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MEAN SQUARE ESTIMATE FOR RELATIVELY
SHORT EXPONENTIAL SUMS INVOLVING
FOURIER COEFFICIENTS OF CUSP FORMS

Anne-Maria Ernvall-Hytönen

University of Helsinki, Department of Mathematics and Statistics
P. O. Box 68, FI-00014 University of Helsinki, Finland; anne-maria.ernvall-hytonen@helsinki.fi

Abstract. We estimate the mean square of a short exponential sum involving Fourier coeffi-

cients of a cusp form with a linear twist, a smooth weight function, and a relatively short averaging

interval.

1. Introduction

Let f(z) =
∑∞

n=1 a(n)n
(κ−1)/2e(nz) with e(x) = e2πix be a holomorphic cusp

form of weight κ with respect to the full modular group. Estimating exponential
sums involving Fourier coefficients of cusp forms is a classical question. For the so
called long sums, the best possible bound is well-known: Jutila [8] has proved that

∑

1≤n≤M

a(n)e(nα) ≪ M1/2,

when α ∈ R. This was an improvement over the classical result by Wilton [12]. By
the Rankin–Selberg mean value theorem [10] this bound is the best possible in the
general case, even though for some values of α it is possible to prove considerably
better bounds. For instance, for rational values of α = h

k
, the classical bound is

≪ k2/3M1/3+ε.
However, the behavior of short sums, i.e., the sums over an interval [x, y], where

y− x = o(x) is much less known. These sums have been investigated for instance by
the author and Karppinen in [3]. Even though some of the bounds proved there are
sharp, it is likely that in many cases, the actual bounds are much smaller than what
have been proved.

It is generally a very difficult question to prove good bounds for individual sums.
It is much easier to consider the average behavior, namely, to bound expressions of
the type

ˆ M+∆

M

w(x)

∣

∣

∣

∣

∣

∑

x≤n≤x+y

a(n)e(αn)

∣

∣

∣

∣

∣

2

dx.

Mean squares have been used to deduce the average behavior on various types
of objets of interest, including the zeta function and the error term in the divisor
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problem (for the latter, see Cramér [1]). For further results on the error term in the
divisor problem, see e.g. [4].

The classical mean square result for long sums can be found in [7], Theorem 1.2:

ˆ M

1

∣

∣

∣

∣

∣

∑

n≤x

a(n)e

(

n
h

k

)

∣

∣

∣

∣

∣

2

dx = c2(κ)kM
3/2 +O

(

k2M1+ε
)

+O
(

k3/2M5/4+ε
)

.

This result fits very well together with the result we are going to prove in this paper.
A corresponding result also holds for sums involving the divisor function twisted with
a rational parameter.

Questions closely connected to the topic of the current paper have also been dealt
in [5], where Ivić proves the asymptotic result for α = 0, y ≪ √

x and ∆ = M , and
in [6], where Jutila proved an asymptotic result for a mean-square involving a sum
of values of the divisor function with y ≪ x1/2 and ∆ ≫ M1/2. In the case y =

√
x

an exponential sum involving Fourier coefficients of a cusp form was dealt with in
[2]. There the averaging interval depended on the exponential twist similarly as in
the current paper. Very recently, Vesalainen [11] proved a mean square result for
exponential sums of length at most square root twisted with a rational parameter.
This leads to the natural question: what happens when the sum is short but longer
than of square root length, and the sum has an exponential twist.

We give the following answer to the question:

Theorem 1. Let 1 > δ > 1/2, T ≍ M δ, 0 < k ≪ M1/2−ε′ for some fixed
positive ε′ and let h and k be co-prime. Let ∆ = min(k2M1/2+ε,M), and let w(x) be
an infinitely many times differentiable smooth weight function in R that has support
on the interval [M,M + ∆] satisfying the conditions w(x)(j) ≪ ∆−j for all non-
negative j ∈ Z. Further assume w(x) = 1 for M +∆′ ≤ x ≤ M +∆ −∆′ for some
∆′ ≍ ∆ and w(x) = 0 for x ≤ M and x ≥ M +∆. Now

ˆ M+∆

M

w(x)

∣

∣

∣

∣

∣

∑

x≤n≤x+T

a(n)e

(

n
h

k

)

∣

∣

∣

∣

∣

2

dx

= S +O(k2M1+ε +∆MεT 1/2k) +O

(

√

|S|(k2M1+ε +∆MεT 1/2k)

)

,

where

S =
2k

π2

∑

n≤min(M2T−2,M2T−1∆−1)

|a(n)|2n−3/2

ˆ M+∆

M

w(x)x1/2 sin2

(

2π

√

n(x+ T )

k

− 2π

√
nx

k

)

sin2

(

2π

√

n(x+ T )

k
+ 2π

√
nx

k
− π

4

)

dx.

