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Abstract. In this paper, we characterize weighted Lebesgue spaces with variable exponent in

terms of wavelet. Also, we disprove some weighted modular inequalities when the exponent is not

a constant one without using the A∞-condition on weights. As a byproduct, we shall obtain the

vector-valued maximal inequalities in the weighted setting.

1. Introduction

The theory of variable exponent analysis has been rapidly developed after Kováčik
and Rákosník [30] established some fundamental properties of generalized Lebesgue
spaces Lp(·)(Rn) with variable exponent p(·) : Rn → [1,∞]. One of the most impor-
tant problems in the theory is the boundedness of the Hardy–Littlewood maximal
operator M defined by

Mf(x) := sup
Q∋x

1

|Q|

ˆ

Q

|f(y)| dy, x ∈ Rn,

for a measurable function f : Rn → C, where the supremum is taken over all open
cubes Q containing x whose sides are parallel to the coordinate axes. The bounded-
ness of the maximal operator M enabled us to analyze these function spaces more
deeply. In [6, 8, 10, 11, 14, 15, 16, 17] we obtained good sufficient conditions for
the boundedness of M on Lp(·)(Rn) such as the log-Hölder continuous condition (see
(1.2) and (1.3) below).

For a variable exponent p(·) : Rn → [1,∞], the space Lp(·)(Rn) is defined as the
set of all measurable functions f such that

‖f‖Lp(·) := inf{λ > 0: ρ(f/λ) ≤ 1} <∞,

where

ρ(f) ≡
ˆ

{p(x)<∞}

|f(x)|p(x) dx+ ‖f‖L∞({p(x)=∞}).
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Diening [14] and Cruz-Uribe, Fiorenza and Neugebauer [10, 11] established the fol-
lowing: If

(1.1) 1 < p− ≡ ess inf
x∈Rn

p(x) ≤ p+ ≡ ess sup
x∈Rn

p(x) <∞,

and if there exist positive constants C and p∞ such that

|p(x)− p(y)| ≤ C

− log(|x− y|) , x, y ∈ Rn, |x− y| ≤ 1/2,(1.2)

|p(x)− p∞| ≤ C

log(e+ |x|) , x ∈ Rn,(1.3)

then the Hardy–Littlewood maximal operator M is bounded on Lp(·)(Rn). Let
LH(Rn) be the set of all p(·) : Rn → [1,∞) satisfying the log-Hölder continuous
conditions (1.2) and (1.3).

Meanwhile the Muckenhoupt Ap theory has been playing an important role in
harmonic analysis up to now (cf. [19, 21, 38]). The Ap condition for weight functions
guarantees the boundedness of the maximal operator M on weighted Lebesgue spaces
Lp
w(R

n). Recently the classical Muckenhoupt Ap class has been generalized to the
setting Ap(·) of variable exponents by [7, 12, 18] and some equivalent conditions to

the boundedness of M on L
p(·)
w (Rn) has been given (see also [8, 27]).

For a variable exponent p(·) : Rn → [1,∞), a measurable function w is said to
be an Ap(·) weight if 0 < w <∞ a.e. and

(1.4) sup
Q

1

|Q|‖w
1/p(·)χQ‖Lp(·)‖w−1/p(·)χQ‖Lp′(·) <∞

holds, where the supremum is taken over all open cubes Q ⊂ Rn whose sides are
parallel to the coordinate axes and p′(·) is the conjugate exponent of p(·), that is,
1/p(x) + 1/p′(x) = 1. Note that p′(·) : Rn → (1,∞] when p(·) : Rn → [1,∞). The
set Ap(·) consists of all Ap(·) weights. If p(·) is a constant p, then Ap(·) is the classical
Ap class. As is written in [7, 18], for p(·) ∈ LH(Rn) satisfying 1 < p− ≤ p+ < ∞,

the operator M is bounded on L
p(·)
w (Rn) if and only if w ∈ Ap(·).

In the present paper, we shall characterize weighted Lebesgue spaces L
p(·)
w (Rn)

in terms of wavelet assuming p(·) ∈ LH(Rn). More precisely, we give equivalent
conditions for Ap(·) by using the boundedness of an operator related to wavelets. To
do this we first characterize Banach function spaces in terms of wavelet, which is

achieved by the boundedness of Calderón–Zygmund operators on L
p(·)
w (Rn). Finally,

we give equivalent conditions for weighted modular inequalities, applying uniform
boundedness of a family of operators with weakly positive kernels. We prove that
p(·) is a constant if and only if weighted modular inequalities hold. This generalizes
the result in Lerner [32] which is the case w ≡ 1. We do not depend upon the key
observation about A∞-condition which is used in [32].

This article is organized as follows. In Section 2 we prepare some known results on
the Hardy–Littlewood maximal operator, Banach function spaces, wavelets, weakly
positive kernels, and, Muckenhoupt weights with variable exponent. In Section 3

we prove the boundedness of Calderón–Zygmund operators on L
p(·)
w (Rn). To do

this we prove a certain vector-valued inequality for the Hardy–Littlewood maximal
operator. We will extend this inequality to a usual form in Section 5 as an appendix.
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In Section 4 we give our main results; wavelet characterization for Banach function

spaces and for L
p(·)
w (Rn), and, equivalent conditions for weighted modular inequalities.

In the whole paper, we will use the following notation:

1. Given a measurable set S ⊂ Rn, we denote the Lebesgue measure by |S| and
the characteristic function by χS.

2. Given a measurable set S ⊂ Rn such that 0 < |S| < ∞ and a measurable
function f on Rn, we denote the mean value of f on S by fS, namely fS :=
1
|S|

´

S
f(x) dx.

3. A symbol C always stands for a positive constant independent of the main
parameters.

4. A cube Q ⊂ Rn is always assumed to be open and have sides parallel to the
coordinate axes. Namely we can write

Q =

n
∏

ν=1

(xν − r/2, xν + r/2)

using a point x = (x1, x2, . . . , xn) ∈ Rn and a constant r > 0.

2. Preliminaries

2.1. Hardy–Littlewood maximal operator M on L
p(·)(Rn). In this

subsection we recall some sufficient conditions for the boundedness of the Hardy–
Littlewood maximal operatorM on Lebesgue spaces Lp(·)(Rn) with variable exponent
p(·) : Rn → [1,∞). Recall that the set LH(Rn) consists of all variable exponents
p(·) satisfying the log-Hölder continuous conditions (1.2) and (1.3).

The following theorem is a sufficient condition for the boundedness of the Hardy–
Littlewood maximal operator.

Theorem 2.1. [5, 10, 11, 14] Let 1 ≤ p− ≤ p+ < ∞. If p(·) ∈ LH(Rn), then

the operator M is of weak type (p(·), p(·)), that is,

‖χ{Mf>λ}‖Lp(·) ≤ Cλ−1‖f‖Lp(·)

holds for all λ > 0 and all f ∈ Lp(·)(Rn). Additionally if 1 < p−, then M is bounded

on Lp(·)(Rn), that is,

‖Mf‖Lp(·) ≤ C ‖f‖Lp(·).

