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Abstract. We continue our research on Sobolev spaces on locally compact abelian groups. In

this paper, we focus on embedding results when the dual group is metrizable. We show the density

of continuous functions. As a by-product we obtain new embeddings of Sobolev spaces defined over

p-adic numbers.

1. Introduction

The purpose of this paper is to continue the investigation of Sobolev spaces
on locally compact abelian (LCA) groups. Sobolev spaces are well understood on
(domains of) Rn, see [1, 27], compact Riemannian manifolds [4, 15], and metric
measure spaces [14, 26]. There are also some works on Sobolev spaces in the p-adic
context, see [18, 24] and references therein, and in special cases of locally compact
groups such as the Heisenberg group (see [5, 7]).

We introduced Sobolev spaces on LCA groups in [13]. In that reference we proved
analogues of the Sobolev embedding and Rellich–Kondrachov theorems, and we used
these results to prove the existence of regular solutions to some equation of infinite
order. In [12] we improved previous theorems about continuous and compact embed-
dings (see also [11] for related result in the case of countable dual groups). Moreover
in [12], we introduced Sobolev spaces on subsets of LCA groups and we proved ana-
logue of Rellich lemma for those spaces. In our paper we study Sobolev spaces on
locally compact abelian groups in the case when the dual group is metrizable.

The remainder of the paper is organized as follows. In Preliminaries we review
some definitions from harmonic analysis and present the theory of Sobolev spaces
on topological groups. Moreover, some general remarks about metrizable groups are
given. Then, in Section 3 we prove various embeddings type theorems for Sobolev
spaces on locally compact abelian groups. Namely, we establish the embedding into
Lp as well as into Hölder spaces. Furthermore, the so-called Moser–Trudinger in-
equality is proved. In that section we assume that the dual group G∧ is metrizable
and the measure on G∧ is upper β-regular (see Preliminaries for the definition). Sec-
tion 4 is devoted to studying the density of continuous functions in Sobolev space.
In Theorem 5 we show that the space of continuous functions is dense in the Sobolev
space defined on any LCA groups. Finally, let us stress that most of the results
presented in this paper can be applied to the Sobolev spaces over p-adic numbers.
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2. Preliminaries

We use standard notations from harmonic analysis (see [8] and [17]). Let us fix
a locally compact abelian group G. We denote by µG the unique Haar measure of G
and by G∧ the dual group of the group G that is, G∧ is the locally compact abelian
group of all continuous group homomorphisms from G to the circle group T. We
denote by µ̂G Haar measure (Plancherel measure) on G∧. By e (resp. ê) we shall

denote the identity of G (resp. Ĝ). The Lp spaces over G are defined as usual,

Lp(G) =

{
f : G → C :

ˆ

G

|f(x)|p dµG(x) < ∞
}
,

and we set

‖f‖Lp(G) =

(
ˆ

G

|f(x)|p dµG(x)

)1/p

.

Since the definition of the Sobolev space on locally compact abelian group uses essen-
tially the Fourier transform, we also recall that the Fourier transform on G is defined
as follows: if f ∈ L1(G), then it Fourier transform is the function f̂ : G∧ → C given
by

f̂(ξ) =

ˆ

G

ξ(x)f(x)dµG(x).

Now, let us recall the notion of the Sobolev spaces on locally compact abelian
groups (see [13], [11] and [12]).

Definition 1. Let us fix a map γ : G∧ → [0,∞) and a nonnegative real number
s. We shall say that f ∈ L2(G) belongs to the Sobolev space Hs

γ(G) if the following
integral is finite:

ˆ

G∧

(
1 + γ(ξ)2

)s |f̂(ξ)|2 dµ̂G(ξ).

Moreover, for f ∈ Hs
γ(G) its norm ‖f‖Hs

γ(G) is defined as follows:

‖f‖Hs
γ(G) =

(
ˆ

G∧

(
1 + γ(ξ)2

)s |f̂(ξ)|2 dµ̂G(ξ)

)1
2

.

For the basic properties of this kind of spaces we refer to [13].
We now turn to a brief presentation of the theory of metrizable locally com-

pact groups. Let us recall that the Birkhoff–Kakutani theorem [20] states that the
LCA group is metrizable if and only if it is first countable. On the other hand, if
LCA group G is the second countable, then there exists an invariant metric (i.e.
d(x, y) = d(gx, gy) for all x, y, g ∈ G) in which all balls are relatively compact (see
[25]). Furthermore, if G is LCA and second countable, then the dual group G∧ is
second countable too (see [6]).

