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Abstract. We consider a non-linear system of m equations in divergence form and a boundary
condition:











n
∑

i=1

∂

∂xi

(Aα
i (x,Du(x))) = 0, 1 ≤ α ≤ m, in Ω

u = ũ on ∂Ω.

The functions Aα
i (x, z) are Hölder continuous with respect to x and

|z|p − c1 ≤

m
∑

α=1

n
∑

i=1

Aα
i (x, z)z

α
i ≤ c2(1 + |z|)q, 2 ≤ p ≤ q.

We prove the existence of a weak solution u in (ũ +W
1,p
0

(Ω;Rm)) ∩W
1,q

loc
(Ω;Rm), provided p and

q are close enough and under suitable summability assumptions on the boundary datum ũ.

1. Introduction

In this paper we are concerned with the existence and regularity of solutions to
the Dirichlet problem associated to a non-linear system of m equations in divergence
form

(1.1)











n
∑

i=1

∂

∂xi

(Aα
i (x,Du(x))) = 0, 1 ≤ α ≤ m, in Ω

u = ũ on ∂Ω,

where Ω is a bounded open set in R
n, n ≥ 2, and ũ is a vector-valued function in a

suitable Sobolev space.
We assume that Aα

i : Ω ×R
nm → R, 1 ≤ i ≤ n, 1 ≤ α ≤ m, are Carathéodory

functions satisfying the following properties: there exist 2 ≤ p ≤ q, 0 < γ ≤ 1 and
ν,M, c > 0, such that for every x, y ∈ Ω and for every z, z̃ ∈ R

nm:
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(H1) ν (|z|2 + |z̃|2)
p−2
2 |z − z̃|2 ≤

m
∑

α=1

n
∑

i=1

[Aα
i (x, z)− Aα

i (x, z̃)] [z
α
i − z̃αi ],

(H2) |Aα
i (x, z)| ≤ M(1 + |z|)q−1,

(H3)

m
∑

α=1

n
∑

i=1

|Aα
i (x, z)− Aα

i (y, z)| ≤ c|x− y|γ(1 + |z|)q−1.

Notice that we are in the framework of the p, q-growth, since (H1) and (H2) imply
that there exist c1, c2 > 0 such that

(1.2)
ν

2
|z|p − c1 ≤

m
∑

α=1

n
∑

i=1

Aα
i (x, z)z

α
i ≤ c2(1 + |z|)q.

For ũ ∈ W 1,q(Ω;Rnm), a weak solution u to problem (1.1) is a function u such that

(1.3) u− ũ ∈ W 1,p
0 (Ω;Rm) ∩W 1,q

loc
(Ω;Rm)

and

(1.4)

ˆ

Ω

m
∑

α=1

n
∑

i=1

Aα
i (x,Du)ϕα

xi
(x) dx = 0 ∀ϕ ∈ W 1,q(Ω;Rm), suppϕ ⋐ Ω.

If p = q, the existence of weak solutions to (1.1) can be established using the the-
ory of coercive, monotone operators, see Leray–Lions [24], Browder [4] and Hartman–
Stampacchia [20]. Moreover, by (H1) the solution is unique. Also the regularity issue
has been extensively studied, see the monographs [18], [19] and the surveys [28] and
[29].

If p < q the above classical existence results cannot be applied due to the lack
of coercivity in W 1,q. Moreover, the request u ∈ W 1,q

loc
(Ω;Rm) in the definition

of weak solution, needed to have a well defined integral in (1.4), is an additional
difficulty. Notice that such a request is a priori assumed in some regularity results
under the p, q-growth, see for example Leonetti [22], Bildhauer–Fuchs [1] and Cupini–
Marcellini–Mascolo [10].

In this paper we prove the existence of a weak solution u ∈ W 1,q
loc

(Ω;Rm) to (1.1).
Moreover, under additional assumptions, we show that u is locally bounded.

The existence of weak solutions is proved assuming that the integrability of the
boundary datum is high enough. Precisely, our result is the following.

Theorem 1.1. Assume that (H1)–(H3) hold, with

(1.5) 2 ≤ p ≤ q < p
n+ γ

n
.

For every ũ ∈ W 1,p q−1
p−1 (Ω;Rm) there exists a weak solution u to the Dirichlet problem

(1.1), that is u satisfies (1.3) and (1.4). Moreover, u ∈ W 1,s
loc (Ω;R

m) for all 1 ≤ s <
p n
n−γ

.

