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Abstract. We extend the notion of transfinite diameter and Chebyshev constant to p-potential

theory in locally compact spaces and study their relations. As in the classical case, it turns out

that provided that the kernel satisfies a certain condition, for any compact sets the energy, the

Chebyshev constant and the transfinite diameter are coincide. The investigations follow the linear

method developed by e.g. Choquet, Fuglede, Ohtsuka, Farkas and Nagy. Taking into consideration

the significance of finite sets of the minimal and almost minimal energy, we examine Fekete and

greedy energy sets as well.

1. Introduction

The starting point is a compact set K ⊂ R
3, and the set of Radon measures

supported on K. Taking no notice of its physical meaning, the potential and the
energy with respect to µ can be given as

U(µ, x) =

ˆ

R3

dµ(y)

‖x− y‖
, E(µ) =

ˆ

R3

U(µ, x)dµ(x).

The problem was finding a measure which minimizes the energy. In 1839 Gauss
realized (cf. [1] and the reference therein) that there is a measure µ0 supported on
K, which satisfies

- µ0(K) = µ(K),
- E(µ0) ≤ E(µ),
- U(µ0, x) = constant =W for x ∈ K,
- U(µ0, x) ≤ W for x ∈ R

3 \K.

On the fundaments of classical theory based the abstract linear potential theory,
where R

3 is replaced by some locally compact space X, and the Newtonian kernel by
some lower semicontinuos kernel function, k(x, y) : X ×X → R ∪ {∞}. This theory
is developed by Choquet [5], Fuglede [11], Ohtsuka [19], Yamasaki [24], Carleson [4]
and Landkof [16], etc.

Two types of normalization can be found in the literature, normalization with
respect to µ (i.e. µ(K) = 1) and with respect to W (i.e. W = 1). The second one leads
to nonlinear potential theory. While the linear capacity of a set is C(E) = W (E)−1,
the p-capacity can be defined (cf. [1]) as

Cp(E) = inf

{
ˆ

X

f p dν : f ≥ 0, f ∈ Lν,p,

ˆ

X

k(x, y)f(y) dν(y) ≥ 1 ∀x ∈ E

}

,
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where ν is a fixed measure on X. Although there are several further generalizations
of nonlinear capacity e.g. for Sobolev and Besov spaces cf. e.g. the works of Hajłasz
[13], Costea [7] or the monograph of A. Björn and J. Björn [2]; our investigations are
concentrated to the above-mentioned nonlinear capacity.

In the theory of classical potentials there is a nice cluster point where the theory of
polynomials and thence the approximation and interpolation theory is connected with
potentials and this relationship has a wide importance in practical senses. Namely
supposing a certain condition on the kernel, the transfinite diameter, the Chebyshev
constant and the capacity of a compact set are coincide. Actually, these notions are
the finite-set versions of potential and energy. After the classical investigations of e.g.
Fekete [9] and Siciak [22], at the end of the ’90-s several applications were inspirated
by the monograph of Saff and Totik on logarithmic potentials with external fields
[21]. Transfinite diameter and Chebyshev constant in locally compact spaces were
examined by Farkas and Nagy [8]. These investigations gave chance of defining some
greedy energy points which are asymptotically as good as the minimal energy—or
Fekete points, but less difficult to compute them. The power of this discretization
method is well illustrated by the applications in metric spaces, for instance computing
Hausdorff measures (cf. [12], [3]). It was also pointed out that Fekete sets are optimal
in point of view of interpolation (cf. e.g. [21], [15]). The aim of the investigations
below is to get something similar in the nonlinear case.

The classical transfinite diameter and Chebyshev constant are linear expressions,
that is the first power of a log-polynomial (see below) plays role in them. To avoid
using p′th power of log-polynomials, an equivalent form of Cp-capacity will be used.
In [1] the following is given: Let X be a measure space equipped with a measure
ν, k(x, y) : Rn × X → R ∪ {∞} a kernel which is lower semicontinuous on R

n and
measurable on X, µ is a Radon measure on R

n, f is a ν-measurable nonnegative
function,

E(µ, f) =

ˆ

Rn

ˆ

X

k(x, y)f(y) dν(y) dµ(x).

By a minimax theorem it can be proved, that for a compact set K ⊂ R
n

Cp(K)−
1
p = sup

f∈L
min

µ∈M(K)
E(µ, f) = min

µ∈M(K)
sup
f∈L

E(µ, f),

where M(K) = {µ is Radon measure on K : µ(K) = 1}, L = {f ≥ 0: ‖f‖ν,p ≤ 1}.
This expression allows to handle the p-energy like the linear one. By the lower
semicontinuity of the kernel, the expression of energy shows that the n-point systems
on which the energy is close to the optimal one may consist of only one point, which
is very unpleasant in point of interpolation for instance. Indeed taking only the first
part of d(Xn, f) (see Definition 1), one can choose always the (almost) minimun
point of F (x) =

´

k(x, y)f(y) dν(y). On the other hand, the physical meaning of
transfinite diameter also requires n-point systems, where the mutual distance of the
points are as large as it is possible.

In the examinations below, we extend the notion of transfinite diameter and
Chebyshev constant to the nonlinear case. On behalf of dispersion of minimal energy
points we will take into consideration the convex combination of linear and nonlinear
energy. If the kernel is infinite at the diagonal, the common infinum will ensure the
dispersion of the points. Since in the linear case the two variables of the kernel are in
the same space, in the nonlinear part it has to be assumed the same. In the second
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section the transfinite diameter and (Wiener-type) energy are defined and besides the
equivalence, some properties of the energy is studied. These considerations yield non-
symmetric kernels which generate some difficulties in connection with the definition
of potential which is given in the third section. At first it is given and examined on
“one level”, with respect to a measurable function f , and then independently of any
functions. The properties of the equilibrium potential are also given. The definition
of potential gives the possibility of defining Chebysev constant and greedy energy
points. These investigations can be found in Sections 3 and 4. In the last section we
make some observations with respect to symmetry and examine the behavior of the
notions introduced in this note, when the convex combination approaches one of the
endpoints.

2. Transfinite diameter and capacity

In this section the frame of our investigations is given. After this the definitions
of p-transfinite diameter and p-energy are introduced. Finally we compare these
notions. In the classical (linear) case there are several results on comparison of
transfinite diameter and capacity. Let us mention here only one example, for instance
Szegő verified the equality of the transfinite diameter and the logarithmic capacity
in 1924 [23].

Let X be a locally compact Hausdorff space equipped with a regular Borel mea-
sure ν, and let the kernel function k : X ×X −→ R ∪ {∞} be lower semicontinuous
(l.s.c.) in Fuglede’s sense, symmetric, and nonnegative. Let H ⊂ X. At first we
define a class of probability measures on H .

M(H) := {µ : µ is a regular Borel measure on H, µ has compact

support (suppµ ⊂ H), µ(H) = 1},

and we use the following class of ν-measurable functions:

L := {f ≥ 0:

ˆ

X

f(y)p dν((y) ≤ 1}.

Following Fuglede’s notation (cf. [11, p. 145]) the (upper) integral of a positive l.s.c.
function g is defined as

ˆ

X

g dµ := sup
0≤h≤g

h∈Cc(X)

ˆ

X

h dµ,

where Cc(X) is the set of continuous, compactly supported functions on X. If g(x, y)
is defined on X ×X, then h ∈ Cc(X ×X), if g(x, y) is symmetric, then it suffices to
take only symmetric functions in the supremum.

We start the nth-diameter of a set, which is the n-point-set version of the energy.
At firs all the definitions are given “with respect to f ” (where f ∈ L is an arbitrary
function), then they are given independently of f . The last one will be kept in focus.

Definition 1. Let H be a subset of X and Xn = {x1, . . . , xn} ⊂ H a system of
nodes in H and f ∈ L a nonnegative, ν-measurable function on X. Let λ ∈ (0, 1).
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We define

d(Xn, f) := dk,λ(Xn, f)

= (1− λ)

ˆ

X

f(y)
1

n

n
∑

i=1

k(xi, y) dν(y) + λ
2

n(n− 1)

∑

1≤i<j≤n

k(xi, xj),

and the nth-diameter of H

dn(H) := dn,k,p,λ(H) = sup
f∈L

inf
Xn⊂H

d(Xn, f).

Notation. If K is a compact subset of X, then

inf
Xn⊂K

d(Xn, f) = min
Xn⊂K

d(Xn, f) = d(X∗
n, f),

and X∗
n = X∗

n,k,λ(f) are the Fekete points of K with respect to f (cf. (3) below).
Usually they are not unique.

