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Abstract. The triangular ratio metric is studied in subdomains of the complex plane and

Euclidean n-space. Various inequalities are proven for this metric. The main results deal with the

behavior of this metric under quasiconformal maps. We also study the smoothness of metric disks

with small radii.

1. Introduction

A significant part of geometric function theory deals with the behavior of dis-
tances under well known classes of mappings such as Möbius transformations, bilip-
schitz maps or quasiconformal mappings. Thus measurement of distances in terms
of metrics is a common tool in function theory and frequently hyperbolic metrics
or metrics of hyperbolic type are used in addition to Euclidean or chordal distance.
Many authors have contributed to this development in recent years. See for instance
[H, HIMPS, KL, PT]. A survey of these developments is given in [Vu2].

The triangular ratio metric is defined as follows for a domain G ( R
n and

x, y ∈ G:

(1.1) sG(x, y) = sup
z∈∂G

|x− y|
|x− z|+ |z − y| ∈ [0, 1].

Clearly, the supremum in the definition (1.1) of sG is attained at some point z ∈ ∂G ,
but finding this point is a nontrivial problem even for the case when G is the unit disk.
Hästö [H, Theorem 6.1] proved that sG satisfies the triangle inequality and developed
theory for metrics more general than sG and generalized the work of Barrlund [BA].
Very recently, the geometry of the balls of sG for some special domains was studied
in [HKLV]. Our goal here is to continue the study of this metric and to explore its
behavior under Möbius transformations, quasiconformal and quasiregular mappings.
We also give upper and lower bounds for this metric in terms of other metrics in
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several domains such as the unit ball, the upper half plane and R
n \ {0}, the whole

space R
n punctured at the origin. Also some ideas for further work are pointed out.

The paper is divided into sections as follows. In Section 2 we give algorithms
for numerically finding the value of sG(x, y), for instance, in the case of a domain
bounded by a polygon. In Section 3 we develop the main ideas of this paper and
relate the triangular ratio metric to other well-known metrics of geometric function
theory such as the hyperbolic metric of the unit ball or half-space or to the distance
ratio metric of a domain G ⊂ R

n. In Section 5 we apply these results and well-known
distortion results of quasiconformal maps to study how the triangular ratio metric
behaves under quasiconformal and quasiregular mappings. In Section 4 we study the
smoothness of the boundaries of s-disks in a triangle and in a rectangle. We now
proceed to formulate some of our main results.

Theorem 1.2. (1) Let f : Hn → H
n be a K-quasiregular mapping. Then

for x, y ∈ H
n we have

sHn(f(x), f(y)) ≤ λ1−α
n (sHn(x, y))α, α = K1/(1−n),

where λn ∈ [4, 2en−1), λ2 = 4, is the Grötzsch ring constant depending only

on n [Vu1, Lemma 7.22].
(2) Let f : Bn → B

n be a K-quasiregular mapping. Then for x, y ∈ B
n we have

sBn(f(x), f(y)) ≤ 2αλ1−α
n (sBn(x, y))α, α = K1/(1−n).

(3) Let f : Bn → H
n be a K-quasiregular mapping. Then for x, y ∈ B

n we have

sHn(f(x), f(y)) ≤ 2αλ1−α
n (sBn(x, y))α, α = K1/(1−n).

(4) Let f : Hn → B
n be a K-quasiregular mapping. Then for x, y ∈ H

n we have

sBn(f(x), f(y)) ≤ λ1−α
n (sHn(x, y))α, α = K1/(1−n).

Theorem 1.3. Let G = R
n \ {0}, and f : G → G be a K-quasiconformal map-

ping with f(∞) = ∞, and let z, w be two distinct points in G and α = K1/(1−n).
Then

sfG(f(z), f(w)) ≤
1

P5(n,K)
(sG(z, w))

α , sG(z, w) =
|z − w|
|z|+ |w| ,

where P5(n,K) → 1, K → 1, and P5(n,K) is defined in Lemma 5.8.

Of particular interest is the special case K = 1 of Theorems 1.2 and 1.3. Clearly,
Theorem 1.3 is sharp in this case and the same is true about Theorem 1.2 (1). The
question about the best constant in Theorem 1.2 (2) deserves some attention for the
case when K = 1 = α. The constant on the right hand side is then 2.

For a detailed study of this constant we define for a ∈ (0, 1) the class C(a) of all
Möbius transformations h : Bn → B

n with |h(0)| = a and the constant

(1.4) L(a) = sup{sBn(h(x), h(y))/sBn(x, y) : x, y ∈ B
n, x 6= y, h ∈ C(a)}.

Theorem 1.5. For n = 2, L(a) ≥ 1 + a.

Theorem 1.5 shows that for K = 1 the constant 2 in Theorem 1.2 (2) cannot be
replaced by a smaller constant (independent of a).

Conjecture 1.6. Our numerical experiments for n = 2 suggest that L(a) = 1+a.
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In Theorem 3.31 we show that L(a) ≤ 1+a
1−a

.
For a domain G ⊂ R

n, x, y ∈ G, we define the j-metric by

jG(x, y) = log

(

1 +
|x− y|

min{dG(x), dG(y)}

)

,

where dG(z) = d(z, ∂G). We will omit the subscript G if it is clear from context. This
metric has found numerous applications in geometric function theory, see [HIMPS,
Vu1]. We also define

pG(x, y) =
|x− y|

√

|x− y|2 + 4 dG(x) dG(y)
.

We next formulate some of our comparison results between metrics.

Theorem 1.7. Let G be a proper subdomain of Rn. Then for all x, y ∈ G we

have

pG(x, y) ≤
1√
2
jG(x, y), and sG(x, y) ≤

1

log 3
jG(x, y),

where the constant 1
log 3

≈ 0.91 is the best possible.

Theorem 1.8. (1) Let t ∈ (0, 1) and m ∈ {j, p, s}. There exists a constant

cm = cm(t) > 1 such that for all x, y ∈ B
n with |x|, |y| < t we have

mBn(x, y) ≤ cmmRn\{e1}(x, y).

Moreover, cm(t) → 1 as t → 0 and cm(t) → ∞ as t → 1, for all m ∈ {j, p, s}.
(2) Let G ⊂ R

n, x ∈ G, t ∈ (0, 1) and m ∈ {j, p, s}. Then there exists a constant

cm = cm(t) such that for all y, z ∈ G \Bn(x, tdG(x)) we have

mG\{x}(y, z) ≤ cmmG(y, z).

Moreover, the constant is best possible as t → 1. This means that cj , cp, cs →
2 as t → 1.

We also study the geometry of balls of the s-metric. We use the notation

BsG(x, r) = {z ∈ G : sG(x, z) < r}
for the balls of the s-metric. First we show, for n = 2, that disks of small enough
radii have smooth boundaries and our main result here is Theorem 1.9.

Let us denote Tπ

6
,2 the equilateral triangle with vertices (0, 0), (

√
3, 1), (

√
3,−1),

and Ra,b the rectangle with vertices (a, b), (a,−b), (−a, b), (−a,−b), where a ≥ b > 0.

Theorem 1.9. (1) Let G = Tπ

6
,2, x = (x1, x2) ∈ G, r > 0. Then the metric

ball BsG(x, r) is smooth if and only if r ≤ r0 or r ≤ r1, where

r0 = min







2|x2|
|x| ,

|x2| −
√
3x1 + 2

√

(x1 −
√
3)2 + (1− |x2|)2







, r1 =

√
3x1 − 2− |x2|

√

(x1 −
√
3)2 + (1− |x2|)2

.

(2) Let G = Ra,b, x = (x1, x2) ∈ G, r > 0. Then the metric ball BsG(x, r) is

smooth if and only if r ≤ r2 or r ≤ r3, where

r2 = min

{

|x2|
b

,
(a− |x1|)− (b− |x2|)

√

(a− |x1|)2 + (b− |x2|)2

}

,
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and

r3 = min

{

|x1|
a

,
(b− |x2|)− (a− |x1|)

√

(a− |x1|)2 + (b− |x2|)2

}

.

