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Abstract. The purpose of the paper is to introduce a new class of strong uniqueness polynomial

satisfying Fujimoto’s conditions. We shall also show that for a suitably prescribing value of the

constant term in the class of polynomials, an SUPM (SUPE) with smallest degree ever can be

obtained. We also find corresponding class of unique range sets generated from those of polynomials

under weaker sharing hypothesis. Finally, rectifying the results in the application part of [2] we

shall reduce the cardinalities of the range sets under some assumptions on the deficiencies of the

functions. At the last section we shall place an open question for future research.

1. Introduction, definitions and results

In this paper we adopt the standard notations of the Nevanlinna theory of mero-
morphic functions as explained in [9]. Throughout the paper by a meromorphic
functions we shall always mean meromorphic functions in the complex plane. It will
be convenient to let E denote any set of positive real numbers of finite linear mea-
sure, not necessarily the same at each occurrence. For any non-constant meromorphic
function h(z) we denote by S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r −→ ∞, r 6∈ E).

For a ∈ C ∪ {∞}, we define

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share the value a CM (counting multiplicities),
provided that f − a and g − a have the same zeros with the same multiplicities.
Similarly, we say that f and g share the value a-IM (ignoring multiplicities), provided
that f−a and g−a have the same set of zeros, where the multiplicities are not taken
into account. In addition we say that f and g share ∞ CM (IM), if 1/f and 1/g
share 0 CM (IM).

Let S be a set of distinct elements of C∪ {∞} and Ef(S) =
⋃

a∈S{z : f(z) = a},
where each zero is counted according to its multiplicity. If multiplicities are not
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counted, then the set
⋃

a∈S{z : f(z) = a} is denoted by Ef(S). If Ef(S) = Eg(S) we

say that f and g share the set S CM. On the other hand, if Ef (S) = Eg(S), we say
that f and g share the set S IM. Evidently, if S contains only one element, then it
coincides with the usual definition of CM (respectively, IM) sharing of values.

Let l be a positive integer or infinity. We denote by El)(a, f) the set of a-points
of f whose multiplicities are not greater than l and each a-point is counted according
to its multiplicity. For S ⊂ C ∪ {∞} we put El)(S, f) =

⋃

a∈S El)(a; f).
In 1926, R. Nevanlinna discovered his famous five value uniqueness theorem which

says that if two non-constant meromorphic functions f and g on the complex plane
C share five distinct values IM then f ≡ g. A few years later, he showed that when
multiplicities are considered, 4 points are sufficient to determine the functions and
in this case either the functions coincide or one is the bilinear transformation of the
other. These two results can be considered as the backbone of the present uniqueness
theory which has been reached at the pinnacle of prosperity specially during the last
two decades.

In [7] Gross extended the study of uniqueness by determining an entire function
with the help of single pre-image of a finite set S counting multiplicities. In 1982
Gross and Yang [8] proved the following theorem:

Theorem A. [8] Let S = {z ∈ C : ez + z = 0}. If two entire functions f , g
satisfy Ef (S) = Eg(S), then f ≡ g.

In [8], the definition of unique range set for entire function was first introduced
which could easily be re-iterated for meromorphic functions as well. Below we are
recalling the same.

Let a set S ⊂ C and f and g be two non-constant meromorphic (entire) functions.
If Ef(S) = Eg(S) implies f ≡ g then S is called a unique range set for meromorphic
(entire) functions or in brief URSM (URSE).

In 1997, Yi [15] introduced the analogous definition for reduced unique range
sets. We will call any set S ⊂ C a unique range set for meromorphic (entire)
functions ignoring multiplicity (URSM-IM) (URSE-IM) or a reduced unique range
set for meromorphic (entire) functions (RURSM) (RURSE) if Ef (S) = Eg(S) implies
f ≡ g for any pair of non-constant meromorphic (entire) functions.

It is to be observed that since the range set S given in Theorem A is an infinite
set, Theorem A cannot be considered as an exact solution to the problem of Gross.