For the case p(·) : Rn → [1,∞], see [6, 16].
We next state some equivalent conditions due to Diening [15]. Recall that p′(·)

means the conjugate exponent of p(·), that is, 1/p(x) + 1/p′(x) = 1 holds. Let Y be
the set of all families of disjoint cubes in Rn, and let B(Rn) be the set of all variable
exponent p(·) with 1 < p− ≤ p+ < ∞ such that the Hardy–Littlewood maximal
operator M is bounded on Lp(·)(Rn).

Theorem 2.2. [15] Let 1 < p− ≤ p+ < ∞. Then the next four conditions are

equivalent:

(D1) p(·) ∈ B(Rn).
(D2) p′(·) ∈ B(Rn).
(D3) There exists a constant q ∈ (1, p−) such that p(·)/q ∈ B(Rn).
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(D4) There exists a positive constant C > 0 such that, for all Y ∈ Y and all

f ∈ Lp(·)(Rn), we have
∥

∥

∥

∥

∥

∑

Q∈Y

|f |QχQ

∥

∥

∥

∥

∥

Lp(·)

≤ C ‖f‖Lp(·).

If we take an arbitrary cube Q and put Y := {Q} and f := fχQ in (D4) above,
then we get a weaker condition:

(A1) There exists a constant C > 0 such that |f |Q‖χQ‖Lp(·) ≤ C ‖fχQ‖Lp(·) holds
for all cubes Q and for all f ∈ Lp(·)(Rn).

In Lemma 2.4 below, we will prove the condition (A1) is a necessary condition for
the weak boundedness of M on Lp(·)(Rn) and equivalent to the following condition
(A2), which is called the Muckenhoupt condition for a variable exponent p(·):

(A2) sup
Q:cube

1

|Q|‖χQ‖Lp(·)‖χQ‖Lp′(·) <∞.

See Lemmas 2.4 and 2.5 to follow, where we will prove these facts in the context of
Banach function spaces.

2.2. Banach function spaces. In this subsection we first recall the definition
and the fundamental properties of Banach function spaces based on the book [2]. Let
M = M(Rn) be the set of all complex-valued measurable functions on Rn.

Definition 2.1. A linear space X ⊂ M is said to be a Banach function space

if there exists a functional ‖ · ‖X : M → [0,∞] with the following conditions: Let
f, g, fj ∈ M (j = 1, 2, . . .).

1. f ∈ X if and only if ‖f‖X <∞.
2. (Norm property):

(a) (Positivity): ‖f‖X ≥ 0.
(b) (Strict positivity): ‖f‖X = 0 if and only if f = 0 a.e.
(c) (Homogeneity): ‖λf‖X = |λ| · ‖f‖X .
(d) (Triangle inequality): ‖f + g‖X ≤ ‖f‖X + ‖g‖X.

3. (Symmetry): ‖f‖X = ‖ |f | ‖X.
4. (Lattice property): If 0 ≤ g ≤ f a.e., then ‖g‖X ≤ ‖f‖X.
5. (Fatou property): If 0 ≤ f1 ≤ f2 ≤ . . . and lim

j→∞
fj = f a.e., then

lim
j→∞

‖fj‖X = ‖f‖X .

6. For all measurable sets F with |F | <∞, it follows ‖χF‖X <∞ and
ˆ

F

|f(x)|dx ≤ CF‖f‖X (f ∈ X)

with the constant CF depending on F .

We need more definitions to state our main results.

Definition 2.2. A Banach function space X is said to have an absolutely con-
tinuous norm, if f, g, fm ∈ X (m = 1, 2, · · · ) satisfy fm → f (m→ ∞) a.e. Rn and
|fm| ≤ g a.e. Rn for all m ≥ 1, then lim

m→∞
‖fm − f‖X = 0.
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Definition 2.3. Let X ⊂ M be a Banach function space equipped with a norm
‖ · ‖X . The associate space X ′ is defined by

X ′ := {f ∈ M : ‖f‖X′ <∞},
where

‖f‖X′ := sup

{
ˆ

Rn

|f(x)g(x)| dx : ‖g‖X ≤ 1

}

.

For example, the Lebesgue space Lp(·)(Rn) with variable exponent p(·) : Rn →
[1,∞) is a Banach function space and the associate space is Lp′(·)(Rn) with norm
equivalence [30].

The following lemma consists of the generalized Hölder inequality and the norm
equivalence for Banach function space. See [2, pages 9–10] for example.

Lemma 2.3. Let X ⊂ M be a Banach function space.

1. For all f ∈ X and all g ∈ X ′, we have

(2.1)

ˆ

Rn

|f(x)g(x)| dx ≤ ‖f‖X‖g‖X′.

2. For all f ∈ X we have

sup

{
ˆ

Rn

|f(x)g(x)| dx : ‖g‖X′ ≤ 1

}

= ‖f‖X .

In particular, the space (X ′)′ is equal to X.

As an application of the lemma above, we show the following equivalence.

Lemma 2.4. Let X ⊂ M be a Banach function space. Then the following two

conditions are equivalent:

(I) sup
Q:cube

1

|Q|‖χQ‖X‖χQ‖X′ <∞.

(II) There exists a positive constant C such that, for all cubes Q and all f ∈
L1
loc(R

n),

|f |Q‖χQ‖X ≤ C ‖fχQ‖X .
We will give a self-contained proof for readers’ convenience. The same argument

is found in the recent article [26].

Proof. Take an open cube Q and f ∈ L1
loc(R

n) arbitarily. The implication (II)
⇒ (I) is proved as follows;

1

|Q|‖χQ‖X‖χQ‖X′ ≤ 1

|Q|‖χQ‖X sup

{
ˆ

Rn

|f(x)|χQ(x) dx : ‖f‖X ≤ 1

}

= sup {|f |Q‖χQ‖X : ‖f‖X ≤ 1}
≤ C sup {‖fχQ‖X : ‖f‖X ≤ 1} ≤ C.

On the other hand, from (I) and Hölder’s inequality (2.1), (II) is verified;

|f |Q‖χQ‖X =
1

|Q|

ˆ

Q

|f(y)| dy · ‖χQ‖X ≤ 1

|Q|‖fχQ‖X‖χQ‖X′‖χQ‖X ≤ C ‖fχQ‖X .

So, we are done. �

The next lemma generalizes (A1).
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Lemma 2.5. If the Hardy–Littlewood maximal operator M is weakly bounded

on X, that is

‖χ{Mg>λ}‖X ≤ Cλ−1‖g‖X
holds for all λ > 0 and all g ∈ X, then we have

|f |Q‖χQ‖X ≤ C ‖fχQ‖X
for all cubes Q and all f ∈ L1

loc(R
n).

