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Abstract. We provide various estimates of the hyperbolic metric on the twice punctured plane

C\{0, 1} and apply them to improve Landau’s Theorem. We also improve Ahlfors’ upper bound

for the hyperbolic metric on the twice punctured plane C\{0, 1}.

1. Introduction

A region Ω in the Riemann sphere P is hyperbolic if P\Ω contains at least three
points. The hyperbolic metric on a hyperbolic region Ω is denoted by λΩ(w)|dw| and
is normalized to have curvature

K(w) = −∆ log λΩ(w)

λ2
Ω
(w)

= −1,

where w = u+ iv and

∆ =
∂2

∂u2
+

∂2

∂v2
= 4

∂2

∂w∂w̄

denotes the usual Laplacian. In particular, the hyperbolic metric on the unit disk
D = {z : |z| < 1} is λD(z)|dz| = 2|dz|/(1− |z|2). Let Ω1 and Ω2 be hyperbolic
regions in P and f : Ω1 → Ω2 be a conformal mapping. Then

(1.1) λΩ1
(z) = λΩ2

(f(z))|f ′(z)|.
We denote the hyperbolic metric on P\{a, b, c} by λabc(z)|dz| and on C\{a, b} by
λab(z)|dz|. The domain monotonicity property asserts that larger regions have smaller
hyperbolic metrics. It is a direct consequence of Schwarz’s Lemma.

Hyperbolic metric plays a very important role in complex analysis. Unfortu-
nately, except for very special hyperbolic regions, the actual calculation of the hy-
perbolic metric is extremely difficult. So we are often interested in estimating the
hyperbolic metric by using various other metrics such as the quasi-hyperbolic metric
and Möbius invariant metrics. For example, the Gardiner–Lakic metric [4] (also see
Sugawa and Vuorinen [13] and Herron, Ma and Minda [7]),

κΩ(z) = sup
a,b,c∈P\Ω

λabc(z)
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satisfies

κΩ(z) ≤ λΩ(z) ≤ (2K + π/2)κΩ(z),

where

(1.2) K =
1

λ01(−1)
=

Γ4(1/4)

4π2
= 4.3768796 . . .

and λ01 is the hyperbolic density on C01 = C\{0, 1}. When studying these metrics,
it is often necessary to use properties of the hyperbolic metric on a thrice punctured
sphere in order to establish relationships with the hyperbolic metric. Since any thrice
punctured sphere is Möbius equivalent to C01, we only focus on λ01. For example,
when proving Hilditch’s conjecture [8]

sup{λΩ(z)δΩ(z) : z ∈ Ω} ≥ 1

2
λ01

(

1

2

)

for any hyperbolic region Ω in C, where δΩ(z) = dist(z, ∂Ω), we had to determine
the maximum value for yλ01(1/2 + iy), 0 < y < +∞ [6].

As Ahlfors pointed out in [1], there are known analytic expressions for λ01, but
they are not of great use. So good estimates of λ01 are desired.

The following lower bound is due to Hempel [5] and Jenkins [9]; see also Minda
[10],

(1.3) λ01(z) ≥
1

|z|(| log |z||+K)
,

where K is given in (1.2) and strict inequality holds unless z = −1. This implies
Landau’s Theorem:

(1− |z|2)|f ′(z)| ≤ 2|f(z)|(| log |f(z)||+K)

for z ∈ D if f is holomorphic on D and f(D) ⊂ C01.
Ahlfors [1] also gave the following upper bound

(1.4) λ01(z) ≤











1
|z| log 1

|z|
if 0 < |z| < 1,

1
|z| log |z| if |z| > 1.

This paper is organized as follows: we obtain basic estimates of λ01(z) in Sec-
tion 2. We derive a differential inequality and use it to obtain lower bounds of λ01(z)
on the unit circle and on the vertical line with Re z = 1/2. For example, we show
that

d

dθ
λ01(e

iθ) ≤
{

−λ01(eiθ)
√

1/3− λ201(1/2 + i
√
3/2) + λ201(e

iθ) if 0 < θ ≤ π/3,

−λ01(eiθ)
√

λ201(e
iθ)− λ201(−1) if π/3 ≤ θ ≤ π.