As far as the regularity of solutions is concerned, the obstructions are essentially
two: we are dealing with systems (if m ≥ 2) and under non-standard growth (p < q).
Indeed, in the vectorial case, even under the standard growth, the everywhere regu-
larity of solutions for systems, or of minimizers of integrals, cannot be expected unless
some structure conditions are assigned, and this holds also for the local boundedness,
see e.g. the counterexamples by De Giorgi [13] and Sverák–Yan [30].
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Since the pioneering paper by Marcellini [26], the theory of regularity in the
framework of non-standard growth has been deeply investigated. The results and
the contributions to regularity are so many, that it is a hard task to provide a
comprehensive overview of the issue. For this, we refer to the survey of Mingione [28]
for an accurate and interesting account on this subject. A common feature is that
to get regularity results p and q must be not too far apart, as examples of irregular
solutions by Giaquinta [17], Marcellini [25], [27] and Hong [21] show. Notice that the
rate of Hölder continuity of A(·, z) interacts with the ratio q/p precisely as in (1.5), see
Esposito–Leonetti–Mingione [15] and Colombo–Mingione [8] where the same bound
appears. This is suggested by an example in [15], where the minimizer of a functional
with q/p > 1+ γ/n fails to be locally W 1,q-regular; see also Fonseca–Malý–Mingione
[16]. Moreover, the condition on the distance between the exponents p and q can
usually be relaxed if the solutions/minimizers are assumed locally bounded, see e.g.
Choe [7], D’Ottavio [14], Bildhauer–Fuchs [2], Canale et al. [5], Carozza–Kristensen–
Passarelli [6], Breit [3], Colombo–Mingione [9] and Cupini–Marcellini–Mascolo [12].

A particular case of systems such that its weak solutions in W 1,q
loc (Ω;R

m) are
locally bounded is given by

(1.6)

n
∑

i=1

∂

∂xi

(

n
∑

j=1

aij (x,Du)uα
xj

)

= 0, α = 1, . . . , m.

This result is a consequence of Theorem 4.1 in [10], see Theorem 5.1 below. See also
Leonetti–Mascolo [23] and Cupini–Marcellini–Mascolo [11].

Collecting the existence result Theorem 1.1 and Theorem 5.1, we obtain the
existence of a locally bounded weak solution to (1.1) under the structure condition
(1.6), see Theorem 5.2. We emphasize that no boundedness condition is imposed on
the boundary datum ũ. Theorem 5.2 can be applied to the Euler equation of the
functionals

ˆ

Ω

(

|Du(x)|2 + a(x)|Du(x)|q
)

dx

and
ˆ

Ω

(1 + |Du(x)|2)
p(x)
2 dx,

as described at the end of paper.
The plan of the paper is briefly described. In Section 2 we give the strategy

of the proof of the existence result Theorem 1.1, which relies on an approximation
argument, and state useful preliminary results. The a priori estimates needed to
let the approximation work are proved in Section 3. The conclusion of the proof of
Theorem 1.1 is in Section 4.

In the last section, we will apply the existence result to a particular class of non-
linear systems, see (5.3), and we will prove that for this class there exists a locally
bounded weak solution of the corresponding Dirichlet problem, see Theorem 5.2.
Applications of our results are given.

2. Preliminary results

We consider a bounded open set Ω in R
n, n ≥ 2, and Carathéodory functions

Aα
i : Ω×R

nm → R, with i = 1, . . . , n and α = 1, . . . , m, satisfying (H1), (H2), (H3),
with 2 ≤ p ≤ q, 0 < γ ≤ 1 and ν,M, c > 0.
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Fixed ũ ∈ W 1,q
loc (Ω;R

m) we want to study the existence and the summability
properties of the solutions to the elliptic system (1.1) in a weak sense; precisely, u is
a weak solution to (1.1) if u− ũ ∈ W 1,p

0 (Ω;Rm) ∩W 1,q
loc (Ω;R

m) satisfies (1.4).
For the sake of clarity, we report the scheme of the proof of Theorem 1.1. We

approximate the system in (1.1) with the systems

(2.1)
m
∑

α=1

n
∑

i=1

∂

∂xi

(

Aα
ǫ,i(x,Du)

)

= 0, 0 < ǫ < 1,

where Aα
ǫ,i : Ω×R

nm → R is defined as

(2.2) Aα
ǫ,i(z) := Aα

i (z) + ǫ|z|q−2zαi .

By (1.2), Aα
ǫ,i(x, z) satisfies

m
∑

α=1

n
∑

i=1

Aα
ǫ,i(x, z)z

α
i ≥ ǫ|z|q − λ.