After the introduction of the novel idea of unique range sets researchers were
getting more involved to find new unique range sets with cardinalities as small as
possible. In 1994, Yi [13] exhibited a URSE with 15 elements and in 1995 Li and
Yang [10] exhibited a URSM with 15 elements and a URSE with 7 elements. Till
date the URSM with 11 elements are the smallest available URSM obtained by Frank
and Reinders [4]. The URSM discovered by Frank and Reinders is highlighted by a
number of researchers.

Li and Yang [10] first pointed out the fact that the finite URSM’s are the set of
distinct zeros of some suitable polynomials and so one cannot deny the importance
of the underlying polynomial.

According to Li and Yang [10], a polynomial P in C, is called a uniqueness poly-
nomial for meromorphic (entire) functions, if for any two non-constant meromorphic
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(entire) functions f and g, P (f) ≡ P (g) implies f ≡ g. We say P is a UPM (UPE)
in brief.

On the other hand, An, Wang and Wong [1] called a polynomial P in C as
a strong uniqueness polynomial for meromorphic (entire) functions if for any non-
constant meromorphic (entire) functions f and g, P (f) ≡ cP (g) implies f ≡ g, where
c is a suitable nonzero constant. In this case we say P is a SUPM (SUPE) in brief.

Following two theorems may be considered as the initial characterisations of a
uniqueness polynomial.

Theorem B. [10] Any polynomial of degree 2 or 3 is not a UPE.

Theorem C. [10] Let P (z) = z4+a3z
3+a2z

2+a1z+a0. Then P is not a UPM.
Also P is a UPE if and only if (a3

2
)3 − a2a3

2
+ a1 6= 0.

The polynomials of higher degree require further considerations, which first stud-
ied by Yang and Hua [12].

However in [5], to find a necessary and sufficient condition for a monic polynomial
without multiple zero to be a UPM, Fujimoto manipulated the polynomial in a dif-
ferent way. Let P (z) be a monic polynomial without multiple zero whose derivatives
has mutually distinct k zeros given by d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk
respectively. The following theorem of Fujimoto helps us to find many uniqueness
polynomials in which the term “critically injective” is used which has been explained
after Example 1.2.

Theorem D. [6] Suppose that P (z) is critically injective. Then P (z) will be a
uniqueness polynomial if and only if

∑

1≤l<m≤k

q
l
qm >

k
∑

l=1

q
l
.

In particular the above inequality is always satisfied whenever k ≥ 4. When k = 3
and max{q1, q2, q3} ≥ 2 or when k = 2, min{q1, q2} ≥ 2 and q1 + q2 ≥ 5, then also
the above inequality holds.

For k = 1, taking P (z) = (z − a)q − b for some constants a and b with b 6= 0 and
an integer q ≥ 2, it is easy to verify that for an arbitrary non-constant meromorphic
function g and a constant c ( 6= 1) with cq = 1, the function g := cf + (1− c)a ( 6= f)
satisfies the condition P (f) = P (g).

Let P be a polynomial of degree n in C having only simple zeros and S be the
set of all zeros of P . If S is a URSM (URSE), then from the definition it follows that
P is a UPM (UPE). However from the following examples given in [3] and [12], it is
evident that the converse is not true.

Example 1.1. [3] Let P (z) = az + b (a 6= 0). Clearly P (z) is a UPM but for
f = − b

a
ez and g = − b

a
e−z we see that Ef(S) = Eg(S), where S = {− b

a
} is the set of

zeros of P (z) = az + b.

Example 1.2. [12] Let P (z) = z4+2z3−9z2−2z+8 = (z−1)(z+1)(z−2)(z+4).
By Theorem C, P (z) is a UPE. Here S = {1,−1, 2, 4}. However, for two different
entire functions f(z) = 3

2

√
5ez + 7

2
and g(z) = 3

2

√
5e−z + 7

2
, one can easily check

Ef(S) = Eg(S).
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Therefore it would be really interesting to investigate under which additional
assumption the converse situation will hold good.

In this connection, Fujimoto [5] first discovered a special property of a polynomial,
reasonably called as critical injection property in [3] though initially Fujimoto called
it as property (H). Critical injection property of a polynomial may be stated as
follows: A polynomial P is said to satisfy critical injection property if P (α) 6= P (β)
for any two distinct zeros α, β of the derivative P ′.