On the unit circle, this is stronger than the fact that λ01(e
iθ) is decreasing on (0, π]

given by Hempel [5] and Weitsman [14]. In Section 3, we use these estimates to
get better lower bound on λ01(z) than (1.3). In particular, we improve Landau’s
Theorem. Moreover, we provide a better upper bound than Ahlfors’ (1.4) in Section 4.
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2. Basic estimates of λ01(z)

In this section, we provide some basic estimates of λ01(z) on the unit circle and on
the vertical line with Re z = 1/2. These results will be used in Section 3 to improve
Landau’s Theorem.

First, we state some known facts about λ01(z) that we need later in this paper.

Lemma A.

(a) rλ01(re
iθ) is a strictly increasing function of r for 0 < r < 1 and a strictly

decreasing function for r > 1.
(b) λ1eiθ(0) increases in θ ∈ (0, π].
(c) For any fixed r > 0, λ01(re

iθ) is a strictly decreasing function of θ ∈ (0, π].
(d) For any fixed x, λ01(x+ iy) is a strictly decreasing function of y ∈ [0,+∞).

The properties (a) and (d) are due to Hempel [5] and (b) was first proved by
Bermant [2] (also see Solynin and Vuorinen [12]), and (c) was given by both Hempel
[5] and Weitsman [14].

Besides λ01(−1) given in (1.2), the following values of λ01(z) are known ([3], [11]).

λ01

(

1

2

)

=
16π2

Γ(1/4)4
= 0.913893 . . . and λ01

(

1

2
+ i

√
3

2

)

=
22/38π3

3Γ(1/3)6
= 0.355082 . . . .

Next, we give some properties of λ01(z) along the vertical line with Re z = 1/2.

Lemma 2.1. The function y 7→ yλ01(1/2 + iy) is increasing on [0,
√
3/2] and

decreasing on [
√
3/2,+∞). In particular,

(2.1)
d

dy
λ01

(

1

2
+ iy

)
∣

∣

∣

∣

y=
√
3/2

= − 2√
3
λ01

(

1

2
+ i

√
3

2

)

.

Proof. The first statement was given by Herron, Ma and Minda in [6] (see
Example 3.10). This implies that yλ01(1/2 + iy) achieves its maximum value at
y =

√
3/2. Thus, for y =

√
3/2,

d

dy

[

yλ01

(

1

2
+ iy

)]

= y
d

dy
λ01

(

1

2
+ iy

)

+ λ01

(

1

2
+ iy

)

= 0,

which yields (2.1). �

Lemma 2.2. The function y 7→
√

1/4 + y2 λ01(1/2+ iy) is decreasing on [0,∞).

Proof. For 0 < θ ≤ π, let h(z) : C1eiθ → C01 be given by

h(z) =
z − eiθ

1 − eiθ
.

Then,

h(0) =
eiθ

eiθ − 1
=

1

2
− i

1

2
cot

(

θ

2

)

and

|h′(0)| = 1

|1− eiθ| =
1

2 sin(θ/2)
.
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Hence,

λ1eiθ(0) = |h′(0)|λ01(h(0)) =
1

2 sin(θ/2)
λ01

(

1

2
− i

1

2
cot

(

θ

2

))

=
1

2 sin(θ/2)
λ01

(

1

2
+ i

1

2
cot

(

θ

2

))

.

By letting y = 1

2
cot
(

θ
2

)

, we obtain that

λ1eiθ(0) =
√

1/4 + y2 λ01 (1/2 + iy) .