Definition 2. Let G be a LCA group. We say that metrics d : G×G → R+ and

d̂ : G∧ ×G∧ → R+ are dual metrics if for each character ξ ∈ G∧ and every x, y ∈ G
we have

|ξ(x)− ξ(y)| ≤ d̂(ξ, ê)d(x, y).
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Example 1. The groups Rn,Tn and Qn
p satisfy condition of the above defini-

tion1.

The condition in Definition 2 is a Lipschitz continuity of characters. Note that in
general, for locally compact groups with invariant metric we can only conclude that
characters are uniformly continuous.

Propositon 1. Let G be a locally compact group with invariant metric, then

every character is uniformly continuous.

Probably, this observation is well known, but for the sake of completeness we
include the proof.

Proof. Let us fix the character ξ ∈ G∧. From the continuity of ξ, for any ε > 0,
there exists δ > 0 such that

|ξ(e)− ξ(z)| < ε,

when d(e, z) < δ. Next, taking x, y ∈ G such that d(x, y) = d(e, x−1y) < δ, we get

|ξ(x)− ξ(y)| = |ξ(x)||ξ(e)− ξ(x−1y)| = |ξ(e)− ξ(x−1y)| < ε. �

Let us mention a very interesting consequence of the above definition.

Propositon 2. Let G be a LCA group such that d and d̂ are dual metrics. If G
is second countable and G∧ is bounded, then G is countable.

Proof. First note that G∧ ⊂ C(G,T). Since T is compact, it follows that for all
a ∈ G the set

G∧
a = {ξ(a) : ξ ∈ G∧} ⊂ T

has a compact closure. Moreover, by the assumption on d̂ we have that G∧ is equicon-
tinuous. Hence, from the Arzela–Ascoli theorem (see e.g. [22]) we conclude that G∧

is relatively compact in C(G,T). On the other hand, since G∧ is closed, we get that
G∧ is compact. Thus, by the Pontryagin duality, we have that G is discrete. Finally,
it follows that G must be countable. �

The following definition will be needed throughout the paper.

Definition 3. Let (G, d, µ) be a LCA group with metric d and the Haar measure
µ. We shall say that the measure µ is upper β-regular if:

1. G is not discrete and there exists a constant Dβ > 0, such that for all r > 0
we have

µ(B(e, r)) ≤ Dβr
β.

2. G is discrete and there exists R0 > 0 and Dβ > 0 such that B(e, R0) = {e}
and for r ≥ R0

µ(B(e, r)) ≤ Dβr
β.

Remark 1. The degree β in Definition 3 can be treated as an analogue of the
dimension for groups. Similar condition appears in the analysis on metric measure
spaces (see [16, 14]).

Remark 2. Assume that (G∧, d̂) is discrete and µ̂G is upper β-regular. Then,
from the Pontryagin duality (G, d) is compact and thus bounded. Since in the above

1Basic properties of the p-adic world can be found in the monograph [23].
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definition R0 is not unique, we shall always assume that

R0 ≤ min

(
1

supx,y∈G d(x, y)
, 1

)
.

The following property allows us to extend our considerations to the cases when
γ(ξ) 6= d̂(ξ, ê). Nevertheless, the most important case is when γ(ξ) = d̂(ξ, ê).

Definition 4. Let G be a LCA group and ω,A > 0. We say that a function
γ : G∧ → [0,+∞) belongs to ΓA(ω) if for all ξ ∈ G∧ the following inequality holds

Ad̂(ξ, ê)ω ≤ γ(ξ).

From now on, we write d for metric on G as well as d̂ for metric on G∧. Moreover,
for simplicity of notation, we write CX,δ instead of max(1, X−2δ).

3. Embedding theorems

We discuss in this chapter the validity of Sobolev embeddings. We shall assume
that the dual group G∧ is metrizable and the measure µ̂ is upper β-regular. Let us
mention that in the theory of Sobolev spaces on metric measure spaces it is frequently
assumed that the measure µ on metric space (X, d) is lower β-regular (see [3, 14, 16]) .
On the other hand, we deal with dual objects such as G∧ and µ̂, thus our assumption
on the measure µ̂ is dual in a sense.

3.1. Embedding into L
p-spaces. We start with the following extremely useful

lemma.

