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Abstract. We extend fundamental results concerning Apollonian packings, which constitute a
major object of study in number theory, to certain homogeneous sets that arise naturally in complex
dynamics and geometric group theory. In particular, we give an analogue of Boyd’s theorem (relating
the curvature distribution function of an Apollonian packing to its exponent and the Hausdorff
dimension of the residual set) for Sierpiński carpets that are Julia sets of hyperbolic rational maps.

1. Introduction

One of the most studied objects in number theory which continues to intrigue
mathematicians since ancient times is the theory of Apollonian packings. An Apollo-
nian circle packing can be formed as follows. Consider three mutually exterior-wise
tangent circles C1, C2, and C3 in the plane, i.e., each circle touches each of the other
two at exactly one point and the open discs enclosed by C1, C2, and C3 do not in-
tersect pairwise (e.g., see the circles labeled by 18, 23, and 27 in Figure 1 below). A
theorem of Apollonius says that there exist exactly two circles that are tangent to
all the three circles C1, C2, and C3. In our example in Figure 1 it would be the big
outer circle, denoted by C0, and the small one, say C4, inscribed inside the curvilinear
triangle formed by arcs of C1, C2, and C3. Applying the Apollonius theorem to any
three mutually tangent circles among C0, C1, . . . , C4 (for the circle C0 one should take
the open disc it bounds as its exterior), one gets new circles inside the disc bounded
by C0. Continuing this process indefinitely, one obtains an Apollonian circle packing.

Apollonian circle packings are of interest in number theory in particular due to
the observation that if four circles C0, C1, C2, C3 have integer curvatures, then all the
circles in the packing also have integer curvatures (in Figure 1 the numbers inside
circles are their curvatures and C0 has curvature 10). There has been extensive
research done on number theoretic aspects of Apollonian circle packings as well as
on related objects (see [S11] for a summary of recent advances; also [BF11], [G05],
[G06-1], [G06-2], [G03], [KO11], [OS12], [S08], and others).
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Figure 1. An Apollonian circle packing with integer curvatures.

Consider an Apollonian circle packing P whose circles are denoted by C0, C1, . . . ,
and for each k ∈ {0, 1, . . .} let rk denote the radius of Ck. With P one associates the
exponent E = E(P) given by

E = inf

{
t ∈ R |

∑
k

rtk <∞
}
.

Note that E 6= ±∞. Indeed, clearly t is non-negative, and the series
∑

k r
2
k is

convergent since π
∑

k r
2
k is bounded by the area enclosed by the outer circle C0. One

also defines the following curvature distribution function

N(x) = #{k | r−1k ≤ x}, x ∈ R.

Let S be the complement of the union of all the open discs enclosed by circles
Ck, k ∈ {1, 2, . . .}, in the closed disc enclosed by C0. The set S is called the residual
set of P . It is a set of Lebesgue measure zero and is a fractal in the sense that it
behaves similarly on all scales. A natural notion of dimension that can be associated
to any metric space, in particular the residual set of an Apollonian circle packing
endowed with the restriction of the Euclidean metric, is the Hausdorff dimension. It
is known that the Hausdorff dimension dimH S of the residual set S of an Apollonian
circle packing is approximately 1.305688 (see, e.g., [Mc98, p. 692]). The following
result is fundamental in the study of Apollonian circle packings and provides the
main motivation for the present paper.

Theorem 1. (Boyd [Bo73, Bo82]) If P is an Apollonian circle packing, then

lim
x→∞

logN(x)

log x
= E = dimH S,

where N is the curvature distribution function, E is the exponent of P , and dimH S
is the Hausdorff dimension of the residual set S of P .

It is natural to ask whether an analogue of Theorem 1 holds for other subsets
of the plane that have fractal nature akin to the residual set of an Apollonian circle
packing. In this paper we propose to investigate this question for a family of sets with
controlled geometry on all scales, the so-called homogeneous sets defined in Section 2.
These are the residual sets of packings by topological (rather than geometric) discs
that have roughly rounded shapes, appear at all locations and on all scales, and are
relatively separated in the sense that two large elements of the packing cannot be
too close to each other. The last condition can be replaced by the assumption that
the elements of a packing are uniformly fat. One example of such a homogeneous
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set is the standard Sierpiński carpet S3 (see Figure 3 below). For a homogeneous
set we establish asymptotic relationships between a certain natural analogue of the
curvature distribution function and the Minkowski dimensions of the corresponding
residual set S (Section 3). It turns out that for a general homogeneous set the
exponent of the corresponding packing equals the upper Minkowski dimension of S
rather than the Hausdorff dimension of S. As the main application of these results
we prove an analogue of Theorem 1 for Sierpiński carpets that are the Julia sets
of hyperbolic rational maps (Section 4). Finally, in Section 5 we state some open
problems.

Acknowledgments. The authors would like to thank Mario Bonk for many useful
comments and suggestions.

