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Abstract. A description of all the admissible weights similar to the Muckenhoupt class Ap is

an open problem for the weighted Morrey spaces. In this paper necessary condition and sufficient

condition for two-weight norm inequalities on Morrey spaces to hold are separately given for the

Hardy–Littlewood maximal operator. Necessary and sufficient condition is also verified for the

power weights.

1. Introduction

The purpose of this paper is to develop a theory of weights for the Hardy–
Littlewood maximal operator on the Morrey spaces. The Morrey spaces, which were
introduced by Morrey in order to study regularity questions which appear in the
Calculus of Variations, describe local regularity more precisely than Lebesgue spaces
and widely use not only harmonic analysis but also partial differential equations
(cf. [4]).

We shall consider all cubes in R
n which have their sides parallel to the coordinate

axes. We denote by Q the family of all such cubes. For a cube Q ∈ Q we use l(Q)
to denote the sides length of Q and |Q| to denote the volume of Q. Let 0 < p < ∞
and 0 < λ < n be two real parameters. For f ∈ Lp

loc(R
n), define

‖f‖Lp,λ = sup
Q∈Q

(

1

l(Q)λ

ˆ

Q

|f(x)|p dx
)1/p

.

The Morrey space Lp,λ(Rn) is defined to be the subset of all Lp locally integrable
functions f on R

n for which ‖f‖Lp,λ is finite. It is easy see that ‖ · ‖Lp,λ becomes
the norm if p ≥ 1 and becomes the quasi norm if p ∈ (0, 1). The completeness of
Morrey spaces follows easily by that of Lebesgue spaces. Let f be a locally integrable
function on R

n. The Hardy–Littlewood maximal operator M is defined by

Mf(x) = sup
Q∈Q

 

Q

|f(y)| dy1Q(x),

where
ffl

Q
f(x) dx stands for the usual integral average of f over Q and 1Q denotes

the characteristic function of the cube Q. By weights we will always mean non-
negative, locally integrable functions which are positive on a set of positive measure.
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Given a measurable set E and a weight w, w(E) =
´

E
w(x) dx. Given 1 < p < ∞,

p′ = p/(p− 1) will denote the conjugate exponent number of p. Let 0 < p < ∞ and
w be a weight. We define the weighted Lebesgue space Lp(Rn, w) to be a Banach
space equipped with the norm (or quasi norm)

‖f‖Lp(w) =

(
ˆ

Rn

|f(x)|pw(x) dx
)1/p

< ∞.

Let 0 < p < ∞, 0 < λ < n and w be a weight. We define the weighted Morrey space
Lp,λ(Rn, w) to be a Banach space equipped with the norm (or quasi norm)

‖f‖Lp,λ(w) = sup
Q∈Q

(

1

l(Q)λ

ˆ

Q

|f(x)|pw(x) dx
)1/p

< ∞.

As is well-known, for the Hardy–Littlewood maximal operator M and p > 1,
Muckenhoupt [9] showed that the weighted inequality

‖Mf‖Lp(w) ≤ C‖f‖Lp(w)

holds if and only if

[w]Ap = sup
Q∈Q

w(Q)

|Q|

(
 

Q

w(x)−p′/p dx

)p/p′

< ∞.

While, for 1 < p ≤ q < ∞, Sawyer [15] showed that the weighted inequality

‖Mf‖Lq(u) ≤ C‖f‖Lp(v)

holds if and only if
(
ˆ

Q

M [σ1Q](x)
qu(x) dx

)1/q

≤ Cσ(Q)1/p < ∞, σ = v−p′/p,

holds for every cube Q ∈ Q.
For p > 1 one says that a weight w on R

n belongs to the Muckenhoupt class
Ap when [w]Ap < ∞. For p = 1 one says that a weight w on R

n belongs to the
Muckenhoupt class A1 when

[w]A1
= sup

Q∈Q

ffl

Q
w(x) dx

ess inf x∈Qw(x)
< ∞.

A description of all the admissible weights similar to the Muckenhoupt class Ap

is an open problem for the weighted Morrey space Lp,λ(Rn, w) (see [12]). In [5], we
proved the following partial answer to the problem.

Proposition 1.1. [5, Theorem 2.1] Let 1 < p < ∞, 0 < λ < n and w be
a weight. Then, for every cube Q ∈ Q, the weighted inequality

(

1

l(Q)λ

ˆ

Q

Mf(x)pw(x) dx

)1/p

≤ C sup
Q′∈Q
Q′⊃Q

(

1

l(Q′)λ

ˆ

Q′

|f(x)|pw(x) dx
)1/p

holds if and only if

sup
Q,Q′∈Q
Q⊂Q′

w(Q)

l(Q)λ
l(Q′)λ

|Q′|

(
 

Q′

w(x)−p′/p dx

)p/p′

< ∞.
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This proposition says that the weighted inequality

(1.1) ‖Mf‖Lp,λ(w) ≤ C‖f‖Lp,λ(w)

holds if

(1.2) sup
Q∈Q

‖w1Q‖L1,λ

l(Q)λ

|Q|

(
 

Q

w(x)−p′/p dx

)p/p′

< ∞.

One sees that the power weights w = | · |α belong to the Muckenhoupt class Ap if and
only if −n < α < (p − 1)n. While, the power weights w = | · |α satisfy (1.2) if and
only if λ− n ≤ α < (p− 1)n. Let H be the Hilbert transform defined by

Hf(x) = lim
ε→+0

1

π

ˆ

R

1(ε,∞)(|x− y|)
x− y

f(y) dy.