Lemma 1. Let G be a LCA group. Suppose that γ ∈ ΓA(ω) and the measure

µ̂ is upper β-regular. If α > β
2ω

, then (1 + γ2(.))−1 ∈ Lα(G∧). Moreover, for every

R > 0 the following inequality
∥∥∥∥

1

1 + γ2(.)

∥∥∥∥
α

Lα(G∧)

≤ CA,αDβ

(
max

(
µ̂G({ê})

Dβ

, Rβ

)
+

2βRβ−2ωα

1− 2β−2ωα

)

holds.

Proof. Let us fix α > β
2ω

and R > 0. It is easy to see that

1

(1 + γ2(ξ))α
≤ CA,α(

1 + d̂2ω(ξ, ê)
)α .

Next, we shall consider two cases:
1. G∧ is not discrete. Since β − 2ωα < 0, we have
ˆ

G∧

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)α =

ˆ

B(ê,R)

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)α +

ˆ

G∧\B(ê,R)

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)α

≤ DβR
β +

∞∑

k=0

ˆ

B(ê,2k+1R)\B(ê,2kR)

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)α ≤ DβR
β +Dβ

∞∑

k=0

(
2k+1R

)β

22ωαkR2ωα

= Dβ

(
Rβ + 2βRβ−2ωα

∞∑

k=0

(
2β−2ωα

)k
)

= Dβ

(
Rβ +

2βRβ−2ωα

1− 2β−2ωα

)
.
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2. G∧ is discrete. If R ≥ R0, then the proof runs as before. Now, for R < R0 we
have

ˆ

G∧

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)α ≤ µ̂G({ê}) +
ˆ

G∧\B(ê,R)

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)α

= µ̂G({ê}) +
ˆ

G∧\B(ê,R0)

dµ̂G(ξ)

(1 + d̂(ξ, ê)2ω)α

≤ µ̂G({ê}) +Dβ
2βRβ−2ωα

0

1− 2β−2ωα

≤ µ̂G({ê}) +Dβ
2βRβ−2ωα

1− 2β−2ωα
.

This completes the proof. �

Now, we are in position to state the main result of this subsection.

Theorem 1. Let G be a LCA group. Suppose that γ ∈ ΓA(ω), the measure µ̂ is

upper β-regular and 0 < s < β
2ω

. Then for all α > β
2ω

the following embedding holds

Hs
γ(G) →֒ Lα∗

(G),

where α∗ = 2α
α−s

. Moreover, there exists a constant C > 0 such that for each u ∈
Hs

γ(G) we have

‖u‖Lα∗(G) ≤ C‖u‖Hs
γ(G).

Furthermore, if additionally G is compact and p < α∗, then

Hs
γ(G) →֒→֒ Lp(G),

where →֒→֒ denotes the compact embedding.

Proof. By virtue of Theorem 3.5 from [13], it is sufficient to show that 1
1+γ2(·)

∈
Lα(G∧). Let us fix R > 0. Hence, from Lemma 1 we have

∥∥∥∥
1

1 + γ2(.)

∥∥∥∥
α

Lα

≤ CA,αDβ

(
max

(
µ̂G({ê})

Dβ

, Rβ

)
+

2βRβ−2ωα

1− 2β−2ωα

)
< ∞.

This is our claim. On the other hand, the compactness follows from Theorem 11 in
[12]. �

We finish this subsection with a very important consequence of the above theo-
rem.

Corollary 1. Let G be a LCA group. Suppose that γ(ξ) = d̂(ξ, ê), the measure

µ̂ is upper β-regular. If 0 < s < β
2
, then for all α > β

2
the following embedding holds

Hs
γ(G) →֒ Lα∗

(G),

where α∗ = 2α
α−s

. Moreover, there exists a constant C > 0 such that for each u ∈
Hs

γ(G) we have

‖u‖Lα∗(G) ≤ C‖u‖Hs
γ(G).

3.2. Embedding into Hölder spaces. In this section we shall assume that the
group and its dual group are both metrizable. Before the formulation our next result
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we recall the notion of Hölder spaces. Namely, we shall say that a continuous and
bounded function u belongs to the Hölder space C0,α(G) if the following seminorm

sup
x 6=y∈G

|u(x)− u(y)|
d(x, y)α

is finite. C0,α(G) is a Banach space with respect to the following norm

‖u‖C0,α(G) = ‖u‖C(G) + sup
x 6=y∈G

|u(x)− u(y)|
d(x, y)α

.