2. Algorithms for numerical computation of sG

The hyperbolic metric ρHn and ρBn of the upper half plane H
n = {(x1, . . . , xn) ∈

R
n : xn > 0} and of the unit ball B

n = {z ∈ R
n : |z| < 1} can be defined as

weighted metrics with the weight functions wHn(x) = 1/xn and wBn(x) = 2/(1−|x|2),
respectively. This definition as such is rather abstract and for applications concrete
formulas are needed. By [B, p. 35] we have

(2.1) cosh ρHn(x, y) = 1 +
|x− y|2
2xnyn

for all x, y ∈ H
n, and by [B, p. 40] we have

(2.2) sinh
ρBn(x, y)

2
=

|x− y|
√

1− |x|2
√

1− |y|2
and

(2.3) th
ρBn(x, y)

2
=

|x− y|
√

|x− y|2 + (1− |x|2)(1− |y|2)
=

|x− y|
|x||x∗ − y| , x∗ =

x

|x|2 ,

for all x, y ∈ B
n \ {0}. As shown in [HKLV, Theorem 4.2] we have

(2.4) sHn(x, y) = th
ρHn(x, y)

2
=

|x− y|
|x− ȳ| ,

for all x, y ∈ H
n, where ȳ is the reflection of y with respect to ∂Hn. See also

(2.8) below. Unfortunately, there is no formula similar to (2.4) for the case of sBn.
Therefore inequalities for sBn are needed, see Section 3 below.

Explicit formulas for sG(x, y) are known only for a few particular cases. Our
goal is to list several domains for which we have written algorithms in the MATLAB
language. The definition of sG(x, y) readily shows that the supremum is attained and

that a point z ∈ ∂G with sG(x, y) =
|x−y|

|x−z|+|z−y| is located on the maximal ellipse with

foci x and y and contained in G. The point z is called an extremal point. Finding
this maximal ellipse is however a difficult task even for B

2. In the course of this
research we have extensively made use of experiments using the algorithms in this
section. In particular, Conjecture 1.6 is based on these algorithms.

Algorithm 2.5. sB2. Let x, y ∈ B
2 and z ∈ ∂B2 be such that

(2.6) sB2(x, y) =
|x− y|

|x− z| + |z − y| .

The point z can be found by choosing m equally spaced points on the smaller arc
on ∂B2 between x

|x| and y
|y| and selecting the point z that minimizes the expression

|x− z|+ |z − y| among the chosen points, say for m = 1000.

Algorithm 2.7. sH2 . Suppose that x, y ∈ H
2 are two distinct points. An

extremal point z ∈ ∂H2 = R for sH2(x, y) minimizes the sum

|x− z|+ |z − y| = |x− z| + |z − ȳ|,
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where ȳ is as in formula (2.4). Therefore z is the unique point of intersection of the
segment [x, ȳ] with the real axis. In conclusion,

(2.8) sH2(x, y) =
|x− y|
|x− ȳ| .

x

y

z

0

α α

Figure 1. The maximal ellipse with foci x and y and contained in B2.

Remark 2.9. Sometimes it is convenient to write the formula (2.8) in a different
form which we give now. Suppose that x, y ∈ H

2 with d(x) = d(x, ∂H2) ≥ d(y). Let
w be a point on the segment [x, x] ∩H

2 with d(w) = d(y) and α = ∡(w − y, x− y).
Then clearly |w− y| = |w− y| = |x− y| cosα and sinα = (d(x)− d(y))/|x− y|. This
yields

|y − w| =
√

|x− y|2 − (d(x)− d(y))2

and also, by the Pythagorean Theorem,

|x− y|2 = |x− w|2 + |w − y|2 = |x− y|2 + 4d(x)d(y).

In conclusion, the formula (2.8) can also be written as

sH2(x, y) =
|x− y|

√

|x− y|2 + 4d(x)d(y)
.

Therefore we see by (2.4) that

pH2(x, y) = sH2(x, y) = th
ρH2(x, y)

2
.

Algorithm 2.10. sR, R is a rectangle. Given distinct x, y in a rectangle R,
the extremal boundary point z as in (1.1) must be located on one of the four sides
Tj, j = 1, . . . , 4, of R. If yj is the reflection point of y with respect to side Tj , j =
1, . . . , 4, then zj = [x, yj ] ∩ ∂R and

(2.11) sR(x, y) =
|x− y|

min{|x− yj| : j = 1, 2, 3, 4} .

Algorithm 2.12. sA, A is a sector. Let α ∈ (0, π) and A = {z ∈ C : 0 < arg z <
α}. Given x, y ∈ A, the extremal point z ∈ ∂A for sA(x, y) has only two options: it
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is located either on the real axis {x ∈ R : x ≥ 0} or on the ray {t exp iα : t > 0}. In
the first case by (2.8)

sA(x, y) =
|x− y|
|x− ȳ| ,

whereas in the second case again by (2.8)

sA(x, y) =
|x− y|
|x− y2|

,

where y2 = |y| exp i(2α− arg y). In conclusion, in both cases

(2.13) sA(x, y) =
|x− y|

min{|x− ȳ|, |x− y2|}
.

This idea can be extended in a straightforward way to triangles and other convex
polygons.

Algorithm 2.14. sP , P is a polygon. Suppose that v1, v2, . . . , vm are points in
the plane such that the polygon with these points as vertices is a bounded Jordan
domain. The method is based on exhaustive tabulation of function values and choos-
ing the optimal point on ∂P . We parameterize ∂P using the polygonal curve length
as a parameter, measured from v1 via the points vj. Then this real parameter varies
on [0, L] where

L =
m
∑

j=1

|vj − vj+1|,

and we agree that vm+1 = v1. The parametrization z : [0, L] −→ ∂P enables us to
find all the competing points for the definition of sP (x, y). Then finding sP (x, y)
becomes a 1-dimensional minimization problem, which can be solved by exhaustive
tabulation.

3. Comparison results for sG

The goal of this section is to find inequalities between distances of points in
terms of simple expressions. Problems of two kinds are considered. First, if mG is
a metric defined in a domain G ⊂ R

n, x, y ∈ G, then we compare mG(x, y) and
mG1

(x, y) where G1 is a simple domain. Second, if we have two metrics eG and dG on
a domain G ⊂ R

n, then we estimate eG(x, y) in terms of dG(x, y). In several cases,
this comparison is carried out not in the whole domain but in Bn(x0, λd(x0, ∂G))
where x0 ∈ G is a fixed point and λ ∈ (0, 1) is a constant. In some results we
consider the case of Bn. Some examples of the metrics we use are the hyperbolic and
distance ratio metrics and the s and v metrics.

From the definition (1.1) of sG it is clear that sG has three important properties:

(a) monotonicity with respect to domain, i.e., if D1, D2 ⊂ R
n are domains with

D1 ⊂ D2 and x, y ∈ D1, then sD1
(x, y) ≥ sD2

(x, y).
(b) Sensitivity to boundary variation, i.e., if D ⊂ R

n is a domain and x0 ∈ D,
then the numerical values of sD(x, y) and sD\{x0}(x, y) are not comparable if
x, y are very close to x0.

(c) For fixed x, y ∈ G, one extremal boundary point z ∈ ∂G determines the

numerical value of sG(x, y).
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Our goal is to find various inequalities for sG in terms of expressions that are
explicit. In particular, we hope to get rid of the supremum in (1.1), and hope to use
expressions that have the above properties (a)–(c). Most of these expressions define
metrics and we will show that these metrics are locally quantitatively equivalent.

For a domain G ⊂ R
n, x, y ∈ G, we define the visual angle metric [KLVW] by

vG(x, y) = sup{∡(x, z, y) : z ∈ ∂G}.
The metrics jG, vG and sG have the aforementioned three properties (a)–(c) and
pG ≤ 1, vG ≤ π while jG is unbounded. All of the expressions sG, vG, jG, pG are
invariant under similarity transformations.

Remark 3.1. Because the inequality pB2(t, 0)+pB2(0,−t) > pB2(t,−t), fails for
small t, we see that pG is not a metric.

Lemma 3.2. [Vu1, Lemma 2.41(2)], [AVV, Lemma 7.56] Let G ∈ {Bn,Hn},
and let ρG stand for the respective hyperbolic metric. Then for all x, y ∈ G

jG(x, y) ≤ ρG(x, y) ≤ 2jG(x, y).

The following theorem solves a question posed in [HKLV, Open problem 3.2].

Theorem 3.3. Let G be a proper subdomain of Rn. Then for all x, y ∈ G we

have

sG(x, y) ≤
1

log 3
jG(x, y)

and the constant 1
log 3

≈ 0.91 is the best possible.

Proof. Let us fix the points x and y. By rescaling the domain we may assume
that |x − y| = 1. We can also assume that d(x) ≤ d(y), because otherwise we can
swap the points.