Below the p-transfinite diameter of a set is introduced. First of all we show
that dn(H) is increasing with n, and so it has a limit in the extended sense. Let
Xl,n = Xn \ {xl}. Now

1

n

n
∑

l=1

d(Xl,n, f) =
1− λ

n

ˆ

X

f(y)

n
∑

l=1

1

n− 1

∑

1≤i≤n
i6=l

k(xi, y) dν(y)

+
λ

n

n
∑

l=1

2

(n− 2)(n− 1)

∑

1≤i<j≤n
i,j 6=l

k(xi, xj).

Each term k(xi, y) occurs exactly n− 1 times, and each term k(xi, xj) occurs exactly
n− 2 times. That is choosing arbitrarily an Xn ⊂ H

(1) d(Xn, f) =
1

n

n
∑

l=1

d(Xl,n, f) ≥ inf
Xn−1⊂H

d(Xn−1, f).

Taking infinum in Xn ⊂ H and supremum in f ∈ L, we get

dn(H) ≥ dn−1(H).

So we can define the p-transfinite diameter of a set H :

Definition 2.
d(H) := dk,p,λ(H) = lim

n→∞
dn(H).

Thereafter the p-energy of a set, that is to say the infinite-set version of the
transfinite diameter is defined. To this purpose we introduce some notations.

Notation. Let f ∈ L and µ ∈ M(H). Denote by

E(µ, f) := Ek(µ, f) =

ˆ

X

f(y)

ˆ

X

k(x, y) dµ(x) dν(y),

I(µ) := Ik(µ) =

ˆ

X

ˆ

X

k(x, y) dµ(x) dµ(y),

where by Fubini’s theorem the order of integration can be changed (cf. [11, p. 147,
(ii)]).
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Let λ ∈ [0, 1], and let

E(µ, f) = Ek,λ(µ, f) = (1− λ)E(µ, f) + λI(µ)

the mutual energy of f and µ.

ǫ(f,H) := ǫk,λ(f,H) = inf
µ∈M(H)

E(µ, f),

ǫ(µ) := ǫk,p,λ(µ) = sup
f∈L

E(µ, f) = (1− λ)‖Gµ(y)‖ν,p′ + λI(µ),

where

Gµ(y) =

ˆ

X

k(x, y) dµ(x),
1

p
+

1

p′ = 1,

cf. [1]. The p-energy of a set H can be given as

Definition 3.

W̃ (H) := W̃k,p,λ(H) = sup
f∈L

inf
µ∈M(H)

E(µ, f) = sup
f∈L

ǫ(f,H),

W (H) := Wk,p,λ(H) = inf
µ∈M(H)

sup
f∈L

E(µ, f) = inf
µ∈M(H)

ǫ(µ).

It is easy to see that W̃ (H) ≤ W (H) always. We show that they are equal for
compact sets. To this end we need a lemma on lower semicontinuity of the functions
above.

Lemma 1. Let µ be a positive measure, and f ∈ L. Then the following functions
are lower semicontinuous on X or in the weak∗-topology:

µ → I(µ)(2)

x →

ˆ

X

k(x, y) dµ(y), x →

ˆ

X

k(x, y)f(y) dν(y)(3)

µ → E(µ, f)(4)

µ →

ˆ

X

k(x, y) dµ(y)(5)

µ → ‖Gµ‖ν,p′(6)

Proof. (2) is a result of Fuglede (cf. [11, 2.2.1 (e)]). The first statement of
(3) can be find in [11] as well (p. 149), the second one follows from the first one
by the replacement dνf (y) = f(y) dν(y). It has to be mentioned that in case of
positive kernels the assumption of compact support can be omitted here. The proof
of (4) and (5) is coincide with the proof of Prop. 2.3.2. (c) and (b) in [1], so they
are omitted. Finally, since for all i and f ∈ L E(µi, f) ≤ supf∈L E(µi, f), and so
lim inf i→∞ E(µi, f) ≤ lim inf i→∞ supf∈L E(µi, f), ∀f ∈ L, we can take a supremum in
f on the left hand-side, that is by the lower semicontinuity of E(µ, f) in µ (i.e. (4)),

when µi
∗
→ µ

sup
f∈L

E(µ, f) ≤ sup
f∈L

lim inf
i→∞

E(µi, f) ≤ lim inf
i→∞

sup
f∈L

E(µi, f),

which is (6) of Lemma 1. �

After these preliminaries we can state the following theorem.



856 Ágota P. Horváth

Theorem 1. If H ⊂ X then

(7) d(H) ≤ W̃ (H),

and for a compact set K ⊂ X

(8) W (K) ≤ d(K).

Corollary. For a compact set K ⊂ X, W̃ (K) = W (K).

Proof of Theorem 1. Let f ∈ L. Since µ(X) = 1 for all µ ∈ M(H),

inf
Xn⊂H

d(Xn, f) ≤

ˆ

X

· · ·

ˆ

X

d(Xn, f) dµ(x1) · · · dµ(xn)

=
1− λ

n

n
∑

i=1

ˆ

X

ˆ

X

f(y)k(xi, y) dν(y) dµ(xi)

+
2λ

n(n− 1)

∑

1≤i<j≤n

ˆ

X

ˆ

X

k(xi, xj) dµ(xi) dµ(xj)

= (1− λ)E(µ, f) + λI(µ).

Taking infinum in µ, and then supremum in f ∈ L, we have dn(H) ≤ W̃ (H), hence
d(H) ≤ W̃ (H).

In proving (8) we can assume that d(K) is finite. For an f ∈ L let us choose a
Fekete point system with respect to f from K. Let µn := 1

n

∑n

i=1 δx∗
i
, where δx∗

i
are

the Dirac measures at the points of X∗
n. Let h be a continuous function with compact

support such that 0 ≤ h ≤ k. Now

Eh,λ(µn, f) = dh,λ(X
∗
n, f) +

λ

n2

n
∑

i=1

h(x∗
i , x

∗
i )−

2λ

n2(n− 1)

∑

1≤i<j≤n

h(x∗
i , x

∗
j)

≤ λ
‖h‖

n
+ d(X∗

n, f) ≤ λ
‖h‖

n
+ dn(K),

(9)

where ‖h‖ = supx∈K |h(x)|. If n is large enough (i.e. for an arbitrary ε > 0, n >
n0(‖h‖, ε), then

Eh,λ(µn, f) ≤ dn,k,p,λ(K) + ε ≤ dk,p,λ(K) + ε.

By Banach–Alaoglu theorem, there is a cluster point µ of the set Mn0 := {µn : n >
n0} ⊂ M(K), which is weak∗-compact. Taking into consideration the weak∗ conver-
gence of the product measure we get

Eh,λ(µ, f) ≤ dk,p,λ(K) + ε,

thus
Ek,λ(µ, f) ≤ dk,p,λ(K) + ε.

Taking supremum in f ∈ L, and then minimum in µ ∈ M(K), we get that W (K) ≤
d(K) + ε for all ε > 0, which proves the statement. �

We are in position to define the (k, p, λ)-capacity of a set H .

Definition 4. For a set H ⊂ X, let

C(H) = Ck,p,λ(H) := W−p
k,p,λ(H).

Below we make some observations with respect to (k, p)-capacity.
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Theorem 2. (k, p)-capacity is a set function with the following properties:

(a) C(∅) = 0.
(b) If E1 ⊂ E2 are measurable sets, then C(E1) ≤ C(E2).
(c) Let · · · ⊃ Ki ⊃ Ki+1 ⊃ · · · a decreasing sequence of compact sets. Then

C (∩iKi) = lim
i→∞

C(Ki).

(d) Let · · · ⊂ Bi ⊂ Bi+1 ⊂ · · · an increasing sequence of measurable sets. Then

C (∪iBi) = lim
i→∞

C(Bi).

(e) Let E ⊂ X is measurable. Then

C(E) = sup{C(K) : K ⊂ E, K is compact}.

Proof. By Definition 3, (a) and (b) are obvious.
(c) Because {Ki} is a decreasing sequence of (compact) sets, {W (Ki)} is increas-

ing, so it has a limit: W , and it is clear that ∩iKi = K ⊂ Ki; W (K) ≥ W (Ki) ∀i,
that is W (K) ≥ W .