Proof. Take an open cube Q and f ∈ L1
loc(R

n) arbitrarily. If |f |Q = 0, then the
conclusion is obviously true. Below we assume |f |Q > 0 and write λ := |f |Q/2. Since
|f |QχQ(x) ≤M [fχQ](x) one has

M [fχQ] > λ on Q.

Thus we conclude

|f |Q‖χQ‖X ≤ |f |Q‖χ{M [fχQ]>λ}‖X ≤ |f |Q · C
λ

‖fχQ‖X = C ‖fχQ‖X ,

which proves the lemma. �

Below we recall some properties of weighted Banach function spaces based on
Karlovich and Spitkovsky [27]. Let X be a Banach function space. The set Xloc

consists of all measurable function f such that fχE ∈ X for any measurable set E
with |E| <∞. Given a function W such that 0 < W <∞ a.e. on Rn, W ∈ Xloc and
W−1 ∈ (X ′)loc, we define the weighted Banach function space X(Rn,W ) by

X(Rn,W ) := {f ∈ M(Rn) : fW ∈ X} .
Then the following is known to hold.

Lemma 2.6.

1. The weighted Banach function space X(Rn,W ) is a Banach function space

equipped with the norm

‖f‖X(Rn,W ) := ‖fW‖X .
2. The associate space of X(Rn,W ) is X ′(Rn,W−1) equipped with the norm

‖f‖X′(Rn,W−1) := ‖fW−1‖X′.

The properties above naturally arise from those of usual Banach function spaces
and the proofs are found in [27, Lemma 2.4(c)].

2.3. Wavelet and weakly positive kernels. A family of closed subspaces
{Vj}j∈Z of L2(Rn) is said to be a multiresolution analysis (MRA) if the following
conditions hold:

1. Vj ⊂ Vj+1 for all j ∈ Z.
2.
⋃

j∈Z Vj is dense in L2(Rn).

3.
⋂

j∈Z Vj = {0}.
4. f ∈ Vj holds if and only if f(2·) ∈ Vj+1 for every j ∈ Z.
5. If f ∈ V0, then f(· − k) ∈ V0 for all k ∈ Zn.
6. There exists a function ϕ ∈ L2(Rn) such that {ϕ(·−k)}k∈Zn is an orthonormal

basis in V0.
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The function ϕ is said to be a scaling function of the MRA {Vj}j∈Z.
Based on the fundamental wavelet theory (cf. [13, 37, 40]), we can construct a

compactly supported C1 scaling function ϕ of an MRA {Vj}j∈Z. For each j ∈ Z we
can take a closed subspace Wj so that Vj+1 = Vj ⊕Wj . Let L = {1, 2, · · · , 2n − 1}.
According to the standard construction, there exists a set of compactly supported
C1-functions {ψl}l∈L such that the system

{ψl
j,k := 2jn/2ψl(2j · −k) : l ∈ L, k ∈ Zn}

is an orthonormal basis of Wj for each j ∈ Z. Thus the system

{ψl
j,k : l ∈ L, k ∈ Zn, j ∈ Z}

becomes an orthonormal basis in L2(Rn). Each function ψl is called a wavelet.
Below we consider a compactly supported C1 scaling function ϕ of an MRA

{Vj}j∈Z and the associated wavelets {ψl}l∈L. For each j ∈ Z the orthogonal projec-
tion Pj : L

2(Rn) → Vj is given by

Pjf(x) =
∑

k∈Zn

〈f, ϕj,k〉ϕj,k(x) =

ˆ

Rn

Kj(x, y)f(y) dy,

where ϕj,k := 2jn/2ϕ(2j · −k) and

〈f, ϕj,k〉 :=
ˆ

Rn

f(x)ϕj,k(x) dx, Kj(x, y) :=
∑

k∈Zn

ϕj,k(x)ϕj,k(y).

As we mentioned, the family {Pj}j∈Z has some interesting properties. Because
the scaling function ϕ is compactly supported and bounded, we can easily prove

(2.2) |Pjf(x)| ≤ CMf(x)

everywhere for all j ∈ Z, where C > 0 is a constant independent of f and j. Aimar,
Bernardis and Martín-Reyes [1] has proved that (2.2) is valid for more general scaling
functions. In [1] they have additionally found the next property of the family of
kernels {Kj(x, y)}j∈Z. Those properties are applicable to wavelet characterizations
of the usual Muckenhoupt weights and modular inequalities on Lebesgue spaces with
variable exponent, see [23].

Lemma 2.7. The family {Kj(x, y)}j∈Z enjoys the following property called

weakly positive: There exist a constant C > 0 and a sequence of positive real numbers

{ℓj}j∈Z such that

1. 0 < ℓj+1 < ℓj <∞ for all j ∈ Z,

2. limj→∞ ℓj = 0 and limj→−∞ ℓj = ∞,

3. Kj(x, y) > C(ℓj+1)
−n whenever |x− y| < ℓj .

The notion of weakly positive kernels dates back to the work by Aimar, Bernardis
and Martín-Reyes [1], where they characterized the Muckenhoupt class Ap in terms
of wavelet. The notion of the weakly positve kernel is akin to the one of genuine
singular integral operators. See [3, 4].

2.4. Muckenhoupt weights with variable exponent. In this subsection

we define the weighted Lebesgue space L
p(·)
w (Rn) with variable exponent p(·) : Rn →

[1,∞) and introduce a result on the boundedness of the Hardy–Littlewood maximal

operator M on L
p(·)
w (Rn).
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Definition 2.4. For a variable exponent p(·) : Rn → [1,∞) and a function w

with 0 < w <∞ a.e., the weighted Lebesgue space L
p(·)
w (Rn) with variable exponent

is the space Lp(·)(Rn, w1/p(·)), namely

Lp(·)
w (Rn) = Lp(·)(Rn, w1/p(·)) = {f : ‖f‖

L
p(·)
w

:= ‖fw1/p(·)‖Lp(·) <∞}.
Recall that the Muckenhoupt class Ap(·) is defined by (1.4). About the properties

of this class of weights, several helpful remarks may be in order.

Remark 2.1. Let p(·) : Rn → [1,∞).

1. If p(·) equals a constant, then the class Ap(·) is the usual Muckenhoupt class.
2. If the Hardy–Littlewood maximal operator M is weak type of (p(·), p(·)), then

condition (A2) is true, that is, the constant function 1 belongs to Ap(·). This
fact generalizes [12, Proposition 3.8].