We denote t = d(x) > 0. Now

jG(x, y) = log

(

1 +
1

t

)

and we divide the proof into two cases: t ≤ 1
2

and t > 1
2
.

We assume first that t ≤ 1
2
. Now jG(x, y) ≥ log 3 and since sG(x, y) ≤ 1 we have

sG(x, y) ≤ 1 ≤ jG(x, y)

log 3
.

We assume then that t > 1
2
. We want to maximize sG(x, y) in terms of t. Now

sG(x, y) ≤ sBn(x,t)∪Bn(y,t)(x, y) =
|x− y|

|x− z|+ |y − z| =
1

2t
,

z ∈ ∂(Bn(x, t) ∪B
n(y, t)), and we want to find a lower bound for the function

f(t) =
jG(x, y)

sG(x, t)
≥ 2t log

(

1 +
1

t

)

, t >
1

2
.

We can show that g(t) = log(1+t)
t

is decreasing for t, because

g′(t) =
t

1+t
− log(1 + t)

t2
≤

t
1+t

− 2t
2+t

t2
≤ 0,
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so it is increasing for 1
t
, thus f(t) is increasing. We collect f(t) > f(1

2
) = log 3 and

the claimed inequality is proved.
The constant 1

log 3
can be easily verified to be the best possible by investigating

the domain G = R
n \ {0}. For any x ∈ G selecting y = −x gives sG(x, y) = 1 and

jG(x, y) = log 3. �

Lemma 3.4. (1) If x, y ∈ G ⊂ R
n and G is convex, then

sG(x, y) ≤ pG(x, y).

Here equality holds for all x, y ∈ G if G = H
n.

(2) For x, y ∈ G ⊂ R
n,

pG(x, y) ≤
√
2sG(x, y).

Proof. (1) Suppose that z ∈ ∂G is an extremal boundary point for the s-metric
for which the equality holds in (1.1). We draw a line L through z, tangent to ∂G.
Let y be the reflection of y in the line L. By geometry, see Remark 2.9,

|x− z| + |z − y| = |x− y| =
√

|x− y|2 + 4d1(x)d1(y),

d1(x) = d(x, L), d1(y) = d(y, L). Because G is convex it is clear that L is outside G,
but d(x), d(y) are the shortest distances from x, y to ∂G, so obviously d(x) ≤ d1(x),
d(y) ≤ d1(y), thus

sG(x, y) =
|x− y|

|x− z| + |z − y| =
|x− y|

√

|x− y|2 + 4d1(x)d1(y)

≤ |x− y|
√

|x− y|2 + 4d(x)d(y)
= pG(x, y).

(2) Fix x, y ∈ G, z ∈ ∂G, such that d(x) = |x− z|. By symmetry we may assume
d(x) ≤ d(y) and then

(3.5) sG(x, y) ≥
|x− y|

|x− y|+ 2d(x)
.

Now by [AVV, 1.58 (13)] and (3.5)

pG(x, y) ≤
|x− y|

√

|x− y|2 + 4d(x)2
≤ |x− y|

21/2−1(|x− y|+ 2d(x))

≤
√
2|x− y|

|x− y|+ 2d(x)
≤

√
2sG(x, y). �

It is easy to see that convexity cannot be omitted from Lemma 3.4 (1). For
instance if G = R

2 \ {0} and x = (0, 1) = −y, then the inequality in Lemma 3.4 (1)
fails.

Lemma 3.6. For x, y ∈ B
n we have

sBn(x, y) ≥ sBn(xs, ys) =
|x− y|

√

|x− y|2 + 4(1− |m|)2
,
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where m = x0+y0
2

and x0, y0 ∈ ∂Bn are the points of intersection of the line through

x and y with ∂Bn, |x− y| = |xs − ys|, |xs| = |ys| and further

|m| =
√

|x|2|y|2 − (x · y)2
|x− y| ,

xs = x0 +
y0 − x0

|y0 − x0|

(

√

1− |m|2 − |x− y|
2

)

,

ys = y0 +
x0 − y0
|x0 − y0|

(

√

1− |m|2 − |x− y|
2

)

,

and hence

sBn(x, y) ≥ |x− y|2
|x− y|4 + 4(|x− y| −

√

|x|2|y|2 − (x · y)2)2
.

Proof. If we move x, y ∈ B
n to xs, ys ∈ B

n which are symmetric with respect to
midpoint m of the segment [x0, y0], then we see easily that the extremal ellipse with
foci xs, ys is larger than the extremal ellipse with foci x, y and hence by (1.1),

sBn(x, y) ≥ sBn(xs, ys) =
|x− y|

√

|x− y|2 + 4(1− |m|)2
.

Here |m| is the shortest distance from the origin to the line xy, which by the Law of

Cosines, |m| =
√

|x|2|y|2−(x·y)2
|x−y| , and therefore

sBn(xs, ys) =
|x− y|2

|x− y|4 + 4(|x− y| −
√

|x|2|y|2 − (x · y)2)2
,

and the proof is complete. �

Lemma 3.7. For x, y ∈ B
n with |x| > |y|, yr = x− x

|x| |x−y| = − x
|x|(|x|−|x−y|),

sBn(x, y) ≥ sBn(x, yr) =
|x− y|

|x− y|+ 2(1− t)
≡ w(x, y), t = max{|x|, |y|}.

Proof. Note that yr ∈ [x,−x] and |x− y| = |x− yr|. By geometric properties of
the ellipse it is clear that sBn(x, y) ≥ sBn(x, yr) and thus

sBn(x, y) = sup
z∈∂G

|x− y|
|x− z|+ |z − y| ≥ sBn(x, yr)

=
|x− y|

|x− y|+ 2(1− t)
, t = max{|x|, |y|}. �

Lemma 3.8. For all x, y ∈ B
n we have

(3.9) pBn(x, y) ≤ th
ρBn(x, y)

2
≤ 2pBn(x, y).

Proof. The second inequality follows from Lemma 3.4 and Theorem 3.23. For
the first inequality clearly

(1− |x|2)(1− |y|2) = (1− |x|)(1− |y|)(1 + |x|)(1 + |y|) ≤ 4(1− |x|)(1− |y|),
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so

th
ρBn(x, y)

2
=

|x− y|
√

|x− y|2 + (1− |x|2)(1− |y|2)

≥ |x− y|
√

|x− y|2 + 4d(x)d(y)
= pBn(x, y). �

Theorem 3.10. If z ∈ G, 0 < λ < 1, x, y ∈ B
n(z, λd(z)), then

sBn(z,d(z))(x, y) ≤ CjBn(z,d(z))(x, y), C =
2(1− λ)

1 + 2λ
,(3.11)

jBn(z,d(z))(x, y) ≤
2(1 + λ)

1− λ
sBn(z,d(z))(x, y).(3.12)

Proof. From x, y ∈ B
n(z, λd(z)) it follows that

(3.13)
|x− y|
d(z)

≤ 2λ.

Because for all x, y ∈ B
n(z, λd(z)), w ∈ ∂G, the inequality

|x− w|+ |y − w| ≥ 2(1− λ)d(z)

holds, we see that

sBn(z,d(z))(x, y) ≤
|x− y|

2(1− λ)d(z)
,

and by log(1 + t) ≥ 2t
2+t

, for t ≥ 0, and (3.13) we see that

jBn(z,d(z))(x, y) ≥ log

(

1 +
|x− y|

(1 + λ)(d(z))

)

≥
2|x−y|

(1+λ)(d(z))

2 + |x−y|
(1+λ)(d(z))

≥ |x− y|
(1 + 2λ)(d(z))

.

Hence it suffices to choose C = 2(1−λ)
1+2λ

.
For the second part observing that for w ∈ B

n(z, λd(z)), d(w) ≥ (1 − λ)d(z) we
have

jBn(z,d(z))(x, y) ≤ log

(

1 +
|x− y|

(1− λ)(d(z))

)

≤ |x− y|
(1− λ)(d(z))

.

On the other hand, setting w = z + d(z) y−z
|y−z| we see that

|x− w|+ |y − w| ≤ |x− y|+ |y − w|+ |y − w|
≤ |x− y|+ 2d(z) ≤ 2(1 + λ)d(z)

and hence

sBn(z,d(z))(x, y) ≥
|x− y|

2(1 + λ)d(z)
.