For 1 < p < ∞ and 0 < λ < 1, Samko [11] showed that the weighted inequality

‖Hf‖Lp,λ(w) ≤ C‖f‖Lp,λ(w), w = | · |α,
holds if and only if λ−1 ≤ α < λ+(p−1). Thus, our sufficient condition (1.2) seems to
be quite strong. In this paper we introduce another sufficient condition and necessary
condition for which (1.1) to hold (Proposition 4.1). The conditions justify the power
weights w = | · |α fulfill (1.1) if and only if λ−n ≤ α < λ+(p−1)n (Proposition 4.2).
More precisely, in this paper we introduce sufficient condition and necessary condition
for which two-weight Morrey norm inequalities to hold (Theorem 3.1), which is closely
related to Sawyer’s two-weight theorem. As an appendix, we show two-weight norm
inequality in the upper triangle case 0 < q < p < ∞, 1 < p < ∞ (Proposition 5.1).

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C1, C2, do not change in different
occurrences. By A ≈ B we mean that c−1B ≤ A ≤ cB with some positive constant
c independent of appropriate quantities.

2. A dual equation

In this section we shall verify a dual equation of Morrey spaces (Lemma 2.4). For
any measurable set E ⊂ R

n and any f ∈ Lp(Rn), we simply have
ˆ

E

|f(x)|p dx ≤ ‖f‖pLp < ∞.

While, if f ∈ Lp,λ(Rn), then for any Q ∈ Q
ˆ

Q

|f(x)|p dx ≤ ‖f‖p
Lp,λl(Q)λ.

This implies that for any family of counterable cubes {Qj} ⊂ Q such that E ⊂
⋃

j Qj ,
we have

(2.1)

ˆ

E

|f(x)|p dx ≤
∑

j

ˆ

Qj

|f(x)|p dx ≤ ‖f‖p
Lp,λ

∑

j

l(Qj)
λ.

In general, if E ⊂ R
n and 0 < α ≤ n, then the α-dimensional Hausdorff content of

E is defined by

Hα(E) = inf

{

∑

j

l(Qj)
α

}

,
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where the infimum is taken over all coverings of E by countable families of cubes
{Qj} ⊂ Q. Thanks to this definition, we get by (2.1)

(2.2)

ˆ

E

|f(x)|p dx ≤ ‖f‖p
Lp,λH

λ(E).

The Choquet integral of φ ≥ 0 with respect to the Hausdorff content Hα is defined
by

ˆ

Rn

φ dHα =

ˆ ∞

0

Hα({y ∈ R
n : φ(y) > t}) dt.

Thus, by (2.2), for any φ ≥ 0 and any f ∈ Lp,λ(Rn),

(2.3)

ˆ

Rn

|f(x)|pφ(x) dx =

ˆ ∞

0

ˆ

{y∈Rn:φ(y)>t}

|f(x)|p dx dt ≤ ‖f‖p
Lp,λ

ˆ

Rn

φ dHλ.

Following the argument in [2], we introduce another characterization of the Morrey
space by (2.3).

Definition 2.1. Let 0 < λ < n. Define the basis Bλ to be the set of all weights
b such that b ∈ A1 and

´

Rn b dH
λ ≤ 1.

We need the following lemma.

Lemma 2.2. [10, Lemma 1] Let 0 < α < n and p > α/n. Then, for some
constant C depending only on α, n and p,

ˆ

Rn

M [1Q]
p dHα ≤ Cl(Q)α.

Let 0 < λ < λ0 < n and f ∈ Lp,λ(Rn). It follows from (2.3) and Lemma 2.2
that, for every cube Q ∈ Q,

1

l(Q)λ

ˆ

Q

|f(x)|p dx =
1

l(Q)λ

ˆ

Rn

|f(x)|p1Q(x) dx

≤ 1

l(Q)λ

ˆ

Rn

|f(x)|pM [1Q](x)
λ0/n dx

≤ ‖f‖p
Lp,λ

1

l(Q)λ

ˆ

Rn

M [1Q]
λ0/n dHλ ≤ C‖f‖p

Lp,λ,

which yields

(2.4) ‖f‖Lp,λ ≈ sup
b∈Bλ

(
ˆ

Rn

|f(x)|pb(x) dx
)1/p

,

where we have used the fact that M [1Q]
λ0/n ∈ A1, since λ0/n < 1 (cf. [3, Chapter II]).

Definition 2.3. [2] Let 1 < p < ∞ and 0 < λ < n. The space Hp,λ(Rn) is
defined by the set of all measurable functions f on R

n with the quasi norm

‖f‖Hp,λ = inf
b∈Bλ

(
ˆ

Rn

|f(x)|pb(x)−p/p′ dx

)1/p

< ∞.
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For non-negative functions f ∈ Lp,λ(Rn) and g ∈ Hp′,λ(Rn), there holds by
Hölder’s inequality that
ˆ

Rn

f(x)g(x) dx =

ˆ

Rn

f(x)b(x)1/pg(x)b(x)−1/p dx

≤
(
ˆ

Rn

f(x)pb(x) dx

)1/p(ˆ

Rn

g(x)p
′

b(x)−p′/p dx

)1/p′

, b ∈ Bλ.

This implies by (2.4)

(2.5)

ˆ

Rn

f(x)g(x) dx ≤ C‖f‖Lp,λ‖g‖Hp′,λ .

In this section we shall verify the following lemma.