3. Suppose that w1, w2 are the Muckenhoupt A1 weights and that p(·) ∈ LH(Rn).

Then w1w
1−p(·)
2 ∈ Ap(·). This is the converse of Jone’s factorization theorem

for variable exponent, which is proved by Diening and Hästö [18].
4. By virtue of Lemmas 2.4 and 2.6, condition (1.4) is equivalent to the following:

(2.3) |f |Q‖χQ‖Lp(·)
w

≤ C ‖fχQ‖Lp(·)
w

holds for all cubes Q and all f ∈ L
p(·)
w (Rn).

The following equivalence has been proved by Diening and Hästö [18] when p− >
1, where the main tools for the proof are from a series of Dieinig’s work (cf. [14, 15,
17]). We also refer to [7] for some related results. A self-contained proof including
the case p− = 1 is given by Cruz-Uribe, Fiorenza and Neugebauer [12]:

Theorem 2.8. [7, 12, 18] Suppose that p(·) ∈ LH(Rn) and p+ <∞. If p− > 1,
then the following three conditions are equivalent:

(C1) w ∈ Ap(·).

(C2) The Hardy–Littlewood maximal operator M is bounded on L
p(·)
w (Rn).

(C3) M is of weak type (p(·), p(·)) on L
p(·)
w (Rn), namely

‖χ{Mf>λ}w
1/p(·)‖Lp(·) ≤ Cλ−1‖fw1/p(·)‖Lp(·)

for all λ > 0 and all f ∈ L
p(·)
w (Rn).

If p− ≥ 1, then two conditions (C1) and (C3) are equivalent.

The first author has generalized Theorem 2.8 above by replacing M by the family
{Pj}j∈Z.

Theorem 2.9. [24] Suppose that p(·) ∈ LH(Rn) and p+ < ∞. If p− > 1, then

the following three conditions are equivalent:

(M1) w ∈ Ap(·).

(M2) There exists a positive constant C such that

‖(Pjf)w
1/p(·)‖Lp(·) ≤ C ‖fw1/p(·)‖Lp(·)

holds for all j ∈ Z and all f ∈ L
p(·)
w (Rn).

(M3) There exists a positive constant C such that

‖χ{Pjf>λ}w
1/p(·)‖Lp(·) ≤ Cλ−1‖fw1/p(·)‖Lp(·)
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for all j ∈ Z, all λ > 0 and all f ∈ L
p(·)
w (Rn).

If p− ≥ 1, then two conditions (M1) and (M3) are equivalent.

At the end of this subsection we state the density of C∞
comp(R

n) in L
p(·)
w (Rn). The

following is a corollary of Theorem 2.8 and [39, Theorem 1.2].

Theorem 2.10. Suppose that p(·) ∈ LH(Rn) and 1 < p− ≤ p+ < ∞. If

w ∈ Ap(·), then the space C∞
comp(R

n) is dense in L
p(·)
w (Rn).

3. Boundedness of Calderón–Zygmund operators

Recall that an L2(Rn)-bounded operator T is said to be a Calderón–Zygmund
operator if there exists a measurable function K defined on Rn ×Rn such that for
all L∞(Rn)-functions with compact support we have

(3.1) Tf(x) =

ˆ

Rn

K(x, y)f(y) dy for all x /∈ suppf

and that K satisfies the following estimates:

|K(x, y)| ≤ C
1

|x− y|n ,(3.2)

if x 6= y, and

|K(x, z)−K(y, z)|+ |K(z, x)−K(z, y)| ≤ C
|x− y|

|x− z|n+1
,(3.3)

if 0 < 2|x− y| < |z − x|. We aim here to prove the following result about Calderón–
Zygmund operators.

Theorem 3.1. Suppose that p(·) ∈ LH(Rn) and 1 < p− ≤ p+ < ∞. Let T be

a Calderón-Zygmund operator and w ∈ Ap(·). Then

‖Tf‖
L
p(·)
w

≤ C‖f‖
L
p(·)
w

for all f ∈ L
p(·)
w (Rn).

For the proof, we use the Lerner decomposition. For a cube Q, we let D(Q) be
the set of all dyadic cubes with respect to Q. For R ∈ Q and a function f : R → R,
define

(3.4) ω(f ;R) := inf
c∈R

((f − c)χR)
∗(2−n−2|R|),

where g∗ denotes the non-increasing rearrangement of a measurable function g. The
local dyadic sharp maximal function of f is given by

M ♯,d
Q f(x) := sup

R∈D(Q),R∋x

ω(f ;R).

We invoke the following decomposition:

Lemma 3.2. [34, Theorem 4.5] Suppose that Q0 is a cube and that f : Q0 → R
is a measurable function. Let {mf (R)}R∈D(Q0) ⊂ R be a collection such that

|{x ∈ R : f(x) > mf (R)}|, |{x ∈ R : f(x) < mf(R)}| ≤
1

2
|R|
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for all R ∈ D(Q0). Then for each k ∈ N, there exists a collection Jk ⊂ D(Q0) such

that
∣

∣

∣

∣

∣

⋃

R∈Jk+1

R ∩Q
∣

∣

∣

∣

∣

≤ 1

2
|Q| (Q ∈ Jk),

∑

R∈Jk+1

χR ≤
∑

S∈Jk

χS ≤ 1

for all k = 1, 2, . . . and that

|f(x)−mf(Q0)| ≤ 4M ♯,d
Q0
f(x) + 2

∞
∑

k=1

∑

R∈Jk

ω(f ;R)χR(x)

for almost all x ∈ Q0.

Lemma 3.3. Let (w,C0) be a pair of a weight and a positive constant such that

‖Mf‖
L
p(·)
w

≤ C0‖f‖Lp(·)
w

for all measurable functions f . Then there exists η > 1 such that

‖Mf‖
L
p(·)/η
w

≤ C‖f‖
L
p(·)/η
w

.

Or equivalently, there exists η > 1 such that

‖M [|f |η]1/η‖
L
p(·)
w

≤ C‖f‖
L
p(·)
w
.

Proof. Observe that by a property of A1-weights there exists η > 1 such that

M [|G|η](x) ≤ C(C0)[MG(x)]η

as long as G is a measurable function satisfying

MG(x) ≤ 2C0|G(x)|.

For all f ∈ L
p(·)/η
w (Rn),

g(x) = |f(x)|1/η +
∞
∑

j=1

1

(2C0)j
M j [|f |1/η](x)

is an A1-weight, where M j denotes the j-fold composition of M . More precisely, the
A1 constant is less than or equal to 2C0:

Mg(x) ≤ 2C0g(x) (a.e. x ∈ Rn).

This implies that g satisfies the reverse Hölder inequality and hence

M [gη](x) ≤ CMg(x)η.

Note also that ‖Mf‖
L
p(·)/η
w

=
(

‖(Mf)1/η‖
L
p(·)
w

)η

. Consequently,

‖Mf‖
L
p(·)/η
w

≤
(

‖(M [gη])1/η‖
L
p(·)
w

)η

≤ C
(

‖Mg‖
L
p(·)
w

)η

≤ C‖f‖
L
p(·)/η
w

.