As y increases from 0 to ∞, θ decreases from π to 0, the desired result follows
from (b) of Lemma A. �

Theorem 2.3. When 0 < θ ≤ π,

d2

dθ2
log λ01(e

iθ) ≥ λ201(e
iθ).

Proof. From (a) of Lemma A, we see that as a function of r, rλ01(re
iθ) attains

its maximum value at r = 1. Hence, for r = 1,

∂

∂r

(

rλ01(re
iθ)
)

= r
∂

∂r
λ01(re

iθ) + λ01(re
iθ) = 0

and
∂2

∂r2
(

rλ01(re
iθ)
)

= r
∂2

∂r2
λ01(re

iθ) + 2
∂

∂r
λ01(re

iθ) ≤ 0.

Thus

(2.2)
∂

∂r
λ01(re

iθ)

∣

∣

∣

∣

r=1

= −λ01(eiθ)

and

(2.3)
∂2

∂r2
λ01(re

iθ)

∣

∣

∣

∣

r=1

≤ −2
∂

∂r
λ01(re

iθ)

∣

∣

∣

∣

r=1

= 2λ01(e
iθ).

Since λ01(z) has curvature −1, ∆ log λ01(z) = λ201(z) or equivalently,

∂2

∂r2
log λ01(z) +

1

r

∂

∂r
log λ01(z) +

1

r2
∂2

∂θ2
log λ01(z) = λ201(z)

for z = reiθ. That is,

λ01(z)
∂2

∂r2
λ01(z)−

(

∂
∂r
λ01(z)

)2

λ201(z)
+

1

r

∂
∂r
λ01(z)

λ01(z)
+

1

r2
∂2

∂θ2
log λ01(z) = λ201(z).

Now, we put |z| = 1 in the above and obtain the desired inequality by using (2.2)
and (2.3). �

Once we know the values of λ01(e
iθ) and d

dθ
λ01(e

iθ) at any θ0 6= 0, we can use

Theorem 2.3 to get a nice lower bound on λ01(e
iθ) when θ is close to θ0 as we present

in the next theorem.

Theorem 2.4. Let A =
√

1/3− λ201(1/2 + i
√
3/2). Then

(a) The function θ 7→ arccos
λ01(−1)
λ01(e

iθ)
+ λ01(−1)θ is decreasing on [π/3, π].
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(b) The function θ 7→
√

A2 + λ201(e
iθ)− A

λ01(e
iθ)

exp(Aθ) is decreasing on (0, π/3] and

increasing on [π/3, π].
(c) In particular,

(2.4) λ01(e
iθ) ≥















λ01(1/2 + i
√
3/2)

cosh (A(π/3− θ))− (1/
√
3A) sinh (A(π/3− θ))

for θ ∈ (0, π],

λ01(−1)
cos (λ01(−1)(π − θ))

for θ ∈ [π/3, π].

Proof. DefineH(θ) := log λ01(e
iθ) in (0, π]. ThenH ′(θ) ≤ 0 from (c) of Lemma A.

This together with Theorem 2.3 implies that

H ′(θ)H ′′(θ) ≤ H ′(θ) exp(2H(θ)).

By integrating both sides of this inequality from θ1 to θ2, 0 < θ1 < θ2 ≤ π, we get

(2.5) H ′(θ2)
2 −H ′(θ1)

2 ≤ λ201(e
iθ2)− λ201(e

iθ1).

Now we prove (a). The property (d) of Lemma A and the symmetry of C01 with
respect to the real axis imply d

dy
λ01(−1+ iy)|y=0 = 0, which yields d

dθ
λ01(e

iθ)|θ=π = 0.

Hence H ′(π) = 0. Put θ1 = θ, θ2 = π in (2.5), we get H ′(θ)2 ≥ λ201(e
iθ) − λ201(−1).

Again, as H ′(θ) ≤ 0, we see that

d
dθ
λ01(e

iθ)

λ01(eiθ)
√

λ201(e
iθ)− λ201(−1)

≤ −1.