Clearly the meaning of critical injection property is that the polynomial P is
injective on the set of distinct zeros of P

′

, which are known as critical points of
P . Naturally a polynomial with this property may be called a critically injective
polynomial. Fujimoto showed that the critical injection property of polynomial helps
one to find a sufficient condition for a set of zeros S of even a SUPM (SUPE) P to
be a URSM (URSE).

Theorem E. [5] Let P (z) = (z−α1)(z−α2) . . . (z−αn) be a critically injective
polynomial of degree n in C having only simple zeros. Let P ′ have k distinct zeros
and either k ≥ 3 or k = 2 and P ′ have no simple zero. Further suppose that P is a
SUPM (SUPE). If S is the set of zeros of P , then S is a URSM (URSE) whenever
n > 2k + 6 (n > 2k + 2) while a URSM-IM (URSE-IM) whenever n > 2k + 12
(n > 2k + 5).

Recently the definition of unique range sets have been generalized in [3] as follows:

Definition 1.1. [3] A set S is called a URSMl) (URSEl)) if for any two non-
constant meromorphic (entire) functions f , g, El)(S, f) = El)(S, g) implies f ≡ g.

In 2009 Bai, Han and Chen [2] proved the following truncated sharing version of
Theorem E.

Theorem F. [2] In addition to the hypothesis of Theorem E we suppose that l
is a positive integer or ∞. Let S be the set of zeros of P . If

(i) l ≥ 3 or ∞ and n > 2k + 6 (2k + 2),
(ii) l = 2 and n > 2k + 7 (2k + 2),
(iii) l = 1 and n > 2k + 10 (2k + 4),

then S is a URSMl) (URSEl)).

We recall the URSM introduced by Frank and Reinders [4] which is the zero set
of

PFR(z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c (c 6= 0, 1).

Clearly P
′

FR(z) has two distinct zeros that is here k = 2. From [4], we know PFR

is a UPM if n ≥ 6. Also from [4, p. 191, Case 2] it is clear that whenever n ≥ 8,
PFR(f) ≡ cPFR(g) implies PFR(f) ≡ PFR(g) that is PFR is a SUPM satisfying critical
injection property when n ≥ 8. Hence if we denote the zero set of PFR(z) as SFR

then SFR becomes a URSMl) (URSEl)) for the cases l ≥ 3 or ∞, l = 2 and l = 1
when it contains 11, 12, 15 elements (respectively 7, 7, 9 elements).

Second type of URSM is demonstrated by Yi in [14] which is the zero set of

PY (z) = zn + azn−r + b,

where n, r are two positive integers having no common factors, r ≥ 2 and a and b
are so chosen so that P has n distinct zeros. Here k = r + 1 and PY is a UPM if
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n ≥ 7, see [14, p. 79, Case 3, last part]. Also from [14, p. 79, Case 3, first part] it is
clear that whenever n ≥ 2r+5, PY (f) ≡ cPY (g) implies PY (f) ≡ PY (g) and hence it
is a critically injective SUPM. Hence if we denote the zero set of PY (z) as SY , then
SY becomes a URSMl) (URSEl)) for the cases l ≥ 3 or ∞, l = 2 and l = 1 when it
contains 2r+9, 2r+10, 2r+13 elements (respectively 2r+5, 2r+5, 2r+7 elements).

So we observe that the smallest degree of critically injective SUPM discovered
ever is PFR(z) when n ≥ 8. To reduce the cardinalities of the range sets further in
the application part of [2] the following theorem was proved.

Theorem G. [2] In addition to the hypothesis of Theorem F we suppose that l
is a positive integer or ∞. Let S be the set of zeros of P . If

(i) l ≥ 3 or ∞ and Θ(∞; f) + Θ(∞; g) > 3 + k − n
2
,

(ii) l = 2 and Θ(∞; f) + Θ(∞; g) > 28+8k−4n
9

,

(iiii) l = 1 and Θ(∞; f) + Θ(∞; g) > 20+4k−2n
6

,

then S is a URSMl).

