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Abstract. In this paper, we characterize weighted Lebesgue spaces with variable exponent in
terms of wavelet. Also, we disprove some weighted modular inequalities when the exponent is not
a constant one without using the A.,-condition on weights. As a byproduct, we shall obtain the
vector-valued maximal inequalities in the weighted setting.

1. Introduction

The theory of variable exponent analysis has been rapidly developed after Kovacik
and Rékosnik [30] established some fundamental properties of generalized Lebesgue
spaces LP()(R™) with variable exponent p(-): R™ — [1, 00]. One of the most impor-
tant problems in the theory is the boundedness of the Hardy—Littlewood maximal
operator M defined by

M) = s [ ()l dy, xR
Q3 |Q| Q
for a measurable function f: R™ — C, where the supremum is taken over all open
cubes () containing x whose sides are parallel to the coordinate axes. The bounded-
ness of the maximal operator M enabled us to analyze these function spaces more
deeply. In [6, 8, 10, 11, 14, 15, 16, 17| we obtained good sufficient conditions for
the boundedness of M on LP()(R™) such as the log-Hélder continuous condition (see
(1.2) and (1.3) below).
For a variable exponent p(-): R® — [1, 00], the space LP()(R™) is defined as the
set of all measurable functions f such that

[ f]l ey = inf{A > 0: p(f/A) < 1} < oo,
where

of) = / F@P da + 1f = (oiermoo-
{p(xz)<oo}
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Diening [14] and Cruz-Uribe, Fiorenza and Neugebauer [10, 11] established the fol-
lowing: If

(1.1) 1 <p_=essinfp(x) < p, =esssup p(z) < oo,
zeR™ rzeRM

and if there exist positive constants C' and p., such that

C
1.2 ) — <— ~ _ zyeR" |z—y|<1/2
(1.2) Ip(z) —p(y)| < “To(z = 9] y lz—yl <1/
. — < "

then the Hardy-Littlewood maximal operator M is bounded on LPC)(R™). Let
LH(R™) be the set of all p(-): R" — [1,00) satisfying the log-H6lder continuous
conditions (1.2) and (1.3).

Meanwhile the Muckenhoupt A, theory has been playing an important role in
harmonic analysis up to now (cf. [19, 21, 38|). The A, condition for weight functions
guarantees the boundedness of the maximal operator M on weighted Lebesgue spaces
LP (R™). Recently the classical Muckenhoupt A, class has been generalized to the
setting A,y of variable exponents by |7, 12, 18] and some equivalent conditions to

the boundedness of M on Lﬁ(')(R") has been given (see also [8, 27]).

For a variable exponent p(-): R" — [1,00), a measurable function w is said to
be an Ay weight if 0 < w < oo a.e. and
(1.4 sup "7 a0 xgll ) < o0

e ||

holds, where the supremum is taken over all open cubes () C R™ whose sides are
parallel to the coordinate axes and p/(-) is the conjugate exponent of p(-), that is,
1/p(z) + 1/p'(z) = 1. Note that p'(-): R™ — (1,00] when p(-): R* — [1,00). The
set Ay .y consists of all Ap.) weights. If p(-) is a constant p, then A,y is the classical
A, class. As is written in |7, 18|, for p(-) € LH(R") satisfying 1 < p_ < p; < o0,
the operator M is bounded on L5’ (R™) if and only if w € Ap(y-

In the present paper, we shall characterize weighted Lebesgue spaces Lﬁ(')(Rn)
in terms of wavelet assuming p(-) € LH(R™). More precisely, we give equivalent
conditions for A,y by using the boundedness of an operator related to wavelets. To
do this we first characterize Banach function spaces in terms of wavelet, which is
achieved by the boundedness of Calderén-Zygmund operators on qu(')(R”). Finally,
we give equivalent conditions for weighted modular inequalities, applying uniform
boundedness of a family of operators with weakly positive kernels. We prove that
p(+) is a constant if and only if weighted modular inequalities hold. This generalizes
the result in Lerner [32] which is the case w = 1. We do not depend upon the key
observation about A..-condition which is used in [32].

This article is organized as follows. In Section 2 we prepare some known results on
the Hardy-Littlewood maximal operator, Banach function spaces, wavelets, weakly
positive kernels, and, Muckenhoupt weights with variable exponent. In Section 3
we prove the boundedness of Calderén-Zygmund operators on qu(')(R”). To do
this we prove a certain vector-valued inequality for the Hardy-Littlewood maximal
operator. We will extend this inequality to a usual form in Section 5 as an appendix.
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In Section 4 we give our main results; wavelet characterization for Banach function

spaces and for LAY (R™), and, equivalent conditions for weighted modular inequalities.
In the whole paper, we will use the following notation:

1. Given a measurable set S C R, we denote the Lebesgue measure by |S| and
the characteristic function by xgs.

2. Given a measurable set S C R™ such that 0 < |S| < oo and a measurable
function f on R", we denote the mean value of f on S by fg, namely fg :=
ﬁ Js f(z)dz.