Integrating both sides of this inequality from θ1 to θ2, π/3 ≤ θ1 < θ2 ≤ π, we obtain

arccos
λ01(−1)

λ01(eiθ2)
− arccos

λ01(−1)

λ01(eiθ1)
≤ −λ01(−1)θ2 + λ01(−1)θ1.

This yields (a).
By putting θ1 = θ, θ2 = π in the previous inequality, we have

arccos
λ01(−1)

λ01(eiθ)
≥ λ01(−1)(π − θ),

which implies the second lower bound in (2.4).
Next, we show that H ′(π/3) = −1/

√
3. With z = x+ iy = reiθ,

∂λ01(z)

∂θ
= −y∂λ01(z)

∂x
+ x

∂λ01(z)

∂y
.

By using (2.1), we obtain that at z = 1/2 + i
√
3/2 = eiπ/3,

∂λ01(z)

∂θ
= −λ01(z)√

3

since, for x = 1/2,
∂λ01(z)

∂x
= 0.

Thus, H ′(π/3) = −1/
√
3.

By putting θ1 = θ ≤ π/3, θ2 = π/3 in (2.5), we see that

H ′(θ)2 ≥ A2 + λ201(e
iθ).
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This together with H ′(θ) ≤ 0 results in

d
dθ
λ01(e

iθ)

λ01(eiθ)
√

A2 + λ201(e
iθ)

≤ −1.

Integrating both sides of this inequality from θ1 to θ2, 0 < θ1 < θ2 ≤ π/3, we get

log

(

√

A2 + λ201(e
iθ2)− A

)

λ01(e
iθ1)

(

√

A2 + λ201(e
iθ1)− A

)

λ01(eiθ2)
≤ −A(θ2 − θ1).

This means that the function in (b) is decreasing on (0, π/3].
In particular, when θ ∈ (0, π/3],

(2.6)

√

A2 + λ201(e
iθ)− A

λ01(eiθ)
≥ 1/

√
3−A

λ01(1/2 + i
√
3/2)

exp(A(π/3− θ)).

The left side of this inequality is s(λ01(e
iθ)) where s = s(t) = (

√
A2 + t2−A)/t. Note

that s is an increasing function of t and t = 2As/(1− s2). Also, (1/
√
3−A)(1/

√
3+

A) = λ201(1/2 + i
√
3/2). Hence, the inequality (2.6) implies that

λ01(e
iθ) ≥

2A
1/
√
3− A

λ01(1/2 + i
√
3/2)

exp(A(π/3− θ))

1− (1/
√
3− A)2

λ201(1/2 + i
√
3/2)

exp(2A(π/3− θ))

=
λ01(1/2 + i

√
3/2)

cosh (A(π/3− θ))− 1√
3A

sinh (A(π/3− θ))
.

Finally, set θ1 = π/3 and π/3 ≤ θ2 = θ ≤ π in (2.5), we have

H ′(θ)2 ≤ A2 + λ201(e
iθ).

Thus,

d
dθ
λ01(e

iθ)

λ01(eiθ)
√

A2 + λ201(e
iθ)

≥ −1.

Similarly as we did in the last part, we see that our function in (b) is increasing on
[π/3, π].

Consequently, (2.6) holds for θ ∈ [π/3, π], which implies the first lower bound in
(2.4) for θ ∈ [π/3, π]. This completes the proof of Theorem 2.4. �

Remark. The first two statements in Theorem 2.4 are stronger than the fact
that λ01(e

iθ) is decreasing on (0, π]. Also, numerical calculations for the two lower
bounds in (2.4) show that for θ ∈ [π/3, π], the first lower bound is larger for π/3 ≤
θ < 1.768 . . ., while the second lower bound is larger for 1.768 . . . < θ ≤ π. Note the
second lower bound is also true for θ ∈ (0, π/3] though it is worse than the first.
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Since g(z) = z/(z−1) is a conformal map of C01 to C01, λ01(z) = |g′(z)|λ01(g(z)).
Hence, we have