So, we are done. �

Corollary 3.4. Suppose thatM is bounded on L
p(·)
w (Rn). Then there exist η > 1

and C > 0 such that

(3.5) ‖χ2kQ‖Lp(·)
w

≤ C2kn/η‖χQ‖Lp(·)
w
,

where the constant C > 0 is independent of Q ∈ Q and k ∈ N.
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Proof. Let η be as in Lemma 3.3. Just observe

2−kn/ηχ2kQ(x) ≤ CMχQ(x)
1/η (x ∈ Rn)

for some constant C > 0 independent of x, Q and k. �

To finish the proof of Theorem 3.1, we need the following auxiliary estimate of
the vector-valued maximal inequality. Note that (3.6) is not a usual version of the
Fefferman–Stein type maximal inequality. We prove the counterpart of the classical
Fefferman–Stein type maximal inequality in Section 5.

Proposition 3.5. Suppose that p ∈ LH(Rn) and 1 < p− ≤ p+ < ∞. Suppose

in addition that r ∈ (1,∞) and w ∈ Ap(·). Then

(3.6)

∥

∥

∥

∥

∥

∞
∑

j=1

(Mfj)
r

∥

∥

∥

∥

∥

L
p(·)
w

≤ C

∥

∥

∥

∥

∥

∞
∑

j=1

|fj|r
∥

∥

∥

∥

∥

L
p(·)
w

for all sequences {fj}∞j=1 of measurable functions.

Proof. By the duality L
p(·)
w (Rn)-L

p′(·)

w−p′(·)/p(·)(R
n), we can find g ∈ L

p′(·)

w−p′(·)/p(·)(R
n)

with norm 1 such that

(3.7)

∥

∥

∥

∥

∥

∞
∑

j=1

(Mfj)
r

∥

∥

∥

∥

∥

L
p(·)
w

≤ C

ˆ

Rn

∞
∑

j=1

Mfj(x)
rg(x) dx.

By the Fefferman–Stein type dual inequality [20], we have

(3.8)

ˆ

Rn

∞
∑

j=1

Mfj(x)
rg(x) dx ≤ C

ˆ

Rn

∞
∑

j=1

|fj(x)|rMg(x) dx.

By the Hölder inequality for L
p(·)
w (Rn), we obtain

(3.9)

ˆ

Rn

∞
∑

j=1

|fj(x)|rMg(x) dx ≤ C

∥

∥

∥

∥

∥

∞
∑

j=1

|fj|r
∥

∥

∥

∥

∥

L
p(·)
w

‖Mg‖
L
p′(·)

w−p′(·)/p(·)

.

Since p′(·) ∈ LH and w−p′(·)/p(·) ∈ Ap′(·), we obtain

(3.10) ‖Mg‖
L
p′(·)

w−p′(·)/p(·)

≤ C‖g‖
L
p′(·)

w−p′(·)/p(·)

= C

using the boundedness of M on L
p′(·)

w−p′(·)/p(·)(R
n). Putting (3.7)–(3.10) together, we

obtain (3.6). �

With these observations in mind, we prove Theorem 3.1.

Proof of Theorem 3.1. It suffices to show that ‖χQ0Tf‖Lp(·)
w

≤ C‖f‖
L
p(·)
w

for

all cubes Q0 and f ∈ L∞
comp(R

n), where C is a constant independent of Q0 and f .
Observe that, whenever x ∈ Q0,

|Tf(x)| ≤ |mTf(Q0)|+ 4M ♯,d
Q0
[Tf ](x) + 2

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)χQ(x)

by virtue of Lemma 3.2. We estimate each term.
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For the first term, we use

|mTf(Q0)| = |mTf−T [χ3Q0
f ]+T [χ3Q0

f ](Q0)|
≤ m|Tf−T [χ3Q0

f ]|+|T [χ3Q0
f ]|(Q0)

≤ sup
x∈Q0

|Tf(x)− T [χ3Q0f ](x)|+m|T [χ3Q0
f ]|(Q0)

≤ C

ˆ

Rn\3Q0

|f(y)| dy
|c(Q0)− y|n +m|T [χ3Q0

f ]|(Q0),(3.11)

where c(Q0) the center of Q0. By virtue of the weak type inequality, we obtain

|{x ∈ Q0 : |T [χ3Q0f ]| > λ}| ≤ C∗

λ

ˆ

3Q0

|f(x)| dx.

Here C∗ denotes the weak-(1, 1) norm of T . If we choose

λ =
2C∗

|Q0|

ˆ

3Q0

|f(x)| dx,

then |{x ∈ Q0 : |T [χ3Q0f ]| > λ}| ≤ 1
2
|Q0| and hence

(3.12) m|T [χ3Q0
f ]|(Q0) ≤ λ =

2C∗

|Q0|

ˆ

3Q0

|f(x)| dx.

By (3.11), (3.12) and the size estimate of the kernel of T we have

|mTf(Q0)| ≤ C

ˆ

Rn

|f(y)| dy
ℓ(Q0)n + |c(Q0)− y|n

≤ C

∞
∑

k=1

1

|2kQ0|

ˆ

2kQ0

|f(y)| dy

≤ C

∞
∑

k=1

‖χ2kQ0
w−1/p(·)‖Lp′(·)

|2kQ0|
‖f‖

L
p(·)
w
.

Thus, by virtue of (1.4) and Corollary 3.4, we have

‖χQ0‖Lp(·)
w

|mTf (Q0)| ≤ C
∞
∑

k=1

‖χQ0‖Lp(·)
w

‖χ2kQ0
w−1/p(·)‖Lp′(·)

|2kQ0|
‖f‖

L
p(·)
w

≤ C
∞
∑

k=1

‖χQ0‖Lp(·)
w

2kn/η‖χQ0w
−1/p(·)‖Lp′(·)

|2kQ0|
‖f‖

L
p(·)
w

≤ C‖f‖
L
p(·)
w
.

The second term can be handled by the use of the maximal operator M ;

M ♯,d
Q0
[Tf ](x) ≤ CMf(x),

see for example [33, Proposition 2.3].
It remains to deal with the last term. We set

Gk ≡
⋃

Q∈Jk

Q.
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Let r > 1. Then we have
∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)χQ

∥

∥

∥

∥

∥

L
p(·)
w

≤ 2r

∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)M [χQ\Gk+1
]r

∥

∥

∥

∥

∥

L
p(·)
w

.

By the vector-valued maximal inequality obtained in Proposition 3.5, we have
∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)χQ

∥

∥

∥

∥

∥

L
p(·)
w

≤ 2r

∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)M [χQ\Gk+1
]r

∥

∥

∥

∥

∥

L
p(·)
w

= 2r

∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

M [ω(Tf ;Q)1/rχQ\Gk+1
]r

∥

∥

∥

∥

∥

L
p(·)
w

≤ C

∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)χQ\Gk+1

∥

∥

∥

∥

∥

L
p(·)
w

.