Lemma 2.4. Let 1 < p < ∞ and 0 < λ < n. Then, for any measurable function
g on R

n, we have the estimate (allowing to be infinite)

‖g‖Hp′,λ ≈ sup
f

ˆ

Rn

|f(x)g(x)| dx,

where the supremum is taken over all functions f ∈ Lp,λ(Rn) with ‖f‖Lp,λ ≤ 1.

This lemma was first introduced in [2] without the proof. In [6], Izumi et al. give
the full proof for the block spaces on the unit circle T with the help of Functional
Analysis. In [14], we give the proof for the block spaces on the Euclidean space R

n.

Definition 2.5. Let 1 < p < ∞ and 0 < λ < n. The block space Bp,λ(Rn) is
defined by the set of all measurable functions f on R

n with the norm

‖f‖Bp,λ = inf

{

‖{ck}‖l1 : f =
∑

k

ckak

}

< ∞,

where ak is a (p, λ)-block and ‖{ck}‖l1 =
∑

k |ck| < ∞, and the infimum is taken
over all possible decompositions of f . Additionally, we say that a function a on R

n

is a (p, λ)-block provided that a is supported on a cube Q ∈ Q and satisfies

‖a‖Lp ≤ 1

l(Q)λ/p′
.

Lemma 2.6. [14] Let 1 < p < ∞ and 0 < λ < n. Then, for any measurable
function g on R

n, we have the estimate (allowing to be infinite)

‖g‖Bp′,λ = sup
f

ˆ

Rn

|f(x)g(x)| dx,

where the supremum is taken over all functions f ∈ Lp,λ(Rn) with ‖f‖Lp,λ ≤ 1.

Proof of Lemma 2.4. Thanks to Lemma 2.6, we need only verify that Hp,λ(Rn) =
Bp,λ(Rn) with ‖ · ‖Hp,λ ≈ ‖ · ‖Bp,λ . This fact was proved in [1]. But, the direct proof
is given here for the completeness.

We will denote by D the family of all dyadic cubes Q = 2−k(m + [0, 1)n), k ∈
Z, m ∈ Z

n. Assume that for non-negative function f ∈ Hp,λ(Rn),

(2.6)

(
ˆ

Rn

f(x)pb(x)−p/p′ dx

)1/p

≤ 2‖f‖Hp,λ for some b ∈ Bλ.
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Consider Ek = {x ∈ R
n : b(x) > 2k}, k ∈ Z. Then,

(2.7)

ˆ

Rn

b dHλ ≈
∑

k

2kHλ(Ek) ≈ 1.

By the definition of the Hausdorff content Hλ and its dyadic equivalence (cf. [10]),
one can select a set of the pairwise disjoint dyadic cubes {Qk,j} ⊂ D such that
Ek ⊂

⋃

j Qk,j and

(2.8)
∑

j

l(Qk,j)
λ ≤ 2Hλ(Ek).

Upon defining

δk,j = Qk,j \
⋃

i

Qk+1,i,

we see that the sets δk,j are pairwise disjoint and R
n =

⋃

k,j δk,j. With this, we obtain

f =
∑

k,j

ck,jak,j,

where

ck,j = l(Qk,j)
λ/p′

(

ˆ

δk,j

f(x)p dx

)1/p

and

ak,j = l(Qj,k)
−λ/p′

(

ˆ

δk,j

f(x)p dx

)−1/p

f1δk,j .

It is easy to check that each ak,j is a (p, λ)-block. To prove that f ∈ Bp,λ(Rn), it
remains to verify that {ck,j} is summable.

Notice that b(x) ≤ 2k+1 if x ∈ δk,j. This yields, by using Hölder’s inequality,

‖{ck,j}‖l1 ≤ C
∑

k,j

l(Qk,j)
λ/p′2k/p

′

(

ˆ

δk,j

f(x)pb(x)−p/p′ dx

)1/p

≤ C

(

∑

k,j

l(Qk,j)
λ2k

)1/p′
(
ˆ

Rn

f(x)pb(x)−p/p′ dx

)1/p

≤ C

(

∑

k

2kHλ(Ek)

)1/p′
(
ˆ

Rn

f(x)pb(x)−p/p′ dx

)1/p

≤ C‖f‖Hp,λ,

where we have used (2.6)–(2.8). This proves Hp,λ(Rn) ⊂ Bp,λ(Rn) with ‖ · ‖Bp,λ ≤
C‖ · ‖Hp,λ .

We now prove converse. Suppose that f ∈ Bp,λ(Rn). So, f =
∑

j cjaj with

{cj} ∈ l1 and each aj is a (p, λ)-block. Assume that Qj is the support cube of aj .
For 0 < λ < λ0 < n, define

b(x) = ‖{cj}‖−1
l1

∑

j

|cj |bj(x)
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with

bj(x) =
1

l(Qj)λ
M [1Qj

](x)λ0/n.

Then, we see that
ˆ

Rn

bj dH
λ ≤ C and [bj ]A1

≤ C.

This means that
ˆ

Rn

b dHλ ≤ C and [b]A1
≤ C.

Thus, we have Cb ∈ Bλ.
It follows from Hölder’s inequality that

|f(x)|p ≤
(

∑

j

|cj |bj(x)
)p/p′ (

∑

j

|cj|bj(x)−p/p′aj(x)
p

)

.

This implies
ˆ

Rn

|f(x)|pb(x)−p/p′ dx ≤ ‖{cj}‖p/p
′

l1

∑

j

|cj |
ˆ

Qj

bj(x)
−p/p′aj(x)

p dx.