Theorem 2. Let G be a LCA group such that d and d̂ are dual metrics and

µ̂ is upper β-regular. Additionally, let us assume that γ ∈ ΓA(ω) and that ωs =
α + β

2
for some α ∈ (0, 1). Then, Hs

γ(G) →֒ C0,α(G). Moreover, there exists C =
C(s, ω, β, A,Dβ) such that the inequality

‖u‖C0,α(G) ≤ C‖u‖Hs
γ(G)

holds for all u ∈ Hs
γ(G). Furthermore, if G is compact and λ < α, then

Hs
γ(G) →֒→֒ C0,λ(G).

Proof. First of all let us note that s > β
2ω

, hence from Lemma 1 (1 + γ2(.))−1 ∈
Ls(G∧). Thus, it follows from Theorem 3.3 in [13] that Hs

γ(G) →֒ C(G).
Now, we shall show that u is Hölder continuous. For almost all x, y ∈ G such

that x 6= y, by the Cauchy–Schwartz inequality we get

(1) |u(x)− u(y)| ≤
√
ˆ

G∧

|ξ(x)− ξ(y)|2
(1 + γ2(ξ))s

dµ̂G(ξ) · ‖u‖Hs
γ(G).

Next, let us set r = d(x, y), then we get
ˆ

G∧

|ξ(x)− ξ(y)|2
(1 + γ2(ξ))s

dµ̂G(ξ)

≤
ˆ

B(ê, 1
r
)

|ξ(x)− ξ(y)|2
(1 + γ2(ξ))s

dµ̂G(ξ) + 4CA,s

ˆ

G∧\B(ê, 1
r
)

dµ̂G(ξ)(
1 + d̂(ξ, ê)2ω

)s = I1 + 4CA,sI2.

Using the methods explored in the proof of Lemma 1 we get

(2) I2 ≤ Dβ · 2β
(
1

r

)−2α ∞∑

n=0

(
2−2α

)n
= Dβ

22α+βr2α

22α − 1
.

Subsequently, we shall show that

(3) I1 ≤ CA,sDβ
22ωs

1− 22α−2
r2α.

When G∧ is not a discrete group, then we have µ̂G({ê}) = 0. Thus
ˆ

{ê}

|ξ(x)− ξ(y)|2
(1 + γ2(ξ))s

dµ̂G(ξ) = 0.

On the other hand, if G∧ is a discrete group, then one can easily convince oneself
that

ˆ

B(ê,R0)

|ξ(x)− ξ(y)|2
(1 + γ2(ξ))s

dµ̂G(ξ) = 0.
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According to the above observation and since d and d̂ are dual metrics, the term
I1 can be estimated in the following manner

I1 ≤ CA,s

∞∑

k=0

ˆ

B(ê, 1

2kr
)\B(ê, 1

2k+1r
)

d̂(ξ, ê)2r2(
1 + d̂(ξ, ê)2ω

)s dµ̂G(ξ)

≤ CA,sDβ

∞∑

k=0

2−2kr−2r2

2−(k+1)2ωsr−2ωs
2−kβr−β

= 22ωsr2αCA,sDβ

∞∑

k=0

(
22α−2

)k
= CA,sDβ

22ωs

1− 22α−2
r2α.

Recalling that r = d(x, y) and gathering estimates (3), (2) and (1) we get

|u(x)− u(y)|
d(x, y)α

≤
√

CA,sDβ

√
22ωs

1− 22α−2
+

22ωs+2

22α − 1
‖u‖Hs

γ(G).

Finally, using the embedding Hs
γ(G) →֒ C(G) and the above inequality, we conclude

that there exists a constant C = C(s, ω, β, A,Dβ) such that

‖u‖C0,α(G) ≤ C‖u‖Hs
γ(G),

and the proof of the continuity of the embedding is complete. Now, the routine
application of the Arzela–Ascoli theorem shows the compactness. �

Particularly interesting case is when γ = d̂. This can be concluded from Theo-
rem 2 with ω = 1. We state this result as a separate theorem:

Corollary 2. Let G be a LCA group such that d and d̂ are dual metrics. Suppose

that γ(ξ) = d̂(ξ, ê) and µ̂ is upper β-regular. If β
2
< s < β

2
+ 1, then Hs

γ(G) →֒
C0,α(G), where α = s − β

2
. Moreover, there exists C > 0 such that the following

inequality holds

‖u‖C0,α(G) ≤ C‖u‖Hs
γ(G)

for all u ∈ Hs
γ(G). Furthermore, if s ≥ 1 + β/2 then Hs

γ(G) →֒ C0,α(G) for all

α ∈ (0, 1).