2. Homogeneous sets and carpets

Let {Ck}k∈N∪{0} be a collection of simple closed curves in the plane such that
each Ck, k ∈ N, is enclosed by C0 (i.e., Ck is contained in the closure of the bounded
component D0 of the complement of C0) and suppose that for each pair j, k ∈ N with
j 6= k, the bounded complementary componentsDj andDk of Cj and Ck, respectively,
are disjoint. In analogy with Apollonian circle packings, we call the collection of
curves P = {Ck}k∈N∪{0}, or, interchangeably, the collection of the corresponding
topological discs {Dk}k∈N∪{0}, a packing. The residual set S associated to such a
packing P (or, simply, the residual set of P) is the compact subset of the closure D0

obtained by removing from D0 all the domains Dk, k ∈ N. One can similarly define
packings and the associated residual sets in the sphere rather than in the plane. In
the following it makes no difference whether we consider planar or spherical packings.
We say that the residual set S of a packing P is homogeneous if it satisfies properties
(1), (2), and (3), or (1), (2), and (4) below.

If one hopes to prove an analogue of Theorem 1 for a packing P = {Ck}k∈N∪{0},
then it is reasonable to assume that domains Dk’s corresponding to curves Ck’s have
roughly rounded shapes. More precisely,

(1) there exists a constant α ≥ 1 such that for each Dk there exist inscribed and
circumscribed concentric circles of radii rk and Rk, respectively, with

Rk

rk
≤ α.

For example, (1) holds if all Ck’s are circles or squares.
It also seems clear that one needs to impose a condition on the residual set S

associated to P = {Ck}k∈N∪{0} that imitates the fractal nature of the residual set of
an Apollonian circle packing. We consider the following condition, which is standard
in complex dynamics and geometric group theory:

(2) there exists a constant β ≥ 1 such that for any p ∈ S and r, 0 < r ≤ diamS,
there exists a curve Ck satisfying Ck ∩B(p, r) 6= ∅ and

1

β
r ≤ diamCk ≤ βr.

Here and in what follows B(p, r) denotes the open disc of radius r centered at p, and
diamX stands for the diameter of a metric space X. Geometrically, property (2)
means that curves Ck’s appear at all locations and on all scales.
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Remark 1. Note that properties (1) and (2) readily imply that the Lebesgue
measure of S is zero. Indeed, otherwise S would contain a Lebesgue density point,
which clearly contradicts to (1) and (2).

Further, we require the following condition of relative separation:
(3) there exists a constant δ > 0 such that for any j 6= k we have

∆(Cj, Ck) :=
dist(Cj, Ck)

min{diamCj, diamCk}
≥ δ.

Here dist(Cj, Ck) stands for the distance between Cj and Ck. One can visualize
property (3) as forbidding two large curves Cj and Ck to be quantitatively too close
to each other.

Remark 2. While extending analysis from Apollonian circle packings to more
general packings, one would like to recoup an important property of rigidity. Condi-
tions (1), (2), and (3) can be considered as a way of doing so.

Clearly, Apollonian circle packings satisfy (1). However, they do not satisfy
either (2) or (3). Indeed, the failure of (3) is immediate because in Apollonian circle
packings the circles are allowed to touch. We now show that (2) fails. Let C1 and C2

be two tangent circles in an Apollonian circle packing having disjoint interiors and
let p denote the common point of C1 and C2. Assume εk is a sequence of positive
numbers with εk → 0 as k →∞. For each k denote by rk the radius of a circle from
the packing other than C1 or C2 that intersects B(p, εk) and has the largest radius.
It can be checked that the sequence rk goes to zero faster than εk when k → ∞ (in
fact, rk is majorized by ε2k). Thus homogeneous sets do not generalize Apollonian
circle packings but rather complement them.

As pointed out in the previous paragraph, condition (3) does not allow for two
elements of a packing to touch. It turns out that in the main results of the paper
this condition can be replaced by the following co-fatness condition for S (see [S95]):

(4) there exists a constant τ > 0 such that for every k and each disc B(p, r) that
is centered on Dk and does not contain Dk, we have

area(Dk ∩B(p, r)) ≥ τr2.

Remark 3. It is easy to check that neither of (3) or (4) implies the other.
Condition (4) is often easier to check, e.g, as (1) it holds in the case when all Ck’s
are circles or squares. Moreover, the Sierpiński gasket (see Figure 2) satisfies (4) but
not (3). It is not hard to see that the Sierpiński gasket also satisfies (1) and (2), and
so it is homogeneous.

Figure 2. The Sierpiński gasket.
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Example 1. Standard Sierpiński carpets are homogeneous. Recall that for an
odd integer p > 0 the standard Sierpiński p-carpet Sp (defined up to translations and
scalings of the plane) is obtained as follows. As the first step of the construction we
subdivide a closed square in the plane into p2 equal subsquares in the obvious way
and then remove the interior of the middle square (the middle square is well defined
because p is odd). In the second step we perform the same operations (subdivide
into p2 equal subsquares and remove the interior of the middle square) on the p2− 1
subsquares remaining after the first step. If the process is continued indefinitely, then
what is left is called the standard Sierpiński p-carpet (see Figure 3 below for p = 3).
A proof that S3 and S5 are homogeneous is contained in Example 3 below. For a
general p the arguments are similar.

Figure 3. The standard Sierpiński 3-carpet S3.