Notice that whenever x ∈ Qj

bj(x)
−p/p′ ≤ l(Qj)

λp/p′,

which implies
ˆ

Rn

|f(x)|pb(x)−p/p′ dx ≤ ‖{cj}‖p/p
′

l1

∑

j

|cj|l(Qj)
λp/p′

ˆ

Qj

|aj(x)|p dx ≤ ‖{cj}‖pl1 .

This proves Bp,λ(Rn) ⊂ Hp,λ(Rn) with ‖ · ‖Hp,λ ≤ C‖ · ‖Bp,λ . These complete the
proof of Lemma 2.4. �

3. Two-weight norm inequalities

In this section we shall prove the following theorem.

Theorem 3.1. Let 1 < p < ∞, 0 < q < ∞, 0 < λ < n, u, v be weights. Consider
the following five statements:

(a) There exists a constant c1 > 0 such that

‖Mf‖Lq,λ(u) ≤ c1‖f‖Lp,λ(v)

holds for every function f ∈ Lp,λ(Rn, v);
(b) There exists a constant c2 > 0 such that

1

|Q|‖u
1/q1Q‖Lq,λ‖v−1/p1Q‖Hp′,λ ≤ c2

holds for every cube Q ∈ Q;
(c) There exists a constant c3 > 0 such that

inf
b∈Bλ



 sup
Q∈Q
Q⊂Q0

1

σ(Q)1/p

(
ˆ

Q

M [σ1Q](x)
qu(x) dx

)1/q


 ≤ c3l(Q0)
λ/q, σ = (bv)−p′/p,

holds for every cube Q0 ∈ Q;
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(d) There exists a constant c4 > 0 such that, for some a > 1,

inf
b∈Bλ



 sup
Q∈Q
Q⊂Q0

u(Q)1/q

|Q|1/p
(
 

Q

[b(x)v(x)]−ap′/p dx

)1/ap′


 ≤ c4l(Q0)
λ/q

holds for every cube Q0 ∈ Q;
(e) There exists a constant c5 > 0 such that, for 1/q = 1/r + 1/p,

inf
b∈Bλ

(
ˆ

Q0

M [σ](x)ru(x)r/qσ(x)−r/p dx

)1/r

≤ c5l(Q0)
λ/q, σ = (bv)−p′/p,

holds for every cube Q0 ∈ Q.

Then,

(I) (a) implies (b) with c2 ≤ Cc1;
(II) When 1 < p ≤ q < ∞, (b) and (c) imply (a) with c1 ≤ C(c2 + c3);

(III) When 1 < p ≤ q < ∞, (b) and (d) imply (a) with c1 ≤ C(c2 + c4);
(IV) When 0 < q < p < ∞ and 1 < p < ∞, (b) and (e) imply (a) with c1 ≤

C(c2 + c5).

We shall prove this theorem in the remainder of this section. Recall that D
denotes the family of all dyadic cubes Q = 2−k(m + [0, 1)n), k ∈ Z, m ∈ Z

n. In
the following proof, by the argument which uses appropriate averages of the sifted
dyadic cubes, we can replace the set of cubes Q by the set of dyadic cubes D (cf.
[7]). So, the Hardy–Littlewood maximal operator M can be replaced by the dyadic
Hardy–Littlewood maximal operator Md. But, for the sake of simplicity, we will
denote Md by the same M .

3.1. Proof of Theorem 3.1 (I). Assume that the statement (a). Then,

‖Mf‖Lq,λ(u) ≤ c1‖f‖Lp,λ(v)

holds for every function f ∈ Lp,λ(Rn, v). For any cube Q ∈ D and any function
f ∈ Lp,λ(Rn, v),

 

Q

|f(x)| dx‖u1/q1Q‖Lq,λ =

∥

∥

∥

∥

 

Q

|f(x)| dxu1/q1Q

∥

∥

∥

∥

Lq,λ

≤ ‖M [f1Q]‖Lq,λ(u) ≤ c1‖f1Q‖Lp,λ(v).

Taking the supremum over all functions f with ‖f1Q‖Lp,λ(v) ≤ 1, we have by Lemma 2.4

1

|Q|‖u
1/q1Q‖Lq,λ‖v−1/p1Q‖Hp′,λ ≤ Cc1,

which is the statement (b).

3.2. Proof of Theorem 3.1 (II). We need more a lemma. Let µ be a positive
measure on R

n and f be a locally µ-integrable function on R
n. The dyadic Hardy–

Littlewood maximal operator Mµ is defined by

Mµf(x) = sup
Q∈D

 

Q

|f(y)| dµ(y)1Q(x).

Lemma 3.2. [7] We have the estimate

‖Mµf‖Lp(µ) ≤ p′‖f‖Lp(µ), p ∈ (1,∞].
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Assume that 1 < p ≤ q < ∞ and the statements (b) and (c). Without loss of
generality we may assume that f is non-negative. Recall that M is now the dyadic
Hardy–Littlewood maximal operator. Fix a cube Q0 in D. Then, by a standard
argument we have

Mf(x) ≤ C∞ +M [f1Q0
](x), x ∈ Q0,

with

C∞ = sup
Q∈D
Q)Q0

 

Q

f(y) dy.

By the definition of the weighted Morrey norm, we have to evaluate two quantities:

(3.1) C∞

(

1

l(Q0)λ

ˆ

Q0

u(x) dx

)1/q

;

(3.2)

(

1

l(Q0)λ

ˆ

Q0

M [f1Q0
](x)qu(x) dx

)1/q

.