On the other hand (by Def. 3) for ε > 0 arbitrary and for all i, there is a measure
µi, supp µi ⊂ Ki ⊂ K1, with µi(Ki) = µi(K1) = µi(X) = 1 such that W (Ki) + ε >

ǫ(µi). So there is a weak∗-convergent subsequence of {µi}; µil

∗
→ µ0 ∈ M(K1), and

by the w∗-convergence supp µ0 ⊂ ∩lKil = K. Since ǫ(µi) is l.s.c. (see (2) and (6)),
we have for all ε > 0,

W (K)− ε = inf
µ∈M(K)

ǫ(µ)− ε ≤ ǫ(µ0)− ε

≤ lim inf
l→∞

ǫ(µil)− ε ≤ lim inf
i→∞

W (Ki) ≤ W,

which proves (c).
(d) As previously, monotonicity yields that limi→∞W (Bi) := W ≥ W (B), where

∪iBi =: B. For an arbitrary ε > 0 there is a µ ∈ M(B) such that W (B) + ε ≥ ǫ(µ).
Let K ⊂ B is the (compact) support of µ. By regularity of µ, for all i, we can choose

a compact set Ki ⊂ Bi∩K such that µ(Ki) → 1. Let µi =
µ|Ki

µ(Ki)
. So µi ∈ M(Bi∩K)

and because k(x, y) ≥ 0 and by monotonicity,

W (Bi) ≤ W (Bi ∩K) ≤ ǫ(µi) =
1

µ(Ki)

(

ˆ

X

(
ˆ

Ki

k(x, y) dµ(x)

)p
′

dν(y)

)

1

p
′

+
1

(µ(Ki))2

ˆ

Ki

ˆ

Ki

k(x, y) dµ(y) dµ(x) ≤
1

(µ(Ki))2
ǫ(µ).

So

lim
i→∞

W (Bi) ≤ ǫ(µ) ≤ W (B) + ε,

for all ε > 0.
(e) As above, we have to show that for any measurable set E ⊂ X, W (E) =

inf K⊂E
K is compact

W (K) =: W . Again by monotonicity, it is clear that W ≥ W (E). To

prove the opposite inequality, for ε > 0 arbitrary let us choose a µ ∈ M(E), such
that W (E) + ε ≥ ǫ(µ), and an f ∈ L arbitrary. According to [11] Lemma 2.2.2,
and the Remark after the lemma, E(µ, f) = sup K⊂E

K is compact

E(µ|K, f), and I(µ) =
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sup K⊂E
K is compact

I(µ|K). By regularity of the measure, we can choose a compact set

K0 ⊂ E with (µ(K0))
2 > 1− ε. Thus

W (E) + ε ≥ ǫ(µ) ≥ E(µ, f)

≥ sup
K⊂E

K is compact

(

(1− λ)µ(K)E

(

µ|K
µ(K)

, f

)

+ λ(µ(K))2I

(

µ|K
µ(K)

))

≥ (1− ε)E

(

µ|K0

µ(K0)
, f

)

.

Taking supremum in f , we have

W (E) + ε ≥ (1− ε)ǫ

(

µ|K0

µ(K0)

)

≥ (1− ε) inf
µ∈M(K0)

ǫ(µ)

= (1− ε)W (K0) ≥ (1− ε) inf
K⊂E

K is compact

W (K) = (1− ε)W.

Here ε was arbitrary, so the proof is complete. �

Corollary. The (e) part of the previous theorem entails that for each measurable
set E ⊂ X,

W (E) = W̃ (E).

3. Potential function and Chebyshev constant

In this section we define and study the p-potential function, and its discrete
version the so-called log-polynomials. As in the previous section, we start an f -
version of these notions, then we get rid of f . The mutual energy of µ and f can be
expressed as

E(µ, f) =

ˆ

X

ˆ

X

(

(1− λ)

ˆ

X

k(x, y)f(y) dν(y) + λk(x, y)

)

dµ(y) dµ(x).

Since the kernel is not symmetric, to our purposes we have to symmetrize it. This
leads to a discussion similar to the linear case. Originally the nth Chebyshev constant
is the infinum of the supremum-norm on a (compact) set of a monic polynomial of
degree n (cf. e.g. [21]). The log-polynomials (similarly to [8]) are the generalization
of the negative logarithm of the modulus of polynomials, which were studied in
connection with logarithmic capacity. Here and in the next section we have to assume
the so-called “relative domination principle”. Some discussions on relative domination
principle, maximum principle and on symmetry can be found in the final section.

Let us begin with the definition of the potential function with respect to a mea-
sure, and a function.

Definition 5. Let H ⊂ X, and µ ∈ M(H), f ∈ L. Then

U(µ, f, x) = Uk,λ(µ, f, x)

:=
1− λ

2

(
ˆ

X

ˆ

X

k(x, y)f(y) dν(y) dµ(x) +

ˆ

X

k(x, y)f(y) dν(y)

)

+ λ

ˆ

X

k(x, y) dµ(y).
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Obviously

(10)

ˆ

X

U(µ, f, x)dµ(x) = E(µ, f),

and with a σ ∈ M(H) let us denote

E(µ, σ, f) :=

ˆ

X

U(µ, f, x) dσ(x)

=
1− λ

2

(
ˆ

X

ˆ

X

k(x, y)f(y) dν(y) dµ(x) +

ˆ

X

ˆ

X

k(x, y)f(y) dν(y) dσ(x)

)

+ λ

ˆ

X

ˆ

X

k(x, y) dµ(y) dσ(x) =

ˆ

X

U(σ, f, x) dµ(x).

(11)

Below the equilibrium measure and potential with respect to an f ∈ L is con-
structed. After the suitable definitions, we can follow the chain of ideas of Fuglede.

Notation. (a) A property P is said to fulfil f -nearly everywhere (f -n.e.) on H,
if denoting by

N := {x ∈ H : P does not fulfil in x}, inf
µ∈M(N)

E(µ, f) = ∞.

(b) H ⊂ X,

µ∗(H) = sup
K⊂H

K is compact

µ(K)

is the inner measure of H .

Our main tool is the next statement.

Statement 1. Let f ∈ L fixed, µ ∈ M(X), H ⊂ X, 0 ≤ t ≤ ∞. Then the
following conditions are equivalent:

U(µ, f, x) ≥ t f -n.e. x ∈ H.(12)

E(µ, σ, f) ≥ t ∀σ ∈ M(H), E(σ, f) < ∞.(13)

In order to prove it, we need the following equivalence (cf. [11, Lemma 2.3.1]):

Lemma 2. Let H ⊂ X, f ∈ L. The following conditions are equivalent:

ǫ(f,H) = ∞.(14)

ǫ(f,K) = ∞, ∀K ⊂ H, K is compact.(15)

µ∗(H) = 0, ∀µ positive measure on X, E(µ, f) < ∞.(16)

µ = 0 is the only positive measure with supp µ ⊂ H, E(µ, f) < ∞.(17)

µ = 0 is the only positive measure with supp µ ⊂ K ⊂ H,(18)

K is compact, E(µ, f) < ∞.

Proof. (14) ⇒ (15) is obvious: if ǫ(f,K) < ∞ for a K ⊂ H , then ǫ(f,H) < ∞,
because M(K) ⊂ M(H). (15) implies that µ(K) = 0 for all K ⊂ H , K is compact.
Since µ is regular, (16) ⇒ (17) and (17) ⇒ (18) are obvious. For the proof of (18) ⇒
(14), we have to show that if (18) is valid then for all µ ∈ M(H), E(µ, f) = ∞. Since
µ is regular and k and f are positive, and by (18) for all compact sets K ⊂ H , and for
all 0 6= µ positive measures, suppµ ⊂ K, E(µ, f) = ∞, that is (14) is satisfied. �
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Proof of Statement 1. Let σ ∈ M(H), with E(σ, f) < ∞, and Nf,σ := {x ∈
supp σ : U(µ, f, x) < t} ⊂ Nf = {x ∈ H : U(µ, f, x) < t}. So ǫ(f,Nf,σ) ≥ ǫ(f,Nf ) =
∞ by (12), and by (14) σ∗(Nf,σ) = 0. Since Nf,σ is measurable, σ(Nf,σ) = 0. Hence

E(µ, σ, f) =

ˆ

Nf,σ

U(µ, f, x) dσ(x)

+

ˆ

suppσ\Nf,σ

U(µ, f, x) dσ(x) ≥ 0 + tσ(supp σ \Nf,σ) = t.

Let us suppose that (12) doesn’t fulfil. Then ǫ(f,Nf ) < ∞, that is there is a σ ∈
M(Nf) such that E(σ, f) < ∞. With this σ, E(µ, σ, f) < t which is a contradiction.

�

The next lemma states the existence of an equilibrium measure with respect to
f on a compact set K.