Moreover, by (H1) and (H2), we have that

(2.3) |Aα
ǫ,i(x, z)| ≤ (M + 1)(1 + |z|)q−1

and, since z 7→ |z|q−2z is a monotone operator,

(2.4) ν
(

|z|2 + |z̃|2
)

p−2
2 |z − z̃|2 ≤

m
∑

α=1

n
∑

i=1

[

Aα
ǫ,i(x, z)− Aα

ǫ,i(x, z̃)
]

[zαi − z̃αi ].

The classical theory of monotone operators, see e.g. [24], [4] and [20], permits to
conclude that there exists (and, by (H1), unique) uǫ ∈ ũ+W 1,q

0 (Ω) such that

(2.5)

ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)ϕ

α
xi
dx = 0 ∀ϕ ∈ W 1,q

0 (Ω;Rm).

Then, we prove estimates in Lebesgue spaces for the gradient of the functions uǫ,
uniform with respect to ǫ: the norms of Duǫ are bounded in Lp(Ω) and in Lq(Ω′),
Ω′ ⋐ Ω, see Propositions 3.1 and 3.2, respectively.

We conclude by proving that there exists u0 ∈ ũ+W 1,p
0 (Ω) such that u0 ∈ W 1,q

loc (Ω)
and, up to subsequences, Duǫ → Du0 strongly in Lp

loc(Ω). This will imply that
Aα

ǫ,i(x,Duǫ) converges, up to subsequences, to Aα
i (x,Du0) in L1

loc(Ω). Passing to the
limit in the equation (2.5), with ϕ ∈ W 1,q(Ω;Rm) with compact support in Ω, we
conclude.

We here recall some known results. To prove that the Lp norms of Duǫ are
bounded with respect to ǫ, see Lemma 3.1, we need the following inequality, see also
[27].

Lemma 2.1. Assume that (H1) and (H2) hold. Let Aα
ǫ,i be defined as in (2.2).

Then there exists c > 0 such that for all 0 < ǫ < 1, for all x ∈ Ω and for all ξ, η ∈ R
nm

(2.6) |ξ|p ≤ c

{

∑

α,i

Aα
ǫ,i(x, ξ)(ξ

α
i − ηαi ) + (1 + |η|)

p(q−1)
p−1

}

.
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Proof. By (2.4),

|ξ|p ≤ 2p−1(|ξ − η|p−2|ξ − η|2 + |η|p) ≤ c
(

(|ξ|2 + |η|2)
p−2
2 |ξ − η|2 + |η|p

)

≤ c̃

(

∑

α,i

(

Aα
ǫ,i(x, ξ)− Aα

ǫ,i(x, η)
)

(ξαi − ηαi ) + |η|p

)

, ∀ ξ, η ∈ R
nm.

By (H2) and the Young inequality,

c̃

∣

∣

∣

∣

∣

∑

α,i

Aα
ǫ,i(x, η)(ξ

α
i − ηαi )

∣

∣

∣

∣

∣

≤ c(M + 1)(1 + |η|)q−1|ξ − η| ≤
1

2
|ξ|p + c (1 + |η|)

p(q−1)
p−1 .

Thus, (2.6) follows. �

To get that the Lq norms of Duǫ are locally bounded with respect to ǫ, see
Proposition 3.2, we need technical results. For the reader’s convenience we list them
below. The first one is based on an iteration argument, see e.g. [19].

Lemma 2.2. Let Z(t) be a bounded and non-negative function in the interval
[ρ, R]. Assume that for ρ ≤ r < d ≤ R

Z(r) ≤ θZ(d) +
A

(d− r)γ
+B

with A,B ≥ 0 and 0 ≤ θ < 1. Then

Z(ρ) ≤ c(γ)

[

A

(R− ρ)γ
+B

]

.

The remaining results are related to fine properties of the difference quotient;
they can be found e.g. in [15]. We recall that, given a function f : Rn → R

k, then
τs,hf(x) = f(x+hes)−f(x), where es is the s-th vector of the canonical basis in R

n.

Lemma 2.3. If 0 < ρ < R, |h| < R − ρ, 1 ≤ t < +∞, s ∈ {1, . . . , n}, and
G,DsG ∈ Lt(BR), then

ˆ

Bρ

|τs,hG(x)|t dx ≤ |h|t
ˆ

BR

|DsG(x)|t dx.

