,a)[rne

/ (1 —[w]?)*f(w) dv(w)| dv(z)

o 1=z w)[A

aGBn

is finite. By Fubini’s theorem, we need to verify that

/ (1 — la*)"| f (w)] (1= [o[*) 7" du(z)

(1 - ‘w|2>_)\ B, ‘1 — (z,w)|t“|1 — <27a>"y+ns U(w>

sup
ac€By,

is finite.
Choose v such that v+ ns <t + a. Notice that t —n —1+a > —1 and A > «
in this case. Then by Lemma 6 the last integral can be controlled by

sup /B =1l ) e (1 fwf?)® dAGw).

acB, JB, |1 = (w, a)[7t"°

The desired result follows from Lemma 3, since | f(2)|(1—]2|*)* dv(z) is an s-Carleson
measure.
When 1 < p < o0, it is sufficient to show that

/ Toaf (2)P(L = [2PPOm D% do(z) < o
B(¢,r)

holds for all ( € S,, and r > 0.
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For each fixed r > 0, there exists a smallest N, € N such that 2¥r > 2, which
means that B((,2Vr) = B,. So we can make the following estimates:

/B T fP(L— 224 d(2)
(1 — w]?) )
VL et

(/ B(¢,2r) /Bn\B(C 2r) ) 1 1?Z|zf1]‘>|)t+)\ f(w) dv(w) p(l — |22)PnDte gy (2)

p

[ G gy | s augs

1= (z,w)|+
B(¢,2r)

p

(1 |Z‘2)p(t_n_1)+a dU(Z)

S

(r)
.
/ C r
B(¢,r)

(1~ )| ) i)
N / / do(w) — = Int, + Int,.

11— (z,w)[+ (1 — [z[2)plret=0
B(C,T’) Bn\B(<,2T)
For Inty, consider the linear operator 7': L?(B,,, dv) — L?(B,,, dv) defined by

(THz) = | K(zw)f(w)dv(w),

B,

where the kernel is given by
(1= P P-e/r(1 — ofy-n-t+err
1= (z,w)[+A
We can apply Schur’s test (see e.g. [16]) to verify that 7" is a bounded operator on
LP(B,,, dv). Indeed, if we take p’ = p/(p — 1) again and let h(z) = (1 — |z]?) »’

then it follows from Lemma 5 that

K(z,w)h?(z) dv(z) < hP(w)

B,

K(z,w) =

and
K(z,w)h” (w) dv(w) < W' (2).

B,
Accordingly, the integral operator 7" is bounded from L?(B,,, dv) to L*(B,, dv).
Now we rewrite Int; as

ti = [ y (f Kl Bow)) d@ute)

g(w) = |f(w)|(1 — [w*)*Px p(can(w),

where y g stands for the characteristic function of E. Recall that | f(w)|P(1—|w|?*)* dv(w)
is an s-Carleson measure, we have

lgll7s = / |f(w)[P(1 = |w]?)* dv(w) < (2r)™ S 7™
B(¢,2r)

and let
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Thus, we get

IIltl 5 /

as desired.

To handle Inty, we note first that for k = 2,3, -+ | N, the inequality |1—(z, w)| =
2kr holds for z € B((,r) and w € B(¢,2%) \ B(¢, 28 1r). For fixed ¢ > —1, if we
write Q(¢,7) = {£ € S,: |1 — ((,€)| < r} and denote o the normalized surface
measure on S, then a straightforward computation shows that

1
/ (1 — |Z‘2>C d’U(Z) 5 / dO’/ 2nt2”_1(1 o t2)c dt 5 <2kr)n+1+0.
B(¢2%n) Qe N

—2kp

p
K(z,w)g(w) dv(w)| dv(z) = [[Tgllzs < gl <™

B,

Notice that
Ny—1

B, \ B(¢,2r) = | ) B(¢,25'r)\ B(¢,2%r).

k=1

Since p(t —n — 1) + a > —1, we have

Ny—1 p
T 1 — Jwp) d
Int, 5/ Z / (1—|wl?) |ft(+UA))| dv(w) 2U((Zn)+1_t)_a
B \ =0 Iy 11— (z,0)] (1 —[=[*)P

Ny—1 p
r 1— 2\
<)o) ) )
sen \ o= Jecormaezn  (247) (1 = [z[?)plntiz=e

Nr—1 p
< Tn-i—l-i—p(t—n—l)—i—oz Z / (1 — ‘w|2>>\‘f(w)‘ dv(w) .
~ B(C.25+1r) (2F7)

k=1

Keep in mind that |f(w)|?(1 — |w|*)® dv(w) is an s-Carleson measure and A > (1 +
a — p)/p, we can use the Holder’s inequality to get that

[ AP i) )
B(¢,2k+1r)

_ 2\« P % B ) ()\_%)p/ ﬁ
< (o = tPrira) ([ s )

S (2k+1r)% X (2k+17,)(>\p’—%a+n+1)5.
Therefore, we can conclude that
- (2’““7")% X (2k+1r)(/\p’—%a+n+1)ﬁ

Int, 5 ,rn-i-l-i-p(t—n—l)—i-a
; (2k,r)t+)\

0 p
ns—a+(pP—-1)(nt+l)
S ( E P P t)> .
k=1

The assumptions t > n+1— O‘Tfl and 0 < s < 1 imply that ¢ > %. This
completes the proof. O
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4. Proof of Theorem 2

Proof. Firstly, we prove

Xﬁs(f)(z) dv(2)
(1~ Py

(4) dists, ... (f,F(p,q.s)) < inf {a > 0: € CM%}.