λ01(e
iθ) =

1

4 sin2(θ/2)
λ01

(

1

2
− i

1

2
cot

(

θ

2

))

=
1

4 sin2(θ/2)
λ01

(

1

2
+ i

1

2
cot

(

θ

2

))

=
1 + 4y2

4
λ01

(

1

2
+ iy

)

.

where y = 1

2
cot( θ

2
). Therefore, we can state Theorem 2.4 as estimates of λ01(z)

along the vertical line with Re z = 1/2. Here we have used the fact that λ01(1/2) =
4λ01(−1) and y decreases from +∞ to 0 when θ increases from 0 to π.

Corollary 2.5. Let A =
√

1/3− λ201(1/2 + i
√
3/2). Then

(a) The function y 7→ arccos
λ01(1/2)

(1 + 4y2)λ01(1/2 + iy)
− 1

2
λ01(1/2) arctan(2y) is in-

creasing on [0,
√
3/2].

(b) The function y 7→
√

16A2 + (1 + 4y2)2λ201(1/2 + iy)− 4A

(1 + 4y2)λ01(1/2 + iy)
exp{−2A arctan(2y)}

is decreasing on [0,
√
3/2] and increasing on [

√
3/2,+∞).

(c) In particular,

(2.7) (1 + 4y2)λ01(
1

2
+ iy)

≥







































λ01(1/2)

cos

(

1

2
λ01(1/2) arctan(2y)

) for y ∈ [0,
√
3/2],

4λ01(1/2 + i
√
3/2)

cosh (2A(π/3− arctan(2y))) +
1√
3A

sinh (2A(π/3− arctan(2y)))

for y ∈ [0,+∞).

Remark. Numerical calculations show that in [0, 0.4098 . . .), the first lower
bound of (2.7) is better, while in (0.4098 . . . ,

√
3/2], the second lower bound is better.

They together give a better lower bound than what we can get from Lemma 2.1 and
Lemma 2.2 for 0 ≤ y ≤

√
3/2. We stated Lemma 2.2 as it gives a simple expression

of the lower bound for λ01(1/2 + iy) for 0 ≤ y ≤
√
3/2.

3. Improved lower bound and Landau’s Theorem

By using Theorem 2.4, we now improve (1.3). Our proof is similar to what Minda
used to prove (1.3) in [10].
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Theorem 3.1. Let

(3.1) ρ(z) :=























































































1

|z|
√

|1− z/M | log

∣

∣

∣

√
M +

√
M − z

∣

∣

∣

2

|z|
if 0 < |z| ≤ 1 and |z| ≤ |z − 1|,

1

|1− z|
√

|1− (1− z)/M | log

∣

∣

∣

√
M +

√
M − 1 + z

∣

∣

∣

2

|1− z|
if 0 < |z − 1| ≤ 1 and |z − 1| < |z|,

1

|z|
√

|1− 1/(Mz)| log
(

|z|
∣

∣

∣

√
M +

√

M − 1/z
∣

∣

∣

2
)

if |z| > 1 and |z − 1| > 1.

Then,

λ01(z) ≥ ρ(z).

Here, M = 17.1052459 . . . satisfies

2
√

1 + 1/M log(
√
M +

√
M + 1) = K =

1

λ01(−1)
.

Proof. Let Ω1 = {z : 0 < |z| < 1 and |z| < |z − 1|}, Ω2 = {z : 0 < |z −
1| < 1 and |z − 1| < |z|}, and Ω3 = {z : |z| > 1 and |z − 1| > 1}. Also, set
Γ1 = {z : |z| = 1 and |z| ≤ |z − 1|}, Γ2 = {z : |z − 1| = 1 and |z − 1| ≤ |z|}, and
Γ3 = {z = 1/2 + iy : −

√
3/2 ≤ y ≤

√
3/2}.