Now it suffices to find C such that

|x− y|
2(1 + λ)d(z)

≥ C
|x− y|

(1− λ)(d(z))
,

so we may choose C = 2(1+λ)
1−λ

, and the proof is complete. �

Theorem 3.14. If z ∈ G, 0 < λ < 1, x, y ∈ B
n(z, λd(z)), then

jG(x, y) ≤ CpG(x, y), C =
2

1− λ
.
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Proof. By symmetry we may assume that d(x) ≤ d(y). Then by log(1 + t) ≤
t, t > 0 we have

jG(x, y) ≤
|x− y|

min{d(x), d(y)} =
|x− y|
d(x)

.

On the other hand by the assumption we get d(z) ≤ 1
1−λ

min{d(x), d(y)}, and

1− λ

1 + λ
≤ d(x)

d(y)
≤ 1 + λ

1− λ
,

pG(x, y) =
|x− y|

√

|x− y|2 + 4d(x)d(y)
≥ |x− y|
√

(

2λd(x)
1−λ

)2

+ 4d(x)1+λ
1−λ

d(x)

≥ 1− λ

2
· |x− y|

d(x)
.

We see that

jG(x, y) ≤
|x− y|
d(x)

≤ C
1− λ

2
· |x− y|

2
≤ CpG(x, y)

holds if C ≥ 2
1−λ

, and the proof is complete. �

Theorem 3.15. If x, y ∈ G ⊂ R
n, then

pG(x, y) ≤
1√
2
jG(x, y).

Proof. Fix x, y ∈ G. By relabeling the points we may assume that d(x) ≤ d(y).
Then

pG(x, y) ≤
|x− y|

√

|x− y|2 + 4d(x)2
, and jG(x, y) = log

(

1 +
|x− y|
d(x)

)

.

Write t = |x− y|/d(x) and observe that

jG(x, y) = log(1 + t) ≥ 2t

2 + t
, pG(x, y) ≤

t√
t2 + 4

It is enough to find a constant C such that

2t

2 + t
≥ C

t√
t2 + 4

for all t ≥ 0. Easy calculation shows that we can choose C =
√
2. �

Corollary 3.16. If x, y ∈ G ⊂ R
n, and G is convex, then

sG(x, y) ≤
1√
2
jG(x, y).

Proof. It follows from Lemma 3.4 (1) and Theorem 3.15. �

Proof of Theorem 1.7. The result follows from Theorems 3.3 and 3.15. �

Theorem 3.17. (1) For x, y ∈ B
2 we have

vB2(x, y) ≤ 2jB2(x, y).

(2) If λ ∈ (0, 1) and x, y ∈ B
2(λ), then

3(1− λ2)

2(3 + λ2)
jB2(x, y) ≤ vB2(x, y).
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Proof. (1) By [KLVW, 3.12] we have vB2(x, y) ≤ ρB2(x, y). Now the proof follows
by Lemma 3.2.

(2) By Lemma 3.2

sinh
ρB2(x, y)

2
≤ sinh jB2(x, y) ≤ sinh

(

log

(

1 +
2λ

1− λ

))

=
2λ

1− λ2
,

and by [KLVW, 3.15] ρ∗
B2 ≤ vB2 ≤ 2ρ∗

B2, where

ρ∗
B2(x, y) = arctan

(

sinh
ρB2(x, y)

2

)

.

Next by [DC, 1.8]

3t

1 + 2
√
1 + t2

< arctan t <
2t

1 +
√
1 + t2

,

for t > 0. We further obtain

ρ∗
B2(x, y) = arctan

(

sinh
ρB2(x, y)

2

)

≥ 3 sinh
ρ
B2 (x,y)

2

1 + 2

√

1 + sinh2 ρ
B2 (x,y)

2

≥ 3 sinh
j
B2 (x,y)

2

1 + 2
√

1 +
(

2λ
1−λ2

)2
=

3(1− λ2)

3 + λ2
sinh

jB2(x, y)

2
≥ 3(1− λ2)

2(3 + λ2)
jB2(x, y).

Thus
3(1− λ2)

2(3 + λ2)
jB2(x, y) ≤ vB2(x, y). �

Theorem 3.18. If z ∈ G, λ ∈ (0, 1), then for x, y ∈ B
n(z, λd(z)),

(3.19) sG(x, y) ≤
(

1 + λ

1− λ

)

pG(x, y).

Proof. By monotonicity of s-metric and Lemma 3.4 (1)

sG(x, y) ≤ sBn(z,d(z))(x, y) ≤ pBn(z,d(z))(x, y) ≤
|x− y|

√

|x− y|2 + 4(1− λ)2d(z)2
.

If x, y ∈ B
n(z, λd(z)), we easily see that

(3.20) (1− λ)d(z) ≤ dG(x) ≤ (1 + λ)d(z).

Now if we choose c =
(

1+λ
1−λ

)

, then

|x− y|
√

|x− y|2 + 4(1− λ)2d(z)2
≤ c|x− y|
√

|x− y|2 + 4(1 + λ)2d(z)2
≤ cpG(x, y). �

Theorem 3.21. Let 0 < λ < 1, x, y ∈ B
2(λ). Then

(1) sB2(x, y) ≤ 4(3 + λ2)

3(1 + 2λ)(1 + λ)
vB2(x, y),

(2) vB2(x, y) ≤ 4(1 + λ)

1− λ
sB2(x, y).
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Proof. (1) By Theorem 3.17 and (3.11),

sB2(x, y) ≤ 4(3 + λ2)

3(1 + 2λ)(1 + λ)
vB2(x, y).

(2) By Theorem 3.17 and (3.12),

vB2(x, y) ≤ 2jB2(x, y) ≤ 4(1 + λ)

1− λ
sB2(x, y). �

Theorem 3.22. (1) If λ ∈ (0, 1) and x, y ∈ B
2(λ), then

vB2(x, y) ≤ 4(1 + λ)

(1− λ)
pB2(x, y).

(2) If x, y ∈ B
2 with vB2(x, y) ∈ (0, π/2), then

pB2(x, y) ≤ vB2(x, y),

Proof. (1) By Theorems 3.21 and 3.4,

vB2(x, y) ≤ 4(1 + λ)

(1− λ)
sB2(x, y) ≤ 4(1 + λ)

(1− λ)
pB2(x, y).

(2) By Lemma 3.8 and [KLVW, 3.15] we have

ρ∗
B2(x, y) = arctan

(

sinh
ρB2(x, y)

2

)

≤ vB2(x, y).

Then
ρB2(x, y) ≤ 2arsinh(tan(vB2(x, y))).

Then if vB2(x, y) ∈ (0, π/2),

pB2(x, y) ≤ th(arsinh(tan(vB2(x, y))))

=
tan(vB2(x, y))

√

1 + tan2(vB2(x, y))
= sin(vB2(x, y)) ≤ vB2(x, y). �

Theorem 3.23. For x, y ∈ B
n we have

(3.24) th

(

ρBn(x, y)

2

)

≤ 2sBn(x, y).

Proof. Suppose first that one of the points x and y is 0. Without loss of generality,
we may suppose that y = 0. From the definition of sBn it follows that for z = x

|x|

sBn(x, 0) ≥ |x− 0|
|x− z|+ |z − 0| =

|x|
2− |x| .

Because

th

(

ρBn(x, y)

2

)

= |x|,

we easily see that the claim holds if one of the points is 0. The case when both points
are 0 is trivial.

By (2.3) and (1.1) it is enough to show that

I ≤ 2|x||x∗ − y|, I = inf
z∈∂Bn

|x− z|+ |z − y|.

Assume |y| ≤ |x|. Denote |y| = t|x| for t ∈ [0, 1], γ ∈ [0, π], is angle between [0, x]
and [0, y].
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Case A. γ ≥ π
2
. Now

(3.25) 2|x||x∗ − y| ≥ 2|x| 1|x| = 2,

Moreover, choose z1 =
x
|x| , then

I ≤ |x− z1|+ |z1 − y| ≤ 1− |x|+
√

t2|x|2 + 1 + 2t|x|
= 2− |x|+ t|x| = 2− (|x|(1− t)) ≤ 2.

(3.26)

So by (3.25) and (3.26),
I ≤ 2|x||x∗ − y|.

Case B. γ ≤ π
2
.