3. A symbol C always stands for a positive constant independent of the main
parameters.

4. A cube Q C R" is always assumed to be open and have sides parallel to the
coordinate axes. Namely we can write

n

Q= H(x,, —r/2,x,+71/2)

v=1

using a point x = (x1, 29, ...,2,) € R™ and a constant r > 0.

2. Preliminaries

2.1. Hardy-Littlewood maximal operator M on LP()(R™). In this
subsection we recall some sufficient conditions for the boundedness of the Hardy—
Littlewood maximal operator M on Lebesgue spaces LP()(R") with variable exponent
p(-): R — [1,00). Recall that the set LH(R") consists of all variable exponents
p(-) satisfying the log-Hélder continuous conditions (1.2) and (1.3).

The following theorem is a sufficient condition for the boundedness of the Hardy—
Littlewood maximal operator.

Theorem 2.1. [5, 10, 11, 14] Let 1 < p_ < py < o0. If p(-) € LH(R™), then
the operator M is of weak type (p(-),p(-)), that is,

||X{Mf>)\}||LP(-) < C)\_lnf”LP(‘)

holds for all A\ > 0 and all f € L?*)(R"). Additionally if 1 < p_, then M is bounded
on LPU)(R"), that is,

HMfHLP(') <C HfHLP(-)-

For the case p(-): R" — [1, o], see [6, 16].

We next state some equivalent conditions due to Diening [15]. Recall that p'(-)
means the conjugate exponent of p(-), that is, 1/p(z) + 1/p'(x) = 1 holds. Let Y be
the set of all families of disjoint cubes in R", and let B(R") be the set of all variable
exponent p(-) with 1 < p_ < p, < oo such that the Hardy—Littlewood maximal
operator M is bounded on LP()(R™).

Theorem 2.2. [15] Let 1 < p_ < p; < oo. Then the next four conditions are
equivalent:
(D1) p(-) € B(R").
(D2) p'(-) € B(R").
(D3) There exists a constant q € (1,p_) such that p(-)/q € B(R").
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(D4) There exists a positive constant C' > 0 such that, for all Y € Y and all
f € LPO(R™), we have

> flaxe

QeYy r()

If we take an arbitrary cube @ and put Y := {@Q} and f := fxo in (D4) above,
then we get a weaker condition:

(A1) There exists a constant C' > 0 such that |f|ollxollzr00 < C|lfxollz»¢) holds
for all cubes @ and for all f € LPU)(R™).

In Lemma 2.4 below, we will prove the condition (A1) is a necessary condition for
the weak boundedness of M on LP()(R™) and equivalent to the following condition
(A2), which is called the Muckenhoupt condition for a variable exponent p(-):

1
@HXQHLP(')HXQHLP'(-) < 0.

< O fll e

(A2) sup
See Lemmas 2.4 and 2.5 to follow, where we will prove these facts in the context of
Banach function spaces.

2.2. Banach function spaces. In this subsection we first recall the definition
and the fundamental properties of Banach function spaces based on the book [2|. Let
M = M(R") be the set of all complex-valued measurable functions on R™.

Definition 2.1. A linear space X C M is said to be a Banach function space
if there exists a functional || - ||x: M — [0, 00] with the following conditions: Let
g, fieM(G=12...).

1. f e X if and only if || f]|x < 0.

2. (Norm property):

(a) (Positivity): || f|lx > 0.

(b) (Strict positivity): || f|lx = 0 if and only if f =0 a.e.
(c) (Homogeneity): [[Af]lx = [A] - [[f]lx-

(d) (Triangle inequality): ||f + gllx < [[fllx +[lgl[x-

3. (Symmetry): |[fllx = [I[f]]lx-
4. (Lattice property): If 0 < g < f a.e., then ||g]|x < ||f]x-
5. (Fatou property): If 0 < f1 < f, < ... and lim f; = f a.e., then

j—o0
lim || f5llx = [[f]lx-
j—o0

6. For all measurable sets F' with |F'| < oo, it follows ||xr|x < oo and

/F F@)dr < Crllfllx (f € X)

with the constant C'r depending on F'.
We need more definitions to state our main results.

Definition 2.2. A Banach function space X is said to have an absolutely con-
tinuous norm, if f, g, frn € X (m =1, 2, ---) satisty f,, = f (m — o0) a.e. R" and
|fm] < g ae R for all m > 1, then lim || f,, — f||x = 0.

m—0o0
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Definition 2.3. Let X C M be a Banach function space equipped with a norm
|| - [[x- The associate space X' is defined by

X' ={feM:|fllx < oo},
where

ke s { [ 1fGolatel ds lallx <1}

For example, the Lebesgue space LP()(R") with variable exponent p(-): R" —
[1,00) is a Banach function space and the associate space is L' ()(R") with norm
equivalence [30].

The following lemma consists of the generalized Holder inequality and the norm
equivalence for Banach function space. See |2, pages 9-10] for example.

Lemma 2.3. Let X C M be a Banach function space.

1. For all f € X and all g € X', we have

(21) [ 1@t de < | flxlgls-
2. For all f € X we have

sp{ [ 1@l o gl <1} = 17l

In particular, the space (X') is equal to X.
As an application of the lemma above, we show the following equivalence.