By definition, a Sierpiński carpet, or carpet for short, is any topological space
that is homeomorphic to S3. A peripheral circle of a carpet S is any simple closed
curve in S that corresponds under a homeomorphism to the boundary of one of the
removed squares in the construction of S3. Whyburn’s characterization [W58] states
that a metrizable topological space is a carpet if and only if it is a planar continuum
of topological dimension 1 that is locally connected and has no local cut points. Here
a local cut point is a point whose removal separates the space locally. This gives a
way to produce a large supply of carpets as follows. Suppose that D0 is a closed
topological disc in the plane or in the sphere and {Dk}k∈N are pairwise disjoint open
topological discs contained in D0 that are bounded by simple closed curves. Then
the space S = D0 \ ∪k∈NDk is a carpet if and only if S has no interior, diamDk → 0
as k →∞, and for each pair j, k ∈ N∪{0}, j 6= k, the boundaries ∂Dj and ∂Dk are
disjoint. In this way, any carpet is represented naturally as the residual set associated
to a packing P = {∂Dk}k∈N∪{0}, where the boundaries of Dk’s are peripheral circles.
As a partial converse, any homogeneous residual set S satisfying (3) is a carpet.
Indeed, (1) implies diamDk → 0 as k →∞, (2) gives that S has no interior, and (3)
implies that ∂Dj and ∂Dk are disjoint for all j 6= k.

Example 2. If the Julia set J (f) of a hyperbolic rational map f is a carpet,
then it is homogeneous (see the proof of Theorem 6 below; definitions of a Julia set
and hyperbolicity can be found in Section 4 below). An example of such a map is
f(z) = z2 − 1/(16z2) (see Figure 4 for its Julia set).

It is known that if the limit set L(G) of a convex-cocompact Kleinian group G is a
carpet, then it is homogeneous. (This can be extracted from [KK00].) In particular,
if G is the fundamental group of a compact hyperbolic 3-manifold with non-empty
totally geodesic boundary, then its limit set L(G) is a homogeneous carpet. We do
not prove these statements as we do not need them. For a comprehensive treatment
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of asymptotics of the curvature distribution function for circle packings invariant
under non-elementary Kleinian groups see [OS12]. For related results on Kleinian
groups see [B97] and [P95].

Figure 4. The Julia set of f(z) = z2 − 1
16z2 .

Assume that P = {Ck}k∈N∪{0} is a packing whose associated residual set S
satisfies (1). Similarly to the case of Apollonian circle packings we define the exponent
E = E(P) of P as

E = inf

{
t ∈ R |

∑
k

(diamCk)
t <∞

}
.

Let ak = diamCk and for a natural m denote M(t,m) =
∑m

k=1 a
t
k, M(t) =

∑
k a

t
k.

As in the case of Apollonian circle packings we have M(2) < ∞. Indeed, using (1)
we have

π
∑
k

a2k ≤ 4π
∑
k

R2
k ≤ 4α2

∑
k

πr2k ≤ 4α2Area(D0),

since the circles inscribed in Ck’s are pairwise disjoint. Also, without loss of generality
we can assume that all ak ≤ 1, and thus for t ≥ t′ ≥ 0 we have M(t,m) ≤ M(t′,m)
for any m. Finally, M(0) =∞. These imply that E <∞ and

E = inf

{
t ∈ R |

∑
k

(diamCk)
t <∞

}
= sup

{
t ∈ R |

∑
k

(diamCk)
t =∞

}
.

The curvature distribution function N(x) of P is defined by

N(x) = #{k | (diamCk)
−1 ≤ x}, x ∈ R.

It turns out that for a general homogeneous residual set S associated to a packing P
the limit of logN(x)/log x does not exist when x tends to infinity, i.e.,

(5) lim sup
x→∞

logN(x)

log x
6= lim inf

x→∞

logN(x)

log x
.

Also, the Hausdorff dimension of S is not necessarily equal to E(P) (see Example 3
below). This contrasts Theorem 1.

Example 3. Using the idea of Sierpiński carpets we now construct the following
packing for which (5) holds. To a closed square in the plane we apply the first n1

steps of the construction of the 3-carpet. Then, to each of the remaining subsquares
we apply the first n2 steps of the construction of the 5-carpet. After that, to each
of the remaining subsquares we apply the first n3 steps of the construction of the
3-carpet again. This way, alternating, we continue indefinitely. For each sequence
σ = {n1, n2, n3, . . .} we therefore have a packing P = P(σ) and the associated residual
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set S = S(σ) depending on σ. In this construction we allow some nk to be infinite,
in which case we assume that the sequence σ is finite and its last element is infinity.
We also allow the first n1 steps to be the steps of the construction of the 5-carpet.
Whyburn’s characterization implies that S is a carpet.