When o > —1, for f € Bnt1+q, Rf(2) can be rewritten as

/ : Rf(w) dva(w)

1 — (z,w))rtite’

where
'n+14+ )
n'(a+1)

Similarly as [15] and [9], it follows from Rf(0) = 0 that

R1G)= [, Rt (=g —1) @l

for all z € B,,. According to (1),
1
1e)- o) = [ A0

0 t

o) = [ (= =1)

dv,(z) = (1 — |2]*)* do(z).

dt:/ Rf(w)L(w, z) dv,(w),

where the kernel

Define
fi(2) = F(0) + / Rf () Lz, w) dug(w)
Qc(f)
and
2(2) = Rf(w)L(z,w) dv,(w).
fa(2) /Bn\m F(w)L(z,w) dug (w)
Then

f(z) = f1i(2) + fa(2).

5 d
We can just verify that %
with ||f2||3n+1+q S €.

P

When w is fixed, L(z,w) becomes a holomorphic function in z. And it is easy to
check that

€ CM: implies f € F(p,q,s) and fy € Bu+itqg

1
L = —1
RL(z,w) (1= (z,w))n+ite ’
and
1
RL < .
| (Z,'UJ)| ~ ‘1 _ <Z7 w>‘n+1+a
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We choose o = %}”, then

[Rfi(2)] =

/~ Rf(w)RL(z,w) dv,(w)
Q:(f)

n+

< Rf(w)|(1 = |wl|? Il)ﬂRLz,w dv(w
N/~s(f)|f( (L = |w]”) » [RL(2, w)| dv(w)

< qusnu+q/2 Xa (W) RL(z, )| dv(w)

XQ.(f) (w)
< 1>
AJ|LfHBn+;+q(/;n|1 _-<Z’UO|n+1+n+;+q(h)0U)

n+1
(1= |w|*)# Xa. () (W)
= flls, / T = — dov(w).
s o 0= G = e
If we write
Xﬁs(f)(w)
(A=)
then

|g(w)P(1 — |w*)* dv(w) = xg_( 5 (w)(1 = [w]*)* ™"~ dv(w).
So, if
X () (2)(1 = [2[)" 7" do(z)
is in C./\/l%, Theorem 1 with \ = "Tfl andt=n+1+ % implies that

[Rf(2)[P(1 = [2*)7 dv(z)
belongs to CMs. This means f; € F(p,q, s). Meanwhile, we have

REGIS: [ dofw) -

Bo |1 — (z,w)[" T (1= |22

This gives that fo € Briite with || f2]5,,,,, S e Thus we verified (4).

p
In order to prove the converse inequality of (4), we assume that

Xﬁs(f)(z> dv(2)
(1~ Py

For short, let ¢y denote the right-hand quantity of the last inequality. We only
consider the case £y > 0. Then there exists an ; such that

distg, ..., (f, F(p,q,s)) < inf {5 > 0: € C./\/l%}.

0<e<e and distg,, ., (f, F(p.q,s)) <er
ntltq

Hence, we can find a h € F(p, q, s) such that
||f - h||3n+1+q < E£r.
r

Now for any € € (1,0) we have that
Xa. (5 (2) (1 = [2*)* " do(z)

is not in CM. But, ||f —hls < g1 yields

nt+l4gq

r
ntltq n+l4q

7 |RR(2)| > (1= [2) "7 |Rf(2)| —e1, Vz€By,

(112



370 Cezhong Tong and Cheng Yuan
and so
Xa.n(2) < Xa._. (2) Vz€Ba
This implies that
Xa._., () (1 = [2[) " du(2)
does not belong to CM=. On the other hand,

2\s—n—1 (1 - |Z|2)q+s
Xﬁsfq(h)(z)(l = |2 du(z) = Xﬁg%l(h)(’z) (1 —|z|?)atntl dv(z)

|Rh(z)|p 2\q+s., _
< c—e)p 51)”(1 —[2]%) XQE,El(h)(Z) dv(2)
1 D 2\q+s
< (5_51)p|Rh(Z)I (L = [=[9)7* do(z).

Since h € F(p,q, s),
|Rh(2)[P(1 — |2*)T** do(2)
is in CM s, and consequently
Yo ()L = [ dv(z)
is in CMs. Now, a contradiction occurs. Thus we must have

€0 < diStB7l+1+q (f7 F(p7 q, 8)) 5 €o
P

as required.

5. Further remarks

For a measurable function f on B,,, define the projection operator

Paf) = [ ) ). e B,

In particular, if A > 0 and ¢ = n + 1, P, is called the Bergman projection. It is
shown in [15] that the Bergman projection is bounded from LP(B,, dv,) onto the

Bergman space A} when 1 < p < 0.

