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Abstract. We prove the corona theorem for domains whose boundary lies in a C'< curve.
For that, we transfer H*° on the complement of the curve onto a Denjoy domain and use the results
from Garnett and Jones.

Introduction

Let I be an unbounded C'*® curve analytic at co, E a compact subset of this
curve with positive length and set Q2 = C*\E. Let us denote the space of bounded
analytic functions on Q by H>(Q2). The corona theorem for this type of domains
was already proved by Moore in [7]. The purpose of this paper is to present a new
approach to this result.

Theorem 1. Let fi, fo,..., fn € H®() so that 6 < maxy|fr(w)| < 1, for
all w € Q and some § > 0. Then, there exist gi,¢s,...,9, € H*>() such that

figr + fogo + ...+ fngn =1 on Q.

The functions {fi}7_, and {gx}}_, are called corona data and corona solutions
respectively, and 0 and n are the corona constants. When I' is the real line, the
domain () is called a Denjoy domain. In this case, the theorem was proved by
Garnett and Jones [5].

The first corona problem for simply connected domains was solved by Carleson
in 1962 [1]. Since then, the result has been extended to some classes of infinitely
connected domains, in particular to domains whose boundary lies in a Lipschitz
graph and satisfies a thickness condition [8] or complements of Cantor sets [6].

For our approach, we will apply the following result proved in [2] which allows
us to transfer the problem in {2 to a Denjoy domain.

Theorem 2. Let I' be an unbounded C' curve analytic at oo, and let p denote
a conformal map of R% onto any of the regions bounded by I'. Then, given a function
g € L>(I"), the Cauchy integral Cr(g) € L*>(C) if and only if Cr(f) € L*(C), where
f denotes the pullback of g under the conformal mapping p.

This transfer is possible thanks to the existence of a quasiconformal extension of
p whose complex dilatation, u, verifies that |u|*/|y|'*¢ dx dy is a Carleson measure
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relative to R for some € = ¢(a) > 0. In fact, the existence of such an extension
characterizes C'T® curves |2, Theorem 1].

The paper is structured as follows: In section 1, we review some definitions and
basic facts. The proof of Theorem 1 is presented in section 2.

1. Preliminaries

Let us denote complex variables by z = x + iy and w = £ +in. B,(z) will denote
the ball centered at z and radius r and C will represent a positive constant that could
be different throughout an inequality. Also, we shall write 0 = §/9z = 1/2(3, +id,)
and 0 = 0/0z = 1/2(0, — i0,). For a square ), we will denote by a@), o > 0, the
dilation of this square by a scale factor o and by [(Q) its length.

A Jordan curve I is said to be of class C™ (n = 1,2, ...) if it has a parametrization
(1) = f(e'),0 < 7 < 27, that is n times continuously differentiable and satisfies
that ¢'(7) # 0, Vr. Furthermore, it is of class C"*, for 0 < a < 1, if

(1) = ™ (1) < Clri — 7|
Given a function F' on I' define its Cauchy integral f(z) = Cr(F)(z) off I" by
1 F
16 =55 [ 2 cer
mJr(—z

We define the jump of f = Cp(F) across I' at a point z, j(f)(2), as f(2) — f-(2),
where f, and f_ denote the boundary values of f. As the classical Plemelj formula
states,

2 271 w—2z

Hence f,(z) — f_(2) = F(2). Also, f is holomorphic off I" so that df = 0 on C\T.

A positive measure A on C is called a Carleson measure relative to a given chord-
arc curve I' if there exists a constant C' > 0 such that A(Bg(z)) < CR for all z € I’
and R > 0. The smallest such C is the norm of A, ||A||¢. Furthermore, if

lim sup LBZ(R))

r—0 R<r R

fe(z) = :tlF(z) + i P.V./ Fw) dw, ze€T.

=0,

then we say that A is a vanishing Carleson measure or that it satisfies a o(1)-Carleson
condition.

2. Proof of the Theorem

Let Q, and Q_ be the two regions bounded by the C'** curve I' and p be a
conformal map from R? onto Q_. It was proved in [2] that p extends to a global quasi-
conformal map whose dilatation p satisfies that v = |u|?/|y|'™ dz dy is a Carleson
measure relative to R where ¢ = (). In fact, for this extension, it holds that
|0p(2)] ~ |p'(2)] if 0 < Im(2) < gg for some gy = ep(a) small enough [2, Proof of
Theorem 1].

Besides, since I' is analytic at oo, we will assume that p has compact support.
We will keep the notation fixed for the rest of the proof, that is, p is a quasiconformal
mapping associated to I', i is its complex dilatation and ¢ is such that v is a Carleson
measure.