We now check that for any σ the set S = S(σ) is homogeneous, namely it
satisfies conditions (1), (2), and (3). In fact, it also clearly satisfies (4). Indeed,
(1) is trivially satisfied, since each bounded complementary component of S is a
square. To check (2) we fix arbitrary p ∈ S and 0 < r ≤ diamS. After performing
a number of steps of dividing and removing subsquares as explained in the previous
paragraph we will denote by Q one of the biggest subsquares that turn out to be
inside B(p, r). Assume also that Q is not a complementary component, i.e., Q is
not a “hole". More precisely, suppose that n = n1n2 . . . nk−1n

′
k, where 1 ≤ n′k ≤ nk,

is the smallest number such that one of the remaining subsquares Q of side length
s = 3−n15−n2 . . . 3−n

′
k or 3−n15−n2 . . . 5−n

′
k , depending on whether k is odd or even, is

contained in B(p, r). From the minimality of n it is immediate that r/β′ ≤ s ≤ β′r,
where β′ ≥ 1 is an absolute constant. Now we choose C to be the boundary of the
middle square in the subdivision of Q. Then

diamC =

√
2s

3
or
√

2s

5
,

and (2) follows with β = 5β′/
√

2. Finally, to verify (3) let Cj and Ck be the bound-
aries of two distinct complementary squares in the construction of S. We may as-
sume that diamCj ≤ diamCk. Let Q be the subsquare in the construction of S
so that Cj is the boundary of the middle square in the subdivision of Q. Because
diamCj ≤ diamCk, the curve Ck does not intersect the interior of Q and hence

∆(Cj, Ck) =
dist(Cj, Ck)

diamCj
≥ dist(Ck, ∂Q)

diamCj
≥ 1√

2
,

i.e., (3) follows with δ = 1/
√

2. So, any S in the above construction satisfies (1), (2),
(3), and (4) and, in fact, the constants α, β, δ, τ do not depend on sequence σ.

If S is the 3-carpet, then one can easily check that

lim
x→∞

logN(x)

log x
=

log 8

log 3
.

Likewise, if S is the 5-carpet, then

lim
x→∞

logN(x)

log x
=

log 24

log 5
.

It is an elementary exercise to show that there exists a sequence σ converging to ∞
fast enough so that

lim sup
x→∞

logN(x)

log x
=

log 24

log 5
and lim inf

x→∞

logN(x)

log x
=

log 8

log 3
<

log 24

log 5
.

Indeed, given a sequence {ε1, ε2, . . .} of positive numbers converging to zero it is possi-
ble to find a large enough n1 so that for any n′2, n′3, . . . the curvature distribution func-
tion N(x) corresponding to S(σ), σ = {n1, n

′
2, n

′
3, . . .}, satisfies logN(x1)/ log x1 <

log 8/ log 3 + ε1 for some large x1. Similarly, it is possible to find a large enough n2

so that for any n′3, n′4, . . . the curvature distribution function N(x) corresponding to
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S(σ), σ = {n1, n2, n
′
3, n

′
4, . . .}, satisfies logN(x2)/ log x2 > log 24/ log 5− ε2 for some

x2 > x1, and so on. We leave the (easy) details to the reader.
Also, the Hausdorff dimension is always at most the lower Minkowski dimension

(see the definition of the latter below). Thus, according to Proposition 2 below for
such a sequence σ and the corresponding set S one has

dimH S ≤ lim inf
x→∞

logN(x)

log x
=

log 8

log 3
,

where dimH S denotes the Hausdorff dimension of S. Theorem 4 below in addition
shows that

E(P) = lim sup
x→∞

logN(x)

log x
=

log 24

log 5
.

3. Curvature distribution function and Minkowski dimensions

As we saw in Example 3 above, for a general homogeneous residual set S, i.e.,
the residual set S of a packing P satisfying (1), (2), and (3), or (1), (2), and (4), E
is not equal to the Hausdorff dimension dimH S of S in Theorem 1. We show that
the right analogue is the upper Minkowski (or the upper box counting) dimension of
S, which is another notion of dimension applied to fractals. Suppose n(ε) denotes
the maximal number of disjoint open discs of radii ε > 0 centered on S. Then the
Minkowski dimension dimbox S of S is defined as

dimbox S = lim
ε→0

log n(ε)

log(1/ε)
,

provided the limit exists; see [F14, Ch. 3]. In general, this limit does not exist and in
that case one defines the upper Minkowski dimension dimubox S (respectively, lower
Minkowski dimension dimlbox S) as the corresponding upper limit (respectively, lower
limit). Note that there are other equivalent definitions of Minkowski dimensions, e.g.,
where n(ε) is the minimal number of open discs of radii ε required to cover the set
S, or n(ε) is the minimal number of open discs of radii ε centered on S required to
cover S, etc.

The following proposition is a certain duality result between a packing and the
associated residual set in the case when the latter is homogeneous.

Proposition 2. If the residual set S of a packing P is homogeneous, then

lim sup
x→∞

logN(x)

log x
= dimubox S,

lim inf
x→∞

logN(x)

log x
= dimlbox S,

where N(x) is the curvature distribution function of P .
We will need the following lemma.

Lemma 3. Assume that S is the residual set associated to a packing P =
{Ck}k∈N∪{0} satisfying (1) and (3) (or (1) and (4)). Given any β > 0 there exist
constants γ1 = γ1(β) ≥ 1 that depends only on β and γ2 = γ2(α, β, δ) ≥ 1 (γ2 =
γ2(α, β, τ) ≥ 1) that depends only on α in (1), β, and δ in (3) (that depends only on
α in (1), β, and τ in (4)) such that for any collection C of disjoint open discs of radii
r centered on S we have the following.
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(6) There are at most γ1 discs in C that intersect any given Ck with

diamCk ≤ βr,

and
(7) there are at most γ2 curves Ck intersecting any given disc in 2C and satisfying

1

β
r ≤ diamCk,

where 2C denotes the collection of all open discs with the same centers as those in C,
but whose radii are 2r.