Lemma 2.4. If G : Rn → R
k, G ∈ L2(BR), 0 < R ≤ 1 and for some ρ ∈ (0, R),

d ∈ (0, 1), M > 0, η : Rn → R with η ∈ C1
c (B ρ+R

2
), 0 ≤ η ≤ 1 in R

n, |Dη| ≤ 4
R−ρ

in

R
n, η = 1 on Bρ,

n
∑

s=1

ˆ

BR

|τs,hG(x)|2η2(x) dx ≤ M2|h|2d

for every h with |h| ≤ R−ρ

4
, then G ∈ W b,2(Bρ;R

k)∩L
2n

n−2b (Bρ;R
k) for every b ∈ (0, d)

and
‖G‖

L
2n

n−2b (Bρ)
≤

c

(R− ρ)2b+2d+2
(M + ‖G‖L2(BR)),

where c = c(n, k, b, d).

Lemma 2.5. For every p > 1 and G : BR → R
k, we have

|τs,h((µ
2 + |G(x)|2)

p−2
4 G(x))|2 ≤ c(k, p)(µ2 + |G(x)|2 + |G(x+ hes)|

2)
p−2
2 |τs,hG(x)|2

for every x ∈ Bρ, with |h| ≤ R− ρ and every s = 1, . . . , n, where 0 ≤ µ ≤ 1 and the
constant c = c(k, p) is independent of µ.
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3. Uniform estimates

In this section we study the approximating systems (2.1). The properties of Aα
ǫ,i,

i = 1, . . . , n, α = 1, . . . , m, ensure the existence of a unique function uǫ ∈ ũ+W 1,q
0 (Ω)

such that
ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)ϕ

α
xi
dx = 0 ∀ϕ ∈ W 1,q

0 (Ω;Rm).

In the following, c is a positive constant that may vary from line to line.
First we claim that the Lp norms of Duǫ are bounded with respect to ǫ.

Proposition 3.1. Assume that (H1) and (H2) hold and consider ũ ∈ W 1, p(q−1)
p−1 (Ω).

For all ǫ, let uǫ ∈ ũ+W 1,q
0 (Ω) satisfy (2.5). Then there exists a positive constant c0,

independent of ǫ, such that

(3.1)

ˆ

Ω

|Duǫ|
p dx ≤ c0

ˆ

Ω

(1 + |Dũ|)
p(q−1)
p−1 dx.

Moreover, ‖uǫ − ũ‖W 1,p
0 (Ω) ≤ c with c independent of ǫ.

Proof. By (2.5) with test function ϕ = uǫ − ũ, and using Lemma 2.1, with
ξ = Duǫ(x), η = Dũ(x), we get (3.1). Moreover, since

ˆ

Ω

|Duǫ −Dũ|p dx ≤ 2p−1

ˆ

Ω

(|Duǫ|
p + |Dũ|p) dx,

then (3.1) implies the boundedness of the W 1,p
0 -norm of uǫ − ũ with respect to ǫ. �

In the following proposition we claim that the Lq norms of Duǫ are locally
bounded with respect to ǫ. Precisely, we will prove the stronger result that the
Ls-norms of Duǫ are locally bounded, with q < s < p n

n−γ
.

Proposition 3.2. Assume that (H1)–(H3) hold with q < pn+γ

n
, and consider

ũ ∈ W 1, p(q−1)
p−1 (Ω). Let uǫ ∈ ũ + W 1,q

0 (Ω) satisfy (2.5), with 0 < ǫ < 1. For all s ∈
[q, p n

n−γ
) there exist σ, τ positive and independent of ǫ, such that for all BR(x0) ⋐ Ω,

with R ≤ 1, and for all ρ < R, we have that

(3.2)

ˆ

Bρ(x0)

|Duǫ(x)|
s dx ≤

c1
(R− ρ)τ

(
ˆ

BR(x0)

(1 + |Duǫ(x)|)
p dx

)σ

+ c2R
n,

with positive constants c1, c2 independent of ǫ.

Proof. From now on, we write u in place of uǫ. Consider BR(x0) ⋐ Ω, ρ ≤ r <
d ≤ R ≤ 1, and define η ∈ C∞

c (Ω), supp η ⊆ B d+r
2
(x0), η ≡ 1 in Br and |Dη| ≤ 4

d−r
.

Let ϕ = τs,−h(η
2τs,hu) with |h| < d−r

2
. Then (2.5) implies

(3.3)
∑

α,i

ˆ

Ω

η2τs,h
(

Aα
ǫ,i(x,Du)

)

τs,hu
α
xi
dx = −

∑

α,i

ˆ

Ω

τs,h
(

Aα
ǫ,i(x,Du)

)

2ηηxi
τs,hu

α dx.

We now proceed by steps.