Furthermore,

S ≪
{

∆T when k ≫ TM−1/2,

∆M1/2k otherwise.

The bounds for S given at the end of the theorem are actually the true orders
for the size of that term. Therefore, when the term S dominates, which is when k ≪
T 1/2M−ε/2 (see Corollary 4), this theorem gives the average order of the exponential
sums, and not just an upper bound for the average.
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Remark 2. We have to assume that 1 ≤ k ≪ M1/2−ε′ for some positive ε′. If we
allow k to be larger, then the error term in the truncated Voronoi type summation
formula would be too large, i.e., we would not get a better average bound than the
one obtained from Jutila’s estimate for long sums [8] using the triangle inequality.

Notice that if we are only interested in the upper bound, we can easily deduce
a result without the weight function, since by choosing the weight function w⋆(x) to
be a smooth weight function supported on the interval

[

M − ∆
2
,M + 3∆

2

]

, and such
that w⋆(x) = 1 on [M,∆], we have

ˆ M+∆

M

∣

∣

∣

∣

∣

∑

x≤n≤x+T

a(n)e

(

n
h

k

)

∣

∣

∣

∣

∣

2

dx ≤
ˆ M+3∆/2

M−∆/2

w⋆(x)

∣

∣

∣

∣

∣

∑

x≤n≤T

a(n)e

(

n
h

k

)

∣

∣

∣

∣

∣

2

dx.

Hence, noticing that the term ∆MεT 1/2k is always smaller than the other terms, we
obtain the following corollary:

Corollary 3. Let 1 > δ > 1/2, T ≍ M δ, 0 < k ≪ M1/2−ε′ for some fixed
positive ε′ and let h and k be co-prime. Let ∆ = min(k2M1/2+ε,M). Then

ˆ M+∆

M

∣

∣

∣

∣

∣

∑

x≤n≤x+T

a(n)e

(

n
h

k

)

∣

∣

∣

∣

∣

2

dx ≪ min
(

∆TMε,∆M1/2+εk
)

+ k2M1+ε.

Writing this corollary according to various values of k we obtain the following
bounds:

Corollary 4. Let 1 > δ > 1/2, T ≍ M δ, 0 < k ≪ M1/2−ε′ for some fixed
positive ε′ and let h and k be co-prime. Let ∆ = min(k2M1/2+ε,M). Then

ˆ M+∆

M

∣

∣

∣

∣

∣

∑

x≤n≤x+T

a(n)e

(

n
h

k

)

∣

∣

∣

∣

∣

2

dx ≪











∆M1/2k if k ≪ TM−1/2,

∆T if k ≫ TM−1/2 and k ≪ T 1/2M−ε/2,

∆Mεk2 if k ≫ TM−1/2 and k ≫ T 1/2M−ε/2.

The main advantage in this theorem is the relatively short averaging interval
compared with the length of the sum, when the value of k is small. The averaging
interval is actually similar to the one in [2]. However, in the current paper, the sum
can be much longer than the averaging interval unlike there.

In order to prove Theorem 1, we need some lemmas, which will be presented in
the following section. In the final section, we will have the proof of Theorem 1.

In the following, the ε’s will be positive, not necessarily equal. The constants
implied by symbols ≪, ≫ and O( ) do not depend on M or k, but they do depend
on ε, δ, on the properties of the weight function, etc.

2. Lemmas

The first lemma is partial integration (see e.g. [9, Lemma 6]):

Lemma 5. Let A be a P ≥ 0 times differentiable function which is compactly
supported in a finite interval [a, b]. Assume also that there exist two quantities A0

and A1 such that for any non-negative integer ν ≤ P and for any x ∈ [a, b],

A(ν)(x) ≪ A0A
−ν
1 .
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Moreover, let B be a function which is real-valued on [a, b], and regular throughout
the complex domain composed of all points within the distance ̺ from the interval;
and assume that there exists a quantity B1 such that

0 < B1 ≪ |B′(x)|
for any point x in the domain. Then we have

ˆ b

a

A(x)e (B(x)) dx ≪ A0 (A1B1)
−P

(

1 +
A1

̺

)P

(b− a) .