As a corollary, we have the corresponding result in p-adic analysis2.

Corollary 3. Let s = α + n/2 with α ∈ (0, 1). Then,

Hs
d(Q

n
p ) →֒ C0,α(Qn

p ),

where d is a standard p-adic metric.

The above corollary is in fact an improved version of the embedding proved by
Rodríguez-Vega and Zúñiga-Galindo in [24].

3.3. Moser–Trudinger inequality. In this subsection we shall investigate the
limiting case of the embedding when s = β

2ω
. Those type of results refer to the so-

called Moser–Trudinger inequality (see [21, 28] for Sobolev spaces in the Euclidean
setting, [29] for Sobolev spaces on complete noncompact Riemannian manifolds, [2]
for Sobolev spaces in metric measure setting and [30] for Sobolev spaces on the
Heisenberg group Hn 3).

2The dual group to Qn

p
is Qn

p
.

3The Heisenberg group Hn is not abelian.
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Lemma 2. Let G be a LCA group such that the measure µ̂ is upper β-regular

and γ ∈ ΓA(ω). Then there exists C = C(ω, β, A,Dβ) such that for all u ∈ H
β
2ω
γ (G)

and all p ≥ 2

‖u‖Lp(G) ≤ C
√
p‖u‖

H
β
2ω
γ (G)

.

Proof. The proof falls naturally into two steps.
Step 1. For p = 2 the lemma is obvious. Next, let p > 2 and set sp = β

2ω
p−1
p

.
Note that

β

2ω

p− 2

p
< sp <

β

2ω
,

hence it is sufficient to show that

H
β
2ω
γ (G) →֒ Hsp

γ (G) →֒ Lp(G).

The left embedding trivially holds with constant of embedding equal 1. Next, we
show the right one. For this purpose let us put αp = psp

p−2
> sp. Note that αp > β

2ω
,

thus by Lemma 1 we have 1
1+γ2(.)

∈ Lαp(G∧). Moreover, since

α∗
p =

2αp

αp − sp
=

2psp
p−2

psp
p−2

− sp
= p,

by virtue of Theorem 3.5 in [13] we get that for all p ≥ 2

Hsp
γ (G) →֒ Lp(G)

and

‖u‖Lp(G) ≤
∥∥∥∥

1

1 + γ2(.)

∥∥∥∥

sp
2

Lαp (G∧)

‖u‖Hsp
γ (G) ≤

∥∥∥∥
1

1 + γ2(.)

∥∥∥∥

sp
2

Lαp (G∧)

‖u‖
H

β
2ω
γ (G)

.

Step 2. We estimate the quantity
∥∥∥ 1
1+γ2(.)

∥∥∥
sp
2

Lαp(G∧)
. Taking R = 1 in Lemma 1 we

have
∥∥∥∥

1

1 + γ2(.)

∥∥∥∥
αp

Lαp(G∧)

≤ CA,αDβ

[
max

(
µ̂G({ê})

Dβ

, 1

)
+

2β

1− 2β−2αpω

]
.

Since

β − 2αpω =
β

2− p
, αp =

β

2ω

p− 1

p− 2
,

sp
2αp

=
p− 2

2p
,

we obtain

∥∥∥∥
1

1 + γ2(.)

∥∥∥∥

sp
2

Lαp (G∧)

≤ max
(
1, A−sp

)
D

sp
2α
β

[
max

(
µ̂G({ê})

Dβ

, 1

)
+

2β

1− 2β−2αpω

] sp
2αp

= max
(
1, A− β

2ω
p−1
p

)
D

p−2
2p

β

[
max

(
µ̂G({ê})

Dβ
, 1

)
+

2β

1− 2
β

2−p

] p−2
2p
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≤ max
(
1, A− β

2ω

)
max(1, Dβ)

[
max

(
µ̂G({ê})

Dβ
, 1

) p−2
2p

+
2

β(p−2)
2p

(1− 2
β

2−p )
p−2
2p

]

≤ max
(
1, A− β

2ω

)
max(1, Dβ)

[
max

(
µ̂G({ê})

Dβ

, 1

)
+

2
β
2

(1− 2
β

2−p )
p−2
2p

]
,

where the elementary inequality (a+ b)δ ≤ aδ + bδ with 0 ≤ δ ≤ 1 has been applied.
In order to finish the proof we need to show that

(4)

∥∥∥∥
1

1 + γ2(.)