Lemma 3. For all f ∈ L, and K ⊂ X compact, there is an extremal measure
µf := µf,K ∈ M(K), such that ǫ(f,K) = E(µf , f).

Proof. Let us choose a sequence {µn} ⊂ M(K), such that E(µn, f) → ǫ(f,K).
As in Theorem 1, one can choose a w∗-convergent subsequence, denoting by {µn}

again, and so µn
∗
→ µf ∈ M(K). By (2) and (4)

E(µf , f) ≤ lim inf
n→∞

(1− λ)E(µn, f) + lim inf
n→∞

λI(µn) ≤ lim inf
n→∞

E(µn, f) = ǫ(f,K). �

Now we are in position to draft the theorem on equilibrium potential with respect
to f .

Theorem 3. Let f ∈ L, K be a compact set in X such that ǫ(f,K) < ∞, and
µf is the equilibrium measure on K with respect to f . Then

U(µf , f, x) ≥ ǫ(f,K) f -n.e. x ∈ K.(19)

U(µf , f, x) ≤ ǫ(f,K) ∀x ∈ supp µf .(20)

U(µf , f, x) = ǫ(f,K) µf a.e. x ∈ X.(21)

Proof. Let σ ∈ M(K), and let us suppose that E(σ, f) < ∞. Then for all
δ ∈ [0, 1] µ(δ) = (1 − δ)µf + δσ ∈ M(K). Let us define a function of δ: F (δ) =
E(µ(δ), f). F (δ) has a minimum at δ = 0. It is clear that F (δ) is differentiable and
0 has a right neighborhood, where F

′
(δ) is nonnegative. Computing this we get:

U(µ(δ), f, x) = (1− δ)U(µf , f, x) + δU(σ, f, x),

so

F (δ) =

ˆ

X

U(µ(δ), f, x) dµ(δ)(x)

= (1− δ)2E(µf , f) + 2δ(1− δ)E(µf , σ, f) + δ2E(σ, f).

So there is a δ0, such that for all 0 ≤ δ ≤ δ0, then

F
′

(δ) = −2(1− δ)E(µf , f) + 2(1− 2δ)E(µf , σ, f) + 2δE(σ, f) ≥ 0,

that is

(1− 2δ)E(µf , σ, f) ≥ (1− δ)E(µf , f)− δE(σ, f).
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Recalling that E(σ, f) is finite, and tending to zero with δ, we get that

E(µf , σ, f) ≥ ǫ(f,K), ∀σ ∈ M(K), E(σ, f) < ∞,

which proves (19) by Statement 1.
Let us suppose contrary, that there is an x0 ∈ supp µf , such that U(µf , f, x0) >

ǫ(f,K). Since according to (3) U(µf , f, x) is l.s.c., there is a δ > 0, and a neigh-
borhood G of x0, such that for all x ∈ G ∩ supp µf , U(µf , f, x) ≥ ǫ(f,K) + δ. By
(10)

ǫ(f,K) =

ˆ

G

U(µf , f, x) dµf(x) +

ˆ

X\G

U(µf , f, x) dµf(x).

Because ǫ(f,K) < ∞, by (17) µf(N) = 0 and so by (19)

ǫ(f,K) > (ǫ(f,K) + δ)µf(G) + ǫ(f,K)µf(X \G),

that is µf(G) = 0, and so x0 /∈ suppµf .
Again by the lower semicontinuity of U(µf , f, ·), (20) can be expressed as U(µf , f,

x) ≤ ǫ(f,K) µf a.e. in X, which together with the previous chain of ideas gives
(21). �

All the previous definitions and calculations of this section concerned expressions
with respect to a fixed f ∈ L. In order to get something which is independent of f ,
let us take some further observations.

Let us recall that Gµ(y) :=
´

X
k(x, y) dµ(x), and ǫ(µ) = (1− λ)‖Gµ‖ν,p′ + λI(µ).

In this part K ⊂ X is a compact set , with W (K) < ∞. Let

Mc(K) := Mc(p,K) = {µ ∈ M(K) : ‖Gµ‖ν,p′ ≤ c}.

At first we have to observe that if W (K) < ∞, then there is a c, e.g. c = 2
1−λ

W (K),
such that

(22) inf
µ∈Mc(K)

sup
f∈L

E(µ, f) = W (K).

Denoting by W̃c(K) := supf∈L infµ∈Mc(K)E(µ, f) we have that if c is like in (22)

then W̃c(K) = W (K). Indeed, taking into account that Mc(K) ⊂ M(K), and
“sup inf ≤ inf sup”, and the finiteness of the energy of K, we have

W̃ (K) ≤ W̃c(K) ≤ inf
µ∈Mc(K)

sup
f∈L

E(µ, f) = inf
µ∈MK)

sup
f∈L

E(µ, f) = W (K) = W̃ (K).

Let us denote by ǫc(f,K) := infµ∈Mc(K)E(µ, f). So there is a sequence of functions

{fn} ⊂ L for which limn→∞ ǫc(fn, K) := W̃ (K). We can assume that {fn} ⊂ Cc(X).
Since L is w∗-compact, {fn} has a a w∗-convergent subsequence. Let us denote this

by {fn} again, that is fn
∗
→ fe = fe(K) ∈ L. According to (6) Mc(K) is also w∗-

compact, so as in Lemma 3. it can be proved that there are µc
fn

∈ Mc(K) such that
E(µc

fn
, fn) = ǫc(fn, K). Furthermore there is a w∗-convergent subsequence of {µc

fn
}

(denoting by {µc
fn
} again) such that µc

fn

∗
→ µc

e ∈ Mc(K). Let us denote its potential
function by U c

e (K, x) := U(µc
e, fe, x). We will show, that U c

e (K, x) has the following
property:

Lemma 4. Let K be a compact set in X such that W (K) < ∞. If c has property
(22), then

ˆ

X

U c
e (K, x) dµc

e(x) = W (K).
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Proof. Recalling that
´

X
U c
e (K, x) dµc

e(x) = E(µc
e, fe) we have to show that

E(µc
fn
, fn) → E(µc

e, fe). Let ε > 0 arbitrary. Then

E(µc
e, fe) ≥ E(µc

fe
, fe) ≥ E(µc

fe
, fn)− ε ≥ E(µc

fn
, fn)− ε ≥ W (K)− 2ε,

where the first and the third inequalities are valid by the definition of µc
fe

and µc
fn

,
and the second and fourth ones fulfil if n is large enough. On the other hand by the
monotone convergence theorem for all ε > 0 there is a 0 ≤ h ≤ k, h ∈ Cc(X × X)
such that

Ek(µ
c
e, fe) ≤ Eh(µ

c
e, fe) + ε ≤ Eh(µ

c
e, f) + 2ε,

where f ∈ L ∩ Cc(x) and ‖f − fe‖ν,p ≤ ε and the last inequality is ensured by
‖
´

X
h(x, y)dµc

e(x)‖ν,p′ ≤ ‖
´

X
k(x, y)dµc

e(x)‖ν,p′ ≤ c. Let us estimate
∣

∣Eh(µ
c
e, f)− Eh(µ

c
fn
, fn)

∣

∣ ≤
∣

∣Eh(µ
c
e, f)− Eh(µ

c
fn
, f)
∣

∣+
∣

∣Eh(µ
c
fn
, f)−Eh(µ

c
fn
, fn)

∣

∣

= I + II.

Since h and f are continuous and µc
fn

∗
→ µc

e, I ≤ ε if n is large enough.

II =

ˆ

X

(f(y)− fn(y))

ˆ

X

h(x, y) dµc
fn
(x) dν(y)

≤

ˆ

X

(f(y)− fm(y))

ˆ

X

h(x, y) dµc
fn
(x) dν(y)

+

(
ˆ

X

(fm(y)− fn(y))

ˆ

X

h(x, y) dµc
fn
(x) dν(y)

−

ˆ

X

(fm(y)− fn(y))

ˆ

X

h(x, y) dµc
e(x) dν(y)

)

+

ˆ

X

(fm(y)− fn(y))

ˆ

X

h(x, y) dµc
e(x) dν(y) = III + IV + V.