(3.27) 2|x||x∗ − y| = 2||y|x− z2| = 2||x|y − z1|,
where |z2| = y

|y| and |z1| = x
|x| . Next we choose z in the infimum to be the middle

point of z1 and z2 on the unit sphere. This means that ∡(x, 0, z) = ∡(z, 0, y) = γ/2
and |z| = 1. We know that

I ≤ |x− z| + |z − y|.

z
1
=x/|x|

z
2
=y/|y|=eiγ

z=eiγ/2

tx x

y
γ

Figure 2. Proof of Theorem 3.23. The case r = |z − x| > sin(γ).

We next show that

(3.28) p/r ≥ 1, p = |z2 − |y|x|, r = |z − x|.
By elementary geometry, applying the properties of the right triangle ∆(0, z2, (cos γ)z1)
and the Law of Cosines, we see that

p ≥ |z2 − (cos γ)z1| = sin γ ≥
√

1 + cos2(γ)− 2 cos(γ) cos(γ/2)

= |z − (cos γ)z1|.
(3.29)

The second inequality follows because for γ ∈ (0, π/2),

sin2(γ) > 1 + cos2(γ)− 2 cos(γ) cos(γ/2)

by basic trigonometry.
If r ≤ sin γ, then by (3.29) p/r ≥ 1 clearly holds. In the remaining case r =

|z − x| > sin γ. Because x ∈ [0, z1], this means by (3.29) that x ∈ [0, (cos γ)z1] and
hence the angle between the segments [x, z2] and [x, 0] is more than π/2 and hence

p = |z2 − |y|x| > |z2 − x|.
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Finally, we see that p/r ≥ |z2 − x|/|z − x| > 1, because x and z both are
in the same half plane determined by the bisecting normal of the segment [z2, z].
Symmetrically we obtain that

|z − y| ≤ ||x|y − z1|,
and hence

|x− z|+ |z − y| ≤ ||y|x− z2|+ ||x|y − z1| = 2|x||x∗ − y|
and the proof is complete. �

Corollary 3.30. (1) If f : Hn → H
n is a Möbius transformation onto H

n,

then for all x, y ∈ H
n,

sHn(f(x), f(y)) = sHn(x, y).

(2) If f : Hn → B
n is a Möbius transformation onto B

n, then for all x, y ∈ H
n,

sBn(f(x), f(y)) ≤ sHn(x, y).

(3) If f : Bn → H
n is a Möbius transformation onto H

n, then for all x, y ∈ B
n,

sHn(f(x), f(y)) ≤ 2sBn(x, y).

(4) If f : Bn → B
n is a Möbius transformation onto B

n, then for all x, y ∈ B
n,

sBn(f(x), f(y)) ≤ 2sBn(x, y).

Proof. It is a basic fact that a Möbius transformation f : G → D = fG with
G,D ∈ {Bn,Hn} defines an isometry f : (G, ρG) → (D, ρD) between hyperbolic
spaces. This fact combined with (2.4), Lemma 3.8 and Theorem 3.23 yields the
proof. �

We were led to Conjecture 1.6 by MATLAB experiments. We now show that if
the conjecture holds true, then the constant 1 + a cannot be improved when n = 2.

Proof of Theorem 1.5. Let h(z) = z+a
1+az

. Then h(0) = a, a > 0. Choose b such

that h(b) = 1+va
1+v

, v > 0. Easy calculation yields b = 1
1+v(1+a)

. Since sB2(r, t) = t−r
2−t−r

for 0 < r < t we see that

sB2(h(0), h(b))

sB2(0, b)
=

1+va
1+v

− a

2− a− 1+va
1+v

·
2− 1

1+v(1+a)

1
1+v(1+a)

=
1 + 2v(1 + a)

1 + 2v
→ 1 + a,

when v → ∞. �

Theorem 3.31. If f : Bn → B
n = f(Bn) is a Möbius transformation with

f(a) = 0, for some a ∈ B
n, then for all distinct points x, y ∈ B

n we have

1− |a|
1 + |a| sBn(x, y) ≤ sBn(f(x), f(y)) ≤ 1 + |a|

1− |a| sBn(x, y).

Proof. If f(0) = 0 then f is a rotation and there is nothing to prove. Otherwise
f(a) = 0 some a 6= 0. Let f = Ta be the canonical representation of a Möbius

transformation, see [B]. Then with a∗ = a/|a|2, r =
√

|a|−2 − 1 we have

|Ta(x)− Ta(y)| =
r2|x− y|

|x− a∗||y − a∗| .



698 Jiaolong Chen, Parisa Hariri, Riku Klén and Matti Vuorinen

If w ∈ ∂Bn, then this formula yields

Q(x, y, w) =
|Tax− Tay|

|Tax− Taw|+ |Taw − Tay|
:

|x− y|
|x− w|+ |w − y| =

|x− w|+ |w − y|
β|x− w|+ γ|w − y|

with β = |y − a∗|/|w − a∗|, γ = |x− a∗|/|w − a∗|. Clearly,

|w − a∗| ≤ 1 + |a|−1, |x− a∗|, |y − a∗| ≥ |a|−1 − 1

and hence

Q(x, y, w) ≤ |x− w|+ |w − y|
|x− w|+ |w − y|

1 + |a|
1− |a| =

1 + |a|
1− |a| .

Thus we have for all x, y ∈ B
n, w ∈ ∂Bn

|Tax− Tay|
|Tax− Taw|+ |Taw − Tay|

≤ 1 + |a|
1− |a|

|x− y|
|x− w|+ |w − y| .

Taking supremum over all w ∈ ∂Bn yields the second inequality. Because the inverse
of a Möbius transformation also is a Möbius transformation, the first inequality
follows from the second one. �

We compare next j, p, s and v in domains Rn\{e1} and B
n. By the monotonicity

with respect to domains it is clear that for all x, y ∈ B
n and m ∈ {j, p, s, v} we

have mRn\{e1}(x, y) ≤ mBn(x, y). Next we consider the comparison in the opposite
direction. Let us start by introducing the following lemma.

Lemma 3.32. For 0 < b ≤ a the function

f(x) =
log(1 + ax)

log(1 + bx)
, x ∈ (0,∞),

is decreasing.

Proof. Since

f ′(x) =
a

1+ax
log(1 + bx)− b

1+bx
log(1 + ax)

log2(1 + bx)
,

the inequality f ′(x) ≤ 0 is equivalent to

(3.33)
1 + bx

b
log(1 + bx) ≤ 1 + ax

a
log(1 + ax).

Now we show that the function

g(c) =
1 + cx

c
log(1 + cx)

is increasing on (0,∞), which implies (3.33) and the assertion. This is clear because
0 < b ≤ a and

g′(c) =
cx− log(1 + cx)

c2
> 0

as log(1 + y) < y for y > 0. �

Theorem 3.34. Let t ∈ (0, 1) and m ∈ {j, p, s}. There exists a constant cm =
cm(t) > 1 such that for all x, y ∈ B

n with |x|, |y| < t we have

mBn(x, y) ≤ cmmRn\{e1}(x, y).

Moreover, cm(t) → 1 as t → 0 and cm(t) → ∞ as t → 1, for all m ∈ {j, p, s}.
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Proof. We denote m1 = mBn , m2 = mRn\{e1} and find upper bound for m1

m2

, which
gives us cm.

Let us start with m = j. We denote z = |x − y| ∈ [0, 2t) and obtain by
Lemma 3.32

j1
j2

=
log
(

1 + z
min{1−|x|,1−|y|}

)

log
(

1 + z
min{|x−e1|,|y−e1|}

) ≤
log
(

1 + z
1−t

)

log
(

1 + z
1+t

)

≤ lim
z→0

log
(

1 + z
1−t

)

log
(

1 + z
1+t

) = lim
z→0

1 + t+ z

1− t + z
=

1 + t

1− t
= cj,

where the second equality follows from l’Hôspital’s rule. Obviously cj → 1 as t → 0
and cj → ∞ as t → 1

Let us now consider m = p. Now

p21
p22

=
|x− y|2 + 4|x− e1||y − e1|
|x− y|2 + 4(1− |x|)(1− |y|) ≤

4t2 + 4(1 + t)2

0 + 4(1− t)2
=

2t2 + 2t+ 1

t2 − 2t+ 1

and we can choose

cp =

√

2t2 + 2t+ 1

t2 − 2t+ 1
.

Clearly cp → 1 as t → 0 and cp → ∞ as t → 1.
Next we set m = s and obtain by geometry

s1
s2

=
|x− e1|+ |y − e1|

infz∈∂Bn |x− z| + |z − y| ≤
2(1 + t)

2(1− t)
=

1 + t

1− t
= cs.