Proof. By rescaling the Euclidean metric by 1/r, we conclude that to find the
bound γ1 in (6) is the same as to find an upper bound on the number of disjoint
open discs in the plane of radii 1 that intersect a given set S of diameter at most β.
If B is a disc centered at a point of S and whose radius is β + 2, then B contains
S as well as any disc of radius 1 that intersects S. Therefore, if n is the number of
disjoint open discs of radii 1 that intersect S, then by comparing areas we obtain
n ≤ (β + 2)2.

To prove (7) we first observe that (3) or (4) imply the existence of constants β′ > 0
and ν ∈ N such that the number of Ck’s that intersect a given B(p, 2r) ∈ 2C and
diamCk > β′r is at most ν. Indeed, if (3) holds, let β′ = 4/δ and suppose that there
are two distinct curves Cj, Ck that intersect B(p, 2r) and min{diamCj, diamCk} >
β′r. Then dist(Cj, Ck) ≤ 4r and hence

∆(Cj, Ck) <
4r

β′r
= δ,

which contradicts (3), and therefore ν = 1. Note that in this case β′ depends only
on δ.

Now assume that (4) holds and let β′ = 7. For each k such that Ck intersects
B(p, 2r) and diamCk > β′r, the corresponding Dk is not contained in B(p, 3r). Let
Bk = B(q, r) be a disc centered at q ∈ Dk ∩ B(p, 2r). Then Bk is contained in
B(p, 3r), and hence does not contain Dk. Therefore by (4) we have

area(Dk ∩Bk) ≥ τr2.

Since any two distinct Dj and Dk are disjoint and all Bk’s are contained in B(p, 3r),
for the number ν of “large” Ck’s as above we have

ντr2 ≤
∑
k

area(Dk ∩Bk) ≤ area(B(p, 3r)) = 9πr2.

This gives ν ≤ 9π/τ , a bound that depends only on τ .
Thus, to prove the existence of γ2 it is enough to find a bound on the number of

Ck’s that intersect a given disc in 2C and satisfy

(8)
1

β
r ≤ diamCk ≤ β′r.

Recall that by (1) there exists α ≥ 1 such that for any Ck there exist inscribed and
circumscribed concentric circles of radii rk and Rk, respectively, with Rk/rk ≤ α.
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Since the interiors Dk’s of distinct Ck’s are disjoint, the corresponding inscribed
discs are disjoint. Moreover, for Ck satisfying (8) we have the following inequalities:

1

β
r ≤ diamCk ≤ 2Rk ≤ 2αrk ≤ α diamCk ≤ αβ′r.

The number of curves Ck that intersect a given disc B(p, 2r) in 2C is bounded above
by the number of corresponding circumscribed discs that intersect the same disc
B(p, 2r). Therefore, to find a bound γ2 in (7) we need to find an upper bound on
the number of disjoint open discs B(pk, rk) of radii rk at least r/(2αβ) and at most
β′r/2 such that B(pk, αrk) intersects B(p, 2r) (recall that Rk ≤ αrk). Rescaling the
Euclidean metric by 1/r as above, it is equivalent to finding an upper bound on the
number n of disjoint open discs B(pk, rk) of radii rk with 1/(2αβ) ≤ rk ≤ β′/2 such
that B(pk, αrk) intersects B(p, 2). Similar to the proof of (6), each disc B(pk, αrk)
intersecting B(p, 2) is contained in B(p, 2 + αβ′). Since B(pk, rk)’s are disjoint, we
obtain

n∑
i=1

r2k ≤ (2 + αβ′)2.

On the other hand,
n∑
i=1

r2k ≥
n

(2αβ)2
,

and thus n ≤ (2αβ(2 + αβ′))2, which completes the proof of (7). �

Proof of Proposition 2. Let ε > 0 be arbitrary and let C be a maximal collection
of disjoint open discs of radii ε centered on S.

We first establish an upper bound for n(ε) in terms of the function N(x). For that
one can define a function f from C to the set A of all Ck’s with ε/β ≤ diamCk ≤ βε
by assigning to each disc in C a Ck ∈ A intersecting the disc. Note that by (2) every
disc in C intersects at least one Ck from A, so that f is defined on the whole set
C. Also, given any Ck with diamCk ≤ βε, by (6), there are at most γ1 discs in C
that intersect Ck. Recall that n(ε) is the number of elements in C, and the number
of elements in A is at most N(β/ε). Hence, comparing the sizes of C and A via
f : C −→ A, we immediately obtain

n(ε) ≤ γ1N(β/ε).

Therefore,

dimubox S = lim sup
ε→0

log n(ε)

log(1/ε)
≤ lim sup

ε→0

log(γ1N(β/ε))

log(1/ε)
= lim sup

x→∞

logN(x)

log x
,

and similarly,

dimlbox S ≤ lim inf
x→∞

logN(x)

log x
.