A new approach to the corona theorem for domains bounded by a C**® curve 769

Let Ey = p~'(F) C R and ©y = C\Ey. Note that Fj is closed and has positive
length (9], Theorem 6.8). Define the space
H>(Qo, ) = {fop: f € H(Q)}.
Observe that if g = fop € H®(Q,u), then f = 0 on Q translates into
(0 — pd)g = 0 on Q, and as well, the jump of g across Ej is given by j(g) = j(f) o p.
Also, as ' is a C'™ curve, A = |y||0g|? dz dy is a Carleson measure relative to R |2,

Proof of Theorem 2.
Before proving the corona theorem, we need some preliminary lemmas.

Lemma 2.1. If g € H*(Q, ), then 7 = |u||0g| dx dy is a vanishing Carleson
measure.

Proof. For any s € R, r > 0:

2
[ gy [ O gy < o
oyl B.(s) 1Yl
Therefore,

/BT(S) e </Br(s) |M|(y|)| drd )1/2 (/T(s> |89(Z)|2|y|ledy)l/2

(1) S WL ISP riter?,

and 7 = |pu||0g| dx dy is a vanishing Carleson measure relative to R. O

Lemma 2.2. There exists €9 > 0 such that if g € H*(Qo, 1) and z € g with
0 < |Im(z)| < &g, then |y||0g(z)| < C, where C' = C(||9]|c0, || 14]|00) and g9 = eo(a).

Proof. Let f € H*(Q) such that g = f o p. Then, or(w)|f'(w)| < C, Vw € C\T
and C' = C(] f]]oc)-
Let z € R? and w = p(2). Since p is conformal on R?, by Koebe’s distortion

theorem,
yl10g(2)| = [yl f'(p(2)]]F'(2)] 2= dr(w)| f'(w)| < C.

If = € R?, as we mentioned before, we can choose ¢ so that, if 0 < |Im(z)| < &
then, |0p(z)| =~ |p/(Z)|. Hence, as above

wl19g(2)] = lyllOp(2)I1f'(p(2))] = br(p(2))|f(p(2))].

By the distortion theorem for quasiconformal mappings or(p(z)) =~ ér(p(z)) with
comparison constants depending on ||44]|«, which concludes the proof. O

Before stating the next lemma, we will review some facts already developed in
[2] which follow Semmes’s approach in [10]. Let g € H*®(Qq, 1), then g = f o p for
some f € H*(Q). Consider now the jump of g, j(g), and set § = Cr(j(g)). If we
define G = g — §, then G = pudg on € and since G has no jump across £, we can
consider that this equation holds on all C in the sense of distributions. We can then
apply Cauchy’s formula to obtain

G(z0) = %/C 9G(2) dx dy = i /c dedy, for all z5 € C.

zZ— 2 i zZ— 2

Lemma 2.3. Assume that supp(u) C @ for some @) centered at a real point
with length R < e¢/4. Let g € H®(Qo, p) and g € H®(Sy) so that j(g) = j(g) and
set G = g— §. Then for all z € C, |G(z)| < CR/?*9) where C = C(||g|ls0; [I¥]|c)-
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Proof. Consider zy = z + iyo € (2Q\R). Since G = pudg and supp(u) C Q,

then
Z—Z()| Z—Z()|

_ [ (2)99(2) 1(:)99(2)
(2) _/QO 7 — 2] dd+/Q\Qo 7 = 2 dx dy,

where @)y is the square centered at zp and length [(Q) = |yo|]. To bound the first
integral in (2), set p=2+¢c and ¢ = (2+¢)/(1 +¢). Then

— Lte

2+4e€ e 2+e€

@ [P doay < ([ g deds) ([ - al Fana)
Qo ‘Z - ZO‘ Qo Qo

Asv = |u*/ly is a Carleson measure relative to R and |y| > |yo|/2 for z € Q,

we obtain by lemma 2.2:

(1(2)0g(2) = dady S [ |u(2) 7 s dady
ly | *
Qo Qo

(4) < 2 » (112 dzr dy < 4||v|c-
|yo| 2Qo |?/ |
Let us now consider By = B,(29) so that r ~ |yo| and Q9 C By. By changing
variables to polar coordinates,

|1+€

(5) |z—zo|_% dx dy < |z—zo|_%i dxdng(»s)rﬁ :C’(e)|y0|ﬁ.
Qo Bg

Therefore, by (3), (4) and (5)

9 & e

(6) / dedy 5 C(||V||075>|y0|2+5 5 C(HV’|C,€)R2+S,
Qo |Z - Z0|

To bound the second integral in (2), consider an open cover of Q\ (o with squares,
Q;, centered at zy and length 1(Q;) = 2°|yo|, 7 > 1. Note that it is sufficient a cover
with M squares such that M < log,(R/|yo|). Then, by (1)