The proof of the above theorem is not flawless. For example if we carefully
observe third line after (6.1) of p. 641, in the proof of [2, Theorem 6.1] we see that
the equation have been calculated on the basis of the assumption that

T (r) ≤ 2T0(r) ⇒ (2k − n+ 2)T (r)(= T (r, f) + T (r, g)) ≤ 2(2k − n+ 2)T0(r)

which is only true when 2k + 2 ≥ n. But then [2, Theorem 6.1] is not correct since
for all the cases with l ≥ 3 or ∞, l = 2 and l = 1, we have from Theorem G,
Θ(∞; f) + Θ(∞; g) > 2, which is impossible.

With the help of Theorem G in [2], investigations on further reduction of the
cardinalities of SFR were carried out. As we have already shown that Theorem G is
not correct, it would be better to find first its rectified form than to ponder over its
applications.

In the paper we introduce a new class of SUPM which is also critically injective
but different from PFR. We shall also show that for a suitable choice of the constant
term in our polynomial it will be a SUPM (SUPE) with smaller degree than that of
Frank and Reinders. Finally, we will rectify Theorem G and investigate its implica-
tions on the SUPM PFR and the same obtained by us. Henceforth for two positive
integers n, m we shall denote by P (z) the following polynomial

(1.1) P (z) =
m
∑

i=0

(

m

i

)

(−1)i

n+m+ 1− i
zn+m+1−i + c = Q(z) + c,

where

Q(z) =

m
∑

i=0

(

m

i

)

(−1)i

n+m+ 1− i
zn+m+1−i, c 6= 0,

is a constant. Clearly P
′

(z) = zn(z − 1)m. So P (0) = c and P (1) = Q(1) + c.
Following theorem is the main result of the paper.

Theorem 1.1. Let n, m ≥ 3 (m ≥ 2) be two positive integers. Now

(I) when c 6= 1, n ≥ m+ 3 (n ≥ m+ 2), or
(II) when c = 1, n ≥ 3 (n ≥ 2), then P given by (1.1), is a SUPM (SUPE).

Remark 1.1. From Theorem 1.1, it is clear that when c 6= 1 and n + m ≥ 9
(n+m ≥ 6), i.e., when degree of the polynomial is at-least 10 (7) or when c = 1 and
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n +m ≥ 6 (min{m,n} ≥ 2, with m+ n ≥ 5), i.e., when degree of the polynomial is
at least 7 (6), then P given by (1.1) is a SUPM (SUPE).

Remark 1.2. When c = 1, (1.1) produce a new kind of critically injective SUPM
(SUPE) with degree 7 (6). Till date this is the smallest degree critically injective
SUPM (SUPE) ever introduced.

Theorem 1.2. Let n, m(≥ 3) be two positive integers. We suppose that S =
{z : P (z) = 0}. Now

(I) when c 6= 1, n ≥ m+ 3, or
(II) when c = 1, n ≥ 3 and one of the following conditions holds:

(a) l ≥ 3 or ∞ and n +m ≥ 10 (6),
(b) l = 2 and n +m ≥ 11 (6),
(c) l = 1 and n +m ≥ 15 (9),

then S is a URSMl) (URSEl)).

2. Lemma

The following lemma is needed to proceed further.

Lemma 2.1. [11] Let f be a non-constant meromorphic function and let

R(f) =

n
∑

k=0

akf
k

m
∑

j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj} where
an 6= 0 and bm 6= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.
Lemma 2.2. Q(1) is not an integer. In particular, when c = 1, P (1) 6= −1,

where n ≥ 3, m ≥ 3 are integers.

Proof. We claim that

Sn(m) =

m
∑

i=0

(

m

i

)

(−1)i

n +m+ 1− i

=

(

m

0

)

n+m+ 1
−

(

m

1

)

n +m+ 1− 1
+ . . .+ (−1)m

(

m

m

)

n+ 1

=
(−1)mm!

(n+m+ 1)(n+m) . . . (n+ 1)
.

We prove the claim by method of induction on m.
At first for m = 3 we get

Sn(3) =
1

n+ 4
− 3

n + 3
+

3

n+ 2
− 1

n + 1
=

(−1)3 · 3!
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

.