We now use an argument similar to the one in the preceding paragraph to obtain
an upper bound for N(x) in terms of n(ε). Namely, we define a function g from the
set B of all Ck’s satisfying ε/β ≤ diamCk to 2C by assigning to each Ck ∈ B a disc in
2C intersecting Ck. By the maximality of C, the collection 2C covers S and hence g
is defined on the whole set B. By (7), given a disc B(p, 2ε) ∈ 2C there are at most γ2
curves Ck from B intersecting B(p, 2ε). Recall that N(β/ε) is the number of elements
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in B and n(ε) is the number of elements in C, which is the same as the number of
elements in 2C. Hence, comparing the sizes of B and 2C via g : B −→ 2C, we obtain

N(β/ε) ≤ γ2n(ε).

Therefore,

dimubox S = lim sup
ε→0

log n(ε)

log(1/ε)
≥ lim sup

ε→0

log(N(β/ε)/γ2)

log(1/ε)
= lim sup

x→∞

logN(x)

log x
,

and likewise

dimlbox S ≥ lim inf
x→∞

logN(x)

log x
.

The desired equalities are thus proved. �

We finish this section with the following general theorem whose proof follows the
lines of [Bo82, p. 250] or [W77, p. 126, Theorem 3].

Theorem 4. Let P = {Ck}k∈N∪{0} be a packing such that the associated residual
set S satisfies (1). Then

lim sup
x→∞

logN(x)

log x
= E,

where E is the exponent of P .
Proof. Assume that Ck’s are numbered in such a way that the sequence {diamCk}

is monotone decreasing. The limit of this sequence must be 0 because of (1). Denote
rk = diamCk and

M = lim sup
x→∞

logN(x)

log x
.

If t > E, then
∑

k r
t
k is convergent and for any x ∈ R we have

x−tN(x) ≤
∑
k

rtk <∞.

Taking log and the upper limit when x→∞, and then letting t→ E+, we get M ≤
E. Assume for the sake of contradiction that M < E and let t satisfy M < t < E.
Note that there exists K ∈ R such that for any x ≥ K we have

t ≥ logN(x)

log x
.

Also, there exists L ∈ N such that for any k ≥ L and x with r−1k ≤ x < r−1k+1 we have
x ≥ K. Then N(x) = k, hence

t ≥ logN(x)

log x
>

log k

log r−1k+1

,

and therefore, rtk+1 < k−1. Let t′ satisfy t < t′ < E. Then

rt
′

k+1 = (rtk+1)
t′/t < k−t

′/t

for any k ≥ L. Since t′/t > 1,
∑

k r
t′

k is a convergent series. This contradicts the
definition of E. �

Thus, for homogeneous residual sets we obtain the following analogue of Theo-
rem 1:
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Corollary 5. If the residual set S of a packing is homogeneous and

(9) dimlbox S = dimubox S = dimH S,

then the limit of logN(x)/ log x as x→∞ exists and

lim
x→∞

logN(x)

log x
= E = dimH S.

Remark 4. There exist conditions on fractal sets that are easy to verify and that
imply (9) (see, e.g., conditions in Theorems 3 and 4 in [F89]). In the next section
we discuss another example of a homogeneous set satisfying (9), namely a Sierpiński
carpet that is the Julia set of a hyperbolic rational map.

4. Julia sets of hyperbolic rational maps

In this section we prove an analogue of Theorem 1 for Sierpiński carpets that are
Julia sets of hyperbolic rational maps (Theorem 6 below). Our proof is based on the
application of Corollary 5 to Julia sets under consideration. For the background on
the topics of complex dynamics used in this section see, e.g., [Be91, CG93, Mi06].

Let f be a rational map of the Riemann sphere Ĉ. The Fatou set F(f) of f is
the set of all points p in Ĉ such that the family of iterates {fk} of f is a normal
family in some neighborhood of p. The Julia set J (f) is the complement of the
Fatou set in Ĉ. From the definitions one immediately sees that F(f) is open and
J (f) is compact. Moreover, F(f) and J (f) are completely invariant with respect
to f , i.e.,

f(F(f)) = f−1(F(f)) = F(f), f(J (f)) = f−1(J (f)) = J (f).

If the Julia set J (f) of a rational map f is a carpet (in which case we will refer to
J (f) as the carpet Julia set J (f)), then J (f) is the residual set associated to the
packing formed by the connected components of the Fatou set F(f) =

⋃
k∈N∪{0}Dk.

This follows from the definition of a residual set and the facts that F(f) is open,
J (f) ∩ F(f) = ∅, and J (f) ∪ F(f) = Ĉ. The boundary curves Ck = ∂Dk of these
components are the peripheral circles of the carpet Julia set J (f).

A rational map f is said to be hyperbolic if it is expanding in a neighborhood of
its Julia set J (f) with respect to some conformal metric. More precisely, there exist
a neighborhood U of J (f), a smooth function λ : U → (0,∞), and a constant ρ > 1
such that

(10) ||f ′(z)||λ :=
λ(f(z)) · ||f ′(z)||

λ(z)
≥ ρ, ∀z ∈ U,

where ||f ′(z)|| denotes the spherical derivative of f at z. In what follows we will only
consider Julia sets that are not equal to the whole sphere. Therefore, we may assume
that they are compact subsets of the plane and the spherical derivative in (10) can
be replaced by the modulus of the derivative of f .