Step 1. We prove that
ˆ

B d+r
2

η2
∣

∣

∣
τs,h

(

(

|Du|2
)

p−2
4 Du

)
∣

∣

∣

2

dx ≤
c

d− r

ˆ

Bd

(1 + |Du|)q dx |h|γ

where the constant c is independent of ǫ.
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Indeed, since

∑

α,i

ˆ

Ω

η2τs,h
(

Aα
ǫ,i(x,Du))

)

τs,hu
α
xi
dx

=
∑

α,i

ˆ

Ω

η2
(

Aα
ǫ,i(x+ hes, Du(x+ hes)−Aα

ǫ,i(x,Du(x+ hes))
)

τs,hu
α
xi
dx

+
∑

α,i

ˆ

Ω

η2
(

Aα
ǫ,i(x,Du(x+ hes))−Aα

ǫ,i(x,Du(x))
)

τs,hu
α
xi
dx,

then (3.3) implies

∑

α,i

ˆ

Ω

η2
(

Aα
ǫ,i(x,Du(x+ hes))− Aα

ǫ,i(x,Du(x))
)

τs,hu
α
xi
dx

= −
∑

α,i

ˆ

Ω

τs,h
(

Aα
ǫ,i(x,Du)

)

2ηηxi
τs,hu

α dx

−
∑

α,i

ˆ

Ω

η2
(

Aα
ǫ,i(x+ hes, Du(x+ hes))− Aα

ǫ,i(x,Du(x+ hes))
)

τs,hu
α
xi
dx.(3.4)

By Lemma 2.5,

∣

∣

∣
τs,h

(

(

|Du|2
)

p−2
4 Du

)
∣

∣

∣

2

≤ c(n,m, p)
(

|Du(x)|2 + |Du(x+ hes)|
2
)

p−2
2 |τs,hDu(x)|2.

Therefore, using (2.4), there exists a positive constant c, depending on n,m, p and
ν, such that

∣

∣

∣
τs,h

(

(

|Du|2
)

p−2
4 Du

)
∣

∣

∣

2

≤ c
∑

α,i

[

Aα
ǫ,i(x,Du(x+ hes))−Aα

ǫ,i(x,Du(x))
]

τs,hu
α
xi
.

This inequality, together with (3.4), implies

1

c

ˆ

Ω

η2
∣

∣

∣
τs,h

{

(

|Du|2
)

p−2
4 Du

}
∣

∣

∣

2

dx ≤ −
∑

α,i

ˆ

Ω

τs,h
(

Aα
ǫ,i(x,Du)

)

2ηηxi
× τs,hu

α dx

−
∑

α,i

ˆ

Ω

η2
(

Aα
ǫ,i(x+ hes, Du(x+ hes))− Aα

ǫ,i(x,Du(x+ hes))
)

τs,hu
α
xi
dx

=: I1 + I2.(3.5)

Let us estimate I1. By (2.3)

|I1| ≤ c

ˆ

Ω

η|Dη| (1 + |Du(x)|+ |Du(x+ hes)|)
q−1 |τs,hu| dx

≤
c

d− r







ˆ

B r+d
2

(1 + |Du(x)|+ |Du(x+ hes)|)
q dx







q−1
q






ˆ

B r+d
2

|τs,hu|
q dx







1
q

.
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Then, using Lemma 2.3 and taking into account that |h| < 1, we get

|I1| ≤
c

d− r

{
ˆ

Bd

(1 + |Du(x)|)q dx

}
q−1
q
{
ˆ

Bd

|uxs|
q dx

}
1
q

|h|

≤
c

d− r

ˆ

Bd

(1 + |Du(x)|)q dx |h|γ.(3.6)

Let us estimate I2. By Hölder continuity of A(·, z) in (H3),

|I2| ≤ c

ˆ

Ω

η2 (1 + |Du(x+ hes)|)
q−1 |τs,hDu| dx |h|γ

≤ c

ˆ

B r+d
2

(1 + |Du(x)|+ |Du(x+ hes)|)
q dx |h|γ ≤ c

ˆ

Bd

(1 + |Du|)q dx |h|γ.(3.7)

Thus, collecting (3.5), (3.6) and (3.7), the claim follows.

Step 2. Since q

p
< n+γ

n
, then we can choose 0 < θ < γ such that q

p
< n+θ

n
. Such

a choice is obtained when 0 ≤ n
(

q

p
− 1
)

< θ < γ. We claim that |Du| ∈ Lqδ
loc(Ω),

where δ = p

q
n

n−θ
. Notice that p < qδ < p n

n−γ
.