It is clear that ρ(z) is continuous on C01. By using Theorem 1 in [10], it is enough
to show that ρ(z)|dz| has curvature −1 and thus has a supporting metric everywhere
in Ω1 ∪ Ω2 ∪ Ω3, and λ01(z) ≥ ρ(z) on Γ1 ∪ Γ2 ∪ Γ3.

Note that z 7→ 1 − z and z 7→ 1/z map Ω1 to Ω2 and Ω3, respectively. ρ(z)|dz|
is defined on Ω2 and Ω3 by these transformations, respectively, from its definition on
Ω1 by (1.1). We only need to prove that ρ(z)|dz| has curvature −1 on Ω1. Similarly,
by using ρ(z) = ρ(z) and

λ01(z) = λ01(1− z) =
1

|z|2λ01(1/z),

it suffices to prove λ01(z) ≥ ρ(z) on Γ+
1 = {z = eiθ : π/3 ≤ θ ≤ π} and on Γ+

3 = {z =
1/2 + iy : 0 ≤ y ≤

√
3/2}.

To prove that ρ(z)|dz| has curvature −1 on Ω1, we actually show that

(3.2) λΩ(z) =
1

|z|
√

|1− z/M | log |√M+
√
M−z|2

|z|

for Ω = C\({0} ∪ [M,+∞)). Note that η(z) =
√
M −

√
M − z maps Ω conformally

onto Ω′ = {η : η 6= 0,Re η <
√
M} and w = η

2
√
M−η

maps Ω′ conformally onto

D∗ = D\{0}. Hence,

ϕ(z) =

√
M −

√
M − z√

M +
√
M − z
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is a conformal map from Ω to D∗. Direct calculations yield that

|ϕ′(z)| = |ϕ(z)|
|z|
√

|1− z/M |
.

Since

λD∗(w) =
1

|w| log 1

|w|
,

λΩ(z) = |ϕ′(z)|λD∗(ϕ(z)) yields (3.2). Hence, ρ(z)|dz| = λΩ(z)|dz| on Ω1, and thus
ρ(z)|dz| has curvature −1. Particularly, for M > 0,

λΩ(−1) =
1

2
√

1 + 1/M log(
√
M +

√
M + 1)

.

By using the monotonicity property of the hyperbolic metric, λΩ(−1) is a strictly

decreasing function of M for M > 0. Thus, 2
√

1 + 1/M log(
√
M +

√
M + 1) is a

strictly increasing function of M and so it takes the value K at a unique M > 0. By
numerical calculations, we see that M = 17.1052459 . . ..

Next, we show that λ01(z) ≥ ρ(z) on Γ+
3 . For our convinience, set

ψM(z) :=
∣

∣

∣

√
M +

√
M − z

∣

∣

∣

2

.

Then, for z = 1/2 + iy, 0 ≤ y ≤
√
3/2, straightforward calculation shows

ψM(1/2 + iy) =M +
√

(M − 1/2)2 + y2 +
√
2M

√

M − 1/2 +
√

(M − 1/2)2 + y2.

Hence,
1

ρ
(

1

2
+ iy

)

√

1

4
+ y2 4

√

(

1− 1

2M

)2
+
(

y
M

)2
= log

ψM(1/2 + iy)
√

1

4
+ y2

.

Lemma 2.2 implies

λ01(1/2 + iy) ≥ λ01(1/2 + i
√
3/2)

√

1/4 + y2
, 0 ≤ y ≤

√
3/2.

The desired inequality follows from

(3.3) ψM (1/2 + iy) ≥
√

1

4
+ y2 exp

1

λ01(1/2 + i
√
3/2) 4

√

(

1− 1

2M

)2
+
(

y
M

)2
.

Note that

ψM(1/2 + iy) ≥ 2M − 1

2
= 33.71 . . .

and

exp
1

λ01(1/2 + i
√
3/2) 4

√

(

1− 1

2M

)2
+
(

y
M

)2

≤ exp
1

λ01(1/2 + i
√
3/2)

√

1− 1/(2M)
= 17.43 . . . .