M

0, o2
/Q\Qo v Z

|z — 20| — {10 Qi\Qi_1

(7) < Z

Therefore, by (2), (6) and (7), [G(z0)] < c<||u||c, IAlles ) B2/,
For z5 € (2Q(R), let Q" be the square centered at z and length {(Q') = 2*7R,
i > 0. Since 0G = pdg and supp( ) C @, by (1)

|1(2)9g(2)| / 9(2)|
< d dy = 7dxd
)l S / \z—zo\ Z QI\Qi+1 |z — zo| 4

>0

<—Zzl/ |1(2)0g(z \d:cdy<—22z Q2 < Re2,

>0 >0

—1

|1(2)0g(2)| d dy

21|y | 1+a/2 < |y |a/2(2a/2)M < Ra/2

Therefore, |G(zy)| < CR?/2 for C = C(||p]|c, |||, €)-
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Finally, let 2o € C\2@Q). Then, by (1)

\</'“ ddy<—/m 09 (=) de dy
|Z—ZQ|

< C(Ivlle, [Mlle) B2, O
We now prove Theorem 1:

Theorem 1. Let fi, fo,..., f, € H>®(Q) so that § < max;|f;(w)| < 1, for
all w € Q and some § > 0. Then, there exist gi,¢s,...,9, € H*>(Q) such that

figr+ fogo+ ...+ fngn =1 on Q.

Proof. Gamelin [3| showed that it is sufficient to prove it locally, that is, that
for ¢ € I' there exists a neighborhood of { on which it is true and such that the size
of this neighborhood is determined by §, n and other parameters concerning I" (see
also 4, p. 358]).

We can then assume that p(z) = 0 outside a square ) centered at a real point
with length R, for a small enough R = R(n,d,I") to be determined later. To see
this, consider the solution j of the Beltrami equation 0p = udp for z € Q, 9p = 0
otherwise. Then, p = F o p where F' is an univalent function in the region p(Q), and
therefore it will be enough to prove the corona theorem for the domain Q = C\ j(Ej).

Since the dilatation coefficient i = px g obviously satisfies that |a|?/|y|'™ dz dy is
a Carleson measure, we know that I' = p(R) is also a C1*% curve for & = a(av, |||~
([2], Theorem 1) and therefore all the previous lemmas apply if we replace I', u and
p by the corresponding T, it and p. To avoid excessive use of notation, we will drop
the tilde notation.

Let fi = frop on €y. Then, the jump of f; across Ej is indeed the pullback
of j(fx) under the mapping p, that is, j(f7) = j(fx) o p. Note that ff,..., f} €
HOO(Q(), H,) ~ ~

Set fr = Cr(j(f7)). By Theorem 2, fi, € H>®(Qp). First, we want to show that fj,
are corona data in €. So, let G = f; —fk and zg € y. Then, there exists 1 < j < n
such that § < [f7(20)] < [G(20)] + 175 (20)]- By lemma 2.3, |G;(2)| < R/ < §/2
for a sufficiently small R and therefore 6/2 < |f;(20)].

According to Garnett and Jones’ theorem for Denjoy domains [5], there exist
hi,ha, ... hy, € H®(Qq) such that fihy + ... fuh, = 1 with ||h]|ee < C(n,0).

Define H; = j(hi). Then, Hf € L>°(R) and hy = Cr(H}). Set H, = H; o p~*
on I and define hy = Cr(Hy). Although {h;}7_, C H>®(Q2) by Theorem 2, they are
not corona solutions as they do not verify that fih; + fohs + ... foh, =1 on Q.

Consider the analytic functions gi(w) = hg(w)/(Q_ fi(w)hj(w)), 1 < k < n, on
Q. They clearly satisfy that ) g;f; = 1. We just need to prove that g1, ga, . .. g, are
also bounded. For that, it is sufficient to show that > frhy is close to 1.

Let us denote hf = hy 0 p € H*(Q, 1). Note that j(h;) = j(hx). For any z € €
and by lemma 2.3:

| Z Fe(p(2)hi(p(2)) = 1] = | Z fe(2)hy(2) = Z JAOINE

<Z|fk ) (2) |+Z|hk Ifu(2) = fi(2)]
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(8) <R L nC(n, 6 R/ < 1/2
for a sufficiently small R. U

As a final remark, this new approach encourages us to find solutions to the corona
problem for domains bounded by other quasicircles. For that, one would need to find
conditions on p so that we can transfer H* on the complement of a curve onto the
corresponding Denjoy domain.
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