The estimate of (3.1). There holds
(

1

l(Q0)λ

ˆ

Q0

u(x) dx

)1/q

≤ ‖u1/q1Q0
‖Lq,λ ,

and, for Q ∈ D such that Q ) Q0,
 

Q

f(y) dy ≤ C

|Q|‖v
−1/p1Q‖Hp′,λ‖f1Q‖Lp,λ(v),

where we have used (2.5). These yield by use of the statement (b)

(3.1) ≤ Cc2‖f‖Lp,λ(v).

The estimate of (3.2). Let D(Q0) = {Q ∈ D : Q ⊂ Q0}. Consider, for all
Q ∈ D(Q0),

E(Q) =
{

x ∈ Q : M [f1Q0
](x) =

 

Q

f(y) dy

}

\
⋃

Q′∈D(Q0)
Q′)Q

{

x ∈ Q′ : M [f1Q0
](x) =

 

Q′

f(y) dy

}

.

A little thought confirms that the sets E(Q) are pairwise disjoint and

M [f1Q0
](x) =

∑

Q∈D(Q0)

 

Q

f(y) dy1E(Q)(x), x ∈ Q0.

Take a function g which is non-negative, is supported on Q0 and satisfies ‖g‖Lq′(u) ≤ 1.
Upon using the duality argument, we shall estimate

(3.3)
∑

Q∈D(Q0)

 

Q

f(y) dy

ˆ

E(Q)

g(x)u(x) dx.

Fix b ∈ Bλ so that

(3.4) sup
Q∈D
Q⊂Q0

1

σ(Q)1/p

(
ˆ

Q

M [σ1Q](x)
qu(x) dx

)1/q

≤ 2c3l(Q0)
λ/q, σ = (bv)−p′/p.
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Then, (3.3) can be rewritten as

∑

Q∈D(Q0)

σ(Q)

|Q|

 

Q

f(y)σ(y)−1 dσ(y)

ˆ

E(Q)

g(x)u(x) dx,

where dσ(y) denotes σ(y) dy. We now employ the argument of the principal cubes
(cf. [8, 16]).

We define the collection of principal cubes

F =

∞
⋃

k=0

Fk,

where F0 = {Q0},
Fk+1 =

⋃

F∈Fk

chF(F )

and chF (F ) is defined by the set of all maximal dyadic cubes Q ⊂ F such that
 

Q

f(y)σ(y)−1 dσ(y) > 2

 

F

f(y)σ(y)−1 dσ(y).

Observe that

∑

F ′∈chF(F )

σ(F ′) ≤
(

2

 

F

f(y)σ(y)−1 dσ(y)

)−1
∑

F ′∈chF(F )

ˆ

F ′

f(y)σ(y)−1 dσ(y) ≤ σ(F )

2
,

and, hence,

(3.5) σ(EF(F )) = σ



F \
⋃

F ′∈chF(F )

F ′



 ≥ σ(F )

2
,

where the sets EF(F ) are pairwise disjoint. We further define the stopping parents

πF (Q) = min{F ⊃ Q : F ∈ F} for all Q ∈ D(Q0).

It follows that

(3.3) =
∑

F∈F

∑

Q:
πF(Q)=F

σ(Q)

|Q|

 

Q

f(y)σ(y)−1 dσ(y)

ˆ

E(Q)

g(x)u(x) dx

≤ 2
∑

F∈F

 

F

f(y)σ(y)−1 dσ(y)
∑

Q:
πF (Q)=F

σ(Q)

|Q|

ˆ

E(Q)

g(x)u(x) dx.

From Hölder’s inequality,

∑

Q:
πF(Q)=F

σ(Q)

|Q|

ˆ

E(Q)

g(x)u(x) dx

≤









∑

Q:
πF(Q)=F

(

σ(Q)

|Q|

)q ˆ

E(Q)

u(x) dx









1/q







∑

Q:
πF(Q)=F

ˆ

E(Q)

g(x)q
′

u(x) dx









1/q′

.
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From the definition of M , the facts that E(Q) ⊂ Q and the sets E(Q) are pairwise
disjoint,

≤
(
ˆ

F

M [σ1F ](x)
qu(x) dx

)1/q









∑

Q:
πF (Q)=F

ˆ

E(Q)

g(x)q
′

u(x) dx









1/q′

.

From Hölder’s inequality again, (3.3) can be majorized by

2
∑

F∈F

 

F

f(y)σ(y)−1 dσ(y)

(
ˆ

F

M [σ1F ](x)
qu(x) dx

)1/q









∑

Q:
πF(Q)=F

ˆ

E(Q)

g(x)q
′

u(x) dx









1/q′

≤ 2

{

∑

F∈F

(

 

F

f(y)σ(y)−1 dσ(y)

(
ˆ

F

M [σ1F ](x)
qu(x) dx

)1/q
)q}1/q

×















∑

F∈F

∑

Q:
πF (Q)=F

ˆ

E(Q)

g(x)q
′

u(x) dx















1/q′

=: (i)× (ii).

Since the sets E(Q) are pairwise disjoint,

(ii) =

(
ˆ

Q0

g(x)q
′

u(x) dx

)1/q′

≤ 1.

Since p ≤ q and ‖ · ‖lp ≥ ‖ · ‖lq ,

(3.6) (i) ≤
{

∑

F∈F

(

 

F

f(y)σ(y)−1 dσ(y)

(
ˆ

F

M [σ1F ](x)
qu(x) dx

)1/q
)p}1/p

.