So, Sn(m) is true for m = 3. Now we assume that Sn(m) is true for m = k, where
k is any given positive integer such that k ≥ 3. We will show that Sn(m) is true for
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m = k + 1, i.e.,
(

k+1
0

)

n+ k + 2
−

(

k+1
1

)

n+ k + 1
+ . . .+ (−1)k+1

(

k+1
k+1

)

n+ 1
=

(−1)(k+1)(k + 1)!

(n + k + 2)(n+ k + 1) . . . (n+ 1)
.

Using induction hypothesis and noting that
(

k+1
i

)

=
(

k

i

)

+
(

k

i−1

)

for i ≥ 1, we have

Sn(k + 1)

=

(

k

0

)

n+ k + 2
−

(

k

0

)

+
(

k

1

)

n+ k + 1
+

(

k

1

)

+
(

k

2

)

n+ k
− . . .+ (−1)k

(

k

k−1

)

+
(

k

k

)

n+ 2
+ (−1)k+1

(

k

k

)

n + 1

=

[

(

k

0

)

(n+ 1) + k + 1
−

(

k

1

)

(n+ 1) + k
+

(

k

2

)

(n+ 1) + k − 1
− . . .+ (−1)k

(

k

k

)

(n+ 1) + 1

]

−
[

(

k

0

)

n+ k + 1
−

(

k

1

)

n+ k
+

(

k

2

)

n+ k − 1
− . . .+ (−1)k−1

(

k

k−1

)

n+ 2
+ (−1)k

(

k

k

)

n+ 1

]

= Sn+1(k)− Sn(k)

=
(−1)kk!

(n+ k + 2)(n+ k + 1) . . . (n+ 2)
− (−1)kk!

(n+ k + 1)(n+ k) . . . (n+ 1)

=
(−1)(k+1)(k + 1)!

(n+ k + 2)(n+ k + 1) . . . (n+ 1)
.

So our claim has been established. We note that Sn(m) = (−1)m
∏m

i=1
i

(n+i)
1

(n+m+1)

and hence it can not be an integer. In particular we have proved that Q(1) 6= −2,
i.e., when c = 1, P (1) 6= −1. �

3. Proofs of the theorems

Proof of Theorem 1.1. Let F and G be two non-constant meromorphic functions
given by F = P (f) and G = P (g). First we observe that by Lemma 2.2, Q(1) 6= 0.
Since P (0) = c 6= P (1) = Q(1) + c, P (z) is critically injective polynomial. Also
P (z) − c and P (z) − P (1) have a zero of multiplicity n + 1 and m + 1 respectively
at 0 and 1, it follows that P (z) has simple zeros. Let the zeros be given by αj ,
j = 1, 2, . . . , n+m+ 1. Suppose

(3.1) P (f) ≡ AP (g),

i.e.,

(3.2) F ≡ AG.

From (3.1) using Lemma 2.1 we have

(3.3) T (r, f) ≡ T (r, g) + S(r, g).

Case 1. Suppose A 6= 1.
Subcase 1.1. Assume A = P (1), then from (3.2) we have

F − P (1) ≡ P (1)(G− 1).

Suppose c 6= 1, it follows that all the zeros of P (z) − 1 are simple and let them be
βi, i = 1, 2, . . . , n+m+ 1. Clearly P (z)− P (1) has a zero at 1 of order m+ 1. Let
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the remaining distinct zeros of P (z)− P (1) be γj, j = 1, 2, . . . , n. Then

N(r, 1; f) +
n

∑

j=1

N(r, γj; f) =
n+m+1
∑

i=1

N(r, βi; g).

So from the second fundamental theorem and (3.3) we get

(n+m− 1)T (r, g) ≤
n+m+1
∑

i=1

N(r, βi; g) + S(r, g)

≤ (n + 1)T (r, f) + S(r, f) ≤ (n+ 1)T (r, g) + S(r, g),

a contradiction since m ≥ 3.
Next suppose c = 1. Then from (3.2) we have

F − 1 ≡ P (1)

(

G− 1

P (1)

)

.

Since P (1) 6= 1 and Lemma 2.2 implies P (1) 6= −1 we have 1
P (1)

6= P (1), it follows

that P (z)− 1
P (1)

has simple zeros. Let they be given by β
′

i, i = 1, 2, . . . , n +m + 1.