Again it is clear that cs → 1 as t → 0 and cs → ∞ as t → 1. �

Note that for the visual angle metric v the result of Theorem 3.34 does not hold.
We would need an upper bound for

vBn(x, y)

vRn\{e1}(x, y)
=

supz∈∂Bn ∡(x, z, y)

∡(x, e1, y)
,

but choosing x and y to be distinct points on the x1-axis

sup
z∈∂Bn

∡(x, z, y) > 0

and ∡(x, e1, y) = 0.
Next result demonstrates the sensitivity to boundary variation. We consider

domains G ⊂ R
n and G′ = G \ {x}, where x ∈ G. Again by the monotonicity we

have mG(y, z) ≤ mG′(y, z) for all y, z ∈ G′ and m ∈ {j, p, s, v}.
Theorem 3.35. Let G ⊂ R

n, x ∈ G, t ∈ (0, 1) and m ∈ {j, p, s}. Then there

exists a constant cm = cm(t) such that for all y, z ∈ G \Bn(x, tdG(x)) we have

mG\{x}(y, z) ≤ cmmG(y, z).

Moreover, the constant is best possible as t → 1. This means that cj, cp, cs → 2 as

t → 1.

Proof. We denote G′ = G \ {x} and will find an upper bound for
m

G′ (y,z)

mG(y,z)
.

We consider first the case m = j. If dG(y) = dG′(y) and dG(z) = dG′(z), then
there is nothing to prove as jG′(y, z) = jG(y, z) and we can choose cj = 1. We consider
next two cases: dG(y) 6= dG′(y), dG(z) = dG′(z) and dG(y) 6= dG′(y), dG(z) 6= dG′(z).
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Let us assume dG(y) 6= dG′(y) and dG(z) = dG′(z) (or by symmetry we could as
well assume dG(y) = dG′(y) and dG(z) 6= dG′(z)). Now

jG′(y, z)

jG(y, z)
=

log
(

1 + |y−z|
min{d

G′ (y),dG′ (z)}

)

log
(

1 + |y−z|
min{dG(y),dG(z)}

) =
log
(

1 + |y−z|
min{|y−x|,dG(z)}

)

log
(

1 + |y−z|
min{dG(y),dG(z)}

) .

Let us assume that dG(z) ≤ dG(y). If dG(z) ≤ |y − x| then jG′(y, z) = jG(y, z) and
there is nothing to prove. If dG(z) ≥ |y − x| then

jG′(y, z)

jG(y, z)
=

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
dG(z)

) ≤
log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
dG(z)

)

≤
log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
dG(y)

) ≤
log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
|y−x|+dG(x)

) .

If |x− y| ≤ dG(x) then we have by Lemma 3.32

jG′(y, z)

jG(y, z)
≤

log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
2dG(x)

) ≤ lim
|y−z|/dG(x)→0

log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
2dG(x)

)

≤ lim
|y−z|/dG(x)→0

2 + |y−z|
dG(x)

t+ |y−z|
dG(x)

=
2

t
.

If |x− y| ≥ dG(x) again by Lemma 3.32

jG′(y, z)

jG(y, z)
≤

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
2|y−x|

) ≤ lim
|y−z|/|y−x|→0

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
2|y−x|

)

≤ lim
|y−z|/|y−x|→0

2 + |y−z|
|y−x|

1 + |y−z|
|y−x|

= 2.

Let us then assume dG(y) ≤ dG(z). Now dG(y) 6= dG′(y) implies |y − x| < dG(y) and
thus

(3.36)
jG′(y, z)

jG(y, z)
=

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
dG(y)

) ≤
log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
|y−x|+dG(x)

) .

If |x− y| ≤ dG(x) we have by (3.36) and Lemma 3.32

jG′(y, z)

jG(y, z)
≤

log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
2dG(x)

) ≤ lim
|y−z|/dG(x)→0

log
(

1 + |y−z|
tdG(x)

)

log
(

1 + |y−z|
2dG(x)

)

≤ lim
|y−z|/dG(x)→0

2 + |y−z|
dG(x)

t+ |y−z|
dG(x)

=
2

t
.
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If dG(x) ≤ |x− y| we have by (3.36) and Lemma 3.32

jG′(y, z)

jG(y, z)
≤

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
2|y−x|

) ≤ lim
|y−z|/|y−x|→0

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
2|y−x|

)

≤ lim
|y−z|/|y−x|→0

2 + |y−z|
|y−x|

1 + |y−z|
|y−x|

= 2.

Let us then assume dG(y) 6= dG′(y) and dG(z) 6= dG′(z). Now we may assume by
symmetry that |y − x| ≤ |z − x| and thus

jG′(y, z)

jG(y, z)
=

log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
min{dG(y),dG(z)}

) ≤
log
(

1 + |y−z|
|y−x|

)

log
(

1 + |y−z|
|y−x|+dG(x)

)

and this is exactly the same as (3.36) so we know that

jG′(y, z)

jG(y, z)
≤ 2

t
.

Putting all this together gives us cj =
2
t
.

Let now m = p. If dG(y) = dG′(y) and dG(z) = dG′(z), then there is nothing to
prove as pG′(y, z) = pG(y, z) and we can choose cp = 1. We consider next two cases:
dG(y) 6= dG′(y), dG(z) = dG′(z) and dG(y) 6= dG′(y), dG(z) 6= dG′(z).

Let us assume dG(y) 6= dG′(y) and dG(z) = dG′(z) (or by symmetry we could as
well assume dG(y) = dG′(y) and dG(z) 6= dG′(z)). Now

p2G′(y, z)

p2G(y, z)
=

|y − z|2 + 4dG(y)dG(z)

|y − z|2 + 4dG′(y)dG′(z)
=

|y − z|2 + 4dG(y)dG(z)

|y − z|2 + 4|y − x|dG(z)

≤ |y − z|2 + 4(|x− y|+ dG(x))dG(z)

|y − z|2 + 4|y − x|dG(z)

= 1 +
4dG(x)dG(z)

|y − z|2 + 4|y − x|dG(z)
≤ 1 +

4dG(x)dG(z)

0 + 4tdG(x)dG(z)
= 1 +

1

t
.

Let us then assume dG(y) 6= dG′(y) and dG(z) 6= dG′(z). Now

p2G′(y, z)

p2G(y, z)
=

|y − z|2 + 4dG(y)dG(z)

|y − z|2 + 4dG′(y)dG′(z)
=

|y − z|2 + 4dG(y)dG(z)

|y − z|2 + 4|y − x||z − x|

≤ |y − z|2 + 4(|x− y|+ dG(x))(|x− z|+ dG(x))

|y − z|2 + 4|y − x||z − x|

= 1 +
4(|x− y|dG(x) + |x− z|dG(x) + dG(x)

2)

|y − z|2 + 4|y − x||z − x|

≤ 1 +
4(|x− y|dG(x) + |x− z|dG(x) + dG(x)

2)

4|y − x||z − x|

= 1 +
|x− y|dG(x)
|y − x||z − x| +

|x− z|dG(x)
|y − x||z − x| +

dG(x)
2

|y − x||z − x|

≤ 1 +
|x− y|dG(x)
|y − x|tdG(x)

+
|x− z|dG(x)
tdG(x)|z − x| +

dG(x)
2

tdG(x)tdG(x)
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= 1 +
2

t
+

1

t2
= 1 +

2t+ 1

t2
.

Combining the cases we obtain cp =
t+1
t

.
Let us finally consider the case m = s. Now

sG′(y, z)

sG(y, z)
=

infu∈∂G |y − u|+ |u− z|
infu∈∂G′ |y − u|+ |u− z|

and if the infimum in the denominator is obtained at a point u ∈ ∂G, then there is
nothing to prove as sG′(y, z) = sG(y, z) and we can choose cs = 1. If this is not the
case, then

sG′(y, z)

sG(y, z)
=

infu∈∂G |y − u|+ |u− z|
infu∈∂G′ |y − u|+ |u− z| =

infu∈∂G |y − u|+ |u− z|
|y − x| + |x− z|

≤ |x− y|+ dG(x) + |x− z| + dG(x)

|y − x|+ |x− z| = 1 +
2dG(x)

|y − x|+ |x− z|

≤ 1 +
2dG(x)

2tdG(x)
= 1 +

1

t

and we can choose cs = 1 + 1
t
.