Indeed, fixed a ball BR(x0) ⋐ Ω, with ρ ≤ r < d ≤ R ≤ 1, by Step 1 and by

Lemma 2.4, applied with b = θ
2
, we have |Du|

p
2 ∈ L

2n
n−θ (Br). Moreover,

‖|Du|
p
2‖

L
2n
n−θ (Br)

≤
c

(d− r)θ+γ+2

{

(

1

d− r

ˆ

Bd

(1 + |Du(x)|)q dx

)
1
2

+

(
ˆ

Bd

|Du(x)|p dx

)
1
2

}

with c independent of ǫ. Therefore, if we set α = (θ+ γ+ 5
2
) 2n
n−θ

the above inequality
gives

(3.8)

ˆ

Br

|Du(x)|qδ dx ≤
c̄

(d− r)α

(
ˆ

Bd

(1 + |Du(x)|)q dx

)
qδ
p

.

The arbitrariness of r, d and x0 allows to conclude.
If q = p then we go to Step 5. If q > p we need Steps 3 and 4.

Step 3. Since q

p
< n+θ

n
then δq

p
< δq−p

q−p
. In this step we prove that there exist

positive constants t, σ, c, all independent of ǫ, satisfying δq

p
< t ≤ δq−p

q−p
, 0 < σ < 1,

such that
ˆ

Br

|Du(x)|qδ dx

≤
c

(d− r)
α

1−σ

(
ˆ

Bd

(1 + |Du(x)|)p dx

)

(t−1)σ
1−σ

+
1

2

ˆ

Bd

|Du(x)|qδ dx+ cRn.

(3.9)

Indeed, t ∈
(

δq

p
, δq−p

q−p

]

implies

(3.10) 1 <
qδ

p
< t, q

t− δ

t− 1
≤ p.
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By Hölder inequality
(
ˆ

Bd

(1 + |Du(x)|)q dx

)
qδ
p

=

(
ˆ

Bd

(1 + |Du(x)|)
qδ
t (1 + |Du(x)|)q(1−

δ
t ) dx

)
qδ
p

≤

(
ˆ

Bd

(1 + |Du(x)|)qδ dx

)
qδ
pt
(
ˆ

Bd

(1 + |Du(x)|)q
t−δ
t−1 dx

)
qδ
pt

(t−1)

.(3.11)

Thus, (3.8) and (3.11) imply
ˆ

Br

|Du(x)|qδ dx

≤

(
ˆ

Bd

(1 + |Du(x)|)qδ dx

)σ
c̄

(d− r)α

(
ˆ

Bd

(1 + |Du(x)|)qb dx

)(t−1)σ

,

where c̄ is the constant in (3.8) and

σ :=
qδ

pt
, b :=

t− δ

t− 1
.

By Young inequality, we get
ˆ

Br

|Du(x)|qδ dx

≤
c

(d− r)
α

1−σ

(
ˆ

Bd

(1 + |Du(x)|)qb dx

)

(t−1)σ
1−σ

+
1

2qδ

ˆ

Bd

(1 + |Du(x)|)qδ dx.

Notice that by Step 2 and (3.10) the right-hand side is finite. Since qb ≤ p and
(|x|+ |y|)qδ ≤ 2qδ−1(|x|qδ + |y|qδ), we get (3.9).

Step 4. By using Lemma 2.2 with Z(r) :=
´

Br
|Du(x)|qδ dx, the inequality (3.9)

implies

ˆ

Bρ

|Du(x)|qδ dx ≤
c

(R− ρ)
α

1−σ

(
ˆ

BR

(1 + |Du(x)|)p dx

)

(t−1)σ
1−σ

+ cRn.

Step 5. Notice that since θ is any number in
(

n
(

q

p
− 1
)

, γ
)

, then s := qδ can be

any number in
(

p2

2p−q
, p n

n−γ

)

. Note that q ≤ p2

2p−q
. The estimate (3.2) follows when

s belongs to such an interval. For s ∈
[

p, p2

2p−q

]

we use Hölder inequality and we get

(3.2) also in this case. �

4. Proof of Theorem 1.1

We are now ready to prove the existence of a weak solution to (1.1).

Proof of Theorem 1.1. For all 0 < ǫ < 1, let us define the operators Aα
ǫ,i as in

(2.2) and let uǫ ∈ ũ+W 1,q
0 (Ω) satisfy

(4.1)

ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)ϕ

α
xi
dx = 0 ∀ϕ ∈ W 1,q

0 (Ω),

as in Section 3.
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Step 1. We claim that there exists u0 ∈ ũ + W 1,p
0 (Ω;Rm) such that, up to

subsequences, Duǫ → Du0 strongly in Lp
loc(Ω).

By Proposition 3.1, the W 1,p
0 (Ω) norm of uǫ − ũ is bounded with respect to ǫ.