Further,

≤
{

sup
F∈F

1

σ(F )1/p

(
ˆ

F

M [σ1F ](x)
qu(x) dx

)1/q
}

×
{

∑

F∈F

(
 

F

f(y)σ(y)−1 dσ(y)

)p

σ(F )

}1/p

≤ 2c3l(Q0)
λ/q

{

∑

F∈F

(
 

F

f(y)σ(y)−1 dσ(y)

)p

σ(F )

}1/p

,

where we have used (3.4).
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By using the definition of Mσ, (3.5) and the facts that EF(F ) ⊂ F and the sets
EF(F ) are pairwise disjoint,

{

∑

F∈F

(
 

F

f(y)σ(y)−1 dσ(y)

)p

σ(F )

}1/p

≤ C

{

∑

F∈F

(
 

F

f(y)σ(y)−1 dσ(y)

)p

σ(EF(F ))

}1/p

≤ C

(
ˆ

Rn

Mσ[fσ
−1](x)p dσ(x)

)1/p

.

By use of Lemma 3.2,

≤ C

(
ˆ

Rn

[f(x)σ(x)−1]pσ(x) dx

)1/p

= C

(
ˆ

Rn

f(x)pb(x)v(x) dx

)1/p

≤ C‖f‖Lp,λ(v),

where we have used (2.4).
So altogether we obtain

(
ˆ

Q0

M [f1Q0
](x)qu(x) dx

)1/q

≤ Cc3l(Q0)
λ/q‖f‖Lp,λ(v)

and

(3.2) ≤ Cc3‖f‖Lp,λ(v).

These complete the proof of Theorem 3.1 (II).

3.3. Proof of Theorem 3.1 (III). Assume that 1 < p ≤ q < ∞ and the
statements (b) and (d). Going through the same argument as before, retaining the
same notation, we need only evaluate (3.2) especially (3.3). Letting σ ≡ 1 in (3.6),
we see that

(i) ≤
{

∑

F∈F

(
 

F

f(y) dyu(F )1/q
)p
}1/p

.

Fix b ∈ Bλ so that

(3.7) sup
Q∈D
Q⊂Q0

u(Q)1/q

|Q|1/p
(
 

Q

[b(x)v(x)]−ap′/p dx

)1/ap′

≤ 2c4l(Q0)
λ/q.

Take c < 1 is a number that satisfy (cp)′ = ap′. Hölder’s inequality gives

 

F

f(y) dy =

 

F

f(y)[b(y)v(y)]1/p[b(y)v(y)]−1/p dy

≤
(
 

F

f(y)cp[b(y)v(y)]c dy

)1/cp( 

F

[b(y)v(y)]−ap′/p dy

)1/ap′

,
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which implies

(i) ≤
{

sup
F∈F

u(F )1/q

|F |1/p
(
 

F

[b(y)v(y)]−ap′/p dy

)1/ap′
}

×
{

∑

F∈F

(
 

F

f(y)cp[b(y)v(y)]c dy

)1/c

|F |
}1/p

≤ 2c4l(Q0)
λ/q

{

∑

F∈F

(
 

F

f(y)cp[b(y)v(y)]c dy

)1/c

|F |
}1/p

,

where we have used (3.7).
The definition of M , the facts that |F | ≤ 2|EF(F )|, EF(F ) ⊂ F and the sets

EF(F ) are pairwise disjoint read
{

∑

F∈F

(
 

F

f(y)cp[b(y)v(y)]c dy

)1/c

|F |
}1/p

≤ C

{

∑

F∈F

(
 

F

f(y)cp[b(y)v(y)]c dy

)1/c

|EF(F )|
}1/p

≤ C

(
ˆ

Rn

M [f cp(bv)c](x)1/c dx

)1/p

≤ C

(
ˆ

Rn

f(x)pb(x)v(x) dx

)1/p

≤ C‖f‖Lp,λ(v),

where we have used the L1/c-boundedness of M and (2.4).
So altogether we obtain

(
ˆ

Q0

M [f1Q0
](x)qu(x) dx

)1/q

≤ Cc4l(Q0)
λ/q‖f‖Lp,λ(v)

and
(3.2) ≤ Cc4‖f‖Lp,λ(v).

This completes the proof of Theorem 3.1 (III).

3.4. Proof of Theorem 3.1 (IV). Assume that 0 < q < p < ∞, 1 < p < ∞ and
the statements (b) and (e). In the same manner as above, retaining the same notation
as before, we need only evaluate (3.2). Fix b ∈ Bλ so that, for 1/q = 1/r + 1/p,

(3.8)

(
ˆ

Q0

M [σ](x)ru(x)r/qσ(x)−r/p dx

)1/r

≤ 2c5l(Q0)
λ/q, σ = (bv)−p′/p.

We have for every Q ∈ D(Q0),
 

Q

f(y) dy =
σ(Q)

|Q|

 

Q

f(y)σ(y)−1 dσ(y)

≤ M [σ](x)Mσ [fσ
−1](x), x ∈ Q,

which implies
Mf(x) ≤ M [σ](x)Mσ [fσ

−1](x), x ∈ Q0.
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Thus,
(
ˆ

Q0

M [f1Q0
](x)qu(x) dx

)1/q

≤
(
ˆ

Q0

M [σ](x)qMσ[fσ
−1](x)qu(x) dx

)1/q

=

(
ˆ

Q0

M [σ](x)qu(x)σ(x)−1 ·Mσ[fσ
−1](x)q dσ(x)

)1/q

.

From Hölder’s inequality with the exponent (p − q)/p + q/p = 1 and the fact that
1/r = (p− q)/pq,

≤
(
ˆ

Q0

(

M [σ](x)qu(x)σ(x)−1
)p/(p−q)

dσ(x)

)1/r (ˆ

Q0

Mσ[fσ
−1](x)p dσ(x)

)1/p

=: (iii)× (iv).