We see easily that cj , cp, cs → 2 as t → 1. We show next that the constants cj ,
cp and cs are best possible. In all three cases we consider G = R

n \ {0}.
We start with the case m = j. Let a > 0. For points x = e1, y = (1 + t)e1 and

z = (1 + t + a)e1 we have

jG′(y, z)

jG(y, z)
=

log
(

1 + a
t

)

log
(

1 + a
1+t

)

and
jG′(y, z)

jG(y, z)
→ log(1 + a)

log(1 + a
2
)

as t → 1. The asymptotic behavior is clear since

log(1 + a)

log(1 + a
2
)
→ 2

as a → 0.
We next consider the case m = p. Let a ∈ (0, t]. For points x = e1, y =

(1 +
√
t2 − a2)e1 + ae2 and z = (1 +

√
t2 − a2)e1 − ae2 we have |y − z| = 2a and

p2G′(y, z)

p2G(y, z)
=

|y − z|2 + 4dG(y)dG(z)

|y − z|2 + 4dG′(y)dG′(z)
=

4a2 + 4
(

a2 +
(

1 +
√
t2 − a2

)2
)

4a2 + 4t2
.

Now

p2G′(y, z)

p2G(y, z)
→

4a2 + 4
(

a2 +
(

1 +
√
1− a2

)2
)

4a2 + 4
=

4a2 + 8 + 8
√
1− a2

4a2 + 4

as t → 1 and
4a2 + 8 + 8

√
1− a2

4a2 + 4
→ 4

as a → 0.
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We finally consider the case m = s. Let a ∈ (0, t]. For points x = e1, y =
(1 +

√
t2 − a2)e1 + ae2 and z = (1 +

√
t2 − a2)e1 − ae2 we have |y − z| = 2a and

sG′(y, z)

sG(y, z)
=

2a
2t
2a

2
√

a2+(1+
√
t2−a2)

2

=

√

a2 +
(

1 +
√
t2 − a2

)2

t

→
√

a2 +
(

1 +
√
1− a2

)2

as t → 1 and
√

a2 +
(

1 +
√
1− a2

)2

=

√

2 + 2
√
1− a2 → 2

as a → 0. �

We show next that Theorem 3.35 does not work for the visual angle metric v.
Let G = R

n \ {0} and x = e1. Now for y = e1
2

and z = 2e1 we have vG(y, z) = 0 an
vG\{x}(y, z) = π.

Proof of Theorem 1.8. The assertion follows from Theorems 3.34 and 3.35. �

4. Smoothness of s-disks with small radii

In this section, we will consider the smoothness of triangular ratio metric balls
in equilateral triangles and rectangles in R

2. Let Tπ

6
,2 denote the equilateral triangle

with vertices (0, 0), (
√
3, 1), (

√
3,−1), and Ra,b denote the rectangle with vertices

(a, b), (a,−b), (−a, b), (−a,−b), where a ≥ b > 0.
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Figure 3. Triangular ratio metric balls BsG(x, r) in T π

6
,2.
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Figure 4. Triangular ratio metric balls BsG(x, r) in Ra,b.

Lemma 4.1. Let P ⊂ R
2 be a polygon with inner angles less than or equal to

π and suppose that there are half planes H1, H2, . . . , Hn such that

P =
n
⋂

i=1

Hi.

Then for x ∈ P and r > 0 we have

BsP (x, r) =
n
⋂

i=1

BsHi
(x, r).

Proof. Follows from [HKLV, Lemma 5.4]. �

Proof of Theorem 1.9 Denote by the lines l1 : y2 =
√
3
3
y1, l2 : y2 = −

√
3
3
y1, and

l3 : y1 =
√
3. For any point x ∈ G = Tπ

6
,2 and r ∈ (0, 1), by Lemma 4.1, we have

BsG(x, r) =
⋂3

i=1Bi,

where Bi is the corresponding triangular ratio metric ball BsGi
(x, r), and Gi is the

half plane with boundary line li. By elementary computation, we have that

B1 :







y :

(

y1 −
(2− r2)x1 −

√
3r2x2

2(1− r2)

)2

+

(

y2 −
(2 + r2)x2 −

√
3r2x1

2(1− r2)

)2

<
r2(x1 −

√
3x2)

2

(1− r2)2

}

,

B2 :







y :

(

y1 −
(2− r2)x1 +

√
3r2x2

2(1− r2)

)2

+

(

y2 −
(2 + r2)x2 +

√
3r2x1

2(1− r2)

)2

<
r2(x1 +

√
3x2)

2

(1− r2)2

}

,

and

B3 :







y :

(

y1 −
x1 − 2

√
3r2 + x1r

2

1− r2

)2

+ (y2 − x2)
2 <

4r2(x1 −
√
3)2

(1− r2)2







.
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Hence, BsG(x, r) is smooth if and only if BsG(x, r) is one of the above three balls.
It is known that B

2(a, r1) ⊂ B
2(b, r2) is equivalent to |a − b| ≤ r2 − r1. Then, by

calculations, we have that for any point x = (x1, x2) ∈ G, B1 ⊂ B2 and B1 ⊂ B3 is
equivalent to

0 < r ≤ 2x2
√

x2
1 + x2

2

, and 0 < r ≤ x2 −
√
3x1 + 2

√

(
√
3− x1)2 + (1− x2)2

;

B2 ⊂ B1 and B2 ⊂ B3 is equivalent to

0 < r ≤ − 2x2
√

x2
1 + x2

2

, and 0 < r ≤ −x2 −
√
3x1 + 2

√

(
√
3− x1)2 + (1 + x2)2

;

B3 ⊂ B1 and B3 ⊂ B2 is equivalent to

0 < r ≤
√
3x1 − x2 − 2

√

(
√
3− x1)2 + (1− x2)2

, and 0 < r ≤
√
3x1 + x2 − 2

√

(
√
3− x1)2 + (1 + x2)2

.

That is for any point x ∈ Tπ

6
,2, 0 < r < 1, BsG(x, r) is smooth if and only if

0 < r ≤ min







2|x2|
√

x2
1 + x2

2

,
|x2| −

√
3x1 + 2

√

(x1 −
√
3)2 + (1− |x2|)2







,

or

0 < r ≤
√
3x1 − 2− |x2|

√

(x1 −
√
3)2 + (1− |x2|)2

.

Obviously, for x2 = 0 and 0 < x1 ≤ 2
√
3

3
, or |x2| =

√
3x1 − 2, BsG(x, r) cannot be

smooth.
For the case G = Ra,b, let l1 : y2 = b, l2 : y1 = a, l3 : y2 = −b, and l4 : y1 = −a.

For any point x ∈ Ra,b, and r ∈ (0, 1), it follows from Lemma 4.1 that

BsG(x, r) =
⋂4

i=1Bi,

where Bi is the corresponding triangular ratio metric ball BsGi
(x, r), and Gi is the

half plane with boundary line li. For any point x ∈ Ra,b, it follows from elementary
computation that

B1 :

{

y : (y1 − x1)
2 +

(

y2 −
x2 + r2x2 − 2br2

1− r2

)2

<
4r2(b− x2)

2

(1− r2)2

}

,

B2 :

{

y :

(

y1 −
x1 + r2x1 − 2ar2

1− r2

)2

+ (y2 − x2)
2 <

4r2(a− x1)
2

(1− r2)2

}

,

B3 :

{

y : (y1 − x1)
2 +

(

y2 −
x2 + r2x2 + 2br2

1− r2

)2

<
4r2(b+ x2)

2

(1− r2)2

}

,
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and

B4 :

{

y :

(

y1 −
x1 + r2x1 + 2ar2

1− r2

)2

+ (y2 − x2)
2 <

4r2(a+ x1)
2

(1− r2)2

}

.

For 1 ≤ i ≤ 4, let Ri denote the radius of Bi. If x2 > 0, then R3 ≥ R1. By
calculations, BsG(x, r) = B1 is equivalent to

0 < r ≤ min

{

x2

b
,

(a− x1)− (b− x2)
√

(a− x1)2 + (b− x2)2
,

(a+ x1)− (b− x2)
√

(a + x1)2 + (b− x2)2

}

.

If x2 < 0, then R1 ≥ R3. By calculations, BsG(x, r) = B3 is equivalent to

0 < r ≤ min

{

−x2

b
,

(a− x1)− (b+ x2)
√

(a− x1)2 + (b+ x2)2
,

(a+ x1)− (b+ x2)
√

(a+ x1)2 + (b+ x2)2

}

.