Lemma 2.4. Let X C M be a Banach function space. Then the following two
conditions are equivalent:

1
(M) sup = lIxellxllxellx < oo
Q:cube |Q‘

(IT) There exists a positive constant C' such that, for all cubes Q) and all f €
Li (R,

loc

[flellxellx < Cllfxellx-

We will give a self-contained proof for readers’ convenience. The same argument
is found in the recent article [26].

Proof. Take an open cube @ and f € Ll _(R"™) arbitarily. The implication (II)
= (I) is proved as follows;
1

1
ilellxivally < g ivelssun{ [ 17a)lve(e)de Il <1}

=sup {[flollxellx: I fllx <1}
< Csup{|[fxelx: IIfllx <1} <C.

On the other hand, from (I) and Hélder’s inequality (2.1), (II) is verified;

1 1
Iflollxellx = @/Q\f(yﬂdy' Ixeollx < @HfXQHXHXQHX’HXQHX < C|lfxeollx-

So, we are done. O

The next lemma generalizes (Al).
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Lemma 2.5. If the Hardy—Littlewood maximal operator M is weakly bounded
on X, that is
Ixtarg=xyllx < CAHlgllx
holds for all A > 0 and all g € X, then we have

[flelixellx < Cllfxellx
for all cubes Q and all f € L _(R").

loc

Proof. Take an open cube Q and f € Li (R") arbitrarily. If | f|g = 0, then the

loc
conclusion is obviously true. Below we assume |f|o > 0 and write A := | f|g/2. Since

|floxo(z) < M[fxg](x) one has
M[fxql > A on Q.

Thus we conclude

|flg-C
|flollxellx < 1flallxarxasnllx < 3 Ifxellx = C | fxaollx,

which proves the lemma. O

Below we recall some properties of weighted Banach function spaces based on
Karlovich and Spitkovsky [27]. Let X be a Banach function space. The set X
consists of all measurable function f such that fygp € X for any measurable set £
with |F| < co. Given a function W such that 0 < W < oo a.e. on R", W € X, and
W= € (X")10¢, we define the weighted Banach function space X (R™, W) by

XR"W):={fe MR"): fWe X}.
Then the following is known to hold.

Lemma 2.6.

1. The weighted Banach function space X (R"™ W) is a Banach function space
equipped with the norm

1f Lxmn ) == W]l
2. The associate space of X (R™ W) is X'(R™, W) equipped with the norm

£l ) = (LF W |
The properties above naturally arise from those of usual Banach function spaces
and the proofs are found in |27, Lemma 2.4(c)|.

2.3. Wavelet and weakly positive kernels. A family of closed subspaces
{V;}jez of L*(R™) is said to be a multiresolution analysis (MRA) if the following
conditions hold:

1. V; C Vjy forall j € Z.

) UjeZ V; is dense in L*(R").

: mjez Vi = {0}.

. f € V; holds if and only if f(2-) € V,4; for every j € Z.

Af f e Vg, then f(- — k) € V for all k € Z".

. There exists a function ¢ € L*(R™) such that {(-—k)}xezn is an orthonormal
basis in V.

O U= W N
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The function ¢ is said to be a scaling function of the MRA {V;};ez.

Based on the fundamental wavelet theory (cf. [13, 37, 40]), we can construct a
compactly supported C! scaling function ¢ of an MRA {V;},cz. For each j € Z we
can take a closed subspace W; so that V1, = V; @ W;. Let L = {1,2,---,2" — 1}.
According to the standard construction, there exists a set of compactly supported
Cl-functions {¢'},c;, such that the system

(), =22 (20 —k): L e L, k€ Z"}
is an orthonormal basis of W; for each j € Z. Thus the system
(Yl lel, ke jeZ}

becomes an orthonormal basis in L?(R™). Each function ¢! is called a wavelet.

Below we consider a compactly supported C! scaling function ¢ of an MRA
{V;}jez and the associated wavelets {¢'};cr. For each j € Z the orthogonal projec-
tion P;: L*(R™) — V; is given by

Pif(x) =Y (f eineinlz) = - K;(z,y)f(y) dy,

keZn

where ;5 = 29"2p(27 - —k) and

(fspik) = - f(@)pjr(z)de, Kj(z,y) = Z ©5k(2) P k(Y)-

keZn

As we mentioned, the family {P;};cz has some interesting properties. Because
the scaling function ¢ is compactly supported and bounded, we can easily prove

(2.2) 1P f(z)| < C M f(x)

everywhere for all j € Z, where C' > 0 is a constant independent of f and j. Aimar,
Bernardis and Martin-Reyes [1] has proved that (2.2) is valid for more general scaling
functions. In [1| they have additionally found the next property of the family of
kernels {K;(z,y)}jez. Those properties are applicable to wavelet characterizations
of the usual Muckenhoupt weights and modular inequalities on Lebesgue spaces with
variable exponent, see [23].