The inequality (3.3) clearly holds when 0 ≤ y ≤
√
3/2.
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Finally, we prove λ01(e
iθ) ≥ ρ(eiθ) for π/3 ≤ θ ≤ π. In this case, for z = eiθ, long

but straightforward calculations give us
√

∣

∣

∣
1− z

M

∣

∣

∣
=

4
√
1− 2M cos θ +M2

√
M

and

ψM(eiθ) =M +
√
1− 2M cos θ +M2 +

√
2M

√

M − cos θ +
√
1− 2M cos θ +M2.

Thus, √
M

ρ(eiθ) 4
√
1− 2M cos θ +M2

= logψM(eiθ).

By using the second lower bound in (2.4), it is enough to show that

ρ(eiθ) ≤ λ01(−1)

cos(λ01(−1)(π − θ))
, π/3 ≤ θ ≤ π,

which is equivalent to

logψM (eiθ)−
√
M cos(λ01(−1)(π − θ))

λ01(−1) 4
√
1− 2M cos θ +M2

≥ 0.

Note that equality holds for θ = π by the definition of M .
Let c = λ01(−1) and s =

√
1− 2M cos θ +M2. Then

√
1−M +M2 ≤ s ≤

1 +M . By using the inequality

cos (c(π − θ)) ≤ 1− c2(cos θ + 1) =
c2s2 + 2M − (M + 1)2c2

2M
,

it is enough to show that

h(s) := log
(

M + s+
√

(s+M)2 − 1
)

− c2s2 + 2M − (M + 1)2c2

2c
√
Ms

≥ 0

on [
√
1−M +M2, 1 +M ]. Note that h(1 +M) = 0 and

h′(s) =
1

√

(s+M)2 − 1
− 3c2s2 − 2M + (M + 1)2c2

4cs
√
Ms

.

Direct calculations show that h′(s) ≤ 0 on [
√
1−M +M2, 1+M ] = [16.6 . . . , 18.1 . . .].

Hence, h(s) ≥ 0 on [
√
1−M +M2, 1 + M ]. This completes the proof of Theo-

rem 3.1. �

Remark. By similar way as the proof of Theorem 3.1, we can show that ρ(z) ≥
1/|z|(| log |z||+K). Hence, Theorem 3.1 improves the lower bound in (1.3). For
example, (1.3) gives λ01(1/2 + i

√
3/2) ≥ 1/K = 0.228473 . . ., while Theorem 3.1

gives λ01(1/2 + i
√
3/2) ≥ ρ(1/2 + i

√
3/2) = 0.240957 . . .. Moreover, when |z| → ∞,

(3.4) ρ(z) ≈ 1

|z|(log |z|+ log(4M))
=

1

|z|(log |z| + 1.835189 . . .)
,

which has the same form as the lower bound in (1.3).
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Corollary 3.2. (Improved Landau’s Theorem) If f is holomorphic in D and
f(D) ⊂ C\{0, 1}, then for z ∈ D,

(1− |z|2)|f ′(z)| ≤ 2

ρ(f(z))
,

where ρ(z) is given in (3.1).

Proof. The principle of hyperbolic metric gives

|f ′(z)|λ01(f(z)) ≤ λD(z) =
2

1− |z|2 .

Theorem 3.1 implies the desired inequality. �

4. Improved upper bound

In this section, we improve the upper bound for λ01(z) given by Ahlfors. Precisely,
we prove the following theorem.

Theorem 4.1.

λ01(z) ≤











































































Re
√
1− z

|z||z− 1| log |
√
1− z + 1|2

|z|

if 0 < |z| ≤ 1 and |z| ≤ |z − 1|,

Re
√
z

|1− z||z| log |√z + 1|2
|1− z|

if 0 < |z − 1| ≤ 1 and |z − 1| ≤ |z|,

Re
√

1− 1/z

|z− 1| log
(

|z|
∣

∣

∣

√

1− 1/z + 1
∣

∣

∣

2
) if |z| > 1 and |z − 1| > 1.