We also let δj , j = 1, 2, . . . , m be the distinct simple zeros of P (z)− c. So from the
second fundamental theorem and (3.3) we get

(n+m− 1)T (r, g) ≤
n+m+1
∑

i=1

N(r, β
′

i; g) + S(r, g)

≤ N(r, 0; f) +

m
∑

j=1

N(r, δj; f) ≤ (m+ 1)T (r, g) + S(r, g),

a contradiction since n ≥ 3.
Subcase 1.2. Let A 6= P (1). If c 6= 1, then we have from (3.2)

F −Ac ≡ A(G− c).

Clearly Ac 6= c. Suppose Ac 6= P (1). Let the distinct zeros of P (z)−Ac be given by
γ

′

i, i = 1, 2, . . . , n + m + 1. So from the second fundamental theorem and (3.3) we
get

(n+m− 1)T (r, f) ≤
n+m+1
∑

i=1

N(r, γ
′

i; f) + S(r, f)

=
m
∑

j=1

N(r, δj; g) +N(r, 0; g) + S(r, g)

≤ (m+ 1)T (r, f) + S(r, f),

a contradiction since n ≥ 3.
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Next suppose Ac = P (1). Then again by the same way as above we get

(n− 1)T (r, f) ≤
n

∑

i=1

N(r, γi; f) +N(r, 1; f) + S(r, f)

=

m
∑

j=1

N(r, βj; g) +N(r, 0; g) + S(r, g)

≤ (m+ 1)T (r, f) + S(r, f),

a contradiction since n ≥ m+ 3.
If c = 1, then we have

F − A ≡ A(G− 1).

In this case since n ≥ 3, proceeding as above when Ac = A 6= P (1), we can get a
contradiction. So we omit the detail.

Case 2. Suppose A = 1. Then from (3.2) we have F ≡ G, i.e., P (f) ≡ P (g).
Here k = 2, d1 = 0, d2 = 1, q1 = n, q2 = m. Also we see that nm > n + m,
when n ≥ 3 and m ≥ 3. So from Theorem D we conclude that P (z) is a uniqueness
polynomial. Therefore f ≡ g. Hence for the case c = 1, P (z) is a SUPM (SUPE),
when n ≥ 3, m ≥ 3 (min{m,n} ≥ 2, with m+ n ≥ 5) and for the case c 6= 1, P (z)
is a SUPM (SUPE) when n ≥ m + 3, m ≥ 3 (n ≥ m + 2, m ≥ 2). That is when
c = 1 and P (z) contains at least 7 (6) zeros or c 6= 1 and P (z) contains at least 10
(7) zeros, it is a SUPM (SUPE). This proves the theorem. �

Proof of Theorem 1.2. Since from Theorem 1.1 we know when n+m ≥ 10 (6),
P (z) is an SUPM (SUPE), the theorem follows from Theorem F. �

4. Applications

One can easily prove that the actual statement of Theorem G should be

Theorem 4.1. In addition to the hypothesis of Theorem F we suppose that l is
a positive integer or ∞. Let S be the set of zeros of P . If

(i) l ≥ 3 or ∞ and min{Θ(∞; f),Θ(∞; g)} > 6+2k−n
4

,

(ii) l = 2 and min{Θ(∞; f),Θ(∞; g)} > 14+4k−2n
9

,

(iiii) l = 1 and min{Θ(∞; f),Θ(∞; g)} > 10+2k−n
6

,

then S is a URSMl).

From Theorem 4.1 it is clear that there exists a URSM3) (URSM2)) say SFR

or S consisting of 7 elements with the assumption min{Θ(∞; f),Θ(∞; g)} > 3
4

(min{Θ(∞; f),Θ(∞; g)} > 8
9
); while there exists an URSM1) say SFR or S con-

sisting of 9 elements with the assumption min{Θ(∞; f),Θ(∞; g)} > 5
6
. These are

the best known lower bounds of any URSMl).

5. Concluding remark and an open question

From [10] it is clear that any polynomial with degree n, 2 ≤ n ≤ 5, cannot be a
UPM. So from Remark 1.2 the following question is inevitable.

Does there exist any critically injective SUPM with degree less than 7?
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