Moreover, the estimate (3.1) and Proposition 3.2 imply that, fixed Ω′
⋐ Ω, Duǫ

is bounded in Lq(Ω′;Rnm) uniformly with respect to ǫ. Thus, there exists u0 ∈
ũ+W 1,p

0 (Ω;Rm) such that Du0 ∈ Lq
loc(Ω;R

nm) and, up to subsequences,

uǫ − ũ → u0 − ũ weakly in W 1,p
0 (Ω;Rm) and Duǫ → Du0 weakly in Lq

loc(Ω;R
nm).

Since q < pn+γ

n
, by Rellich Theorem we get

uǫ → u0 in Lq
loc(Ω;R

m).

To conclude, consider η ∈ C∞

c (Ω) and define the test function ϕ = (uǫ − u0)η.
Notice that ϕ ∈ W 1,q(Ω;Rnm), with suppϕ ⋐ Ω. By (4.1)

ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)(u

α
ǫ,xi

− uα
0,xi

)η dx = −

ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)(u

α
ǫ − uα

0 )η
α
xi
dx

≤ (M + 1)

ˆ

Ω

(1 + |Duǫ|)
q−1|uǫ − u0||Dη| dx.(4.2)

Notice that (2.4) implies

|Duǫ −Du0|
p = (|Duǫ −Du0|

2)
p−2
2 |Duǫ −Du0|

2

≤ 2
p−2
2 (|Duǫ|

2 + |Du0|
2)

p−2
2 |Duǫ −Du0|

2

≤
2

p−2
2

ν

∑

α,i

(Aα
ǫ,i(x,Duǫ)−Aα

ǫ,i(x,Du0))(u
α
ǫ,xi

− uα
0,xi

).

Thus, (4.2) and the definition of Aα
ǫ,i imply

2
2−p
2 ν

ˆ

Ω

|Duǫ −Du0|
pη dx ≤

ˆ

Ω

∑

α,i

(Aα
ǫ,i(x,Duǫ)−Aα

ǫ,i(x,Du0))(u
α
ǫ,xi

− uα
0,xi

)η dx

≤ (M + 1)

ˆ

Ω

(1 + |Duǫ|)
q−1|uǫ − u0||Dη| dx−

ˆ

Ω

∑

α,i

Aα
i (x,Du0)(u

α
ǫ,xi

− uα
0,xi

)η dx

− ǫ

ˆ

Ω

∑

α,i

|uα
0,xi

|q−2uα
0,xi

(uα
ǫ,xi

− uα
0,xi

)η dx.

Thus, passing to the limit, as ǫ goes to 0 we get that the right hand side goes to 0.
We have so proved that

(4.3) Duǫ → Du0 in Lp
loc(Ω).

Step 2. We claim that, up to subsequences, Aα
ǫ,i(x,Duǫ) converges to Aα

i (x,Du0)

in L1
loc(Ω).
Indeed, for all Ω′ ⋐ Ω, adding and subtracting Aα

i (x,Duǫ), we get
ˆ

Ω′

|Aα
ǫ,i(x,Duǫ)− Aα

i (x,Du0)| dx

≤ ǫ

ˆ

Ω′

|Duǫ|
q−1 dx+

ˆ

Ω′

|Aα
i (x,Duǫ)− Aα

i (x,Du0)| dx.
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By the uniform boundedness of the Lq(Ω′)-norms of Duǫ the first term at the right
hand side goes to zero. As far as the last term is concerned, define the functions

fǫ(x) := |Aα
i (x,Duǫ)− Aα

i (x,Du0)|,

gǫ(x) := M
{

(1 + |Duǫ(x)|)
q−1 + (1 + |Du0(x)|)

q−1
}

and

g0(x) := 2M(1 + |Du0(x)|)
q−1.

By (H2) we get that fǫ(x) ≤ gǫ(x) for a.e. x ∈ Ω. Moreover, by what previously
proved, gǫ → g0 almost everywhere. Let us now prove that

´

Ω′
gǫ dx →

´

Ω′
g0 dx as ǫ

goes to 0. This easily follows by (4.3) and recalling that q ≤ p+ 1. A generalization
of the Lebesgue Convergence Theorem allows to conclude.

Step 3. By (4.1) we get that
ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)ϕ

α
xi
dx = 0 ∀ϕ ∈ W 1,q(Ω;Rm), suppϕ ⋐ Ω.