The following lemmas can be proved using partial integration or the previous
lemma. The details are similar to those in [2].

Lemma 6. Let 1 ≤ m,n ≤ M . Then
ˆ M+∆

M

w(x)x1/2e

(

±
(

2

√

nT1(x)

k
+ 2

√

mT2(x)

k

))

dx

≪ kP
(√

n+
√
m
)−P

∆1−PMP/2+1/2,

where T1(x) and T2(x) are x or x+ T (not necessarily but possibly the same).

Lemma 7. Let 1 ≤ m,n ≤ M . Then
ˆ M+∆

M

w(x)x1/2e

(

±2

√

nT (x)

k
∓ 2

√

mT (x)

k

)

dx

≪ kP
∣

∣

√
n−

√
m
∣

∣

−P
∆1−PMP/2+1/2,

where T (x) = x or T (x) = x+ T .

Lemma 8. Let 1 ≤ m,n ≤ M . Then
ˆ M+∆

M

x1/2w(x)e

(

±2

√

m(x+ T )

k
∓ 2

√
nx

k

)

dx

≪ max
x∈[M,M+∆]

kP∆1−P

∣

∣

∣

∣

√
m√

1 + Tx−1
−

√
n

∣

∣

∣

∣

−P

MP/2+1/2.

When
√
m√

1+Tx−1
−√

n = 0 for some x ∈ [M,M +∆], Lemma 8 does not give any

information.

3. Proof of Theorem 1

Using a Voronoi-type summation formula (see [7, Theorem 1.2] with x ≍ M and
the choice N = M), we have

∑

n≤x

a(n)e

(

h

k
n

)

=
(

π
√
2
)−1

x1/4k1/2
∑

n≤M

a(n)e

(

− h̄

k
n

)

n−3/4 cos

(

4π

√
nx

k
− π

4

)

+O (Mεk)

with hh̄ ≡ 1 mod k. Squaring and integration over the error term gives a total
contribution of at most

∆Mεk2 ≪ M1+εk2.
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We may thus forget it for awhile because the contribution from the cross-terms
between the error term and the other terms can be taken into account using the
Cauchy–Schwarz inequality. Denote

S(x,M1,M2) =
(

π
√
2
)−1

x1/4k1/2
∑

M1<n≤M2

a(n)e

(

− h̄

k
n

)

n−3/4 cos

(

4π

√
nx

k
− π

4

)

.

Hence, the expression we need to consider is

ˆ M+∆

M

w(x) |S(x+ T, 0,M)− S(x, 0,M)|2 dx.

Let us first split the summation at M ′:

ˆ M+∆

M

w(x) |S(x+ T, 0,M)− S(x, 0,M)|2 dx

=

ˆ M+∆

M

w(x) |S(x+ T, 0,M ′)− S(x, 0,M ′)|2 dx

+

ˆ M+∆

M

w(x) |S(x+ T,M ′,M)− S(x,M ′,M)|2 dx

+O

(
ˆ M+∆

M

w(x) |S(x+ T,M ′,M)− S(x,M ′,M)|

· |S(x+ T, 0,M ′)− S(x, 0,M ′)| dx
)

,

and choose M ′ in the following way:

M ′ =

{

M2T−2 if T ≫ ∆,

M2T−1∆−1 if ∆ ≫ T.

Notice that if ∆ = M , then ∆ ≫ T , and if ∆ = M1/2+εk2, then the condition ∆ ≫ T
is equivalent to M1/2+εk2 ≫ T , so k ≫ T 1/2M−1/4−ε. Let us concentrate on treating
the first two terms, and then use the Cauchy–Schwarz inequality to estimate the last
term. Let us start with the second term. We have

ˆ M+∆

M

w(x) |S(x+ T,M ′,M)− S(x,M ′,M)|2 dx

≪
ˆ M+∆

M

w(x) |S(x+ T,M ′,M)|2 dx+

ˆ M+∆

M

w(x) |S(x,M ′,M)|2 dx.