We have by (3.8)

(iii) =

(
ˆ

Q0

M [σ](x)ru(x)r/qσ(x)−r/p dx

)1/r

≤ 2c5l(Q0)
λ/q

and we have by Lemma 3.2

(iv) ≤ C

(
ˆ

Rn

f(x)pb(x)v(x) dx

)1/p

≤ C‖f‖Lp,λ(v).

These imply
(
ˆ

Q0

M [f1Q0
](x)qu(x) dx

)1/q

≤ Cc5l(Q0)
λ/q‖f‖Lp,λ(v)

and
(3.2) ≤ Cc5‖f‖Lp,λ(v).

This completes the proof of Theorem 3.1 (IV).

4. One-weight norm inequalities

We restate Theorem 3.1 in terms of the one-weight setting.

Proposition 4.1. Let 1 < p < ∞, 0 < λ < n and w be a weight. Consider the
following four statements:

(a) There exists a constant c1 > 0 such that

‖Mf‖Lp,λ(w) ≤ c1‖f‖Lp,λ(w)

holds for every function f ∈ Lp,λ(Rn, w);
(b) There exists a constant c2 > 0 such that

1

|Q|‖w
1/p1Q‖Lp,λ‖w−1/p1Q‖Hp′,λ ≤ c2

holds for every cube Q ∈ Q;
(c) There exists a constant c3 > 0 such that

inf
b∈Bλ



 sup
Q∈Q
Q⊂Q0

1

σ(Q)

ˆ

Q

M [σ1Q](x)
pw(x) dx



 ≤ cp3l(Q0)
λ, σ = (bw)−p′/p,
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holds for every cube Q0 ∈ Q;
(d) There exists a constant c4 > 0 such that, for some a > 1,

inf
b∈Bλ



 sup
Q∈Q
Q⊂Q0

w(Q)

|Q|

(
 

Q

[b(x)w(x)]−ap′/p dx

)p/ap′


 ≤ cp4l(Q0)
λ

holds for every cube Q0 ∈ Q.

Then,

(I) (a) implies (b) with c2 ≤ Cc1;
(II) (b) and (c) imply (a) with c1 ≤ C(c2 + c3);

(III) (b) and (d) imply (a) with c1 ≤ C(c2 + c4).

From this proposition we have the following.

Proposition 4.2. Let 1 < p < ∞, 0 < λ < n and w = | · |α be a power weight.
Then, the weighted inequality

‖Mf‖Lp,λ(w) ≤ C‖f‖Lp,λ(w)

holds if and only if λ− n ≤ α < λ+ (p− 1)n.

Proof. Assume that λ− n ≤ α < λ+ (p− 1)n.
Proof of (b). We first evaluate

(4.1)
1

|Q0|
‖w1/p1Q0

‖Lp,λ‖w−1/p1Q0
‖Hp′,λ

for

Q0 =

(

c, c+
d√
n

)

×
(

0,
d√
n

)n−1

⊂ R
n, c, d > 0.

(The restriction to such a Q0 can be justified by symmetry of the problem.)
Suppose that d ≤ c. Let 0 < λ < λ0 < n and set

b1(x) =
C

l(Q0)λ
M [1Q0

](x)λ0/n.

Then, we see that b1 belongs to Bλ (see Section 2). This implies

‖w−1/p1Q0
‖Hp′,λ ≤

(
ˆ

Q0

[|x|αb1(x)]−p′/p dx

)1/p′

≤ C|Q0|1/p
′

l(Q0)
λ/p sup

x∈Q0

|x|−α/p.

While,

‖w1/p1Q0
‖Lp,λ ≤ ‖1Q0

‖Lp,λ sup
x∈Q0

|x|α/p = |Q0|1/pl(Q0)
−λ/p sup

x∈Q0

|x|α/p.

These yield

(4.1) ≤ C

(

supx∈Q0
|x|

infx∈Q0
|x|

)|α|/p

≤ C

(

c+ d

c

)|α|/p

≤ C.

Suppose that d > c. Let B = {x ∈ R
n : |x| < 2d}. Take λ1 > 0 so that

α < λ1 + (p− 1)n < λ+ (p− 1)n. Set

b2(x) =
λ/λ1 − 1

λ/λ1

(4d)λ1−λ|x|−λ11B(x).
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Then, we see that |x|−λ1 ∈ A1 and that

ˆ

Rn

b2 dH
λ = 1. Indeed,

ˆ

Rn

| · |−λ11B dHλ = (4d)λ−λ1 +

ˆ ∞

(4d)−λ1

t−λ/λ1 dt

= (4d)λ−λ1 +
1

λ/λ1 − 1
(4d)λ−λ1 =

λ/λ1

λ/λ1 − 1
(4d)λ−λ1 .

Thus, we obtain

(4.1) ≤ C

|B|‖w
1/p1B‖Lp,λ‖w−1/p1B‖Hp′,λ

≤ C

|B|

(
ˆ

B

(4d)−λ|x|α dx
)1/p(ˆ

B

[|x|αb2(x)]−p′/p dx

)1/p′

=
C

|B|(4d)
−λ1/p

(
ˆ

B

|x|α dx
)1/p(ˆ

B

|x|
λ1−α
p−1 dx

)1/p′

≤ C,

where we have used 0 < λ ≤ α + n and 0 < (λ1 − α)/(p− 1) + n.
Proof of (d). Next, we evaluate

(4.2) inf
b∈Bλ





1

l(Q0)λ
sup
Q∈Q
Q⊂Q0

w(Q)

|Q|

(
 

Q

[b(x)w(x)]−ap′/p dx

)p/ap′


 .