When 1 < p < oo, @« > —1,0 < s <1, we define a class G, , s of measurable

functions on B,, such that

If(2)[P(1 = |2)*)* dv(z) € CM,.

Then, f € F(p,q,s) if and only if Rf € G, 445+ N H(B,). The next theorem shows

that the Bergman projection is bounded from G, s to G,as N H(B,).

Theorem 8. Let 1 < p < 0o, a > —1, 0 < s < 1. The Bergman projection

P, 1.5 Is a bounded linear operator from G, s to G, s N H(B,,).
Proof. Tt can be easily checked that for all measurable f,
[P f] < [Teafl-
Then Theorem 1 implies the desired result.

Further, we have the following corollary.
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Corollary 9. Let 1 <p < oo, a > —1and0 < s < 1. Suppose A > (a+1—p)/p
andt > n+1— (a+1)/p. Then the projection P, is a bounded linear operator
from gp,a,s to gp7p(t—n—1)+a,s M H(Bn)

For an s-Carleson measure p on B,,, if

BT
r—1 rns

for ¢ € S,, uniformly, we call 1 a vanishing s-Carleson measure.

The following result is well-known. See, for example, the remark after Theorem 50
in [14].

Corollary 10. Let s,y € (0,00) and p be nonnegative Borel measures on B,,.
Then p is a vanishing s-Carleson measure if and only if

(5) TR A€l L

lw—1Jg, |1 — (z,w)|[r+ns

du(z) = 0.

By a slight modification of the proof of Theorem 1, we can obtain the following
result.

Lemma 11. Assume(0 <s<1,1<p<oo,anda > —1. Let A\ > (a«+1—p)/p,
t>n+1—(a+1)/pand f be Lebesgue measurable on B,,. If | f(2)[P(1 —|z]*)* dv(z)
is a vanishing s-Carleson measure, then

Toaf(2)[P(1 = |20 do(z)
is also a vanishing s-Carleson measure.

For 0 < a < 00, the little Bloch-type space on B,,, denoted by BY, is the subspace
of B, consisting of all f € B, such that

lim (1 — |2*)*|Rf(2)] =0,

|z]—1

and the space Fy(p,q, s), is the subspace of F(p, q,s) consisting of all f € F(p,q,s)
such that

sup / RFGP(L = [22)7(1 — |pa(2)2)* du(z) = 0.

la|=1 /By,
Similar to Lemma 7, we have the following corollary.

Lemma 12. Suppose 1 < p < 00, 0 < s < 00 and max{—n — 1,—s — 1} <
q<oo. If f € HB,), then f € Fy(p,q,s) if and only if |Rf(2)|P(1 — |2]*)?"* dv(z)
is a vanishing £-Carleson measure. Further, Fy(p,q,s) C Boiiy,. When s > n,

Fo(p, q, S) = B(v)m+1+q :
For the “little-oh” case of Theorem 2, we have following corollary.

Corollary 13. Let 0 < s<n, 1 <p<oo, -1 <qg+s< oo and let f € Ba+i+q.
Then the following quantities are equivalent:

(1> diStBnJqu (fv Bgl+1+q );
(2) diSt87L+1+q (f7 Fo(p, q, 8))7

(3) inf{e > 0: % dv(z) is a vanishing 2-Carleson measure}.
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Remark 14. Theorem 2 characterizes the closure of F(p,q,s) in the Butitq
P
norm. That is, for f € Bn+1+¢, f is in the closure of F(p,q, s) in the Bati+q norm if
p P
and only if for every € > 0,

ﬁ (1= 22 do(z) < r°
Qe (INB(C,r)

for all ( € S,, and r > 0.

The invariant Green’s function G(z,a) of B,, is defined by G(z,a) = g(¢a(2)),
where

1 1
g(z):n+ /(1—t2)”‘1t‘2"+1dt.
|

2n 2|

The holomorphic function spaces (s associated with the Green’s function is in-
troduced in [4]. For s > 0, Q; is defined by

.= {renm): s [ [0

ac€By,

2

G(z,a)* dr(z) < oo} ,

and its subspace Qs is defined by
- 2
Qs = {fEH(Bn): lim ‘Vf(z)‘
Bn

la]—1

G(z,a)* dr(z) = o} ,

where Vf(z) = V(f 0.)(0) is the Mdbius invariant gradient of f, and dr(z) = (1 —
|2|2)7"~! dv(z) is the M6bius invariant measure on B,,. It is well known that for n > 1
and = < s <1, f € Q, if and only if |Rf(2)|*(1 — |2[*)"**?d7(2) is an s-Carleson
measure; f € Qq if and only if |[Rf(2)[*(1 — |z|*)"**2d7(z) is a vanishing s-Carleson
measure. Thus Qs = F(2,1 —n,ns) and Qo = Fy(2,1 —n,ns). In particular, when
s=1 Qs = BMOA = F(2,1 —n,n) and Q590 = VMOA = Fy(2,1 — n,n). Thus,
Theorem 2 covers Jone’s formula in [1], a part of Zhao’s result in [13] and Xu’s result
in [9)].
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