Finally, by using the definition of the sharp-maximal operator, we obtain
∥

∥

∥

∥

∥

∞
∑

k=1

∑

Q∈Jk

ω(Tf ;Q)χQ

∥

∥

∥

∥

∥

L
p(·)
w

≤ C‖M ♯,d
Q0
Tf‖

L
p(·)
w

≤ C‖Mf‖
L
p(·)
w

≤ C‖f‖
L
p(·)
w
.

So we are done. �

4. Main results

Recall L = {1, 2, · · · , 2n − 1}. As in Subsection 2.3 we consider a compactly
supported C1 scaling function ϕ of an MRA {Vj}j∈Z, the associated wavelets {ψl}l∈L
and the system

{ψl
j,k : l ∈ L, j ∈ Z, k ∈ Zn}

which is an orthonormal basis in L2(Rn). For f ∈ L2(Rn), we define a function
V f : Rn → [0,∞] by

V f :=

(

∑

l∈L

∑

j∈Z

∑

k∈Zn

∣

∣〈f, ψl
j,k〉ψl

j,k

∣

∣

2

)1/2

.

4.1. Wavelet characterization for Banach function spaces. Our main
result on the boundedness property of V is the following theorem:

Theorem 4.1. Let X be a Banach function space on Rn such that ψl
j,k ∈ X ′ for

every l ∈ L, j ∈ Z, k ∈ Zn.

1. Assume the following:

(a) The space X ∩L2(Rn) is dense in X and the space X ′∩L2(Rn) is dense

in X ′.

(b) The operator V : f 7→ V f is bounded both on X and on X ′.

Then there exists a positive constant C such that, for all f ∈ X,

(4.1) C−1‖f‖X ≤ ‖V f‖X ≤ C ‖f‖X .
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2. If X has an absolutely continuous norm and satisfies (4.1) for all f ∈ X, then

the system

{ψl
j,k : l ∈ L, j ∈ Z, k ∈ Zn}

is an unconditional basis in X. Additionally the wavelet expansion

f =
∑

l∈L

∑

j∈Z

∑

k∈Zn

〈f, ψl
j,k〉ψl

j,k

holds for every f ∈ X, where the convergence takes place unconditionally in

X.

Proof. Suppose both (a) and (b) hold. Then the second inequality of (4.1) follows
immediately. In order to prove the first inequality, we have only to show that

(4.2)

∣

∣

∣

∣

ˆ

Rn

f(x)g(x) dx

∣

∣

∣

∣

≤ C ‖V f‖X

for all f ∈ X ∩L2(R2) and g ∈ X ′ ∩L2(Rn) with ‖g‖X′ ≤ 1. Because f, g ∈ L2(Rn)
we get the wavelet expansions

f =
∑

l∈L

∑

j∈Z

∑

k∈Zn

〈f, ψl
j,k〉ψl

j,k, g =
∑

l∈L

∑

j∈Z

∑

k∈Zn

〈g, ψl
j,k〉ψl

j,k,

where the right hand sides of the above expressions converge at least in L2(Rn). So,
we have

∣

∣

∣

∣

ˆ

Rn

f(x)g(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

l∈L

∑

j∈Z

∑

k∈Zn

〈f, ψl
j,k〉〈g, ψl

j,k〉
∣

∣

∣

∣

∣

.

By the triangle inequality and the orthonormality for the wavelet basis, we have
∣

∣

∣

∣

ˆ

Rn

f(x)g(x) dx

∣

∣

∣

∣

≤
∑

l∈L

∑

j∈Z

∑

k∈Zn

∣

∣

∣
〈f, ψl

j,k〉〈g, ψl
j,k〉
∣

∣

∣

=
∑

l∈L

∑

j∈Z

∑

k∈Zn

∣

∣

∣
〈f, ψl

j,k〉〈g, ψl
j,k〉
∣

∣

∣
· ‖ψl

j,k‖2L2

=

ˆ

Rn

∑

l∈L

∑

j∈Z

∑

k∈Zn

∣

∣

∣
〈f, ψl

j,k〉ψl
j,k(x) · 〈g, ψl

j,k〉ψl
j,k(x)

∣

∣

∣
dx.

We abbreviate

V lf :=

(

∑

j∈Z

∑

k∈Zn

∣

∣〈f, ψl
j,k〉ψl

j,k

∣

∣

2

)1/2

, V lg :=

(

∑

j∈Z

∑

k∈Zn

∣

∣〈g, ψl
j,k〉ψl

j,k

∣

∣

2

)1/2

.

Using the Schwarz inequality and the generalized Hölder inequality, we get
∣

∣

∣

∣

ˆ

Rn

f(x)g(x) dx

∣

∣

∣

∣

≤
∑

l∈L

ˆ

Rn

V lf(x)V lg(x) dx

≤ C ‖V f‖X‖V g‖X′ ≤ C ‖V f‖X‖g‖X′ ≤ C ‖V f‖X .
So, the proof of (4.2) and hence (4.1) are complete.

Next we suppose that X has an absolutely continuous norm and satisfies (4.1)
for all f ∈ X(Rn). Below we write Λ := L× Z× Zn and

TSf :=
∑

(l,j,k)∈S

〈f, ψl
j,k〉ψl

j,k
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for S ⊂ Λ. Based on the definition of the unconditional basis in the book [40,
Definition 7.6], we have only to prove the following:

(A) There exists a positive constant C such that ‖TSf‖X ≤ C ‖f‖X for all f ∈ X
and all S ⊂ Λ.

(B) lim
S→Λ

‖TSf − f‖X = 0 for all f ∈ X.

Using the orthonormality of the wavelet basis and (4.1) we can easily obtain (A)
as follows:

‖TSf‖X ≤ C ‖V (TSf)‖X ≤ C ‖V f‖X ≤ C ‖f‖X .
On the other hand, we have V (f − TSf) ≤ V f ∈ X and V (f − TSf) → 0 as

S → Λ by (4.1). Since X is a Banach function space with the absolutely continuous
norm ‖ · ‖X , lim

S→Λ
‖V (f − TSf)‖X = 0 holds. Using (4.1) again we get ‖f − TSf‖X ≤

C ‖V (f − TSf)‖X . Namely we obtain (B). �

4.2. Wavelet characterization for L
p(·)
w

(Rn). Based on the observations
above, we prove that Ap(·) can be characterized in terms of wavelet. The theorem
below has been initially proved by Lemarié–Rieusset [31] based on the boundeness
of Calderón–Zygmund operator in the case of that p(·) is a constant.

Theorem 4.2. Suppose that p(·) ∈ LH(Rn) and 1 < p− ≤ p+ < ∞. Then the

following three conditions are equivalent:

(W1) w ∈ Ap(·).