Proof. For any fixed θ, |θ| < π/2, let Ω = C\
(

{1 + reiθ : 0 ≤ r < +∞} ∪ {0}
)

.
Then it is easy to see that

η(z) =
√

e−iθ(1− z)

is a conformal map from Ω to Ω′, where Ω′ = {η : Re η > 0 and η 6= e−iθ/2} and the
square root function takes positive values on the positive real axis. Moreover,

w(η) =
η − e−iθ/2

η + eiθ/2

is also a conformal map from Ω′ to D∗, where D∗ = D\{0}. Thus,

w = φ(z) =

√

e−iθ(1− z)− e−iθ/2

√

e−iθ(1− z) + eiθ/2
=

√
1− z − 1√
1− z + eiθ

is a conformal map from Ω to D∗.
Direct calculations show that

φ′(z) =
−(1 + eiθ)

2
√
1− z

(√
1− z + eiθ

)2
.
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This together with λD∗(w) = 1/|w| log(1/|w|) implies that

λΩ(z) = |φ′(z)|λD∗(φ(z))

=
|1 + eiθ|

2
√

|z − 1|
∣

∣

√
1− z + eiθ

∣

∣

∣

∣

√
1− z − 1

∣

∣ log
∣

∣

∣

√
1−z+eiθ√
1−z−1

∣

∣

∣

=
cos(θ/2)

∣

∣

√
1− z + 1

∣

∣

|z|
√

|z − 1|
∣

∣

√
1− z + eiθ

∣

∣ log
∣

∣

∣

√
1−z+eiθ√
1−z−1

∣

∣

∣

.

As Ω ⊂ C01, we see that for z ∈ Ω,

(4.1) λ01(z) ≤ λΩ(z) =
cos(θ/2)

∣

∣

√
1− z + 1

∣

∣

|z|
√

|z − 1|
∣

∣

√
1− z + eiθ

∣

∣ log
∣

∣

∣

√
1−z+eiθ√
1−z−1

∣

∣

∣

.

For fixed z ∈ Ω1\{0}, where Ω1 = {z : 0 < |z| < 1 and |z| < |z − 1|}, we choose θ
such that eiθ = 1−z

|1−z| . Then

cos(θ/2)
∣

∣

√
1− z + 1

∣

∣

∣

∣

√
1− z + eiθ

∣

∣

=
Re

√
1− z

√

|1− z|
and

∣

∣

∣

∣

√
1− z + eiθ√
1− z − 1

∣

∣

∣

∣

=
|
√
1− z + 1|2

|z| .

These equalities and (4.1) yield the first case of the theorem.
Since C01 is mapped onto itself by the map z 7→ 1 − z, the second case follows

from the first case by using (1.1). Similarly, z 7→ 1/z maps C01 conformally onto
itself and 1/z ∈ Ω1 if |z| > 1 and |z − 1| > 1. The third case follows from the first
case and (1.1). This completes our proof. �

Because D∗ ⊂ Ω, the comparison principle of the hyperbolic metric tells us that
our upper bounds are smaller than the upper bounds in (1.4) given by Ahlfors.

If we let z → ∞, the upper bound in the third case equals approximately to
1/|z|(log |z|+2 log 2), which has the same form as the lower bound in (1.3) and (3.4);
note that 2 log 2 = 1.39629 . . ..

Often, we need to estimate λ01(z) on the ray z = 1/2+ iy, y ≥
√
3/2, so we state

the upper bound in this case more explicitly.

Corollary 4.2. For y ≥
√
3/2,

λ01(1/2 + iy) ≤ 4y

(1 + 4y2) log(
√

1 + 4y2 + 2y)
.
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