Let us treat the second term as the first one can be treated similarly. We have

|S(x,M ′,M)|2 = (2π2)−1x1/2k
∑

M ′<m,n≤M

a(n)a(m)e

(

h̄

k
(m− n)

)

(mn)−3/4

· cos
(

4π

√
nx

k
− π

4

)

cos

(

4π

√
mx

k
− π

4

)

.
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The terms with m = n yield a total contribution

(2π2)−1k
∑

M ′<n≤M

|a(n)|2n−3/2

ˆ M+∆

M

w(x)x1/2 cos2
(

4π

√
nx

k
− π

4

)

dx

≪ kM1/2∆(M ′)−1/2+ε.

When T ≫ ∆, we have M ′ = M2T−2 and hence

kM1/2∆(M ′)−1/2+ε ≪ kM1/2∆M−1+εT = k∆TM−1/2+ε ≪ k∆MεT 1/2.

When T ≪ ∆, we have M ′ = M2T−1∆−1, and hence

kM1/2∆(M ′)−1/2+ε ≪ kM1/2∆M−1+εT 1/2∆1/2 ≪ k∆MεT 1/2.

When m 6= n, we need to estimate integrals
ˆ M+∆

M

w(x)x1/2e

(

±2(
√
n−

√
m)

√
x

k

)

dx

and
ˆ M+∆

M

w(x)x1/2e

(

±2(
√
n +

√
m)

√
x

k

)

dx.

We only consider the first one as the second one is similar but simpler. We use
Lemma 7 to bound the integral. We obtain
ˆ M+∆

M

w(x)x1/2e

(

±2(
√
n−

√
m)

√
x

k

)

dx ≪ ∆1−PkPM1/2+P/2|
√
n−

√
m|−P .

The sum over these estimates can be made as small as desired if

∆−1(
√
n−

√
m)−1k

√
M ≪ M−ε.

This is the case for all except ≍ kM1/2+ε

∆

√
n values around each n (as long as n is

sufficiently large such that there are values m 6= n in this neighborhood, which is
the case when n ≫ ∆2

k2M1+ε ). Let us use absolute values in these cases to bound the
integral, and sum over these values:

(2π2)−1k
∑

∆2

k2M1+ε<n≤M

|n−m|≪ kM1/2+ε

∆

√
n

a(n)a(m)(nm)−3/4e

(

(m− n)
h̄

k

)

·
ˆ M+∆

M

w(x)x1/2e

(

±2(
√
n−

√
m)

√
x

k

)

dx

≪ k
∑

∆2

k2M1+ε<n≤M

|n−m|≪ kM1/2+ε

∆

√
n

(nm)ε−3/4∆M1/2 ≪ kM1/2∆
∑

n

n−3/2+εkM
1/2+ε

∆

√
n ≪ k2M1+ε.

We have now derived the total contribution from the terms with m,n ≫ M ′ and
the error term in the Voronoi summation formula to be ≪ k2M1+ε + k∆MεT 1/2.

Let us now move to considering the part
ˆ M+∆

M

w(x) |S(x+ T, 0,M ′)− S(x, 0,M ′)|2 dx.
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This part is technically somewhat more challenging because it is not sufficient to
just use the triangle inequality, but we need to get some cancellation on the diagonal
terms. Therefore, we will also meet some integrals that are more difficult to consider
than the integrals treated in the first part of the proof.

We have

S(x+ T, 0,M ′)

=
k1/2

π
√
2
(x+ T )1/4

∑

n≤M ′

a(n)e

(

− h̄

k
n

)

n−3/4 cos

(

4π

√

n(x+ T )

k
− π

4

)

=
k1/2

π
√
2
x1/4

∑

n≤M ′

a(n)e

(

− h̄

k
n

)

n−3/4 cos

(

4π

√

n(x+ T )

k
− π

4

)

− k1/2

π
√
2

(

(x+ T )1/4 − x1/4
)

∑

n≤M ′

a(n)e

(

− h̄

k
n

)

n−3/4 cos

(

4π

√

n(x+ T )

k
− π

4

)

=
k1/2

π
√
2
x1/4

∑

n≤M ′

a(n)e

(

− h̄

k
n

)

n−3/4 cos

(

4π

√

n(x+ T )

k
− π

4

)

+O
(

k1/2(M ′)1/4+εM−3/4T
)

.