When d ≤ c, the same estimates of (4.1) are available to those of (4.2). Indeed,
for an any cube Q ⊂ Q0, we have

(
 

Q

[b1(x)w(x)]
−ap′/p dx

)p/ap′

≤ Cl(Q0)
λ sup
x∈Q0

|x|−α

and

w(Q)

|Q| ≤ sup
x∈Q0

|x|α.

These yield

(4.2) ≤ C

(

supx∈Q0
|x|

infx∈Q0
|x|

)|α|

≤ C

(

c+ d

c

)|α|

≤ C.

When d > c and
d0
c0

:=
supx∈Q |x|
infx∈Q |x| ≤ 2,

1

l(Q0)λ
w(Q)

|Q|

(
 

Q

[b2(x)w(x)]
−ap′/p dx

)p/ap′

≤ C

(4d)λ1

sup
x∈Q

|x|α sup
x∈Q

|x|λ1−α ≤ C
dλ1

0

(4d)λ1

(

d0
c0

)|α|

≤ C.
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When d > c and
d0
c0

:=
supx∈Q |x|
infx∈Q |x| > 2, the same estimates of (4.1) are available too.

Indeed, it follows by letting B0 = {x ∈ R
n : |x| < d0} that

1

l(Q0)λ
w(Q)

|Q|

(
 

Q

[b2(x)w(x)]
−ap′/p dx

)p/ap′

≤ C

(4d)λ1

 

B0

|x|α dx
(
 

B0

[|x|α−λ1 ]−ap′/p dx

)p/ap′

=
C

(4d)λ1

 

B0

|x|α dx
(
 

B0

|x|a
λ1−α
p−1 dx

)(p−1)/a

≤ C
dλ1

0

(4d)λ1

≤ C,

where we have used 0 < λ ≤ α + n and 0 < a(λ1 − α)/(p− 1) + n.
Disproof of (b). Finally, if α < λ− n, then

lim
r→+0

1

rλ

ˆ

{|y|<r}

|x|α dx = ∞,

which implies

‖w1/p1(−1,1)n‖Lp,λ = ∞.

Suppose that α ≥ λ+ (p− 1)n. Notice that |x|(λ−n)/p ∈ Lp,λ(Rn) with the norm less
than C. This implies by Lemma 2.4

‖w−1/p1(−1,1)n‖Hp′,λ ≥ C

ˆ

(−1,1)n
|x|(λ−α−n)/p dx = ∞,

where we have used −n ≥ (λ− α− n)/p.
Conclusion. Thus, Proposition 4.2 holds by (I) and (III) of Proposition 4.1. �

5. Appendix

As an appendix, we shall show the following two-weight norm inequality in the
upper triangle case 0 < q < p < ∞, 1 < p < ∞.

Proposition 5.1. Let 0 < q < p < ∞, 1 < p < ∞ and u, v be weights. Suppose
that v ∈ A1. Then, the weighted inequality

(5.1) ‖Mf‖Lq(u) ≤ C‖f‖Lp(v1−p)

holds if and only if

(5.2) ‖u1/qv1/p
′‖Lr < ∞,

1

q
=

1

r
+

1

p
.

Proof. In the same manner as in the proof of Theorem 3.1, we may assume that
f is non-negative and M is the dyadic maximal operator.

Suppose that (5.2) holds. We have for every Q ∈ D,
 

Q

f(y) dy =
v(Q)

|Q|

 

Q

f(y)v(y)−1 dv(y)

≤ M [v](x)Mv [fv
−1](x) ≤ Cv(x)Mv[fv

−1](x), x ∈ Q,

where we have used v ∈ A1. This implies

Mf(x) ≤ Cv(x)Mv[fv
−1](x), x ∈ R

n.
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Thus,
(
ˆ

Rn

Mf(x)qu(x) dx

)1/q

≤ C

(
ˆ

Rn

v(x)qMv[fv
−1](x)qu(x) dx

)1/q

= C

(
ˆ

Rn

v(x)q−1u(x) ·Mv[fv
−1](x)q dv(x)

)1/q

.

From Hölder’s inequality with the exponent (p − q)/p + q/p = 1 and the fact that
1/r = (p− q)/pq,

≤ C

(
ˆ

Rn

(

v(x)q−1u(x)
)p/(p−q)

dv(x)

)1/r (ˆ

Rn

Mv[fv
−1](x)p dv(x)

)1/p

≤ C

(
ˆ

Rn

(

u(x)1/qv(x)1−1/q+1/r
)r

dx

)1/r (ˆ

Rn

f(x)pv(x)1−p dx

)1/p

≤ C‖u1/qv1/p
′‖Lr‖f‖Lp(v1−p),

where we have used Lemma 3.2.
Suppose that (5.1) holds. Notice that q/p + q/r = 1. Keeping this in mind, we

evaluate

(5.3)

ˆ

Rn

g(x)v(x)q/p
′

u(x) dx

with a non-negative function g which satisfies ‖g‖Lp/q ≤ 1.
It follows from (5.1) that

(5.3) =

ˆ

Rn

[g(x)1/qv(x)1/p
′

]qu(x) dx ≤
ˆ

Rn

M [g1/qv1/p
′

](x)qu(x) dx

≤ C

(
ˆ

Rn

g(x)p/qv(x)p/p
′

v(x)1−p dx

)q/p

= C

(
ˆ

Rn

g(x)p/q dx

)q/p

≤ C.

This yields (5.2). �
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