∥∥∥∥

sp
2

Lαp(G∧)

≤ C
√
p,

with C independent of p. For this purpose, let us define the following map

gβ(p) =
2

β
2

(1− 2
β

2−p )
p−2
2p

.

By a straightforward calculation we get

lim
p→+∞

gβ(p)√
p

=
2

β
2

√
β log 2

.

Hence, there exists C1(β) such that

gβ(p)√
p

≤ C1(β)

for all p ≥ 2. Thus, we proved inequality (4) and it completes the proof of the
lemma. �

Now, we are in position to state and proof the main result of this subsection.

Theorem 3. Let G be a LCA group and the measure µ̂ is upper β-regular.

Suppose that γ ∈ ΓA(ω), then there exist constants C and α > 0 such that

sup

u∈H
β
2ω
γ (G)

ˆ

G

(
eα(

u(x)
‖u‖ )

2

− 1

)
dµG(x) ≤ C,

where ‖u‖ = ‖u‖
H

β
2ω
γ (G)

.

Proof. Let us take u ∈ H
β
2ω
γ (G). If we define v = u

‖u‖
, then by Lemma 2 we have

ˆ

G

(
eαv

2(x) − 1
)
dµG(x) =

ˆ

G

∞∑

k=1

1

k!

(
α|v(x)|2

)k
dµG(x) =

∞∑

k=1

αk

k!
‖v‖2kL2k(G)

≤
∞∑

k=1

αk

k!

(
C
√
2k
)2k

=

∞∑

k=1

(2αC2k)k

k!
.

Now, if we take α > 0 such that 2αC2 < e−1, then using the Stirling’s formula we
get that the last series is convergent. This completes the proof. �

Let us mention an important consequence of the theorem.
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Theorem 4. Let G be a compact abelian group and the measure µ̂ is upper

β-regular. If γ ∈ ΓA(ω), then there exist constants C > 0, α > 0 such that
ˆ

G

eα(
u(x)
‖u‖ )

2

dµG(x) ≤ C,

where as before ‖u‖ = ‖u‖
H

β
2ω
γ (G)

.

As a corollary we obtain the Moser–Trudinger inequality on Qn
p . To the best of

our knowledge the following result seems to be new.

Corollary 4. Let d be a standard p-adic metric on Qn
p . There exist constants

C > 0, α > 0 such that

sup

ˆ

Qn
p

(
eα(u(x))

2 − 1
)
dµG(x) ≤ C,

where the supremum is taken over u ∈ Qn
p such that ‖u‖

H
n
2
d

(Qn
p )

= 1.

4. The density of the continuous functions in H
s

γ

In this section we shall state and prove the density theorem for spaces defined
on general LCA groups. We refer the reader to the paper of Meyers and Serrin [19]
for the fundamental result in the problem of density of regular functions in Sobolev
spaces. Let us stress that in this section we do not assume that topological groups
are metrizable. We start with the following lemma.

Lemma 3. Let G be a LCA group and 1 ≤ p < ∞. If f ∈ Lp(G) and φ ∈ Cc(G),
then f ∗ φ ∈ C(G) ∩ Lp(G).

Proof. First, we shall show that f ∗ φ is continuous. For this purpose let us fix
ε > 0. Since the map4 z 7−→ Lzf is a continuous function from G to Lp(G), we can
find an open neighborhood U of eG such that for any z ∈ U

(5) ‖Lzf − f‖Lp(G) ≤
ε

‖φ‖p′
Lp′(G)

.

Next, let us take x, y ∈ G such that −x+ y ∈ U . By virtue of the Hölder inequality
we get

|f ∗ φ(x)− f ∗ φ(y)| =
∣∣∣∣
ˆ

G

(f(x− z)− f(y − z)) φ(z) dµG(z)

∣∣∣∣

≤
ˆ

G

|f(x− z)− f(y − z)|p dµG(z) · ‖φ‖p
′

Lp′(G)
,

(6)

where 1
p
+ 1

p′
= 1. Changing the variables u = y − z and using the fact that G is

abelian we have
ˆ

G

|f(x− z)− f(y − z)|p dµG(z) =

ˆ

G

|f(x− y + u)− f(u)|p dµG(u)

= ‖L−x+yf − f‖Lp(G).