Lemma 2.7. The family {K;(z,y)}jez enjoys the following property called
weakly positive: There exist a constant C > 0 and a sequence of positive real numbers
{l;}jez such that

1.0< iy <lj<ooforall jeZ,

2. llm]_mo gj =0 and limj_>_oo gj = 00,

3. K;j(z,y) > C({j+1)™ whenever |x —y| < {;.

The notion of weakly positive kernels dates back to the work by Aimar, Bernardis
and Martin-Reyes 1], where they characterized the Muckenhoupt class A, in terms

of wavelet. The notion of the weakly positve kernel is akin to the one of genuine
singular integral operators. See [3, 4].

2.4. Muckenhoupt weights with variable exponent. In this subsection

we define the weighted Lebesgue space Lﬁ,(')(R") with variable exponent p(:): R" —
[1,00) and introduce a result on the boundedness of the Hardy-Littlewood maximal

operator M on LEZJ(')(R”).
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Definition 2.4. For a variable exponent p(-): R" — [1,00) and a function w
with 0 < w < o0 a.e., the weighted Lebesgue space Lﬁ(')(R") with variable exponent
is the space LPO(R™, w!/P0)), namely

DO = DO w0) = (£ |l = 700 < oo}

Recall that the Muckenhoupt class A, is defined by (1.4). About the properties
of this class of weights, several helpful remarks may be in order.

Remark 2.1. Let p(-): R" — [1, 00).

1. If p(-) equals a constant, then the class A, is the usual Muckenhoupt class.

2. If the Hardy—Littlewood maximal operator M is weak type of (p(-),p(+)), then

condition (A2) is true, that is, the constant function 1 belongs to A,.y. This

fact generalizes 12, Proposition 3.§].
3. Suppose that wq, w, are the Muckenhoupt A; weights and that p(-) € LH(R").

Then wywy * 0 ¢ Apy. This is the converse of Jone’s factorization theorem
for variable exponent, which is proved by Diening and Hé&sto [18].
4. By virtue of Lemmas 2.4 and 2.6, condition (1.4) is equivalent to the following:

(2.3) [flellxell 200 < Cllfxell p0

holds for all cubes @ and all f € L5 (R™).

The following equivalence has been proved by Diening and Hésto [18] when p_ >
1, where the main tools for the proof are from a series of Dieinig’s work (cf. [14, 15,
17]). We also refer to |7] for some related results. A self-contained proof including
the case p_ = 1 is given by Cruz-Uribe, Fiorenza and Neugebauer [12]:

Theorem 2.8. |7, 12, 18] Suppose that p(-) € LH(R") and py < oo. If p_ > 1,
then the following three conditions are equivalent:

(Cl) w € Ap(.).

(C2) The Hardy-Littlewood maximal operator M is bounded on Lﬁ(')(R").

(C3) M is of weak type (p(-),p(-)) on LE(R™), namely
Ixqarrsayw! | ey < OXH f PO s

for all A > 0 and all f € L5 (R™).
If p_ > 1, then two conditions (C1) and (C3) are equivalent.
The first author has generalized Theorem 2.8 above by replacing M by the family
{P}jez-
Theorem 2.9. [24] Suppose that p(-) € LH(R") and p; < oo. If p_ > 1, then
the following three conditions are equivalent:

(Ml) w e Ap(.).
(M2) There exists a positive constant C' such that

(P £)w' PO ey < C| fw PO oy

holds for all j € Z and all f € L5 (R™).
(M3) There exists a positive constant C' such that

e, o230 oy < CATH fw PO e
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forall j € Z, all A > 0 and all f € L5 (R™).
If p_ > 1, then two conditions (M1) and (M3) are equivalent.

At the end of this subsection we state the density of CSo (R") in Lﬁ(')(R"). The

comp

following is a corollary of Theorem 2.8 and [39, Theorem 1.2].

Theorem 2.10. Suppose that p(-) € LH(R") and 1 < p_ < p, < oo. If
w € Ay, then the space Cos, (R™) is dense in LEO(R™).

comp

3. Boundedness of Calderén—Zygmund operators

Recall that an L?(R"™)-bounded operator T is said to be a Calderén—Zygmund
operator if there exists a measurable function K defined on R"™ x R" such that for
all L*>°(R™)-functions with compact support we have

(3.1) Tf(z)= . K(z,y)f(y)dy for all x ¢ suppf

and that K satisfies the following estimates:

1
3.2 K(z,y)| < C ,
(3.2) Kl <0
if z # y, and
(3.3) K(2,2) — K(y, 2)| + | K (2,2) — K(z9)] < 02—
‘SL’ _ Z‘”'H

if 0 < 2|z —y| < |z — z|. We aim here to prove the following result about Calderon—
Zygmund operators.

Theorem 3.1. Suppose that p(-) € LH(R") and 1 < p_ < p, < oo. Let T be
a Calderén-Zygmund operator and w € Ap.y. Then
17 £l 0 < ClIF o

for all f € LY (R™).