As previously, by the boundedness of the Lν,p
′ -norm of the integral of h, V ≤ ε if

n < m is large enough. By the choice of f and fe,

III ≤

∣

∣

∣

∣

ˆ

X

(f(y)− fe(y))

ˆ

X

h(x, y) dµc
fn
(x) dν(y)

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

X

(fe(y)− fm(y))

ˆ

X

h(x, y) dµc
fn
(x) dν(y)

∣

∣

∣

∣

≤ 2cε,

where n is fixed (and large enough) and m is large enough. Also,

IV ≤ (‖fm‖ν,p + ‖fn‖ν,p)

∥

∥

∥

∥

(
ˆ

X

hdµc
fn

−

ˆ

X

hdµc
e

)
∥

∥

∥

∥

ν,p
′

,

which tends to zero by the dominated convergence theorem, when n tends to infinity.
Finally

Ek(µ
c
e, fe) ≤ Eh(µ

c
fn
, fn) + Cε ≤ Ek(µ

c
fn
, fn) + Cε ≤ W (K) + Cε,

if n is large enough. Since ε was arbitrary, comparing the two chains of inequalities
the lemma is proved. �
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Corollary. K is a compact set in X such that W (K) < ∞. If c has property
(22), then

E(µc
e, fe) = E(µc

fe
, fe).

The following theorem is similar to Theorem 3. That method showed the im-
portance of “law of reciprocity” (cf. [11, (11) and p. 150]). We give an other type of
proof of the parallel theorem here. Usually this chain of ideas can be found in the
literature.

Notation. A property P is said to fulfil nearly everywhere (n.e.) on K, if denot-
ing by N := {x ∈ K : P does not fulfil in x}, supf∈L infµ∈M(N) E(µ, f) = W̃ (N) =
∞.

Definition 6. Let us call a l.s.c. kernel function normal (with respect to ν),
if for all K ⊂ X compact, W (K) < ∞ there is a sequence of functions in L

such that limn→∞ ǫ(fn, K) = W̃ (K), and {µfn} has a subsequence {µfnk
} such that

lim infn→∞ ‖Gµfnk
‖ν,p′ < ∞.

Remark. If ν(X) is finite and k is bounded, then k is obviously normal. If X is
compact and Gµ is bounded for all µ ∈ M(K), then k is normal again. This is the
situation in the classical cases of logarithmic and Riesz potentials.

Now with the previous notations we can state the following

Theorem 4. Let k be normal and K be a compact set in X such that W (K) <
∞. Then there is a c > 0 such that U c

e (K, x) is an equilibrium potential and µc
e is an

equilibrium measure, that is

U c
e (K, x) ≥ W (K) n.e. x ∈ K.(23)

U c
e (K, x) ≤ W (K) ∀x ∈ supp µc

e.(24)

U c
e (K, x) = W (K) µc

e a.e. x ∈ X.(25)

Proof. Let {fn} be as in Definition 6, and {µfnk
} is the subsequence in question.

Let {µfnkl

} be a w∗-convergent subsequence of it, and let us denote its limit by µe.

Then, by (6) ∞ > c0 = lim infn→∞ ‖Gµfnk
‖ν,p′ ≥ ‖Gµe‖ν,p′ . We can assume (perhaps

omitting some elements of the sequence) that ‖Gµfnk
‖ν,p′ ≤ 2c0. Now let us choose a

w∗-convergent subsequence from {fnkl
}, ant let us denote it’s limit by fe. Let c1 be

a constant with the property (22). Let c := max{2c0, c1}. Then µfnk
= µc

fnk
for all

k, and µe = µc
e, where µe is the limit of a w∗-convergent subsequence of {µfnkl

}.

At first we will prove (23) with this c. Following standard arguments let N :=
{x ∈ K : U c

e (K, x) < W (K)}, and Fn :=
{

x ∈ K : U c
e (K, x) ≤ W (K)− 1

n

}

. It is
clear that Fn-s are compact (U c

e is l.s.c.) and ∪nFn = N . Let us suppose indi-
rectly that W̃ (N) < ∞. Thence (cf. (c) of Theorem 2) there is an n0 such that

∀n > n0 W̃ (Fn) < ∞. Let us choose an n > n0, and let us define a set E :=
{

x ∈ supp µc
e : U

c
e (K, x) ≥ W (K)− 1

2n

}

. Obviously E ∩Fn = ∅ and m := µc
e(E) > 0.

By the indirect assumption there is a measure σ, supp σ ⊂ Fn and ǫ(σ) < ∞. Let
σ(Fn) = m, and let us define a signed measure δ, like that δ = σ on Fn, δ = −µc

e on
E, and δ = 0 elsewhere. Let µη = µc

e + ηδ ∈ M(K). We will compute the energy of
µη with respect to fe.
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E(µη, fe) =

ˆ

X

U(µη, fe), x) dµη(x) = (1− λ)

ˆ

X

ˆ

X

k(x, y)fe(y) dν(y) dµ
c
e(x)

+ η(1− λ)

ˆ

X

ˆ

X

k(x, y)fe(y) dν(y) dδ(x) + 2ηλ

ˆ

X

ˆ

X

k(x, y) dµc
e(y) dδ(x)

+ λ

ˆ

X

ˆ

X

k(x, y) dµc
e(y) dµ

c
e(x) + λη2I(δ) ≤ W (K) + Cη2

+ η

(

(1− λ)

ˆ

X

ˆ

X

k(x, y)fe(y) dν(y) dδ(x) + 2λ

ˆ

X

ˆ

X

k(x, y) dµc
e(y) dδ(x)

)

,

with some positive constant C, where we used that by the finiteness of I(µc
e) and

I(σ) (ǫ(σ) < ∞), I(δ) < ∞. The expression in the bracket is

2

(

1− λ

2

ˆ

Fn

ˆ

X

k(x, y)fe(y) dν(y)dσ(x) + λ

ˆ

Fn

ˆ

X

k(x, y) dµc
e(y) dσ(x)

−

(

1− λ

2

ˆ

E

ˆ

X

k(x, y)fe(y) dν(y) dµ
c
e(x) + λ

ˆ

E

ˆ

X

k(x, y) dµc
e(y) dµ

c
e(x)

))

= 2

ˆ

Fn

U c
e (K, x) dσ(x)− (1− λ)

ˆ

X

ˆ

X

k(x, y)fe(y) dν(y) dµ
c
e(x)

−

(

2

ˆ

E

U c
e (K, x) dµc

e(x)− (1− λ)

ˆ

X

ˆ

X

k(x, y)fe(y) dν(y) dµ
c
e(x)

)

≤ 2

(

m

(

W (K)−
1

n

)

−m

(

W (K)−
1

2n

))

< 0.

So if η is small enough, then E(µη, fe) < E(µc
e, fe) = E(µc

fe
, fe). Since ‖Gµc

e‖ν,p′ ≤ c0,
recalling that ǫ(σ), ǫ(µc

e) are finite, if η is small enough, µη ∈ Mc, which leads to a
contradiction.

The remainder part of the theorem can be proved as in Theorem 3, the only
difference is that we have to show that if W̃ (N) = ∞, then µc

e(N) = 0. Indeed µc
e

is a positive measure with ǫ(µc
e) < ∞, because ‖Gµc

e‖ν,p′ < ∞ and since W (K) =
E(µc

e, fe) < ∞, I(µc
e) < ∞. Since N is measurable, by the corollary after Theorem 2

W̃ (N) = infµ∈M(N) ǫ(µ) so µc
e(N) has to be equal to zero and we can proceed as in

Theorem 3. �

Remark. (1) The assumption that the energy is finite in the theorems on equi-
librium potential is essential, i.e. without this assumption the theorem is false, cf.
[11, p. 159].

(2) If for fe given in the proof of the previous theorem ‖Gµfe‖ν,p′ = c2 < ∞, then
choosing c > c2 in the proof of Lemma 4 instead of µc

fe
we can write µfe, and then

W (K) = ǫ(fe, K) and the difference between Theorem 3 and Theorem 4 is in the
assumption on the exceptional set.

Now we are in position to define the p-Chebyshev constant.

Notation. Let f ∈ L, x ∈ X, H ⊂ X and Xn ⊂ H . Then let

M(Xn, f, x) := Mk,λ(Xn, f, x)
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=
1− λ

2n

n
∑

i=1

ˆ

X

k(xi, y)f(y) dν(y) +
1− λ

2

ˆ

X

k(x, y)f(y) dν(y) +
λ

n

n
∑

i=1

k(x, xi),

Mn(f,H) := Mn,k,λ(f,H) = sup
Xn⊂H

inf
x∈H

M(Xn, f, x).

We call p(Xn, f, x) as log-polynomial of degree n with respect to f , if

p(Xn, f, x) := pk,λ(Xn, f, x) = nM(Xn, f, x)

=
1− λ

2

ˆ

X

n
∑

i=1

(k(xi, y) + k(x, y)) f(y) dν(y) + λ
n
∑

i=1

k(x, xi),

Pn(f,H) := {p(Xn, f, x) : Xn ⊂ H}.