By Step 2, up to subsequences,
ˆ

Ω

∑

α,i

Aα
i (x,Du0)ϕ

α
xi
dx = lim

ǫ→0

ˆ

Ω

∑

α,i

Aα
ǫ,i(x,Duǫ)ϕ

α
xi
dx = 0

for all ϕ ∈ W 1,q(Ω;Rm), suppϕ ⋐ Ω. Therefore, u0 is a weak solution to (1.1). �

5. Local boundedness of the weak solutions

Let us assume that the functions Aα
i in (1.1) are such that

(5.1) Aα
i (x, z) :=

n
∑

j=1

aij(x, z)z
α
j ,

where aij : Ω×R
nm → R are Carathéodory functions such that

(5.2)
n
∑

i,j=1

aij(x, z)λiλj ≥ 0 ∀λ ∈ R
n, ∀ z ∈ R

nm and a.e. x ∈ Ω.

Let us consider the corresponding system, that is

(5.3)
n
∑

i=1

∂

∂xi

(

n
∑

j=1

aij(x,Du(x))uα
xj
(x)

)

= 0, α = 1, . . . , m.

The following boundedness result is consequence of Theorem 4.1 in [10].

Theorem 5.1. Assume (5.1), (5.2) and

(5.4)
m
∑

α=1

n
∑

i=1

[Aα
i (x, z)− Aα

i (x, z̃)] [z
α
i − z̃αi ] ≥ 0 ∀ z, z̃ ∈ R

nm and a.e. x ∈ Ω.

Assume also

ν|z|p − c1 ≤
m
∑

α=1

n
∑

i=1

Aα
i (x, z)z

α
i ≤ c2(1 + |z|)q ∀ z, z̃ ∈ R

nm and a.e. x ∈ Ω,

for some ν, c1, c2 > 0, with 1 < p ≤ q, and also q < pn−1
n−p

if p < n.
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Let u ∈ W 1,q
loc (Ω) be a weak solution to (5.3), i.e.,

ˆ

Ω

m
∑

α=1

n
∑

i=1

Aα
i (x,Du)ϕα

xi
(x) dx = 0, ∀ ϕ ∈ W 1,q(Ω;Rm), suppϕ ⋐ Ω.

Then u ∈ L∞

loc(Ω;R
m).

Proof. It is easy to check that the proof of Theorem 4.1 in [10] works using (5.2)
and (5.4) instead of the following condition assumed there:

n
∑

i,j=1

aij(x, z)λiλj ≥ M1

n
∑

i=1

λ2
i

(

m
∑

α=1

|zαi |
2

)
p−2
2

,

for all z ∈ R
mn, λ ∈ R

n and with M1 > 0. �

By this result and Theorem 1.1, we obtain the following existence and regularity
theorem.

Theorem 5.2. Assume that (H1)–(H3) hold, with 2 ≤ p ≤ q < pn+γ

n
. Let Aα

i

be as in (5.1), with (aij) satisfying (5.2). For every ũ ∈ W 1,p q−1
p−1 (Ω;Rm) there exists

a weak solution u to the Dirichlet problem (1.1), such that u is locally bounded.

Proof. The existence follows by Theorem 1.1 and the local boundedness follows
by Theorem 5.1. �

We conclude with two applications of the above result.

Example 5.3. Let us consider

(5.5) Aα
i (x, z) := 2zαi + a(x)q|z|q−2zαi ,

where 2 ≤ q, a ∈ C0,γ(Ω), a(x) ≥ 0, 0 < γ ≤ 1. The assumptions of Theorems 1.1
and 5.2 are satisfied with p = 2. Therefore, if q < 2n+γ

n
and ũ ∈ W 1,2(q−1)(Ω;Rm)

then there exists a locally bounded weak solution to the Dirichlet problem (1.1).
Notice that (5.5) comes from the Euler equation of the functional

ˆ

Ω

(

|Du(x)|2 + a(x)|Du(x)|q
)

dx.

Example 5.4. Let us consider

(5.6) Aα
i (x, z) := p(x)(1 + |z|2)

p(x)−2
2 zαi ,

with p ∈ C0,γ(Ω), 0 < γ ≤ 1. Assume that 2 ≤ p1 and p2 < p1
n+γ

n
, where

p1 := min{p(x)} and p2 := max{p(x)}.

The assumptions of Theorems 1.1 and 5.2 are satisfied for p = p1 and any q with
p2 < q < p1

n+γ

n
.

Therefore, if ũ ∈ W
1,

p1(q−1)
p1−1 (Ω;Rm) then there exists a locally bounded weak

solution to the Dirichlet problem (1.1). Notice that (5.6) comes from the Euler
equation of the functional

ˆ

Ω

(1 + |Du(x)|2)
p(x)
2 dx.
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