The function λ can be used to define a new metric in a neighborhood of J (f) as
follows. For a rectifiable path γ in U let

lengthλ(γ) :=

ˆ
γ

λ ds.
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From (10) we immediately get

lengthλ(f ◦ γ) ≥ ρ lengthλ(γ)

for any rectifiable path γ in U such that f ◦ γ is also in U . Therefore, a hyperbolic
rational map f is locally expanding by a factor at least ρ with respect to the path
metric defined in a small neighborhood of J (f) by the formula

dλ(z, w) := inf
γ

lengthλ(γ),

where γ runs through all the rectifiable paths in U connecting z and w. Below we
drop the index λ and write d(z, w) instead of dλ(z, w). Also, in what follows diam
refers to the diameter with respect to dλ. Since λ is bounded away from 0 and
∞ in a neighborhood of J (f), the metric dλ is locally comparable (i.e., bi-Lipschitz
equivalent) to the Euclidean metric in such a neighborhood. Therefore, it is irrelevant
which metric, the Euclidean metric or the metric dλ, one uses for verification of (1),
(2), and (3).

Theorem 6. Assume that f is a hyperbolic rational map whose Julia set J (f)
is a Sierpiński carpet. Then

lim
x→∞

logN(x)

log x
= E = dimH J (f),

where N is the curvature distribution function and E is the exponent of the packing
by the connected components of the Fatou set of f , and dimH J (f) is the Hausdorff
dimension of J (f).

Proof. We first show that if f is a hyperbolic rational map whose Julia set J (f)
is a Sierpiński carpet, then J (f) is homogeneous.

According to [F89, (3.6)], for a small enough r > 0 and a ball B(p, r) centered at
p ∈ J (f) there exists a natural number n so that the iterate fn|B(p,r) is bi-Lipschitz
when the metric on B(p, r) is rescaled by 1/r. More precisely, there exist positive
constants a, b, r0 such that for every p ∈ J (f) and 0 < r ≤ r0 there exists n ∈ N
with

(11) a
d(z, w)

r
≤ d(fn(z), fn(w)) ≤ b

d(z, w)

r
, ∀z, w ∈ B(p, r).

Note that condition (11) means that the Julia set J (f) of a hyperbolic rational
map f is approximately self-similar according to Definition 3.11 in [BK13]. Such
approximate self-similarity is also discussed in [S83, p. 742]. In particular, [S83,
Theorem 4] states that, up to a constant, the Hausdorff dimH J (f)-measure is the
unique conformal measure on J (f).

Now we are ready to prove that J (f) is homogeneous, namely it satisfies (1),
(2), and (3). Let {Ck} denote the sequence of peripheral circles of J (f). First
of all, according to Whyburn’s characterization [W58] we have diamCk → 0 as
k →∞. Also, since every peripheral circle C of J (f) is the boundary of a connected
component of F(f), the curve f(C) is also a peripheral circle of J (f).

To show (1) assume that C is an arbitrary peripheral circle of J (f) whose di-
ameter is at most a

b
min(r0, a). We set r = b

a
diamC and choose an arbitrary p ∈ C.

Note that C ⊂ B(p, r), since we may assume that b/a > 1. Because r ≤ r0 and
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p ∈ J (f), by (11) there exists n ∈ N such that

(12)
a2

b
≤ diam fn(C) ≤ a.

Since there are finitely many peripheral circles whose diameter is at least a
b

min(r0, a),
there exists a constant α ≥ 1 such that for each of these “large” curves Ck there exist
inscribed and circumscribed concentric circles centered at pk of radii rk and Rk,
respectively, with Rk/rk ≤ α. Due to (12) the peripheral circle fn(C) is one of the
large peripheral circles, say Ck. Let q ∈ B(p, r) satisfy fn(q) = pk. Now (11) applied
to B(p, r) with z = q and w ∈ C implies that a disc centered at q of radius at least
rrk/b can be inscribed in C and a disc centered at q of radius at most rRk/a can be
circumscribed around C. Therefore, the quotient of the circumscribed radius to the
inscribed one for C is at most bα/a and (1) follows.

We argue similarly to prove (2). Suppose that p is an arbitrary point in J (f) and
0 < r ≤ diamJ (f). If r ≥ min(r0, a/2), then the fact that J (f) is a compact set
with no interior points implies the existence of β̃ such that any disc B(p, r) intersects
a peripheral circle Ck of J (f) with

r

β̃
≤ diamCk ≤ β̃r.

Moreover, by choosing β̃ sufficiently large, we can require that the diameter of each
such Ck is at most a/2.

We now assume that r < min(r0, a/2). By the first inequality in (11), there exists
n ∈ N such that fn(B(p, r)) contains an open disc centered at fn(p) of radius at
least a. It follows from the above that B(fn(p), a/2) intersects a peripheral circle Ck
of J (f) with

(13)
a

2β̃
≤ diamCk ≤

a

2
.

In particular, Ck is contained in B(fn(p), a) and, consequently, in fn(B(p, r)). There-
fore, there exists a peripheral circle C of J (f) that intersects B(p, r) and such that
fn(C) = Ck. Moreover, (11) combined with (13) yield

a

2bβ̃
r ≤ diamC ≤ 1

2
r.