Obviously, if Xn and Ym are in H , then p(Xn, f, x) + p(Ym, f, x) ∈ Pn+m(f,H).

According to the previous notation

(n+m)Mn+m(f,H) = sup
p(Zn+m,f,·)∈Pn+m(f,H)

inf
x∈H

p(Zn+m, f, x)

≥ inf
x∈H

(p(Xn, f, x) + p(Ym, f, x)) ≥ inf
x∈H

p(Xn, f, x) + inf
x∈H

p(Ym, f, x),

for all p(Xn, f, ·) ∈ Pn(f,H) and p(Ym, f, x) ∈ Pm(f,H). That is

(n+m)Mn+m(f,H) ≥ nMn(f,H) +mMm(f,H).

This inequality entails, that Mn(f,H) has a limit in the extended sense (cf. e.g. [20,
Vol. 1, Ch. 3, Ex. 98] and the references therein). So we have the following definition.

Definition 7. By the previous notations, let

M(f,H) := lim
n→∞

Mn(f,H)

the p-Chebyshev constant with respect to f , and

M(H) := sup
f∈L

M(f,H)

the p-Chebyshev constant of H .

Definition 8. Let

Lc := {f ∈ L : f is compactly supported and continuous}.

We say that a symmetric kernel k satisfies the (Lc-)relative domination principle (cf.
[19, p. 141]), if for all f ∈ Lc and every positive measures µ with compact support
and with I(µ) < ∞, if

ˆ

X

k(x, y) dµ(y) ≤ c1 − c2

ˆ

X

k(x, y)f(y) dν(y), x ∈ supp µ,

then
ˆ

X

k(x, y) dµ(y) ≤ c1 − c2

ˆ

X

k(x, y)f(y) dν(y), x ∈ X,

where ci are positive constants.

Remark. If
´

X
k(x, y)f(y) dν(y) is continuous then the righthand side is l.s.c. If

X = R or X = C, with an integration by parts it can be proved that if
´

X
k(x, y) dν(y)

is continuous, then for all f ∈ L ∩ C1
0 ,
´

X
k(x, y)f(y) dν(y) is continuous as well. If

on the righthand side there is a potential, the assumption is the Cartan’s maximum
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principle. If X = R
n or X = C, and the righthand side is continuous, then it is the

principle of domination which is satisfied, e.g., for Riesz kernels of order 2, cf. [16,
p. 110].

With this definition we can study the connections among transfinite diameter,
energy and Chebyshev constant of a set.

Theorem 5. Let H ⊂ X. Then

(26) d(H) ≤ M(H),

and if k satisfies the relative domination principle, then

(27) M(H) ≤ W̃ (H).

Corollary. If K ⊂ X is compact, and k satisfies the relative domination princi-
ple, then

(28) d(K) = M(K) = W (K).

Proof. Denoting by dn(f,H) := infXn⊂H d(Xn, f), we show that dn(f,H) ≤
Mn(f,H) for all n and f . The inequality is obvious if Mn(f,H) = ∞, so we
can assume, that it is finite. It ensures the existence of an Xn ∈ H for which
´

X
k(xi, y)f(y)dν(y) and k(xi, xj) are finite for all 1 ≤ i < j ≤ n, and so dn(f,H) is

finite too, cf. [8]. Let ε > 0 arbitrary, and Xn ⊂ H such that d(Xn, f) ≤ dn(f,H)+ε.
Let x ∈ H arbitrary.

n(n + 1)dn(f,H) ≤ n(n + 1)dn+1(f,H) ≤ n(n+ 1)d({x} ∪Xn, f)

= (1− λ)n
n
∑

i=1

ˆ

X

k(xi, y)f(y) dν(y) + (1− λ)n

ˆ

X

k(x, y)f(y) dν(y)

+ 2λ
∑

1≤i<j≤n

k(xi, xj) + 2λ
n
∑

i=1

k(x, xi) = 2p(Xn, f, x) + n(n− 1)d(Xn, f).

So

p(Xn, f, x) ≥
n(n+ 1)

2
dn(f,H)−

n(n− 1)

2
d(Xn, f) ≥ ndn(f,H)−

n(n− 1)

2
ε.

Since x ∈ H was arbitrary, taking infinum in x and supremum in Xn ⊂ H , we get
that

nMn(f,H) ≥ ndn(f,H)−
n(n− 1)

2
ε,

and since ε was arbitrary, dn(f,H) ≤ Mn(f,H) and so d(f,H) ≤ M(f,H), where
d(f,H) = limn→∞ dn(f,H), which is well-defined by (1). Taking supremum, we have
supf∈L d(f,H) ≤ M(H) which is the first statement of the theorem because the
supremum and the limit can be changed in the expression of transfinite diameter.
Indeed since dn(H) ≥ dn(f,H) for all n and f ∈ L, d(H) ≥ d(f,H) for all f ∈
L, that is supf∈L d(f,H) ≤ d(H). Contrary, for an arbitrary n and ε there is an
f = f(n, ε) ∈ L, like dn(H) − ε ≤ dn(f,H) ≤ d(f,H) ≤ supf∈L d(f,H). Thus
d(H) = supf∈L d(f,H).

At first we will prove the second statement for compact sets, namely we will show
that for all n and f ∈ Lc, Mn(f,K) ≤ ǫ(f,K). Recalling that µf is the equilibrium
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measure on K with respect to f ,

inf
x∈K

M(Xn, f, x) ≤

ˆ

X

M(Xn, f, x) dµf(x) =
1

n

n
∑

i=1

U(µf , f, xi) ≤ ǫ(f,K).

We have to explain the last inequality. According to (20) U(µf , f, x) ≤ ǫ(f,K) on
suppµf . It means that

ˆ

X

k(x, y) dµf(y) ≤
1

λ

(

c−
1− λ

2

ˆ

X

k(x, y) dνf(y)

)

, x ∈ supp µ,

where c = ǫ(f,K)− 1−λ
2

´

X

´

X
k(x, y)f(y) dν(y) dµf(x). Since k satisfies the relative

domination principle, the inequality fulfils on X as well. As in previously, taking
supremum at Xn, limit in n, we get that for all f ∈ Lc M(f,K) ≤ ǫ(f,K). Since Lc

is a dense subset of L, taking supremum on both sides in f ∈ Lc we get the second
statement of the theorem for compact sets. For arbitrary sets we will proceed as in
[8]: Let f ∈ Lc again. For a positive ε we choose a measure µ ∈ M(H) such that
E(µ, f) ≤ ǫ(f,H) + ε. Let Xn ⊂ H be arbitrary, and K := Xn ∪ suppµ. Then for
all Xn ⊂ H

inf
x∈H

M(Xn, f, x) ≤ inf
x∈K

M(Xn, f, x) ≤ Mn(f,K)

≤ ǫ(f,K) ≤ E(µ, f) ≤ ǫ(f,H) + ε.
(29)

So taking supremum in Xn ⊂ H , we get the result as previously. �

4. Greedy energy or Leja points

Usually a Fekete n-point system of a compact set K (X∗
n ⊂ K) is a result of a

minimum problem with n variables. In this section, like in [17] or [12], we define the
so-called greedy energy or Leja set (An ⊂ K) which can be computed step by step,
and in all steps a minimum problem with one variable has to be solved. Furthermore
it is pointed out that the behavior of greedy energy sets are asymptotically as good
as the behavior of the Fekete sets.

Definition 9. Let K ⊂ X be a compact set, f ∈ L. A sequence {an}
∞
n=1 ⊂ K is

called a greedy energy sequence with respect to k, λ and f , if it is generated in the
following way:

- a1 ∈ K is arbitrary.
- Assuming that An := {a1, . . . , an} have been selected, an+1 is chosen to satisfy

inf
x∈K

p(An, f, x) = p(An, f, an+1).

Remark. In order to get a faster numerical process (e.g. in a metric space), by
the lower semicontinuity of the integral, we can choose a1 as

ˆ

X

k(a1, y)f(y) dν(y) = min
x∈K

ˆ

X

k(x, y)f(y) dν(y).

Theorem 6. Let us assume that k satisfies the relative domination principle.
Then the following statements are satisfied:

(30) sup
f∈L

lim
n→∞

d(An, f) = W (K).
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If ǫ(f,K) < ∞, then the following sequence

µn :=
1

n

n
∑

k=1

δak

has a w∗-convergent subsequence, such that

(31) µnk

∗
→ µf ,

where µf is an equilibrium measure with respect to f , and δak is the Dirac measure
concentrated at the kth greedy energy point. Then

(32) sup
f∈L

lim
n→∞

M(An, f, an+1) = W (K).