(7)

4The left translation is defined by Lxf(y) = f(x−1y).
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Combining inequalities (5)-(7) we get that f ∗ φ is continuous. For this reason since

‖f ∗ φ‖L∞(G) ≤ ‖f‖Lp(G)‖φ‖Lp′(G),

we conclude that f ∗ φ ∈ C(G). Furthermore, according to the Young inequality for
convolution

‖f ∗ φ‖Lp(G) ≤ ‖f‖Lp(G)‖φ‖L1(G),

we get that f ∗ φ ∈ Lp(G). �

Our main result of this section is the following claim.

Theorem 5. Let G be a LCA group. Then for any s > 0

Hs
γ(G) ∩ C(G)

Hs
γ(G)

= Hs
γ(G).5

Proof. Let us denote by I the set of all symmetric unit neighbourhoods of group
G, partially ordered by inclusion. Let (φj)j∈I be a Dirac net6 on G i.e. φj ∈ Cc(G) are
non-negative, ‖φj‖L1(G) = 1 and for each unit neighbourhood U there exists j0 ∈ I
such that for each j ≥ j0 suppφj ⊂ U (see [9, 12] for similar considerations). Take
any nonzero function f ∈ Hs

γ(G) and let us fix ε > 0. Since f is in Hs
γ(G), there

exists a compact set K such that
ˆ

G∧\K

(1 + γ2(ξ))s
∣∣∣f̂(ξ)

∣∣∣
2

dµ̂G(ξ) <
ε

8
.

From Lemma 3 we have f ∗φj ∈ L2(G)∩C(G). It remains to show that f ∗φj ∈ Hs
γ(G)

and ‖f − f ∗ φj‖Hs
γ(G) < ε for sufficiently large j. By the basic properties of the

convolution and the Fourier transform we have
ˆ

G∧

(
1 + γ2(ξ)

)s ∣∣∣f̂(ξ)− f̂ ∗ φj(ξ)
∣∣∣
2

dµ̂G(ξ)

=

ˆ

G∧

(
1 + γ2(ξ)

)s ∣∣∣f̂(ξ)
∣∣∣
2 ∣∣∣1− φ̂j(ξ)

∣∣∣
2

dµ̂G(ξ)

=

ˆ

K

(
1 + γ2(ξ)

)s ∣∣∣f̂(ξ)
∣∣∣
2 ∣∣∣1− φ̂j(ξ)

∣∣∣
2

dµ̂G(ξ)

+

ˆ

G∧\K

(
1 + γ2(ξ)

)s ∣∣∣f̂(ξ)
∣∣∣
2 ∣∣∣1− φ̂j(ξ)

∣∣∣
2

dµ̂G(ξ) = I1 + I2.

Since K ⊂ G∧ is compact, by the Arzela-Ascoli theorem we conclude that K is
equicontinuous. Thus, there exists an open neighbourhood U of eG such that for all
ξ ∈ K and all x ∈ U

|ξ(x)− 1| <
√

ε

2‖f‖2Hs
γ(G)

.

5It means that Hs

γ
(G) ∩ C(G) is dense in Hs

γ
(G).

6The existence of the Dirac net follows from the Urysohn Lemma, [8].
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From the definition of φj we can find j0 such that for j ≥ j0 supp φj ⊂ U . Conse-
quently,

∣∣∣1− φ̂j(ξ)
∣∣∣ =

∣∣∣∣∣∣

ˆ

G

φj(x) dµG(x)−
ˆ

G

ξ(x)φj(x) dµG(x)

∣∣∣∣∣∣

≤
ˆ

suppφj

φj(x)|1− ξ(x)| dµG(x)

≤
√

ε

2‖f‖2Hs
γ(G)

ˆ

suppφj

φj(x) dµG(x) =

√
ε

2‖f‖2Hs
γ(G)

.

This gives I1 ≤ ε
2
. Furthermore,

∣∣∣1− φ̂j(ξ)
∣∣∣
2

≤
ˆ

suppφj

φj(x)|1− ξ(x)|2 dµG(x) ≤ 4

ˆ

suppφj

φj(x) dµG(x) = 4,

and hence I2 ≤ ε
2
, which proves the theorem. �
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