Thus, we have

S(x+ T, 0,M ′)− S(x, 0,M ′)

=
k1/2

π
√
2
x1/4

∑

n≤M ′

a(n)e

(

− h̄

k
n

)

n−3/4

(

cos

(

4π

√

n(x+ T )

k
− π

4

)

− cos

(

4π

√
nx

k
− π

4

)

)

+O
(

k1/2(M ′)1/4+εM−3/4T
)

.

Let us first treat the error term and then concentrate on the main term. Squaring
and integrating over the main term gives the total contribution

∆k(M ′)1/2+εM−3/2T 2.

If T ≫ ∆, we have M ′ = M2T−2, and hence

∆k(M ′)1/2+εM−3/2T 2 ≪ ∆kM1+εT−1M−3/2T 2 = kM−1/2+ε∆T ≪ k∆MεT 1/2.

If ∆ ≫ T , we have M ′ = M2T−1∆−1, and hence

∆k(M ′)1/2+εM−3/2T 2 ≪ ∆kM1+εT−1/2∆−1/2M−3/2T 2

= kM−1/2+ε∆1/2T 3/2 ≪ k∆MεT 1/2.
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In both cases, the contribution coming from the error term is at most k∆MεT 1/2.
Let us now move to the main term:

ˆ M+∆

M

w(x)

∣

∣

∣

∣

∣

k1/2

π
√
2
x1/4

∑

n≤M ′

a(n)e

(

− h̄

k
n

)

n−3/4

·
(

cos

(

4π

√

n(x+ T )

k
− π

4

)

− cos

(

4π

√
nx

k
− π

4

)

)∣

∣

∣

∣

∣

2

dx

=
k

2π2

∑

m,n≤M ′

a(n)a(m)e

(

(m− n)
h̄

k

)

(nm)−3/4

ˆ M+∆

M

w(x)x1/2

·
(

cos

(

4π

√

n(x+ T )

k
− π

4

)

− cos

(

4π

√
nx

k
− π

4

)

)

·
(

cos

(

4π

√

m(x+ T )

k
− π

4

)

− cos

(

4π

√
mx

k
− π

4

)

)

dx.

Let us first look at the case with n = m. Now

(

cos

(

4π

√

n(x+ T )

k
− π

4

)

− cos

(

4π

√
nx

k
− π

4

)

)2

= 4 sin2

(

2π

√

n(x+ T )

k
− 2π

√
nx

k

)

sin2

(

2π

√

n(x+ T )

k
+ 2π

√
nx

k
− π

4

)

.

When n ≪ xk2

T 2 , we have

√

n(x+ T )

k
−

√
nx

k
≪

√
nT

k
√
x

≪ 1.

Hence, if Mk2

T 2 ≫ 1, and since by our choice of M ′, we always have M ′ ≫ Mk2

T 2 , we
can split the diagonal sum into two. The first part gives the bound

2k

π2

∑

n≪Mk2

T2

|a(n)|2n−3/2

ˆ M+∆

M

w(x)x1/2 sin2

(

2π

√

n(x+ T )

k
− 2π

√
nx

k

)

· sin2

(

2π

√

n(x+ T )

k
+ 2π

√
nx

k
− π

4

)

dx

≪ k
∑

n≪Mk2

T2

|a(n)|2n−3/2M1/2

(√
nT

k
√
M

)2

∆ ≪ ∆T
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by partial summation. The second part gives the bound

2k

π2

∑

n≫Mk2

T2

|a(n)|2n−3/2

ˆ M+∆

M

w(x)x1/2 sin2

(

2π

√

n(x+ T )

k
− 2π

√
nx

k

)

· sin2

(

2π

√

n(x+ T )

k
+ 2π

√
nx

k
− π

4

)

dx

≪ k
∑

n≫Mk2

T2

|a(n)|2n−3/2M1/2∆ ≪ ∆M1/2k

(

Mk2

T 2

)−1/2

≪ ∆T.

On the other hand, if Mk2

T 2 ≪ 1, we have

2k

π2

∑

n≥1

|a(n)|2n−3/2

ˆ M+∆

M

w(x)x1/2 sin2

(

2π

√

n(x+ T )

k
− 2π

√
nx

k

)

· sin2

(

2π

√

n(x+ T )

k
+ 2π

√
nx

k
− π

4

)

dx

≪ k
∑

n≥1

|a(n)|2n−3/2M1/2∆ ≪ ∆M1/2k.