If x1 > 0, then R4 ≥ R2. By calculations, BsG(x, r) = B2 is equivalent to

0 < r ≤ min

{

x1

a
,

(b− x2)− (a− x1)
√

(a− x1)2 + (b− x2)2
,

(b+ x2)− (a− x1)
√

(a− x1)2 + (b+ x2)2

}

.

If x1 < 0, then R2 ≥ R4. By calculations, BsG(x, r) = B4 is equivalent to

0 < r ≤ min

{

−x1

a
,

(b− x2)− (a + x1)
√

(a+ x1)2 + (b− x2)2
,

(b+ x2)− (a+ x1)
√

(a+ x1)2 + (b+ x2)2

}

.

That is, for any point x ∈ Ra,b, 0 < r < 1, BsG(x, r) is smooth if and only if

0 < r ≤ min

{

|x2|
b

,
(a− |x1|)− (b− |x2|)

√

(a− |x1|)2 + (b− |x2|)2

}

,

or

0 < r ≤ min

{

|x1|
a

,
(b− |x2|)− (a− |x1|)

√

(a− |x1|)2 + (b− |x2|)2

}

.

Obviously, for x2 = 0 and a − |x1| ≥ b, or a − |x1| = b − |x2|, BsG(x, r) cannot be
smooth. �

5. Quasiregular maps and triangular ratio metric

In this section our goal is to summarize some basic facts about quasiconformal
mappings, following closely [AVV], and [Vu1], and to prove Theorems 1.2 and 1.3.
We assume that the reader is familiar with the basics of this theory. Here we adopt
the standard definition of K-quasiconformality and K-quasiregularity from Väisälä’s
book [V] and from [Vu1], respectively. The first result is a quasiregular counterpart
of the Schwarz lemma. Observe that the result is asymptotically sharp when K → 1.

The Grötzsch ring domain RG,n(s), s > 1, is a doubly connected domain with

complementary components (Bn, [se1,∞)). For its capacity we write

γn(s) = capRG,n(s) = M(∆(Bn, [se1,∞])).



Lipschitz conditions, triangular ratio metric, and quasiconformal maps 707

For K > 0 we define an increasing homeomorphism ϕK,n : [0, 1] → [0, 1] with
ϕK,n(0) = 0, ϕK,n(1) = 1 and

(5.1) ϕK,n(r) =
1

γ−1
n (Kγn(1/r))

, 0 < r < 1.

The following important estimates are well known [Vu1, pp. 98–99]

rα ≤ ϕK,n(r) ≤ λ1−α
n rα ≤ 21−1/KKrα, α = K1/(1−n),(5.2)

21−KK−Krβ ≤ λ1−β
n rβ ≤ ϕ1/K,n(r) ≤ rβ, β = 1/α,(5.3)

where K ≥ 1, r ∈ (0, 1), and the constant λn ∈ [4, 2en−1) is the so-called Grötzsch

ring constant. In particular, λ2 = 4.

Theorem 5.4. Let G,D be either B
n or H

n and f : G → fG ⊂ D be a non-

constant K-quasiregular mapping and let α = KI(f)
1/(1−n). Then

th

(

1

2
ρD(f(x), f(y))

)

≤ ϕK,n

(

th

(

1

2
ρG(x, y)

))

≤ λ1−α
n

(

th

(

1

2
ρG(x, y)

))α

,

for all x, y ∈ G.

Proof. Recall that the proof in [Vu1, Theorem 11.2] for the case G = D = B
n

was based on the formula

(5.5) µBn(x, y) = γn

(

1

th ρBn (x,y)
2

)

, x, y ∈ B
n.

and the transformation rule of the metric µBn under quasiregular maps. The same
proof also works for the present general case as soon as we prove that the formula
(5.5) also holds for the case of Hn. For this purpose we use the invariance of µBn

under a Möbius transformation h : Hn → B
n to conclude by (5.5) that for x, y ∈ H

n,

µHn(x, y) = µBn(h(x), h(y)) = γn

(

1

th ρBn (h(x),h(y))
2

)

= γn

(

1

th ρHn (x,y)
2

)

,

where in the last step we used the invariance of the hyperbolic metric under the
Möbius transformation h, see [Vu1, (2.21)]. After these observations the proof goes
in the same way as in [Vu1, Theorem 11.2]. �

Proof of Theorem 1.2. (1) Because for all x, y ∈ H
n,

sHn(x, y) = th

(

ρHn(x, y)

2

)

,

by Theorem 5.4 the proof follows.
(2) By Theorems 5.4, 3.23 and Lemma 3.8 we have for all x, y ∈ B

n,

sBn(f(x), f(y)) ≤ th

(

ρBn(f(x), f(y))

2

)

≤ λ1−α
n th

(

ρBn(x, y)

2

)α

≤ λ1−α
n (2sBn(x, y))α = 2αλ1−α

n (sBn(x, y))α.
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(3) Similarly by Theorems 5.4 and 3.23 we have for all x, y ∈ B
n,

sHn(f(x), f(y)) = th

(

ρHn(f(x), f(y))

2

)

≤ λ1−α
n th

(

ρBn(x, y)

2

)α

≤ λ1−α
n (2sBn(x, y))α = 2αλ1−α

n (sBn(x, y))α.

(4) By Theorems 3.4, 3.8 and 5.4 we have for all x, y ∈ H
n,

sBn(f(x), f(y)) ≤ th

(

ρBn(f(x), f(y))

2

)

≤ λ1−α
n th

(

ρHn(x, y)

2

)α

= λ1−α
n (sHn(x, y))α. �

Theorem 5.6. Let f : Bn → B
n be a K-quasiregular mapping. Then for x, y ∈

B
n we have

(5.7) pBn(f(x), f(y)) ≤ 2αλ1−α
n (pBn(x, y))α, α = K1/(1−n).

Proof. By Lemma 3.8, the proof is similar to the proof of Theorem 1.2. �

By definition (1.1) it is clear that for x, y ∈ G = R
n \ {0}, we have

sG(x, y) =
|x− y|
|x|+ |y| .

Recall the following notation from [AVV, Section 14],

η∗K,n(t) = sup {|g(x)| : |x| ≤ t, g ∈ FK} ,

FK = {g : Rn → R
n, g(0) = 0, g(e1) = e1, g is K-quasiconformal}.

Lemma 5.8. [AVV, 14.27] Let f : Rn → R
n be a K-quasiconformal mapping

with f(∞) = ∞, and let a, b, c be three distinct points in R
n. Then

1

P6(n,K)

( |a− c|
|a− b|+ |b− c|

)β

≤ |f(a)− f(c)|
|f(a)− f(b)|+ |f(b)− f(c)|

≤ 1

P5(n,K)

( |a− c|
|a− b| + |b− c|

)α

,

where α = K1/(1−n) = 1/β and P5(n,K) = 21−(β/α)λ1−β
n /η∗K,n(1) and P6(n,K) =

21−(α/β)λβ−1
n η∗K,n(1). Here λn is as in Lemma 5.4 and P5(n,K) → 1, P6(n,K) → 1,

when K → 1.

Proof of Theorem 1.3. By Möbius invariance of the absolute ratio, the result
follows from Lemma 5.8 if we take b = f(b) = 0. �

Lemma 5.9. [AVV, 14.8] For n ≥ 2 and K ≥ 1,

η∗K,n(1) ≤ exp(4K(K + 1)
√
K − 1).

Corollary 5.10. Let G = R
n \ {0}, and f : G → G be a K-quasiconformal

mapping. If n ≥ 2, α = K1/(1−n), then for z, w ∈ G,

sfG(f(z), f(w)) ≤ KK exp(2(K + 1)(K − 1) + 4K(K + 1)
√
K − 1) (sG(z, w))

α .
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Proof. Combining Lemmas 5.8 and 5.9 and by [Vu1, Lemma 7.50 (2)] we see that

1

P5(n,K)
=

η∗K,n(1)

21−(β/α)λ1−β
n

≤
2K−1KKη∗K,n(1)

21−(β/α)
≤ 2(β/α)+K−2KKη∗K,n(1)

≤ 2(β/α)+K−2KK exp(4K(K + 1)
√
K − 1)

≤ KK exp((β/α) +K − 2 + 4K(K + 1)
√
K − 1)

≤ KK exp(2(K + 1)(K − 1) + 4K(K + 1)
√
K − 1). �
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