(W2) There exists a positive constant C such that, for all f ∈ L
p(·)
w (Rn),

C−1‖f‖
L
p(·)
w

≤ ‖V f‖
L
p(·)
w

≤ C ‖f‖
L
p(·)
w
.

(W3) The system

{ψl
j,k : l ∈ L, j ∈ Z, k ∈ Zn}

is an unconditional basis in L
p(·)
w (Rn).

If this is the case, then we have the wavelet expansion

(4.3) f =
∑

l∈L

∑

j∈Z

∑

k∈Zn

〈f, ψl
j,k〉ψl

j,k

for every f ∈ L
p(·)
w (Rn).

Izuki [23] and Kopaliani [29] have independently proved the theorem in the case
of w(x) = 1 applying the extrapolation theorem due to [9].

Proof of Theorem 4.2. Before beginning the proof we remark that L
p(·)
w (Rn) is

a Banach function space and that ψl
j,k ∈ (L

p(·)
w (Rn))′ because ψl

j,k is continuous and

compactly supported. Thus Theorem 4.1 will be applicable to X = L
p(·)
w (Rn).

We first prove (W1) ⇒ (W2). We may assume ‖f‖
L
p(·)
w

= 1. Let

Ω :=
{

ε = {εlj,k}l∈L,j∈Z,k∈Zn : εlj,k ∈ {1, −1}
}

and let dµ(ε) be the Bernoulli probability measure on Ω. Take a finite subset S ⊂
L× Z× Zn and f ∈ L

p(·)
w (Rn) arbitrarily, and define

ISf :=
∑

(l,j,k)∈S

εlj,k〈f, ψl
j,k〉ψl

j,k.
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Note that the operator IS is a Calderón–Zygmund operator because ψl ∈ C1
comp(R

n)
(see [36, 37] as well as [40, Chapter 8]). Applying Khintchine’s inequality (see [28,
Lemma 2] and [35]), we obtain a pointwise estimate; for x ∈ Rn,





∑

(l,j,k)∈S

∣

∣〈f, ψl
j,k〉ψl

j,k(x)
∣

∣

2





p(x)
2

≤ C(p+, p−)

ˆ

Ω

|ISf(x)|p(x) dµ(ε),

where C(p+, p−) is a positive constant depending only on p+ and p−. Because IS is

bounded on L
p(·)
w (Rn) by virtue of Theorem 3.1, we have

∥

∥

∥

∥

∥

∥

∥





∑

(l,j,k)∈S

∣

∣〈f, ψl
j,k〉ψl

j,k

∣

∣

2





1/2
∥

∥

∥

∥

∥

∥

∥

L
p(·)
w

≤ C.

Thus the operator V is bounded on L
p(·)
w (Rn).

Meanwhile, we note that L
p(·)
w (Rn)′ = L

p′(·)

w−p′(·)/p(·)(R
n), that p′(·) ∈ LH(Rn) and

that w−p′(·)/p(·) ∈ Ap′(·). Therefore using Theorem 3.1 again, we see that V is bounded

on L
p′(·)

w−p′(·)/p(·)(R
n). Moreover, from Theorem 2.10 it follows that C∞

comp(R
n) is dense

in L
p(·)
w (Rn) and in L

p′(·)

w−p′(·)/p(·)(R
n). Hence Theorem 4.1 gives us (W2).

Next we prove (W2) ⇒ (W3). Note that L
p(·)
w (Rn) has absolutely continuous

norm. Thus if we suppose (W2), then Theorem 4.1 immediately implies (W3) and
wavelet expansion (4.3).

Finally we prove (W3) ⇒ (W1). Suppose (W3). Fix m ∈ Z and write

βl
j,k :=

{

1 (j ≤ m),

0 (j ≥ m+ 1).

Using the truncation sequence {βl
j,k}l,j,k, we define

Qmf :=
∑

l∈L

m−1
∑

j=−∞

∑

k∈Zn

〈f, ψl
j,k〉ψl

j,k =
∑

l∈L

∞
∑

j=−∞

∑

k∈Zn

βl
j,k〈f, ψl

j,k〉ψl
j,k

for bounded and compactly supported functions f . By virtue of [22, Chapter 5,
Lemma 2.7] we get ‖Qmf‖Lp(·)

w
≤ C ‖f‖

L
p(·)
w

. On the other hand, the fundamen-

tal wavelet theory implies that Qmf = Pmf a.e. Rn. Thus we have ‖Pmf‖Lp(·)
w

≤
C ‖f‖

L
p(·)
w

.

Now we take g ∈ L
p(·)
w (Rn) and a cube Q arbitrarily. By virtue of Lemma 2.7,

there exist a constant C > 0 and a sequence of positive real numbers {ℓj}j∈Z such
that

(1) 0 < ℓj+1 < ℓj <∞ for all j ∈ Z,
(2) limj→∞ ℓj = 0 and limj→−∞ ℓj = ∞,
(3) Kj(x, y) > C(ℓj+1)

−n whenever |x− y| < ℓj .

We can take a unique mQ ∈ Z so that ℓmQ+1 ≤
√
n|Q|1/n < ℓmQ

. Then we obtain

‖PmQ
(|g|χQ)‖Lp(·)

w
≤ C ‖gχQ‖Lp(·)

w
.
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On the other hand, we have that

∣

∣PmQ
(|g|χQ)(x)

∣

∣χQ(x) =

∣

∣

∣

∣

ˆ

Q

KmQ
(x, y)|g(y)| dy

∣

∣

∣

∣

χQ(x)

≥
ˆ

Q

C(ℓmQ+1)
−n|g(y)| dy · χQ(x) ≥ Cn−n/2|g|QχQ(x).

Hence we get

‖gχQ‖Lp(·)
w

≥ ‖PmQ
(|g|χQ)χQ‖Lp(·)

w
≥ C |g|Q‖χQ‖Lp(·)

w
.

Therefore (2.3) holds, that is, (W1) is true. �

4.3. Modular inequalities.

Theorem 4.3. Suppose that p(·) ∈ LH(Rn), 1 < p− ≤ p+ < ∞ and w ∈ Ap(·).

Then the following three conditions are equivalent:

(X1) p(·) is a constant.

(X2) There exists a positive constant C such that, for all j ∈ Z and all f ∈
L
p(·)
w (Rn),

ˆ

Rn

|Pjf(x)|p(x)w(x) dx ≤ C

ˆ

Rn

|f(x)|p(x)w(x) dx.

(X3) There exists a positive constant C such that, for all f ∈ L
p(·)
w (Rn),

C−1

ˆ

Rn

|f(x)|p(x)w(x) dx ≤
ˆ

Rn

V f(x)p(x)w(x) dx ≤ C

ˆ

Rn

|f(x)|p(x)w(x) dx.