Proof. Let f ∈ Lc. First we show that limn→∞ d(An, f) = ǫ(f,K). Then

d(An, f) =
2

n(n− 1)

(

1− λ

2

n
∑

j=2

j−1
∑

l=1

ˆ

X

(k(al, y) + k(aj , y))f(y) dν(y)

+λ
n
∑

j=2

j−1
∑

l=1

k(al, aj)

)

=
2

n(n− 1)

n
∑

j=2

p(Aj−1, f, aj)

≤
2

n(n− 1)

n
∑

j=2

p(Aj−1, f, x), ∀x ∈ K.

Integrating this inequality against the equilibrium measure of K with respect to f
(µf) we get

d(An, f) ≤
2

n(n− 1)

n
∑

j=2

j−1
∑

l=1

U(µf , f, al) ≤ ǫ(f,K).

In the last inequality, as in the previous section, we used the relative domination
principle. Now by the inequality

d(X∗
n, f) ≤ d(An, f) ≤ ǫ(f,K),

which holds for all f ∈ Lc. It turns out from the proof of Theorem 1 (or by the
classical result) that for a compact set K limn→∞ d(X∗

n, f) = ǫ(f,K), and we get
(30).

Like in Theorem 1, let hm(x) and km(x, y) be continuous functions, and so

Im,n :=

ˆ

X

ˆ

X

(1− λ)hm(x) + λkm(x, y) dµn(y) dµn(x) =
1− λ

n

n
∑

i=1

hm(ai)

+
λ

n2

n
∑

i=1

km(ai, ai) +
2λ

n2

∑

1≤i<j≤n

km(ai, aj) ≤
1− λ

n

n
∑

i=1

ˆ

X

k(ai, y)f(y) dν(y)

+
λ

n2

n
∑

i=1

km(ai, ai) +
2λ

n2

∑

1≤i<j≤n

km(ai, aj) = d(An, f) + r(m,n),

where

r(m,n) =
λ

n2

n
∑

i=1

km(ai, ai)−
2λ

n2(n− 1)

∑

1≤i<j≤n

km(ai, aj) ≤
λ

n
Mm +

2ǫ(f,K)

n
,
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where Mm is the maximum of km(x, y) on K. So if n is large enough, by the previous
part Im,n ≤ ǫ(f,K) + ε. As earlier, a w∗ convergent subsequence can be chosen from
{µn}, and this subsequence tends to a measure σ ∈ M(K). So

lim
n→∞

Im,n =

ˆ

X

ˆ

X

(1− λ)hm(x) + λkm(x, y) dσ(y) dσ(x) ≤ ǫ(f,K) ∀m,

and then
E(σ, f) ≤ ǫ(f,K),

that is σ is an equilibrium measure on K with respect to f .
Following the chain of ideas of [12], we will show that for every f ∈ Lc,

(33) lim
n→∞

M(An, f, an+1) = ǫ(f,K).

Let us observe that

p(An+1, f, x) = p(An, f, x) +
1− λ

2

ˆ

X

(k(an+1, y) + k(x, y)) f(y) dν(y) + λk(x, an+1)

≥ p(An, f, x) + T,

where T = minx,y∈K k(x, y)
(

(1− λ)
´

X
f(y) dν(y) + λ

)

≥ 0. Here we used the com-
pactness of K and the lower semicontinuity of k. For simplicity, let us denote by
Bn = M(An, f, an+1). By the definition of greedy energy points, we have that

(34) jBj ≤ (j + 1)Bj+1 − T,

and by the first part

(35) lim
n→∞

2

n(n− 1)

n−1
∑

j=1

jBj = ǫ(f,K),

according to the definition of Bn and recalling (28) we have

(36) Bn ≤ Mn(f,K) ≤ ǫ(f,K).

Now we will show, that (34)–(36) entails that Bn tends to ǫ(f,K), which is (33). Let
(ǫ >)ε > 0 and let us assume that n is an index like

(37) Bn−1 < ǫ(f,K)− ε.

Computing the left hand-side of (35) we get that with 1 > δ > 0,

2

n(n− 1)

n−1
∑

j=1

jBj =
2

n(n− 1)

[(1−δ)(n−1)]
∑

j=1

jBj +
2

n(n− 1)

[δ(n−1)]
∑

l=0

(n− 1− l)Bn−1−l

= Σ1 + Σ2.

By (34) and (37)

Σ2 ≤
2

n(n− 1)

[δ(n−1)]
∑

l=0

((n− 1)(ǫ(f,K)− ε)− lT ) ≤
2

n
(δ(n− 1) + 1)(ǫ(f,K)− ε)

− T
2

n(n− 1)

δ2(n− 1)2

2
≤ (ǫ(f,K)− ε)

(

2δ

(

1−
1

n

)

+
2

n

)

− Tδ2
(

1−
1

n

)

,

and

Σ1 ≤ ǫ(f,K)

(

(1− δ)2
(

1−
1

n

)

+
1− δ

n

)

,
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that is

Σ1 + Σ2 ≤ ǫ(f,K) + ǫ(f,K)

(

δ2 +
2

n

)

− 2δε.

Choosing δ = ε
ǫ(f,K)

,

2

n(n− 1)

n−1
∑

j=1

jBj ≤ ǫ(f,K)−
ε2

ǫ(f,K)
+

2ǫ(f,K)

n
.

That is according to (35), (37) cannot fulfil for infinitely many indices, and together
with (36), (33) is proved. Recalling that Lc is dense in L, and taking supremum, (32)
is proved. �

Remark. Instead of greedy energy points one can define f -greedy energy se-
quence {a∗n}

∞
n=1 ⊂ K1, where K1 = supp µf or K1 := {x ∈ K : U(µf , f, x) ≤ ǫ(f,K)}

and all the infinums are taken on K1. With this choice Theorem 6 can be proved
without any restriction on the kernel (cf. [12]). If the equilibrium measure with
respect to f is unique, then in (31) one can write:

µnk

∗
→ µf ,

where µnk
-s are the normalized Dirac measures concentrated at the points a∗m. This

is the case e.g. when ks
f(x, y) is strictly definite (cf. [11] and the definition of ks

f(x, y)
see below).

5. Final remarks

Symmetry, maximum principle. As it is mentioned, our kernel function with
respect to an f ∈ L is

kf(x, y) = (1− λ)

ˆ

x

k(x, y)f(y) dν(y) + λk(x, y),

which is nonsymmetric. The notion of transfinite diameter and energy are indepen-
dent of symmetry so it can be introduced and studied for general kernels cf. [8]. If f
is in L fixed, following the proof of Theorem 1 it turns out that for a compact set K

d(f,K) = ǫ(f,K),

which is known (cf. [8, 6]). From these computations follows the equivalence of d(K)
and W̃ (K). In Theorem 1 a minimax theorem is hidden.

In the first part of the third section the potential with respect to a fixed f is
examined. These results follow from the results of [11] by the symmetrization of the
kernel, namely instead of kf(x, y) one can use the symmetric kernel

ks
f(x, y) :=

1

2
(kf(x, y) + kf(y, x))

=
1− λ

2

(
ˆ

X

k(x, y)f(y) dν(y) +

ˆ

X

k(x, y)f(x) dν(x)

)

+ λk(x, y).

We gave the details only in order to emphasize the importance of the “law of reci-
procity” (

´

U(σ) dµ =
´

U(µ) dσ), which is ensured by the symmetry of the kernel.
It is proved in [8] that if a symmetric kernel satisfies the Frostman’s maximum

principle, then
d(K) = M(K) = V (K)
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for a compact set K, where

V (H) = inf
µ∈M(H)

I(µ).

A positive symmetric kernel satisfies the Frostman’s maximum principle (cf. eg. [11,
p. 150]), if for every compactly supported positive measures

sup
x∈suppµ

ˆ

X

k(x, y) dµ(y) = sup
x∈X

ˆ

X

k(x, y) dµ(y).

If f ∈ Lc, then νf and so 1−λ
2
νf + λµ are compactly supported. Recalling that

U(µ, f, x) = c(µ, f, λ) +

ˆ

X

k(x, y) d

(

1− λ

2
νf + λµ

)

(y)

it can be seen that the assumption “k satisfies the Frostman’s maximum principle”
means

sup
x∈X

U(µ, f, x) = sup
x∈suppµ∪supp νf

U(µ, f, x),

which is not enough to prove the inequality M(f,K) ≤ ǫ(f,K). If we assume that
ks
f(x, y) satisfies the Frostman’s maximum principle, that is

sup
x∈suppµ

U(µ, f, x) = sup
x∈X

U(µ, f, x),

then by the result cited above

d(f,K) = M(f,K) = ǫ(f,K).