For the proof, we use the Lerner decomposition. For a cube @, we let D(Q) be
the set of all dyadic cubes with respect to Q. For R € O and a function f: R — R,
define

(3-4) w(fi R) = inf ((f - c)xr) (27" *|R)),

ceR

where g* denotes the non-increasing rearrangement of a measurable function g. The
local dyadic sharp maximal function of f is given by

Mg'f(x):=  sup  w(f;R).
ReD(Q),R>x

We invoke the following decomposition:

Lemma 3.2. [34, Theorem 4.5| Suppose that ()q is a cube and that f: Qo — R
is a measurable function. Let {m(R)}rep(Q,) C R be a collection such that

{z € R: f(x) >my(R)}, [{z € R: f(x) <my(R)}| < %\RI
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for all R € D(Qy). Then for each k € N, there exists a collection J, C D(Qy) such
that

S%\Q| Qe ), D> xan<) xs<l

ReJy41 SeJd

U Brn@

ReJi4

for all k =1,2,... and that

‘f(x)—mf(Qo)|§4Mﬁd +QZZ (f; R)xr(z

k=1 ReJy
for almost all x € Q).

Lemma 3.3. Let (w,Cy) be a pair of a weight and a positive constant such that
Ml o> < Coll £l oo
for all measurable functions f. Then there exists n > 1 such that
1M £l o < CUl e
Or equivalently, there exists n > 1 such that
MY e < CUFIlpo-
Proof. Observe that by a property of A;-weights there exists n > 1 such that
M[|G|"](z) < C(Co)[MG(z)]"
as long as G is a measurable function satisfying
MG(z) < 2C|G(z)].
For all f € LEO/"(R™),

g() = (@) + Z e I @)

is an A;-weight, where M7 denotes the j—fold composition of M. More precisely, the
Aj constant is less than or equal to 2C):

Mg(x) < 2Chg(x) (ae. z € R").
This implies that g satisfies the reverse Holder inequality and hence
Mlg"]|(x) < CMg(x)".
Note also that [[Mf[ s = (H(Mf)l/"HLﬁ(.)y. Consequently,

n n
IM £ o < (1D g )" < € (1Mgll )" < CUAN o

So, we are done. O

Corollary 3.4. Suppose that M is bounded on Lﬁ(')(R”). Then there existn > 1
and C' > 0 such that

(3.5) ]|X2ka|qu(.) < C2k"/"“XQ||L5j->a
where the constant C' > 0 is independent of ) € Q and k € N.
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Proof. Let n be as in Lemma 3.3. Just observe
27" Mxgeq(w) < OMxg(2)" (z € R")
for some constant C' > 0 independent of z, () and k. U

To finish the proof of Theorem 3.1, we need the following auxiliary estimate of
the vector-valued maximal inequality. Note that (3.6) is not a usual version of the
Fefferman—Stein type maximal inequality. We prove the counterpart of the classical
Fefferman—Stein type maximal inequality in Section 5.

Proposition 3.5. Suppose that p € LH(R™) and 1 < p_ < py < oo. Suppose
in addition that r € (1,00) and w € Ap.). Then

Z ij <C Z|f3|r
j=1 j=1

for all sequences { f;}32, of measurable functions.

(3.6)

Proof. By the duality L5 (R™)- Lfv(l), royeio (R™), we can find g € LP (2) e (RT)
with norm 1 such that

o

S (M)

i=1

(3.7)

/nZMf]

By the Fefferman—Stein type dual inequality [20], we have

(3.8) /n;Mf] dx<C’/ Zm )" Mg(x

By the Hélder inequality for L4 (R™), we obtain

Lﬁ,( )

(3.9) / Yo fi@I Mgy de < O\ Y 1L IMall e
n =1 =1 qu(_) w—P ()/p()
Since p/(+) € LH and w?/P0) € A, (), we obtain
(3.10) ||M9||Lp/<-> < Cligll o =C
-2/ ()/p() w—P' ()/p()
using the boundedness of M on Lp p()/p()(R"). Putting (3.7)-(3.10) together, we
obtain (3.6). O

With these observations in mind, we prove Theorem 3.1.

Proof of Theorem 3.1. It suffices to show that ||xg,Tf|l,»c) < C||fll»c) for

all cubes Qo and f € Lg5,,(R"), where C' is a constant independent of @y and f.
Observe that, whenever z € (),

ITf(2)] < |mrp(Qo)| + AMEIT f](x +2ZZ (Tf; Q)xolx)

k=1 Q€eJy

by virtue of Lemma 3.2. We estimate each term.
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For the first term, we use

Imrp(Qo)| = 1M s—Tixsqq 1+ TIxsa, /1 (@)
< Myry- Tx3qy M+IT[x3q, f] (QO)
< sup |Tf(x) = Txs3q0 f1(2)] + MTxsq, 11 (o)

z€Qo

|/ (y)| dy
(3.11) < C/Rn\w() Qo) = T M T{xsq, 1)1 (Q0);

where ¢(Q) the center of Q). By virtue of the weak type inequality, we obtain

C*
H{z € Qo: |T[x30,f]] > A} < 7/3@) |f(z)| dz.