Proof. The statement (X1) ⇒ (X3) are well known; this is just a classical result,
see for example [22, Section 6.4].

Next we show that (X2) ⇒ (X1). Suppose (X2) and p+ > p−. We write

ε :=
1

3
(p+ − p−),

E := {x ∈ Rn : p+ − ε < p(x)},
F := {x ∈ Rn : p− + ε > p(x)}.

Note that ε > 0, |E| > 0 and |F | > 0. There exist small open balls B(y0, r) =
{x : |x− y0| < r} and B(x0, r) = {x : |x− x0| < r} such that |E ∩ B(y0, r)| > 0 and
|F ∩B(x0, r)| > 0. We additionally define U := E ∩B(y0, r) and V := E ∩B(x0, r).
Let {ℓj} and C be as in Lemma 2.7. We can take j ∈ Z so that ℓj > |x0 − y0|+ 2r.
Then we obtain

Pj(χV )(x) =

ˆ

V

Kj(x, y) dy ≥ C(ℓj+1)
−n, x ∈ U,

where the last inequality follows by the definition of a family of weakly positive
kernels and the fact that

|x− y| ≤ |x− y0|+ |y0 − x0|+ |x0 − y| ≤ 2r + |y0 − x0| < ℓj
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for every x ∈ U and y ∈ V . Taking an arbitrary constant R > 1, we get

Rp+−ε

ˆ

U

(C(ℓj+1)
−n)p(x)w(x) dx ≤

ˆ

U

(

CR(ℓj+1)
−n
)p(x)

w(x) dx

≤
ˆ

U

(RPj(χV )(x))
p(x)w(x) dx

≤
ˆ

Rn

(RPj(χV )(x))
p(x)w(x) dx.

If we use (X2), then we have

Rp+−ε

ˆ

U

(C(ℓj+1)
−n)p(x)w(x) dx ≤ C

ˆ

Rn

(RχV (x))
p(x)w(x) dx

= C

ˆ

V

Rp(x)w(x) dx ≤ C Rp−+ε

ˆ

V

w(x) dx.

This contradicts p+−ε > p−+ε. Hence p+ = p− holds, namely the variable exponent
p(x) is a constant.

Finaly, we show that (X3) ⇒ (X2). We may assume that f is bounded and
compactly supported because of the density, see Theorem 2.10. Suppose (X3) and
take m ∈ Z arbitrarily. We define as before

Qmf :=
∑

l∈L

m−1
∑

j=−∞

∑

k∈Zn

〈f, ψl
j,k〉ψl

j,k.

Then Pmf(x) = Qmf(x) for almost every x ∈ Rn. Thus we get

ˆ

Rn

|Pmf(x)|p(x)w(x) dx =

ˆ

Rn

|Qmf(x)|p(x)w(x) dx

≤ C

ˆ

Rn

|V (Qmf)(x)|p(x)w(x) dx

≤ C

ˆ

Rn

(

∑

l∈L

m−1
∑

j=−∞

∑

k∈Zn

∣

∣〈f, ψl
j,k〉ψl

j,k(x)
∣

∣

2

)

p(x)
2

w(x) dx

≤ C

ˆ

Rn

V f(x)p(x)w(x) dx ≤ C

ˆ

Rn

|f(x)|p(x)w(x) dx.

This implies that (X2) holds. �

Remark 4.1. Lerner [32] has proved that if p(·) satisfies 1 < p− ≤ p+ <∞ and

ˆ

Rn

Mf(x)p(x) dx ≤ C

ˆ

Rn

|f(x)|p(x) dx

for all f , then p(·) equals a constant. Lerner’s proof depends on the Muckenhoupt
A∞ property. By a similar argument the first author [23] has proved Theorem 4.3
in the case of w ≡ 1. Our proof of Theorem 4.3 above is based on straightforward
calculation and does not need the Muckenhoupt A∞ property.
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5. Appendix. Fefferman–Stein vector-valued inequality for

weighted Lebesgue spaces with variable exponent

We can prove the following vector-valued inequality:

Proposition 5.1. Suppose that p(·) ∈ LH(Rn) and 1 < p− ≤ p+ <∞. Suppose

in addition that r ∈ (1,∞] and w ∈ Ap(·). Then

(5.1)

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

(Mfj)
r

)
1
r

∥

∥

∥

∥

∥

∥

L
p(·)
w

≤ C

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

|fj|r
)

1
r

∥

∥

∥

∥

∥

∥

L
p(·)
w

for all sequences {fj}∞j=1 of measurable functions. When r = ∞, (3.5) reads
∥

∥

∥

∥

sup
j∈N

Mfj

∥

∥

∥

∥

L
p(·)
w

≤ C

∥

∥

∥

∥

sup
j∈N

|fj|
∥

∥

∥

∥

L
p(·)
w

.

Proof. If r = ∞, then we can resort to Theorem 2.8 and a trivial inequality

sup
j∈N

Mfj ≤M

[

sup
j∈N

|fj|
]

.

Next, by Lemma 3.3 there exists η > 1 such that w ∈ Ap(·)/η. Let 1 < r < min(η, p−).
Then p(·)/r ∈ LH , 1 < p−/r ≤ p+/r < ∞ and w ∈ Ap(·)/η ⊂ Ap(·)/r. By the
definition of the weighted norm and Proposition 3.5, we have

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

(Mfj)
r

)
1
r

∥

∥

∥

∥

∥

∥

L
p(·)
w

=





∥

∥

∥

∥

∥

∞
∑

j=1

(Mfj)
r

∥

∥

∥

∥

∥

L
p(·)/r
w





1
r

≤ C





∥

∥

∥

∥

∥

∞
∑

j=1

|fj|r
∥

∥

∥

∥

∥

L
p(·)/r
w





1
r

= C

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

|fj|r
)

1
r

∥

∥

∥

∥

∥

∥

L
p(·)
w

.

So we are done in the case where r is small enough.

We let L
p(·)
w (ℓr,Rn) be the set of all sequences {fj}∞j=1 of measurable functions

such that

‖{fj}∞j=1‖Lp(·)
w (ℓr)

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

|fj|r
)

1
r

∥

∥

∥

∥

∥

∥

L
p(·)
w

is finite. Note that (L
p(·)
w (ℓr,Rn), ‖ · ‖

L
p(·)
w (ℓr)

) is a Banach space.

For the remaining case, we consider a linear operator

U : {fj}∞j=1 7→
{

1

rj(·)n
ˆ

B(·,rj(·))

fj(y) dy

}∞

j=1

,

where each rj(·) is a positive measurable function. We know that U is bounded from

L
p(·)
w (ℓr,Rn) to itself when r = ∞ or r is sufficiently close to 1. Thus, we are in

the position of using the interpolation theorem [21, p. 492, Theorem 3.4] to conclude
that the vector-valued inequality is valid for all 1 < r ≤ ∞. �
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