With the notations of Theorem 4, if ‖Gµfe‖ν,p′ is finite and ks
fe

satisfies the
Frostman’s maximum principle, then

d(fe, K) = M(fe, K) = ǫ(fe, K) = W (K).

The Frostman’s maximum principle for classical kernels was proved by Maria [18]
and by Frostman [10], for more general kernels by Carleson [4, p. 14]. For continuous
kernels it is proved in [8] and [24], that the equivalence of the Chebyshev constant
and the energy entails the maximum principle. Usually the Frostman’s maximum
principle is weaker then the principle of domination, but to get Theorem 5 it has
to be assumed for ks

f with all f ∈ Lc. Whereas the relative domination principle is
assumed on the kernel k, so as our examples showed sometimes it can be checked
easier.

Finally by a modification of the usual definition of Chebyshev constant, one can
drop the assumption on the kernel. Let K ⊂ X compact, f ∈ Lc and µf := µf(K)
is an equilibrium measure on K. Let supp µf =: K1 ⊂ K, which is compact. Then
obviously ǫ(f,K) = ǫ(f,K1), since

ǫ(f,K) = E(µf , f) = inf
µ∈M(K)

E(µ, f) ≤ inf
µ∈M(K1)

E(µ, f) = E(µf , f) = ǫ(f,K1).

Furthermore d(f,K) ≤ d(f,K1) ≤ M(f,K1). Since K1 = supp µf(K) = supp µf(K1),
for any xi ∈ K1 U(µf , f, xi) ≤ ε(f,K1) without any further assumptions to the ker-
nel. That is M(f,K1) ≤ ǫ(f,K1), and finally

ǫ(f,K) = d(f,K) ≤ d(f,K1) ≤ M(f,K1) ≤ ǫ(f,K1) = ǫ(f,K).
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So defining the modified Chebyshev constant for a compact set K with an equilibrium
measure µf as

M∗(f,K) = M(f,K1),

we can state for compact sets without any restriction on the kernel that

d(f,K) = M∗(f,K) = ǫ(f,K),

and taking supremum in f

d(K) = M∗(K) = ǫ(K).

λ tends to 0 or 1. All the previous computations, etc. were valid for all fixed
λ ∈ (0, 1). Now we will study (and denote) the dependence on λ. Let

Vp(H) := inf
µ∈M(H)

sup
f∈L

E(µ, f).

The first question is that can we get back the original p-energy, or energy when λ
tends to zero or one? Secondly the location of the Fekete and greedy energy sets
with respect to a fixed n can be examined, when λ tends to one of the endpoints.
We will study the λ → 0 case, the other case is similar.

It is clear that if Wλ(H) < ∞ for a λ ∈ (0, 1), then ∃ µ ∈ M(H) for which ǫλ(µ) <
∞ and so ‖Gµ‖ν,p′ , I(µ) < ∞, that is ∀λ ∈ (0, 1) Wλ(H) < ∞ and so Vp(H), V (H) <
∞. For a H like this Wλ(H) ≥ (1− λ) infµ∈M(H) ‖Gµ‖ν,p′ + λ infµ∈M(H) I(µ), that is

lim
λ→0

Wλ(H) ≥ Vp(H).

On the other hand for all µ ∈ M(H) Wλ(H) ≤ ǫλ(µ), that is limλ→0Wλ(H) ≤
‖Gµ‖ν,p′ for all µ ∈ M(H), I(µ) < ∞. Taking infinum we have if Wλ(H) < ∞ for a
λ ∈ (0, 1), then

lim
λ→0

Wλ(H) = Vp(H), if ∃M such that inf
µ∈M(H)

‖Gµ‖ν,p′ = inf
µ∈M(H)
I(µ)<M

‖Gµ‖ν,p′ .

(Obviously ‖Gµ‖ν,p′ < ∞ ; I(µ) < ∞, namely if k(x, x) = ∞ and ‖k(xi, y)‖ν,p′ <

∞, i = 1, . . . , n, then with µ = 1
n

∑n

i=1 δxi
‖Gµ‖ν,p′ < ∞ and I(µ) = 1

n2

∑n

i,j=1 k(xi,

xj) = ∞.)
Fekete and greedy energy points are defined for fixed f ∈ L. Actually, this is an

unconditional Gauss variational problem, cf. [19, p. 213]. Let K be a compact set.
We will investigate the behavior of the nth Fekete set when λ tends to zero. In [1] it
is proved that

Vp(K) = sup
f∈L

inf
µ∈M(K)

E(µ, f) = sup
f∈L

ˆ

X

k(x0, y)f(y)dν(y),

where by the l.s.c. of the integral and by the compactness of the set x0 ∈ K and
it depends on f and K. (That is δx0 is an extremal measure.) The assumption
is the same here: If ǫλ(f,K) < ∞ for a λ ∈ (0, 1), then denoting by Vp(f,K) :=
infµ∈M(K) E(µ, f) =

´

X
k(x0, y)f(y) dν(y)

lim
λ→0

ǫλ(f,K) = Vp(f,K), if ∃M such that inf
µ∈M(K)

E(µ, f) = inf
µ∈M(H)
I(µ)<M

E(µ, f).

Assuming the condition above, let us choose a sequence λm → 0, let n be fixed, and
let us denote by X∗

n,m ⊂ K a Fekete set with respect to λm. Let µm := 1
n

∑n

i=1 δx∗
i,m

the normalized counting measure at the points of X∗
n,m. It has a w∗-convergent
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subsequence denoting by {µm} again. Its limit is σn. As previously, let 0 ≤ hf (x) ≤
´

X
k(x, y)f(y) dν(y), and 0 ≤ h ≤ k are continuous functions. Let ε > 0 arbitrary.

Repeating the computations in (9), if m is large enough
ˆ

X

hf(x) dσn(x)− ε ≤

ˆ

X

hf(x) dµm(x) ≤ (1− λm)

ˆ

X

hf (x) dµm(x) + ε

+ λm

ˆ

X

ˆ

X

h(x, y) dµm(y) dµm(x) ≤ dn,λm
(f,K) + 2ε

≤ dλm
(f,K) + 2ε = ǫλm

(f,K) + 2ε,

where in the last step the previous remark is used. Finally, taking into consideration
the assumption and tending to infinity with m, we have that

´

X
hf(x)dσn(x) ≤

Vp(f,K), that is
ˆ

X

ˆ

X

k(x, y)f(y) dν(y) dσn(x) ≤ Vp(f,K),

so if the extremal measure is unique, then for all n, µm
∗
→ δx0. This is the situa-

tion e.g. when k(x, y) is continuous (then I(µ) is finite for all µ ∈ M(K)), and if
ks
1,f(x, y) :=

1
2

(´

X
k(x, y)f(y) dν(y) +

´

X
k(x, y)f(x) dν(x)

)

is definite.
On the other hand let k(x, y) is infinite at the diagonal, Wλ(K) is finite for a

λ ∈ (0, 1), and let us denote by g(x) :=
´

X
k(x, y)f(y) dν(y). Let us assume that

there is an x0 ∈ K such that

g(x0) = min
x∈K

g(x) = m < lim inf
x→x0

x∈K\{x0}

g(x) = M.

We can assume that g(x) > g(x0) on K. Now Vp(f,K) = g(x0) = m. If Xn ⊂ K,
then

d(Xn, f) =
1− λ

n

n
∑

i−1

g(xi) + λ
2

n(n− 1)

∑

1≤i<j≤n

k(xi, xj).

For all Xn ⊂ K

d(Xn, f) ≥ (1− λ)

(

M

(

1−
1

n

)

+
m

n

)

+ min
Xn⊂K

λ
2

n(n− 1)

∑

1≤i<j≤n

k(xi, xj),

and so dn(f,K) is also greater than or equal to the righthand side. Taking a limit in
n and taking account the results of [8], we have d(f, k) ≥ (1− λ)M + λV (K) that is
by the first part of this section, for all λ ∈ (0, 1)

ǫλ(f,K) ≥ (1− λ)M + λV (K),

and so

lim
λ→0

ǫλ(f,K) ≥ M > m = Vp(f,K).

This is the situation e.g. when X = C/Rn, k(x, y) is the logarithmic/Newtonian
kernel and K is thin at x0, ν

f is the measure of the potential in question cf. e.g. [21,
Lemma 5.2] or [14, 10.3].
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