Here C* denotes the weak-(1,1) norm of T'. If we choose

20"
then [{z € Qo: [T[x30,f]] > A} < £|Qo| and hence
20
(3.12) MUTlxsq, £l (@o) < A =0 s \ ()] d.

By (3.11), (3.12) and the size estimate of the kernel of 7" we have

£l dy
@)1= € | g oy T

<C§:W0d/ vl dy

(o]
||X2kQ w H /()
<Ccy 3RO 1 £ 1l o

Thus, by virtue of (1.4) and Corollary 3.4, we have

o0
X2k Ol o
IxX@ol 120 [ Qo) < C D Hlxaoll o Qo‘sz ‘ ]l e
k=1
o0
9kn/n
<C Y lIxaoll oo HXCT;kQ | Ao [l
k=1

< Ol e
The second term can be handled by the use of the maximal operator M;
MG, T f)(x) < CMf(x),

see for example [33, Proposition 2.3|.
It remains to deal with the last term. We set

G= @

QeJk
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Let r > 1. Then we have

>3 wlrs o

k=1 Q&eJy

<2

ZZ (TF; QM[xQ\Grn]

k=1 QeJy

By the vector-valued maximal inequality obtained in Proposition 3.5, we have

>3 wlrs o

k=1 QeJy

<2 Z Z Tf Q XQ\GkH]T

Llu’}() k=1 Qe Jy

Llu’}()

=27 Z Z M[W(Tf§ Q)l/TXQ\GkH]T

k=1 QeJy

Z Z (Tf;Q) XQ\Gri1

k=1 QeJy

qu()
Finally, by using the definition of the sharp-maximal operator, we obtain

>3 wlrs

k=1 QeJy

< CIMET fll oer < CIM | ot < CULFIl -

So we are done. O

4. Main results

Recall L = {1,2,---,2" — 1}. As in Subsection 2.3 we consider a compactly
supported C! scaling function ¢ of an MRA {V;},cz, the associated wavelets {1'},c
and the system

{l:lel,jel, keZ}

which is an orthonormal basis in L?(R"). For f € L?*(R"), we define a function
Vf:R" —[0,00] by

1/2
Vi (zz S 1 zp;,kw;,kf) |

leL jEZ keZn

4.1. Wavelet characterization for Banach function spaces. Our main
result on the boundedness property of V' is the following theorem:

Theorem 4.1. Let X be a Banach function space on R" such that wé,k e X' for
everyle L,je€Z, kel

1. Assume the following:
(a) The space X N L*(R") is dense in X and the space X' N L*(R") is dense
in X'
(b) The operator V: f + V f is bounded both on X and on X'.
Then there exists a positive constant C' such that, for all f € X,

(4.1) CHfllx < IV Fllx < Cflx
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2. If X has an absolutely continuous norm and satisfies (4.1) for all f € X, then
the system

(Yl lel, jeZ keZ}
is an unconditional basis in X. Additionally the wavelet expansion
F=2.2. 2 (v
€L jEZ keZ™

holds for every f € X, where the convergence takes place unconditionally in
X.

Proof. Suppose both (a) and (b) hold. Then the second inequality of (4.1) follows
immediately. In order to prove the first inequality, we have only to show that

f()()dfc

for all f € XNL*(R?) and g € X’F‘le(Rn) with ||g||x» < 1. Because f, g € L*(R")
we get the wavelet expansions

F=220 2 e 9=220 D (0. ¥iavi

IEL jEZ keZn lEL jEZ keZn

(4.2) <OV £lx

where the right hand sides of the above expressions converge at least in L?(R™). So,

we have
=D DD (e

€L jE€Z keZn
By the triangle mequahty and the orthonormality for the wavelet basis, we have

RG> 3 (R ]

leL jEZ keZn
=3 > | w;-,mm) 2
leL jEZ keZm
/ 222 | ) £:45 )+ (g, ¢ >w;,,€(x)\ dz.
R™ e jeZ kezn

We abbreviate

1/2 1/2
VIfi= (Z D) ;-,,f) , Vig= (Z > \<g,w§,k>w§,k\2> :

JEZ keZn JEZ keZn
Using the Schwarz inequality and the generalized Holder inequality, we get

Z/nvl 2)Vlg(x) da

leL

< CIVIxIVylx < ClIVHllxlgllx < CIVFx-

So, the proof of (4.2) and hence (4.1) are complete.
Next we suppose that X has an absolutely continuous norm and satisfies (4.1)
for all f € X(R™). Below we write A := L x Z x Z" and

Tsf := Z <f> ;k> ék

f(x dz

R”
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for S C A. Based on the definition of the unconditional basis in the book [40,
Definition 7.6], we have only to prove the following:

(A) There exists a positive constant C' such that ||Tsf||x < C||f|lx forall f € X
and all S C A.
(B) éirr}XHTsf— fllx =0forall f e X.
—

Using the orthonormality of the wavelet basis and (4.1) we can easily obtain (A)
as follows:

[Tsfllx < CIIVIsh)llx < CIVFlx < Cllflx-

On the other hand, we have V(f — Tsf) < Vf € X and V(f — Tsf) — 0 as

S — A by (4.1). Since X is a Banach function space with the absolutely continuous

norm || - | x, ém}\HV(f —Tsf)|lx = 0 holds. Using (4.1) again we get ||f — Tsf||x <
—

C|\V(f—Tsf)||x- Namely we obtain (B). O

4.2. Wavelet characterization for LP()(R™). Based on the observations
above, we prove that A,.) can be characterized in terms of wavelet. The theorem
below has been initially proved by Lemarié-Rieusset [31] based on the boundeness
of Calderon—Zygmund operator in the case of that p(-) is a constant.