The proof of (2) (with β = max(1/2, β̃, 2bβ̃/a)) is thus complete.
Finally, to prove (3) we argue by contradiction. Assume that there exists a

sequence of pairs {Cji , Cki}i of distinct peripheral circles of J (f) such that ∆(Cji , Cki)
→ 0 as i → ∞. By symmetry we may assume that diamCji ≤ diamCki for all i.
Since there are only finitely many peripheral circles of diameter at least a given
number, we must have diamCji → 0 as i→∞. Also,

dist(Cji , Cki) = ∆(Cji , Cki) diamCji → 0, i→∞.
Let pi be a point on Cji ⊂ J (f) and let qi be a point on Cki such that

dist(Cji , Cki) = d(pi, qi).

Let 0 < ε < 1 be arbitrary and let i be so large that

r := 2diamCji ≤ r0 and ∆(Cji , Cki) < ε.
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Then d(pi, qi) < r/2, hence qi ∈ B(pi, r) and there is at least one more point q′ 6= qi
in the intersection Cki ∩ B(pi, r). By applying (11) to B(pi, r) with z, w ∈ Cji ⊂
B(pi, r), we conclude that there exists n ∈ N such that for the peripheral circle
Cj = fn(Cji) we have diamCj ≥ a/2. Similarly, by applying (11) to B(pi, r) with
z = q′ and w = qi, we conclude that for the peripheral circle Ck = fn(Cki) we have
diamCk ≥ a/2 (recall that diamCki ≥ diamCji). Finally, (11) applied to B(pi, r)
with z = pi and w = qi gives

∆(Cj, Ck) ≤ 2b
dist(Cji , Cki)

ra
= 2b

∆(Cji , Cki) diamCji
ra

=
b

a
∆(Cji , Cki) <

b

a
ε.

This is a contradiction because ε is arbitrary and there are only finitely many pairwise
disjoint peripheral circles C with diamC ≥ a/2. Hence, (3) follows.

The rest of the proof is a simple application of the results of [F89] and the previous
results of this paper. Indeed, by [F89, Theorem in §3], if J (f) is the Julia set of a
hyperbolic rational map f , then

dimlbox J (f) = dimubox J (f) = dimH J (f).

Corollary 5 therefore implies that the limit of logN(x)/ log x as x→∞ exists and

lim
x→∞

logN(x)

log x
= E = dimH J (f).

This completes the proof of Theorem 6. �

Remark 5. The peripheral circles of J (f) as above are in fact uniform quasi-
circles, and hence J (f) also satisfies (4) (see [S95, Corollary 2.3]).

5. Concluding remarks and further questions

In their recent work [KO11] Kontorovich and Oh proved a result about Apollonian
circle packings that strengthens Theorem 1. Namely, that limx→∞(N(x)/xα) = c for
some positive constant c, where α = E = dimH S (in the notation of Theorem 1).
We believe that an analogue of this result also should hold in our context, i.e., for
packings whose associated residual sets are homogeneous and approximately self-
similar. More specifically, we make the following conjecture.

Conjecture 1. If f is a hyperbolic rational map whose Julia set is a Sierpiński
carpet, then there exists a positive constant c such that

(14) N(x) ∼ c · xE,
where N is the curvature distribution function and E is the exponent of the packing
by the connected components of the Fatou set of f . In other words, limx→∞(N(x)/xE)
= c.

A homeomorphism f : (X, dX) → (Y, dY ) between two metric spaces is called
quasisymmetric if there exists a homeomorphism η : [0,∞)→ [0,∞) such that

dY (f(x), f(x′))

dY (f(x), f(x′′))
≤ η

(
dX(x, x′)

dX(x, x′′)

)
for any three distinct points x, x′, and x′′ in X. It turns out that quasisymmetric
maps between subsets of the plane or the sphere preserve properties (1), (2), (3),
and (4) up to a change of constants; see [H01] for background on quasisymmetric
maps. An important invariant for quasisymmetric maps is the conformal dimension.
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For a metric space S this is the infimum of the Hausdorff dimensions of all images of
S under quasisymmetric maps. The conformal dimension of a metric space is always
at least its topological dimension and, trivially, at most the Hausdorff dimension. For
example, the conformal dimension of the standard Cantor set C is zero, which is its
topological dimension, and is strictly less than its Hausdorff dimension log 2/ log 3.
The infimum in the definition of the conformal dimension of C is not achieved though,
i.e., there is no metric space of Hausdorff dimension 0 that is quasisymmetric to C.

The value of the conformal dimension of the Sierpiński carpet S3 is unknown
(see [H01, 15.22 Open problem]). However, it has a non-trivial lower bound 1 +
log 2/ log 3, which is strictly greater than its topological dimension 1. If in the defini-
tion of conformal dimension we fix the target to be the plane, it is interesting to see
what will be the shapes of the complementary components of quasisymmetric images
of S3 that are near-optimal with respect to the conformal dimension. Proposition 2
implies that the reciprocal diameters of peripheral circles of near-optimal images of
S3 must go to infinity faster than those for S3. At present we do not know in what
way the quasisymmetric map should distort the boundaries of the complementary
components to make the Hausdorff dimension smaller.
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