We can now move to the terms with n 6= m. We split the cosine product into
exponential terms, and thus, we have to treat integrals of the type

ˆ M+∆

M

w(x)x1/2e

(

±2

(

√

mT1(x)

k
±
√

nT2(x)

k

))

dx,

where T1(x) and T2(x) are x or x+ T , possibly but not necessarily the same. These
integrals have been treated in Lemmas 6–8. Lemma 6 always gives a good enough
bound. Lemma 7 gives a good enough bound, namely, the integral can be made
as small as desired, unless |√n − √

m| ≪ M1/2+εk∆−1. As in the first part of the

proof, there are ≍ kM1/2+ε

∆

√
n values of m around each n for which |√n − √

m| ≪
M1/2+εk∆−1. The contribution coming from these terms is again

≪ k2M1+ε.

We may now move to the cases when using Lemma 8 fails. Notice first that writing

fn,m(x) = 2

√

n(x+ T )

k
− 2

√
mx

k
,

we have

f ′
n0,m0

(x) =

√
n0√

x+ Tk
−

√
m0√
xk

= 0,

when n0 = m0
y+T
y

for some y ∈ [M,M +∆]. Next we want to show that when n lies

outside the interval Im,c =
[

m
(

1 + T
M+∆

)

− c,m
(

1 + T
M

)

+ c
]

for c ≍ M1/2+εk
∆

√
m,

then

f ′
n,m ≫ Mε′∆−1
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for some ε′, which is just enough that we can use partial integration Lemma 5 (and
therefore, Lemma 8) to estimate the integral. Write now

n = m

(

1 +
T

M +∆

)

− c.

Then

∣

∣f ′
n,m(x)

∣

∣ =

∣

∣

∣

∣

∣

∣

√

m
(

1 + T
M+∆

)

− c
√
x+ Tk

−
√
m√
xk

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√
m√
xk





√

1 + T
M+∆

− c
m

√

1 + T
x

− 1





∣

∣

∣

∣

∣

∣

≍
∣

∣

∣

∣

√
m√
xk

(

T

M +∆
− T

x
− c

m

)∣

∣

∣

∣

≫ c√
xmk

≍ Mε∆−1.

We can show a similar estimate for n = m
(

1 + T
M

)

+c. Denote Im =
[

m
(

1 + T
M+∆

)

,

m
(

1 + T
M

) ]

. Notice that when m ≪ ∆2

M1+εk2
, the interval Ic,m \ Im contain at most a

constant number of terms. Furthermore, by our choice of M ′, there is at most one n

for each m satisfying the condition n = m
(

1 + T
y

)

for some y ∈ [M,M + ∆], since

the length of the interval Im is

m

(

1 +
T

M

)

−m

(

1 +
T

M +∆

)

≍ mT∆

M2
.

All the integers on the interval
[

m
(

1 + T
M+∆

)

, m
(

1 + T
M

)]

are greater than m. When

the distance mTM−1 between the largest number on the interval and m is at most
o(1), there cannot be any numbers on the interval. This is the case when m =
o(MT−1).

In particular, when both m = o
(

∆2

M1+εk2

)

and m = o(MT−1), the sum is empty.

Therefore, it suffices to estimate the sums m ≫ ∆2

M1+εk2
and m ≫ MT−1. We will just

take absolute values of the integrals. The contribution coming from interval Ic,m \ Im
is

≪ k
∑

m≫ ∆2

M1+εk2

n∈Im,c\Im

|a(n)||a(m)|(nm)−3/4∆M1/2 ≪ k2M1+ε.

The contribution coming from interval Im is

≪ k
∑

m≫MT−1

n∈Im

|a(n)||a(m)|(nm)−3/4∆M1/2 ≪ k∆M1/2
∑

m≫MT−1

mε−3/2 ≪ k∆MεT 1/2.

We have now derived the contribution from the terms m,n ≪ M ′ to be the contribu-
tion from the main term and an error of size at most ≪ k2M1+ε+k∆MεT 1/2. Using
the Cauchy–Schwarz inequality completes the proof.
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