Theorem 4.2. Suppose that p(-) € LH(R") and 1 < p_ < p, < co. Then the
following three conditions are equivalent:

(Wl) w e Ap(,).
(W2) There exists a positive constant C such that, for all f € L5 (R™),
Il ger < IV Fll o < C 1o
(W3) The system
{l:lel,jel, keZ}
is an unconditional basis in L5 (R™).
If this is the case, then we have the wavelet expansion

(4.3) F=Y D0 (f ks

IEL jEZ keZn
for every f € LBV (R™).
Izuki [23| and Kopaliani [29] have independently proved the theorem in the case
of w(z) = 1 applying the extrapolation theorem due to [9].
Proof of Theorem 4.2. Before beginning the proof we remark that LZ(')(R") is
a Banach function space and that !, € (Lﬁ(')(R"))’ because ¢/, , is continuous and

compactly supported. Thus Theorem 4.1 will be applicable to X = LEZJ(')(R").
We first prove (W1) = (W2). We may assume || f|| ,) = 1. Let

Q = {5 == {6‘;7k}l€L,j€Z,k€Z": E‘lj’k S {1, _1}}
and let du(e) be the Bernoulli probability measure on €. Take a finite subset S C
L xZxZ" and f € L& (R") arbitrarily, and define

Isf = Z Eé‘,k<f> ;k) ;k
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Note that the operator Ig is a Calderén-Zygmund operator because ¢! € Cl . (R")
(see |36, 37| as well as |40, Chapter 8|). Applying Khintchine’s inequality (see |28,
Lemma 2| and [35]), we obtain a pointwise estimate; for x € R",

p()
2

S il | < Conpo) [ @l du),

(Lg,k)€S

where C(p,,p_) is a positive constant depending only on p, and p_. Because Iy is
bounded on LEZJ(')(R”) by virtue of Theorem 3.1, we have

1/2

2
(Lik)Es 0
Ly
Thus the operator V is bounded on L (R™).
Meanwhile we note that LE(R") = L‘:’U(p()/p()(R”), that p/(-) € LH(R™) and
that w=? /P0) ¢ A »()- Therefore using Theorem 3.1 again, we see that V' is bounded
on L” EZ)J 1o (R™). Moreover, from Theorem 2.10 it follows that Cgs,,, (R") is dense

comp
in L5 (R") and in L” (p '(o/ny (R?). Hence Theorem 4.1 gives us (W2).

Next we prove (W2) = (W3). Note that Lﬁ,(')(R") has absolutely continuous
norm. Thus if we suppose (W2), then Theorem 4.1 immediately implies (W3) and
wavelet expansion (4.3).

Finally we prove (W3) = (W1). Suppose (W3). Fix m € Z and write

l _{1 (j <m),

N0 (> m+1).

Using the truncation sequence {f!;};;x, we define

me—zz S (Lt = ZZ > Bk s

leL j=—o0 keZ" lel j=—oc0 keZ"
for bounded and compactly supported functions f. By virtue of [22, Chapter 5,
Lemma 2.7 we get [|Qnf|l,»0 < C|f|l»0- On the other hand, the fundamen-
tal wavelet theory implies that Q,,f = P,.f a.e. R". Thus we have HmeHL{L(') <
C 10
Now we take g € LEZJ(')(R") and a cube () arbitrarily. By virtue of Lemma 2.7,

there exist a constant C > 0 and a sequence of positive real numbers {/;};cz such
that

(1) 0<ljp1 <l; <ooforall jeZ,
(2) lim;_,oo ¢; = 0 and hmj_> 0o lj = 00,
(3) Kj(x,y) > C({j4+1)"" whenever |z — y| < {;.

We can take a unique mq € Z so that £,,,+1 < V|QIV < lmo- Then we obtain

1P (lglx@)ll 200 < Cllgxell o
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On the other hand, we have that
Prallshe)@)] x0(e) = | | Koo nla(0)] do| (o)

> /Q Cllmg 1) l9()] dy - x0(2) > Cn~™2|gloxo ().

Hence we get

lgxall 200 = [[Bng (l91x@)Xall 200 = Clalalixell ppoo-

Therefore (2.3) holds, that is, (W1) is true. O
4.3. Modular inequalities.

Theorem 4.3. Suppose that p(-) € LH(R"), 1 < p_ < p; < oo and w € Ap,.
Then the following three conditions are equivalent:

(X1) p(+) is a constant.
(X2) There exists a positive constant C' such that, for all 7 € Z and all f €

LY (RM),
[ 1Bs@Pu@ < [ 15@rue) d.
(X3) There exists a positive constant C such that, for all f € Li(R™),

! [ U@pe@de< [ viEr©u@de <0 [ 1P s

n

Proof. The statement (X1) = (X3) are well known; this is just a classical result,
see for example [22, Section 6.4].
Next we show that (X2) = (X1). Suppose (X2) and py > p_. We write

1
€= g(m —p-),
E:={reR": p, —e<p(x)},

F:={xeR":p_+e>p)}

Note that ¢ > 0, |E| > 0 and |F| > 0. There exist small open balls B(yo,r) =
{z:|x —yo| <r} and B(xg,r) = {z: |x — xo| < r} such that |E' N B(yo, )| > 0 and
|F'N B(xg,r)| > 0. We additionally define U := EN B(yo, ) and V := EN B(zg, 7).
Let {¢;} and C be as in Lemma 2.7. We can take j € Z so that ¢; > |xg — yo| + 2r.
Then we obtain

Pi(xv)(x /K z,y)dy > C(lj41)™", z €U,

where the last inequality follows by the definition of a family of weakly positive
kernels and the fact that

|z —y| <z —yo| + |yo — wo| + |zo — Y| < 2r + |yo — 20| < 4
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for every x € U and y € V. Taking an arbitrary constant R > 1, we get
EW*‘EIQ(C(@+1) Py (1 )dx<<‘/Z(CIKETH)_")Mwa(x)dx
< [ (BRG)@)Y () dr

< [ (RP(w)@) w()d

If we use (X2), then we have

P+—¢ 1) TP @(2) da ()PP w(z) do
R /U<c<fj+1> POu(z) d sc/ (R ()" w(z) d

n

—C/Rp m<cmﬁ/ w(z) da.

\%4

This contradicts p, —e > p_+-¢. Hence p. = p_ holds, namely the variable exponent
p(z) is a constant.

Finaly, we show that (X3) = (X2). We may assume that f is bounded and
compactly supported because of the density, see Theorem 2.10. Suppose (X3) and
take m € Z arbitrarily. We define as before

m—1
Quf =Y Y Y {f el 0k,
leL j=—o0 keZn

Then P, f(z) = @ f(z) for almost every z € R". Thus we get
| IRt @P ) de = [ 1Qup@lr i) de
<C [ V@uH@Iula)ds

<cf. (Z S 3 [t ‘)Tw(:c)dx

leL j=—o0 k€Zn
< C/ Vf(2)P@w(z) de < C’/ |f ()PP w(x) d.

This implies that (X2) holds. O

Remark 4.1. Lerner [32] has proved that if p(-) satisfies 1 < p_ < p, < oo and

Mfap®@de <C [ |f(2)P da

R™ R™

for all f, then p(:) equals a constant. Lerner’s proof depends on the Muckenhoupt
A property. By a similar argument the first author [23] has proved Theorem 4.3
in the case of w = 1. Our proof of Theorem 4.3 above is based on straightforward
calculation and does not need the Muckenhoupt A, property.
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5. Appendix. Fefferman—Stein vector-valued inequality for
weighted Lebesgue spaces with variable exponent

We can prove the following vector-valued inequality:

Proposition 5.1. Suppose that p(-) € LH(R") and1 < p_ < p, < 00. Suppose
in addition that r € (1,00] and w € Ap(.). Then
1

5.1) (Z(Mfﬁ)r <c (Zw)r

for all sequences { f;}32, of measurable functions. When r = oo, (3.5) reads

sup M f;

JjEN

<C

sup | f;
JEN

qu()

Proof. If r = oo, then we can resort to Theorem 2.8 and a trivial inequality
SWMESMPWW}
jEN JEN

Next, by Lemma 3.3 there exists 7 > 1 such that w € Ap.y/,. Let 1 <r < min(n,p_).

Then p(-)/r € LH, 1 < p_/r < py/r < oo and w € Ay C Apeyr- By the
definition of the weighted norm and Proposition 3.5, we have

S

1

(Z(ijy) = ' > ()
j=1 Lg,(') j=1 LIU)J(')/T
<c DI =C (Z\fa‘\’)
j=1 e/ Jj=1 r0)

So we are done in the case where r is small enough.
We let qu(')(ﬁ’", R™) be the set of all sequences {f;}52; of measurable functions

such that )
Y 0 <Z\fﬂ’“)
j=1

is finite. Note that (LI (¢, R™), || - ||Lp(.)w)
For the remaining case, we consider a linear operator

) is a Banach space.

o

1
U:{f;}= (y)d
{fi};2 = {Tj(')” /B(.ﬁ(.)) fiy) y} 3

J=1

where each r;(-) is a positive measurable function. We know that U is bounded from
qu(')(W,R") to itself when r = oo or r is sufficiently close to 1. Thus, we are in
the position of using the interpolation theorem |21, p. 492, Theorem 3.4| to conclude
that the vector-valued inequality is valid for all 1 < r < oco. U
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